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It is known that turbulent heat transport can be driven by instabilities such as ITG
(Ion Temperature Gradient) modes, TEM (Trapped Electron Modes), and ETG (Electron
Temperature Gradient) modes. Recent studies show that electron-scale (high-k) instabil-
ities can contribute a significant amount of electron heat flux and can also significantly
influence the ion scales instabilities, especially when low-k instabilities are near marginal
stability [1, 2, 3]. This is the case in ITER. It is therefore very important to understand in
present devices the complex interactions between different scales in determining electron
and ion heat transport in order to be able to extrapolate to ITER conditions.

A few experimental observations reveal that in situation of high electron heating,
or when NBI heating is used, an increase in the electron heat flux and in the electron
stiffness can occour and that it could be related to high-k instabilities [4, 5]. In dedicated
electron heat transport experiments in JET L-mode plasmas, higher values of electron
stiffness have been observed in the presence of significant NBI (Neutral Beam Injection)
power compared to discharges with pure ICRH (Ion Cyclotron Resonance Heating) power
applied in mode conversion (MC) scheme yielding dominant electron heating. The main
differences in NBI heated plasmas with respect to pure ICRH-MC plasmas are lower values
of Te/Ti, higher values of R/LT i, the presence of additional fast D ions and higher toroidal
rotation. Due to the stabilization effects of fast ions on ITGs [6, 7], the effects of higher
R/LT i are not expected to be significant. Possible effects of Te/Ti on TEMs thresholds
have been analyzed with linear gyro-kinetic simulations and the results suggest that they
cannot explain the experimental observation [8]. However, one possible effect of lower
values of Te/Ti is an increase of the electron heat flux carried by ETGs, for which a
stabilizing effect of τ = Zeff · Te/Ti is expected [9]. Starting from the experimental
data, a study with linear and nonlinear single-scale gyro-kinetic simulations using the
GENE (Gyro-kinetic Electromagnetic Numerical Experiment) code [10] indicated that
the impact of ETGs could explain the experimental observations and using a simple sum
of the turbulent electron heat flux from ions-scale and from electron-scales it was possible
to reproduce the experimental levels of electron heat flux and of the electron stiffness, at
least in the pure ICRH-MC plasma case, that could not be reproduced using only ion-
scales simulations [4] (see figure 4). A database of JET L-mode discharge data has been
created in order to further clarify the role of ETGs. These plasmas were made with C-wall
and with q95 ∼ 5, B0 ∼ 3.3−3.4T, Te,0 ∼ 4−6keV, Ti,0 ∼ 2.5–5keV, ne,0 ∼ (2–3.5)·1019m−3
and Ip ∼ 2MA. Within the database, a strong correlation between R/LTe and τ has
been found, especially at outer radii. Using the experimental data from discharges with
different values of τ as input, linear and nonlinear simulations have been carried out in
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Figure 1: R/LTevs τ (left) and qe,gB vs R/Lte for different τ (right) from a JET C-wall, L-mode
plasmas database.

order to study the impact of this parameter in our plasmas. The results at ρtor = 0.5
indicate that in discharges with higher τ values the ITGs are more unstable compared to
discharges with lower values of τ . ETGs are predicted to be unstable in all the studied
cases, but at lower τ there is a smooth transition in the linear growth rate between ion-
scale and electron-scale instabilities, with the linear growth rate never going to 0, while at
high τ a gap in the linear growth rate is visible between ions and electrons scale. Also the
ratio between the maximum growth rate on electron-scale and on ion-scale, γETG/γITG,
is lower for higher values of τ (see figure 2).

