Cell Reports, Volume 22

**Supplemental Information** 

**Spatial Representation of Feeding** 

and Oviposition Odors in the Brain

of a Hawkmoth

Sonja Bisch-Knaden, Ajinkya Dahake, Silke Sachse, Markus Knaden, and Bill S. Hansson

Α

|             | Aromatic | Terpene | Acid  | Alcohol | Aldehyde | Ester | Ketone |
|-------------|----------|---------|-------|---------|----------|-------|--------|
| Terpene     | 0.000    |         |       |         |          |       |        |
| Acid        | 0.005    | 0.000   |       |         |          |       |        |
| Alcohol     | 0.240    | 0.000   | 0.002 |         |          |       |        |
| Aldehyde    | 0.260    | 0.001   | 0.021 | 0.390   |          |       |        |
| Ester       | 0.003    | 0.002   | 0.000 | 0.002   | 0.002    |       |        |
| Ketone      | 0.081    | 0.000   | 0.008 | 0.921   | 0.334    | 0.001 |        |
| Nitrogenous | 0.357    | 0.000   | 0.001 | 0.301   | 0.092    | 0.000 | 0.048  |

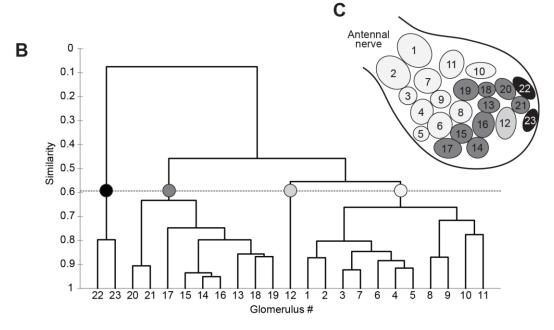



Figure S1. Odor-evoked activity patterns in the antennal lobe of *M. sexta*. Related to Figure 1. **A**) The odor-evoked activation patterns across 23 glomeruli after stimulation with 80 odorants belonging to eight chemical classes were analyzed with an analysis of similarity (ANOSIM based on correlations,  $10^5$  permutations). Values depict p values; significant differences between chemical classes after correcting significance levels for multiple comparisons (Bonferroni-Holm) are marked in bold. **B**) Hierarchical cluster analysis (Unweighted pair-group average) based on the similarity between 23 glomerular response patterns upon stimulation with 80 odorants. The dotted line shows the result of an automatic truncation process, and reveals 4 functional classes of glomeruli. **C**) Schematic of the antennal lobe glomeruli identified in our study. Glomeruli with the same shade of grey belong to the same functional class.

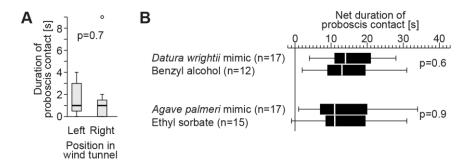



Figure S2. Control experiments in the wind tunnel. Related to Figure 2.

A) Duration of proboscis contacts moths made at two unscented, white, circular filter papers during 3 min after take-off (Wilcoxon-matched pairs test). Thirteen out of 20 tested moths contacted at least one of the filter papers with their proboscis. Boxplots depict the median proboscis contact duration (horizontal line in the box), 25th and 75th percentiles (lower and upper margins of the box) together with minimum and maximum values (whiskers), and outliers (circles). **B**) Two-choice tests (odor *versus* solvent) with behaviorally active mixtures of floral volatiles emitted by *Datura wrightii* (90% benzyl alcohol, 7% ( $\pm$ )-linalool, 3% benzaldehyde), and *Agave palmeri* (91% ethyl sorbate, 5% propyl valerate, 1% b-myrcene, 1% butyl butyrate, 1% ethyl tiglate, 1% benzaldehyde (Riffell et al., 2009b) were compared with experiments using only the major constituents of the *Datura* mimic (benzyl alcohol), and the *Agave* mimic (ethyl sorbate), respectively (Mann-Whitney U test). Numbers in brackets depict the number of moths out of 20 tested that contacted at least one of the filter papers with their proboscis. Boxplots depict the median net proboscis contact duration (vertical line in the box), 25th and 75th percentiles (left and right margins of the box) together with minimum and maximum values (whiskers), outliers not shown.

Table S1. List of 80 tested stimuli. Related to Experimental Procedures.

