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ABSTRACT

A difficulty with the statistical techniques which are ordinarily used in the analysis of climate sensitivity
experiments is that they do not identify the stable, or recurrent, aspects of the experimental response. Therefore,

a new concept called “recurrence” is proposed. With this concept it is possible to identify the parts of the.

response which are likely to recur with an a priori likelihood each time a new experimental realization is
obtained. A variety of statistical tests which may be used to assess an a priori level of recurrence by means of
limited samples is suggested.

A recurrence analysis is performed with data simulated by the Canadian Climate Centre general circulation
model forced with climatological sea surface temperatures (SSTs) and with several El Nifio SST anomalies. All
considered SST anomalies, a positive and a negative doubled standard Rasmusson and Carpenter anomaly and
the winter 1982/83 anomaly excite a globally significant response in terms of height and temperature. However,
only part of the significant response is also recurrent. In the cold SST anomaly experiment, recurrence is
confined to a minor part of the tropics. In the warm SST anomaly runs, recurrence is found in most of the
tropics and partly over the northeastern Pacific. These results indicate that equatorial Pacific SST anomalies
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are associated with a rather limited predictive value, even if the anomalies are very strong.

1. Introduction

The effect of boundary conditions (e.g. sea surface
temperature, snow coverage, sea ice extent) on the
mean atmospheric flow is generally studied by com-
positing two ensembles: one, denoted by “control,”
consisting of atmospheric observed or general circu-
lation model (GCM) generated states not affected by
anomalous boundary conditions, and the other, “ex-
perimental,” consisting of atmospheric states observed
together with anomalous boundary conditions or sim-
ulated under the constraint of modified boundary con-
ditions. These two ensembles are interpreted as statis-
tically independent samples drawn at random from
the two populations designated ““control” and “exper-
iment” and are eventually intercompared by more or
less standard statistical tests.

A difficulty which we have encountered with ordi-
nary statistical techniques is that they often result in
the conclusion that the atmosphere responds in a “sig-
nificant” way to a change in forcing without apprecia-
bly improving our physical insight into the nature of
the response. The reason for this frustration is that or-
dinary statistical techniques focus on the “significance”
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of the outcome: it is often the case that mean states
are significantly different but that individual realiza-
tions cannot be readily identified as belonging to either
the ensemble of control or experimental climate states.
We believe that it would be useful not only to determine
whether differences are significant, but also to identify
aspects of the experimental response which are char-
acteristic of all or at least most individual experimental
states and never or seldom with individual control
states. Such knowledge would certainly lead to an im-
proved understanding of the effect of anomalous
boundary conditions on the mean atmospheric flow as
a consequence of the experiment.

The purpose of the present paper is to address this
particular problem in hypothesis testing. We intend to
focus on statistical tests in which the null hypothesis
is rejected only when there is sufficient evidence that
classification of individual climate realizations is pos-
sible with a predetermined level of reliability. In prin-
ciple, the problem must be treated in a multivariate
manner. However, we limit ourselves to the univariate
case in this paper. The extension of these ideas to the
multivariate domain will be described in a future paper.

The basic t-test concept is reviewed and discussed
in section 2 to contrast with our “recurrence analysis”
concept given in section 3. Parametric and nonpara-
metric tests are developed in section 4. An example in
which some of the tests are applied to a set of El Nifio
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experiments conducted with the Canadian Climate
Centre (CCC) GCM is described in section 5 and the
paper concludes with some discussion and a summary
in section 6.

2. Significance Analysis

The problem with ordinary significance tests which
was described in the Introduction has its roots in the
usual approach to testing for differences of means. Or-
dinarily, the observed difference of means is expressed
in terms of a t-ratio, '

T = (Y — X)/[S(1/n + 1/m)'/?], n
where 7 is the size of the control sample, m is the size
n

of the experimental sample, X = 2 Xi/n is the mean

i=1

m

of the control sample, ¥ = T Y;/m is the mean of the
. Jj=1

experimental sample, and S,,2 is the pooled estimate of
variance. The last is given by

S = [é X — X + % Y, — YP)(n+m-—2).
i=1 j=1
(2

The denominator of the f-ratio is an estimate of the
standard deviation of the difference of sample means.
That is, in the usual setup, the experimental response
(Y — X)is expressed in units of the standard deviation
of the difference of means. This measure is then referred
to the z-distribution in order to ascribe a level of sig-
nificance to the difference between the mean states.
Differences which are larger than approximately two
standard deviations of the difference of means (not the
individual realizations) are usyally identified as being
significant.

