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Introduction

Geodesic acoustic modes (GAMs) represent the oscillating part of the Zonal Flow (ZF) and

are generated by toroidal curvature effects through the coupling of the electric field (m,n)=0,0

mode and the (1,0) pressure perturbations. GAMs are strongly involved in the energy transport

and in the turbulence suppression. In fact GAM oscillationscontribute to the transfer of energy

from the ZF to the pressure perturbation [1]. Moreover, GAMscan radially propagate the ZF

with important consequences on the energy transport. However, to the present the radial propa-

gation of the GAM is not well understood and several aspects need to be elucidated. Although

most of experiments show a radial propagation outwards the tokamak device, some observations

show an inward radial propagation of GAMs [2]. Moreover, it is unclear whether this velocity

is constant or exhibits variations in the experiments and inparticular the role of temperature

gradient requires to be investigated. The linear theory of GAM velocity due to finite ion Larmor

radius has been well developed in recent years predicting a group velocityvg ∝ ωGkrρ2
i for a

GAM with a wavenumberkr and a frequencyωG. However, only a qualitative agreement with

the experimental results has been obtained. Experimental results show a velocity much larger

than that predicted by linear theory. Consequently in order to explain the gap between theory and

experiments the research focuses on nonlinear aspects [3].Although GAMs are a natural part of

the turbulent system, it is nevertheless very useful to further investigate their linear behavior, in

order to be able to judge how turbulence and GAMs influence each other. Recently, by studying

the linear behavior of GAM in the presence of a temperature gradient a new damping mecha-

nism has been identified [4] -the so calledPhase-mixing Landau damping (PL)-mechanism- and

discussed in Ref.s [4, 5, 6]. The local dependence of GAM frequency on the plasma parameters,

such as temperature, generates a continuum spectrum in tokamak plasmas. As a consequence,

in the presence of a temperature gradient, GAM is affected byphase mixing energy-conserving

cascade. Thus, the combined effect of phase mixing and Landau damping has been proposed as

a novel decay mechanism of GAMs at the tokamak edge, where thetemperature gradients are

very large. This proposed mechanism is consistent with the observed existence or nonexistence

of GAMs in the different confinement regimes. Here, we focus rather on the real part of the

GAM dispersion relation and we investigate the influence of the phase mixing effects on the

GAM radial propagation [7].
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Model and Simulations

First we briefly describe the equations used in the numericalcode ORB5 [8] which now

includes all extensions made in the NEMORB project [9]. This code uses a Lagrangian for-

mulation based on the gyrokinetic Vlasov-Maxwell equations using a discrete version of gy-

rokinetic field theory. The code solves the full-f gyrokinetic Vlasov equation using a particle-

in-cell δ f method. Theδ f quantity represents the fluctuating part of the distribution function.

Figure 1:GAM frequencyω as a func-

tion of the safety factor q for several val-

ues of the wave number kr . The results of

the simulations (points) are in good agree-

ment with Eq. 1 withα1 given in Eq. 2

(solid lines).

In this work we have used the electrostatic version

of the model with a single ion species and adiabatic

electrons. The corresponding polarization equation re-

duces to the standard linear quasi-neutrality condition,

written in the long wave-length limit. In the code, the

time t is normalized to the inverse of the ion cyclotron

frequencyΩi = eB0/mi (assumingc = 1), the radial

direction is normalized toρs=
√

kBTe,0mi/(eB0) with

Te,0 the electron temperature, and the potential is given

in φ0 = kBTe,0/eunits. The quantityB0 is calculated at

the magnetic axis, whileTe,0 is calculated in the middle

of the radial domain. The ion Larmor radius is defined

asρi =
√

2
√

Ti,0/Te,0ρs with Ti,0 the ion temperature.

In this paper we are interested in studying the radial GAM propagation and to this purpose we

consider the real part of the GAM dispersion relation at the second orderkrρi of accuracy:

ω2 = ω2
G[1+α1(krρi)

2] ωG =

√
7+4τe

2
q
( vTi

R0q

)[

1+
2(23+16τe+4τ2

e)

q2(7+4τe)2

]1/2
(1)

(for α1 see below). In order to resolve these corrections in the simulations, we consider a tem-

poral step of 25Ω−1
i . We choose a plasma diameterLr = 2a/ρs = 320, an inverse aspect ratio

ε = a/R= 0.1 and a spatial grid of(r×χ×φ)= (256×64×4) and a time step of 100Ω−1
i . Note

that convergence studies showed that 4 points in the toroidal directionφ are enough. Dirichlet

boundary condition is imposed at the outer boundaryr = 1, and Neumann boundary condition

at the inner boundaryr = 0. Simulations have been performed with 108 deuterium markers.