In order to properly study the role of multi-scale interactions and ETGs, a first gyro-
kinetic multi-scale simulation of a JET L-mode plasma has been carried out using the
parameters from shot n. 78834 at ρtor ∼ 0.53 and t ∼ 7 s. The simulation features Miller
geometry, collisions, kinetic D ions and electrons, plasma rotation and is electrostatic. In
order to cover both ions and electrons scale toroidal mode numbers up to the electron-
scales have been coupled using 0.1 . kyρs . 48. Perpendicular box sizes were [Lx, Ly] ∼
[64, 64]ρs. Grid points [nx, ny, nz, nv‖, nw] ∼ [1200, 448, 36, 32, 12] (∼ 7 · 109 points in
the phase space, x = radial, y=binormal, z=parallel (to B0), v ‖ = parallel velocity,
w= magnetic momentum). The ions and electrons heat flux time evolutions from the
simulation are shown in figure 3. The simulation indicates that multi-scale interactions
and high-k instabilities can play an important role for the electron heat flux in a JET
L-mode discharge. Compared to the ion scale simulations, the electron heat flux increases
of ~50% at R/LTe = 10 and of ~80% at R/LTe = 11, with a considerable amount of heat
flux brought by ETGs. As can bee seen in figure 3, where the plots of the electron flux
density (as a function of kyρs) are shown, the strong increase of the flux is due to a strong
increase of the contribution from the high-k part of the spectrum. Also the low-k part
of the spectrum is increasing, but this cannot explain the differences with the ion-scale
simulations as can be seen in the plot for the R/LTe = 10 case. The simulation indicates
that multi-scale interactions and high-k instabilities can play an important role for the
electron heat flux in a JET L-mode discharge. Considering multi-scale interactions and
high-k instabilities in the simulation helps also to obtain a better comparison with the
experiment as can be seen in figure 4: the electron heat flux is closer to the experimental
level for experimental values of R/LTe and the predicted electron stiffness, even if still
lower than in the experiment, is more than doubled with respect to the one predicted
by single-scale simulations. The ion heat flux is within the experimental error bars and
is not observed to change considerably between single and multi-scale simulations even
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when the ETG drive is increased.
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Figure 2: R/LTevs τ (left), Te profiles for shots with fixed s, s/q, ne and with high and low
ICRH power directed to electrons (center) and linear growth rate of the main instability from
GENE linear simulations for two different values of τ . The correlation between τ and the Te
peaking is independent from the power applied to the electrons.
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Figure 3: Time evolution of the heat fluxes from the multi-scale simulation (up) and electron
flux density as a function of kyρs for R/LTe = 8.5, 10, 11 (bottom).

Furthermore, a comparison between the multi-scale simulation, the experimental re-
sults and the new version of TGLF using the new saturation rule (sat 1) [11, 12, 13]
has been done. In TGLF simulations the same input parameters as in GENE multi-scale
simulation have been used, considering just main D ions and electrons and using Miller
geometry. In figure 4 some scans in R/LTe of the electron heat flux using different values
of R/LT i are shown. When the ion heat flux is matched between TGLF and GENE,
TGLF predictions are in good agreement with the multi-scale ones (red triangles in fig-
ure 4). A strong increase of the electron heat flux due to ETGs is predicted by TGLF,
reaching the experimental level of electron stiffness. The main discrepancy between the
predictions of TGLF and GENE is the value of R/LT i at which the ion heat flux reaches
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Figure 4: Experimental, GENE multi-scale and GENE single-scale qe,gB vs R/LTe (left). Ex-
perimental, GENE multi-scale and TGLF qe,gB vs R/LTe and qi,gB vs R/LT i (center and right).
Different colors indicate different values of R/LT i in TGLF.

the experimental level, TGLF under-predicting the ion heat flux respect to GENE for the
same value of R/LT i. Both codes predict a very strong impact of ion scale zonal flows
on ETGs. In the multi-scale simulation the ITG drive had to be reduced to the lowest
value within experimental error bar in order to have appreciable contribution from high-k
instabilities. In TGLF, a slight increase of the ITG drive can bring to a strong suppression
of ETGs.
In conclusion, there are strong experimental indications that ETGs are important, in

certain experimental conditions, to explain the experimental electron heat flux and stiff-
ness. Linear, quasi-linear, non-linear single-scale and non-linear multi-scale simulations
support these indications and predict a fundamental contribution from high-k instabilities
to the electron heat flux and a big importance of multi-scale interactions for the turbulent
dynamics in the studied plasma core. New resources have been requested in order to study
the effects of finite beta and especially of impurities in the multi-scale simulation (adding
impurities has a stabilizing effect both on ion-scale and on electron-scale instabilities).
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