Difficulties with interpretation may occur because
the unit of measurement goes to zero as sample sizes
n and m increase. When samples are large, differences
do not have to be large, or physically “significant,” to
be statistically significant. This is illustrated in Fig. 1
where we display the size of the true difference of means
which can be detected with probability 0.90 and 0.50
using the t-test conducted at the 5% significance level.
It is assumed in this illustration that control and ex-
perimental climate samples are equal in size. With
samples of size 30 it is possible to detect differences as
small as one-half of a standard deviation with a prob-
ability of at least 0.5. The size of difference which can
be detected with a given level of reliability goes to zero
as 1/n'/2. ‘ '

Another way to illustrate these ideas is shown in Fig.
2. In schematic form we see the distribution of a control
and an experimental ensemble (the solid and dashed
curves labeled n = 1) and corresponding sampling dis-
tributions of the ensemble means for samples of 10
(curves labelled # = 10) and 50 (curves labelled # = 50).
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FIG. 1. Departure from null hypothesis of equality of means which
is detectable with probability 0.90 and 0.50 using t-test at the 5%
level displayed as a function of sample size n = m.

In the illustration, the difference between the locations
of the two ensembles is one-half of a standard deviation.
We see a considerable amount of overlap in the two
ensembles. A large proportion of experimental states
can occur under control conditions and vice versa.
However, as the sample size increases, we see that the
distributions of the sample means decrease in spread,
and that eventually there is virtually no overlap be-
tween the distributions of the control and experimental
sample means. Under these conditions we can distin-
guish control and experimental states with almost per-
fect reliability. Thus, given a large enough sample we
will be able to state with confidence that experimental
and control states cluster about different long-term
means. However, given a particular realization, we
would still be hard pressed to classify it as belonging
to one or other of the two climates unless it came from
the extreme left-hand tail of the control distribution
or the extreme right-hand tail of the experimental dis-
tribution.

3. Recurrence analysis

We see then, that for many purposes, the usual hy-
pothesis testing setup does not adequately address the
problem at hand. For example, when conducting El
Nifio experiments with a GCM, we are certainly in-
terested in knowing that the mean climate state is dif-
ferent during El Nifio years than during other years.
In addition, we are also interested in characterizing
differences which are likely to recur during each El
Niiio episode with a similar SST anomaly, so that useful
forecasts of the characteristics of the next actual or
GCM-simulated El Nifio event can perhaps be made.
To place this in the context of the previous illustration,
we are interested in differences which are relatively large
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FIG. 2. An example of frequency distributions of control and ex-
perimental realizations (solid and dashed curves labelled » = 1) and
corresponding frequency distribution functions of the means of sam-
ples of size 10 (curves labeled » = 10) and size 50 (curves labeled »
= 50).

in the sense that the distributions of control and ex-
periment climate states are well separated so that clas-
sification of climate realizations can be done with rel-
atively high reliability.

This raises the question of how large a difference is
of interest when characterizing the response of the at-
mosphere or a GCM to anomalous boundary forcing.
Identifying the undisturbed, ‘“normal” states with a
random variable X and the states affected by anomalous
boundary conditions with another random variable Y,
we propose the use of the following terminology:

Definition: The random variables X and Y are said
to be (p, g)-recurrent if

Prob(Y > X,) > ¢ (3)

where X, is the p - 100th percentile of the X-distribution
which is defined by Prob(X < X,) = p.

Throughout this paper we will state probabilities either
as a percentage or as a proportion. The convention
used should be clear from the context.

The word recurrence refers to the probability ¢ of
observing a response which is greater than the reference
level X, the next time an experimental realization is
generated. A large value of g indicates that it is very
likely that this will happen. The role of the p-value is
essentially to provide a reference value, namely the
p - 100th percentile of the control ensemble, against
which the strength of the response is measured. The
probability g is clearly a monotonic function of p for
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a given degree of separation between the control and
experimental ensembles.