Moreover we consider circular magnetic flux surfaces. In this limit, the flux surface coordinate

r =
√

ψ/ψedge is a good approximation of the usual cylindrical radial coordinate. In the first

part of the work, temperature, density andq profiles have been considered flat. In Fig. 1, the

GAM frequencyω is shown as a function ofq for severalkr wavenumbers. By increasing the

krρi value, theω frequency increases in the simulations (points). These results are compared to

the theoretical curves obtained by considering Eq. 1 with the following α1 expression:

α1 =
1
2

[3
4
−
(7

4
+ τe

)−1(13
4
+3τe+ τ2

e

)

+
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4
+ τe

)−2(747
32

+
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32
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35
8

τ2
e +

1
2
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e
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(2)
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obtained in Ref. [10] in which the authors give sufficient details for the calculation ofω to the

second order of accuracy in order to resolve the contradiction in the literature about the trend of

α1. In the following we shall demonstrate thatα1 from Eq. 2 represents a good approximation

among the several estimates in the literature (see Ref. [10] and reference therein). As a general

remark, we find good agreement between theory and simulations.

Figure 2:Zoom of electric field amplitude

in the (t,r) plane for aκT = 1 and τe = 1.

The white trajectory has been obtained by

Eq. 4.

In order to investigate the behavior of GAMs in the

presence of a temperature gradientκT we recall that

this latter is at the basis of the continuum spectrum of

GAMs described byωG ∝
√

T(r). Thus, each radial

point of the electric field perturbation oscillates with

a different frequency generating higherkr modes via

phase mixing. In particularkr changes in time accord-

ing tokr = kr0+β t with β ∝ κT . Concerning the imag-

inary part of the dispersion relation we have demon-

strated that the combined action of phase mixing and

Landau damping generates a strong damping mecha-

nism of GAMs resulting in the so calledPL-mechanism. But the phase mixing can also influ-

ence theω frequency increasing more and more the effect of the termkrρi in Eq. 1 (see Ref. [7])

with a consequent impact on the radial group and phase velocity:

ω2=ω2
G(r)

[

1+α1(kr0+β t)2ρ2
i

]

→ vg=α1ωG(kr0+β t)ρ2
i , vp=

ωG[1+0.5α1(kr0+β t)2ρ2
i ]

(kr0+β t)
(3)

We note that group and phase velocities are not constant but depend on time. Consequently we

can write the following accelerations for GAMs:

ac =
∂vg

∂ t
=

∂
∂ t

∂ω
∂kr

= α1ωGβρ2
i

∂vp

∂ t
=

1
2

ωGα1βρ2
i −

ωGβ
(kr0+β t)2 (4)

In order to verify and put in evidence GAM acceleration we consider a GAM packet that evolves

in the same equilibrium considered for the benchmark, but with the following temperature pro-

file T(r) = exp(−κT l tanh((r−r0)/l)) with l = 0.225,r = 0.5 andaκT =−a∇T(r0)/T(r0) = 1.

Moreover we chooseq= 3. For this case in Fig. 2 we show time evolution of the centralnode

of the electric field that corresponds to follow the time evolution of the peak of the potential

perturbation. The node initialized with a zero group velocity accelerates outwards in agreement

with the white trajectory byac expression in Eq. 4 withβ = 0.5ωGκT as approximated at the

center of the temperature profile. To further investigate the GAM radial propagation, in Fig. 3

(left panel) we show the acceleration as a function of the temperature gradient. The simulation

points and the straight blue line obtained by the theory showan acceleration that linearly in-

creases withκT . Finally, in Fig. 3 (right panel) we plot the acceleration values as a function of

τe obtained from the simulations (red line) and from the theoryby using the expression forα1
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Figure 3:(left) Acceleration values as a function of aκT obtained from the theory (blue line) and from
the simulations (black points) forτe = 1. (right) Acceleration values as a function ofτe obtained from
the simulations (red line) and from the theory with phase mixing effects and by using Eq. 2 forα1.

in Eq. 2 (black line). It is interesting to observe that thereis a value ofτe at which acceleration

and consequentlyα1 changes sign. We find a good agreement between simulations and theory

by usingα1 obtained in Ref. [10]. We obtain a change in the acceleration direction forτe0 ≈ 6.

Conclusions

The effects of phase mixing on the GAM dispersion relation inthe presence of a temperature

gradient have been investigated. In particular, we have shown for the first time that in the pres-

ence of a temperature gradient the frequency of the GAM is notconstant but evolves in time

because of the increase of the radial wavenumber. As a consequence, also the radial velocity

of GAMs increases in time. Thus, this study reduces the discrepancy between the linear theory

and the experiments, in which strong velocities of GAMs are generally observed. Moreover, the

acceleration, amplifying the radial displacement of the GAM, gives us an operative method to

select between several perturbative techniques found in literature.
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