Odorants were diluted in mineral oil, except for benzoic acid, which was diluted in acetone. Odorants that did not evoke a clear response at  $1:10^3$  were tested at  $1:10^2$  (marked with §); 19 diagnostic odorants were tested in each animal (marked with \*).

| Odorant name        | CAS Number | Odorant name                | CAS Number              |  |
|---------------------|------------|-----------------------------|-------------------------|--|
| Acetic acid§        | 64-19-7    | *z-3-Hexenyl benzoate§      | 25152-85-6              |  |
| Acetophenone        | 98-86-2    | z-3-Hexenyl propionate      | 33467-74-2              |  |
| *2-Acetylpyridine   | 1122-62-9  | Indole                      | 120-72-9                |  |
| Benzaldehyde        | 100-52-7   | *z-Jasmone§                 | 488-10-8                |  |
| Benzoic acid§       | 65-85-0    | (+)-Limonene§               | 5989-27-5               |  |
| Benzyl acetate      | 140-11-4   | (+)-Linalool                | 126-90-9                |  |
| Benzyl acetone      | 2550-26-7  | (-)-Linalool                | 126-91-0                |  |
| Benzyl alcohol      | 100-51-6   | *(±)-Linalool               | 78-70-6                 |  |
| *Benzyl salicylate§ | 118-58-1   | (-)-Menthone§               | 14073-97-3              |  |
| 2,3-Butanedione     | 431-03-8   | Methionol                   | 505-10-2                |  |
| Butyl butyrate      | 109-21-7   | *Methyl anthranilate        | 134-20-3                |  |
| *Butyric acid       | 107-92-6   | Methyl benzoate             | 93-58-3                 |  |
| Cadaverine§         | 462-94-2   | 2-Methylbutylaldoxime (e/z) | 49805-55-2 / 49805-56-3 |  |
| Carvacrol           | 499-75-2   | 3-Methylbutylaldoxime (e/z) | 5775-74-6 / 5780-40-5   |  |
| *b-Caryophyllene§   | 87-44-5    | Methyl heptenone            | 110-93-0                |  |
| *Cinnamaldehyde     | 104-55-2   | Methyl hexanoate            | 106-70-7                |  |
| p-Cresol            | 106-44-5   | *Methyl salicylate          | 119-36-8                |  |
| Decanal             | 112-31-2   | b-Myrcene                   | 123-35-3                |  |
| *DEET§              | 134-62-3   | Nerol                       | 106-25-2                |  |
| Ethyl anthranilate  | 87-25-2    | *e-Nerolidol                | 40716-66-3              |  |
| *4-Ethyl guaiacol   | 2785-89-9  | Nicotine§                   | 54-11-5                 |  |
| Ethyl hexanoate     | 123-66-0   | Nonanal                     | 124-19-6                |  |
| Ethyl sorbate       | 2396-84-1  | 1-Nonanol§                  | 143-08-8                |  |
| Ethyl tiglate       | 5837-78-5  | 2-Nonanone                  | 821-55-6                |  |
| Eucalyptol          | 470-82-6   | b-Ocimene                   | 13877-91-3              |  |
| *Eugenol            | 97-53-0    | Octanal                     | 124-13-0                |  |
| *a-Farnesene        | 502-61-4   | Octanoic acid               | 124-07-2                |  |
| Geraniol            | 106-24-1   | Octanol                     | 111-87-5                |  |
| Geranyl acetate     | 105-87-3   | 2-Octanone                  | 111-13-7                |  |
| Heptanoic acid      | 111-14-8   | Octen-3-ol                  | 3391-86-4               |  |
| 2-Heptanone         | 110-43-0   | 2-Oxopentanoic acid         | 1821-02-9               |  |
| g-Hexalactone       | 695-06-7   | Phenyl acetaldehyde         | 122-78-1                |  |
| Hexanal             | 66-25-1    | 2-Phenylethanol             | 60-12-8                 |  |
| Hexanoic acid       | 142-62-1   | *Propionic acid             | 79-09-4                 |  |
| *Hexanol            | 111-27-3   | Propyl valerate             | 141-06-0                |  |
| 2-Hexanone          | 591-78-6   | Pyrrolidine§                | 123-75-1                |  |
| e-2-Hexenal         | 6728-26-3  | p-Toluquinone               | 553-97-9                |  |
| z-3-Hexenol         | 928-96-1   | *Valencene§                 | 4630-07-3               |  |
| e-2-Hexenyl acetate | 2497-18-9  | *Veratrole                  | 91-16-7                 |  |
| z-3-Hexenyl acetate | 3681-71-8  | z-Verbenol                  | 18881-04-4              |  |