The idea of (p, g)-recurrence is illustrated schemat-
ically in Fig. 3. In this diagram X,, represents a point
on the right-hand tail of the control distribution X. By
construction, the proportion of control states less than
X, is p. This point also represents a point on the left-
hand tail of the experimental distribution Y and ac-
cording to (3) the proportion of experimental states
greater than X, is g. Thus, the definition states that a
response is (p, g)-recurrent if there is a point between
the control and experimental ensembles such that pro-
portion p of the control ensemble lies to one side of
that point and proportion g of the experimental en-
semble lies to the other side of that point. If p and ¢
are both close to 1, then the two ensembles are almost
perfectly separated. On the other hand, if the ensembles
are symmetrical, then p = ¢ = 0.5 would indicate that
the means are exactly equal and that possibly only the
variance, or spread, of the two ensembles could be dif-
ferent.

An interesting property may be derived from Fig. 3;
if the distributions of X and Y are identical except for
location and if they are symmetrical, then (p, g)-
recurrence is equivalent to (g, p)-recurrence. This re-
lation will be explored in section 4.

Another way in which to understand the idea of
(p, g)-recurrence is to think of a classification problem.
Given a realization Z, we are to classify it as belonging
to one of two ensembles: the control X or the experi-
mental Y. The classification is performed by choosing
a threshold value, X,, and making the decision “the
observed realization belongs to the control ensemble”
if Z < X,. If Z > X,, we make the decision “the ob-
served realization belongs to the experimental ensem-
ble.” By choosing p we essentially chose the probability
(1 — p) of incorrectly determining that Z belongs to
the experimental ensemble when in fact it belongs to

PROBABILITY DENSITY

conTRoL / /\ EXPERMENTAL
) |
//\

FIG. 3. Schematic diagram illustrating the notion
of (p, g)-recurrence.
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the control ensemble. Probability ¢ is the probability
of correctly deciding that Z belongs to the experimental
ensemble when this is in fact the case. Probability g is
determined by p and the degree of separation between
the two ensembles. This interpretation of (p, g)-recur-
rence can be summarized in a decision table as in Table
1. When p and q are both close to 1 the ensembles are
well enough separated that the next realization can be
classified as belonging to either the control or experi-
mental ensemble with only small probabilities of error.

A given degree of overlap between two ensembles
can be described by a continuum of (p, ¢) pairs. As an
illustration, consider the example shown in the left half
of Fig. 4. In this example both control and experimental
ensembles are Gaussian with variance ¢> and means
kx and y, = U, + 0. Thus, the two ensembles are sep-
arated by ¢. The control and experimental density
functions intersect at X, = u, + 0.5¢ which is equal to
py — 0.50. Sixty-nine percent of control climate real-
izations lie to the left of this point and 69% of exper-
imental climate realizations lie to the right. Thus, the
experimental response is (p, p)-recurrent with p = 69%.
However, we could choose any point between the two
means to describe this degree of recurrence. For ex-
ample, as illustrated in the right half of Fig. 4, 84% of
experimental realizations lie to the right of the control
ensemble mean u,. Thus the response is also (50%,
84%)-recurrent.

The degree of recurrence can be described uniquely
by just one number p by finding the p for which the
response is ( p, p)-recurrent. This will simply be denoted
as p-recurrent. If both ensembles have the same shape
and spread (i.e., differ only in location) and if both
ensembles are symmetric, then this number is given
by the point at which the two ensembles’ density func-
tions intersect. This point will have the same proportion
p of control states to its left as it has experimental states
to its right. Table 2 contains some p and ¢ which de-
scribe equivalent (50%, g)- and p-recurrence for Gaus-
sian ensembles with equal variance.

Suppose now that both ensembles X and Y have a
Gaussian distribution with variance ¢2. The point of
intersection of the control and experimental density
functions is (p, + p,)/2, which may be written as u,
+ 2o or u, — zo where z = (1, — p,)/2¢. The point of
intersection may also be expressed as (i, + p,)/2 = p,
+ Z,0 = uy — Z,0, where Z, is the percentile of the
standard Gaussian distribution which has value z. Thus
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FIG. 4. Schematic diagran{ illustrating the idea that 69%-recurrence
is equivalent to (50%, 84%)-recurrence.

the response is p-recurrent. If the control and the ex-
perimental means are separated by approximately two
standard deviations, the response is about 84%-recur-
rent. A response which is 98%-recurrent indicates that
the ensembles are separated by about four standard
deviations, because the 98th percentile of the standard
Gaussian distribution is approximately 2 and suggests
that an observed climate state could be almost un-
equivocally classified as belonging to either the control
or experimental ensemble. More generally, the follow-
ing equivalence holds:

C)

The definition given above anticipates that the re-
sponse to the experimental conditions is to move the
ensemble of experimental states to the right of the en-
semble of control states. If the opposite response occurs,
then the response is (p, g)-recurrent if

PY < X\_,)>q.

X, Y p-recurrent <> p, — px > (0x + 6y)* Z,.

&)
4. Statistical tests

To test whether a control and an experimental en-
semble are (p, g)-recurrent or p-recurrent, we assume

TABLE 2. The correspondence between (0.5, g)-recurrence and
(p, p)-recurrence assuming that both the control and experimental
ensembles are Gaussian with the same variance. The third column’
expresses the recurrence in terms of the distance between control
and experimental means as expressed in standard deviations.

TABLE 1. A decision table illustrating the idea of (p, g)-recurrence. q D Separation
Z is actually from 692 .599 0.5
.841 692 1.0
Control Experimental 933 773 1.5
Decision ensemble = ensemble 977 841 2.0
.994 .894 25
Z belongs to control ensemble 14 1—¢ .9987 933 3.0
Z belongs to experimental ensemble l1-p q 1.0000 977 4.0
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that we have a sample X;, X3, . . . , X, of control states,
and a sample Y, Y>, ..., Y, of experimental states,
and that all observations are mutually statistically in-
dependent. Seasonal means derived from atmospheric
GCM climate simulations, and to a lesser extent from
observations, satisfy these assumptions approximately.

a. Parametric tests

To construct a parametric test we adopt a model for
the populations of control and experimental states,
namely both populations are Gaussian with approxi-
mately the same variance, so that the only difference
between the two populations lies in their locations.

We want to derive a scheme allowing for a decision
“X and Y are p-recurrent” with prescribed, small risk.
Therefore, using (4), the following pair of hypotheses
is reasonable:

null hypothesis Ho: uy — px<20Z, (6a)

(6b)

Under null hypothesis (6a), the test statistic 7 given
by (1) has a noncentral ¢-distribution with n + m — 2
degrees of freedom (df) and noncentrality parameter
A no larger than

A =2Z,/(1/n + 1/m)"2. (7)

Therefore, in order to test (6) at a significance level no
greater than «, we should compare the computed T
with the (1 — «)- 100th percentile of the noncentral
t-distribution with n + m — 2 df and noncentrality
parameter A. Pearson and Hartley (1976, p. 242) pro-
vide tables which can be used to determine the critical
values of the noncentral z-distribution. Alternately, the
IMSL (1982) subroutine MDTN can be used to find
the probability of observing a noncentral /-value greater
than the observed T for a given noncentrality param-
eter. For large sample sizes, the critical values
r+m—2.4,1—o Of the noncentral ¢-distribution for testing
hypotheses (6) are given by

tn+m—2,A,1—a = Zl—a + 2Zp/(l/n + l/m)l/z-

alternative hypothesis H,: pu, — u > 20Z,.

®)

This expression illustrates the dependence of the critical
value upon the sample size when samples are large:
the difference of means, as expressed in units of stan-
dard deviations of the difference of means, must also
be large in order to reject the null hypothesis (6).

As an example, the El Nifio experiments described
below resulted in a sample of » = 30 control climate
realizations and m = 5 experimental climate realiza-
tions. Assuming that the response is positive, testing
that the response is at least 84%-recurrent is equivalent
to testing that the difference of means is at least 2o.
Using Pearson and Hartley’s table we see that the null
hypothesis can only be rejected at the 5% significance
level if T > 6.25. That is, we demand considerably
stronger evidence to conclude that the response is at
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least 84%-recurrent than to conclude that the means
are significantly different (i.e., the response is more than
50%-recurrent). Rejection of the null hypothesis in the
former case is much more informative about the nature
of the response. The asymptotic critical value derived
from (8) is 5.785, indicating that the use of (8) makes
the test somewhat too liberal. Testing that the response
is at least 98%-recurrent is equivalent to testing for a
difference of means of at least 4¢. In this case the null
hypothesis can only be rejected if 7> 11.1.

The discussion to this point has dealt only with one-
sided tests. A two-sided test of the hypotheses

Hy: lpy — ud <20Z, vs H,: luy — pd > 20Z, (9)

with significance level no greater than « can be con-
ducted by comparing the absolute value of the com-
puted T with the a/2 critical value of the noncentral
t-distribution.

b. Nonparametric tests

A nonparametric test can be constructed with less
constraining assumptions than the parametric test de-
scribed above at the expense of some power. We will
discuss three such approaches in this section. To do
this we will need to make some assumptions. For the
most part we will assume that the two samples are taken
from ensembles which are identical except for their
locations.

A simple approach makes use of the ideas on which
the “sign” test is based. To test (p, g)-recurrence,

Ho: (Y>X,)<q vs H,: P(Y>X,)>q (10)
is an appropriate pair of hypotheses. We will use
T = number of Y greater than X, (11)

as the test statistic. If Hy holds, T has a binomial dis-
tribution with m trials and probability of success 4.
The strongest evidence that the null hypothesis should
be rejected is obtained when we observe 7' = m, and
a test which rejects the null hypothesis only when 7°
= m will have significance level g”.

Since any (p, g)-recurrence is equivalent to (0.5, g')-
recurrence for some uniquely determined ¢, it is rea-
sonable to limit ourselves to (0.5, g')-recurrence. Un-
fortunately the desired large value of ¢’ is in conflict
with the desired small significance level ¢ if the
number m of experimental samples is small (2 = 5 in
our case), the smallest possible significance level of this
test is dauntingly large unless ¢’ is close to 0.5. That
is, T = m does not provide sufficient evidence to con-
clude anything other than the means of the two ensem-
bles are different.

An improvement is possible if one makes use of the
equivalence of (p, g)-recurrence and (g, p)-recurrence
noted in section 3. By doing so one implicitly makes
the additional assumptions that control and experi-
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mental distributions are symmetric and differ only in
the mean. With these assumptions, it is reasonable to
test for (¢, 0.5)-recurrence, that is to use (11) with ¢’
instead of 0.5. In this case the test statistic T is the
number of Y larger than the g’ 100th percentile of X.
Thus, in the case studied in section 5 with m = 5, it is
possible to derive the result P(Y > u,) > ¢’ (i.e. (0.5,
¢')-recurrence) with risk less than 0.5 = 3% if all ¥
are larger than the ¢g’-quantile of X.

Even if (0.5, ¢’)-recurrence and (¢q’, 0.5)-recurrence
are equivalent, the proposed nonparametric tests differ.
The form of the test statistic, and hence its power, de-
pends upon the form of the null hypothesis. Suppose,
for example, that the samples are taken from Gaussian
distributions, that the alternate hypothesis is that the
response is at least (0.5, 0.84)-recurrence, and that in
fact the response is (0.5, 0.98)-recurrent. The signifi-
cance level of the test for (0.5, 0.84)-recurrence is 0.84™
(approximately 0.05 if m = 17) if the null hypothesis
is rejected only when T = m. In this case the power of
the test (the probability of rejecting the null hypothesis)
is 0.98™ (=0.71 if m = 17). When testing for (0.84,
0.5)-recurrence the significance level of the test will be
approximately 0.025 if we reject the null hypothesis
whenever T > 12 (if m = 17) and the power will be
approximately 0.89. Thus we see that although the sig-
nificance levels of the two tests are comparable, their
sensitivity is considerably different. In particular, the
test for (g’, 0.5)-recurrence is more powerful that the
test for (0.5, g')-recurrence.

As noted above, the test for (0.84, 0.5)-recurrence
has a significance level of approximately 0.03 when m
= 5 and if the null hypothesis is rejected when 7' = m.
In this case the probability of rejecting the null hy-
pothesis when the response is in fact (0.5, 0.98)-recur-
rent is approximately 42%, indicating that the proposed
test is not very powerful for these small sample sizes.

A practical consideration is that the threshold value
Xz in (11) is not known and must be estimated from
the sample of control climate states. This introduces a
source of variation which the binomial distribution
does not take into account and hence will alter the
significance level of the test from the nominal level
which is determined from this distribution. To mini-
mize the effects of this source of variation it may be
appropriate to fit a parametric model, such as the
Gaussian distribution, to the sample of control climate
states and to use the fitted model to estimate X,#. The
resulting test is no longer precisely nonparametric, but
still has some of the advantages of a nonparametric
test. The parametric model is fitted only to the larger
of the two samples (which we assume to be the control
sample), and the information in this sample can be
used to assess the goodness of the fit of the parametric
model prior to any recurrence testing.

The results of the test for (¢, 0.5)-recurrence should
be interpreted with care. It only tests explicitly for (¢’,
0.5)-recurrence. In that context, fitting the Gaussian
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distribution to the control sample has no implications
for the experimental sample. However, the test for (¢,
0.5)-recurrence was motivated in the context of a test
for (0.5, ¢)- or g-recurrence. If we interpret the results
in terms of (0.5, g)- or g-recurrence then the assump-
tions that both ensembles are symmetric and differ only
in mean are made implicitly. In this case fitting the
Gaussian distribution to the control sample implies
that the experimental ensemble is also approximately
Gaussian and that both ensembles have the same vari-
ance.

Finally, when testing for (g’, 0.5)-recurrence the oc-
currence of T = m is extremely unlikely if p, = p,,
namely (1 — ¢')". Even if we perform the analysis at,
say, 500 statistically independent locations, the prob-
ability of observing this result by chance at just a single
point is less than 0.02% if ¢’ = 95% and m > 2. Thus,
the presence of just one (0.5, 0.95)-recurrent point

" identified by T = m (for m > 2), is almost certain proof

that the whole signal is significant in a multivariate
sense.

The tests can be made two sided by using as the test
statistic

T = max(T,, T») (12)
where T is the number of Y less than X,_, and T3 is
the number of Y greater than X,. To have a test with
significance level at most «, this statistic is then com-
pared with the critical value for the binomial distri-
bution with m trials and probability p of success which
leads to a one-sided test with significance level at
most a/2.

The nonparametric tests described above are con-
structed by counting the number of experimental out-
comes in excess of a certain threshold. This threshold
is derived from the control outcomes, either directly
or by fitting a parametric model. This approach uses
the information about the magnitudes of the control
and experimental outcomes, and this information leads
to some difficulty and the necessity of adopting a para-
metric model for the control climate states. A way to
avoid this difficulty is to replace the observations with
their relative ranks in the combined pool of control
and experimental outcomes. One could conduct a test
by rejecting the null hypothesis of (0.5, g)-recurrence
if the smallest (largest) experimental outcome was
greater (less) than the largest (smallest) control out-
come. Such an outcome represents very strong evidence
that the control and experimental distributions are well
separated. The probability of such a result at a single
point is 2 - n!m!/(n + m)! when both distributions are
symmetric and have the same mean. In our example,
in which n = 30 and m = §, this probability is ap-
proximately 6 X 107%. Thus again, we would argue that
in the example the presence of just one such result in
a field is almost certain proof that the whole signal is
significant in a multivariate sense. The derivation of
the significance level of this test is given in the Appen-
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dix. Table 3 contains the significance level of this test
as a function of g for the case in which both ensembles
have Gaussian distributions with the same variance
and in which n = 30 and m = 5. Under these circum-
stances we see that this test has significance level 0.05
under the null hypothesis that the response is at most
(0.5, 0.97)-recurrent, or equivalently, that the means
of the control and experimental ensembles are sepa-
rated by at most 1.88 standard deviations.

A third approach to constructing a suitable test

would be to attempt to duplicate the noncentral dif-.

ference of means test (6) of the previous section, using
a nonparametric test. Assuming that the ensembles are
in fact not far from being Gaussian, then testing hy-
potheses (6) is approximately equivalent to testing hy-
potheses (10) according to (4). If we knew o, then we
could test (6) using a one-sided Mann-Whitney test
(e.g. Conover, 1980) by first subtracting 2¢Z, from the
experimental realizations and then proceeding in the
usual way.

5. Application—El Niiio sensitivity GCM experiments

To describe the merits of the proposed recurrence
analysis, we analyze data from sensitivity experiments
performed with the Canadian Climate Centre GCM
(Boer et al., 1984a,b). This model was integrated under
regular boundary conditions for a total of 30 winters.
A series of runs was also performed in which three
different El Nifio-type SST anomalies were added to
the climatological annual cycle of the SST.

a. The GCM experiments
The imposed SST anomalies were

(i) Two times the Rasmusson and Carpenter (1982)
standard El Nifio anomaly. This anomaly is confined
to the equatorial Pacific and is positive everywhere.
We will we refer to it in this paper as “2RC”.

(i) The same as 2RC but with reversed sign. We
refer to this anomaly as “—2RC”.

(iii) The 1982-83 global SST anomaly as analyzed
by the European Centre for Medium Range Weather

TABLE 3. The significance level of the nonparametric test for
(0.5, g)-recurrence which rejects the null hypothesis when Y, > X).
The sample sizes are n = 30 for the control ensemble and m = 5 for
the anomaly ensemble. The significance level is computed assuming
that both control and experimental ensembles are Gaussian and have
the same variance.

q Separation Significance level
692 0.5 0001
841 1.0 0016
933 1.5 .0133
977 2.0 0652
994 25 .2001
9987 3.0 4186
1.0000 4.0 .8324
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Forecasts (ECMWF). We refer to this anomaly as
“82/83”.

A number of results obtained from the 82/83-experi-
ment are given by Boer (1985).

The positive equatorial Pacific SST anomaly of 82/
83 is similar to 2RC. However, the 82/83 SST regime
also contains extratropical SST anomalies, negative
SST anomalies in the western part of the equatorial
Pacific and a large-scale anomaly of about +1°C in
the equatorial Indian Ocean. Both equatorial areas are
relevant with respect to the model’s response, because
normal SSTs are quite high in the Indian Ocean and
the western equatorial Pacific, namely about 28°C, and,
more importantly, because of the existence of low-level
convergence associated with heavy convective activity
in these areas.

For each SST anomaly a total of five different, sta-
tistically independent winter seasons were simulated.
Thus, for each experiment, a control ensemble of 30
and an experimental ensemble of 5 was available.
Considered are the temperature and the geopotential
height at 500 mb.

From sensitivity experiments performed with other
GCMs we may anticipate the following results. The
tropical response is strong and clearly statistically sig-
nificant in contrast to the extratropical response, which,
in terms of geopotential height, is often identified as a
Pacific-North America (PNA) pattern or at least as
being reminiscent of such a pattern. GCMs have turned
out to be quite sensitive to SST anomalies in regions
with normally high SST and low-level convergence (e.g.
Palmer and Mansfield, 1984; Storch et al., 1987). Thus
we expect that the 82/83 response will be different from
the 2RC response not only in the extratropics but also
in the tropics. With respect to —2RC, we may expect
a tropical signal, which is similar to that of 2RC but
somewhat weaker and with reversed sign (Blackmon
et al., 1983; Cubasch, 1985). In the extratropics, the
—2RC signal will most likely be weaker and less sta-
tistically significant than that of 2RC. Also, the more
remote response will have a different mean pattern,
which is associated with a considerable intrasample
variability (Storch and Kruse, 1985).

b. Statistical significance of the responses

A disadvantage of the proposed recurrence analysis
is the fact that it is based solely on univariate consid-
erations. It could happen that we find erroneously sig-
nificant recurrence simply because of the large number
of analyses performed at the various grid points (Storch,
1982; Livezey and Chen, 1983). To lessen the likeli-
hood of the occurrence of such unwanted events we
perform a regular multivariate test procedure to de-
termine whether the mean of the control and the ex-
perimental ensembles are statistically significantly dif-
ferent from zero prior to the pointwise recurrence
analysis.
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We used two different two-step techniques. The first
step of the first procedure (Livezey and Chen, 1983;
Zwiers, 1987) is to count the number of locally signif-
icant differences. In the second step, the probability of
obtaining this number from two samples taken from
ensembles with identical means is assessed by means
of a permutation procedure. The advantage of this ap-
proach for the recurrence analysis is that one need only
calculate the t-statistic at all grid points. These -statis-
tics may then be used for both the multivariate test
above and the parametric recurrence test [hypotheses
(6) and test statistic (1)]. The computed z-statistics are
displayed in Figs. 5 and 6 for 500 mb height and tem-
perature respectively. Regions in which the local test
for equality of means can be rejected at the 5% signif-
icance level are hatched. According to the multivariate
test, the response which is shown in these diagrams is
highly significant with a risk less than 1%:-in all three
experiments. '

The second procedure was proposed by Storch and
Kruse (1985). Its first step is to project the whole fields
on a small number of fixed “guess patterns” which are
* determined a priori from scale reasoning, or problem-
related experience derived from observations, or from
similar but statistically independent GCM experiments
(Storch, 1987).

Here, we used a series of winter mean 500 mb height
fields derived from National Meteorological Center
(NMC) analyses covering 1949 to 1985. The major
cold and warm events were extracted from the whole
dataset and their 500 mb height anomalies calculated.
Because the NMC analyses are almost all confined to

-the Northern Hemisphere extratropics (north of 20°N),
the tropics, and thus the strongest part of the multi-
component signal, is excluded. Nevertheless, the re-
sponse in all three experiments was significant accord-
ing to this test. As a by-product, we found for 500 mb
height that

(1) The 2RC response was parallel to the 1965/66
warm event anomaly.

(il) The —2RC response was parallel to the 1955/
56 cold event anomaly and antiparallel to the 1982/
83 warm event anomaly.

(iii) The 82/83 response was parallel to the warm
event winter mean anomalies of 1957/58 and 1982/83
and antiparallel to the 1963/64 warm event anomaly.

¢. Recurrence analysis

We used the parametric hypotheses (6) with test sta-
tistic (1) to screen the data for p-recurrence and the
nonparametric hypotheses (10) with test statistic (11)
to study formally (g, 0.50)-recurrence which we assume
to be approximately equivalent to the more relevant
(0.50, g)-recurrence.

1) PARAMETRIC APPROACH

We tested the data for a separation of control and
experimental means of at least two standard deviations,
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which, under relatively weak assumptions (see above),
is equivalent to 84%-recurrence or to a probability of
at least 98% that a random experimental sample is
larger than the control mean [that is (50%, 98%)-re-
currence; see Table 2]. As already mentioned in section
3, the critical ¢-value for n = 30, m = 5 and a signifi-
cance level of 5% is 6.25.

Even if 84%-recurrence is a rather strong require-
ment, the criterion is fulfilled at a number of points,
which are almost all located in the tropical belt. The
areas in which the response is found to be at least 84%-
recurrent at the 5% significance level are indicated by
the contours in Figs. 5 and 6. These areas are, of course,
small relative to the regions in which the response is
locally significant. The latter regions cover a majority
of grid points in all three experiments.

In the “positive” experiments, namely 2RC and 82/
83 (Figs. 5a, b) we see increased height between 20°S
and 20°N, over northeastern Canada, part of central
Europe and the tip of South America, and decreased
height along the North American west coast, over most -
of the midlatitude Southern Hemisphere and part of
central Siberia. In 2RC the response is roughly 84%-
recurrent everywhere in the zonal belt between, say,
15°N and 15°S, and over the southwestern part of
North America. However, the same magnitude of re-
sponse occurs in a much smaller equatorial area in the
82/83 experiment. The reduced height of the 500 mb
topography over the northeast Pacific in the 82/82 ex-
periment is connected with a minimum ¢ = —5.72,
which is smaller in magnitude than the critical value
of —6.25 and much smaller in magnitude than the
minimum ¢ = —8.36 which is found in this area in
2RC. Also, in the equatorial belt, the 2RC ¢-statistics
are much larger in magnitude than in the 82/83 ex-
periment. In this region ¢ is less than —8 everywhere
on the equator and has a minimum of —13.18. In the
82/83 experiment, no more than about 5% of all points

-are associated with ¢ < —8 and the minimum value

is —9.4,

The locally significant temperature response (Figs.
6a, b) is most pronounced in the tropics in the 20°N-
20°S belt, with gaps or minima over the Atlantic and
at about 140°E. The temperature is reduced signifi-
cantly in 2RC in a local sense over most of Siberia and
the northern Pacific to the North American coast, and
over Australia. The portion of this area associated with
84%-recurrence is restricted in the tropics to the lon-
gitudes 160°E-40°W (2RC) and 150°—100°W (82/83).
However, in 2RC, there are three extratropical regions
with recurrently reduced temperatures: western Siberia,
the northeastern Pacific, and Australia. The Siberian
and Pacific recurrent temperature responses are similar
to the height responses, but the Australian response is
not present in the height fields.

In the “negative” experiment —2RC (Fig. 5¢), the
500 mb height topography is reduced significantly in
a local sense all around the equatorial belt, over north-
ern Canada and in part of Siberia. An increase in height
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FIG. 5. Locally significant (hatched) and 84%-recurrent (according to parametric test; closed contours)
geopotential height at 500 mb simulated in (a) the 82/83 experiment, (b) the 2RC experiment, and (c) the

~2RC experiment.

associated with z-values greater than two is found over
the northern Pacific and southeastern United States,
and at about 40°S latitude. In this experiment a clear
PNA pattern has evolved. With respect to the tropics
and the midlatitude Southern Hemisphere, the —2RC

and 2RC responses have similar patterns but are re-
versed in sign. :

Only a small fraction of the locally significant height
response in —2RC is associated with t-values large
enough to indicate 84%-recurrence: a 70 degree lon-
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experiment.

gitude sector from about the dateline eastward (mini-
mum of ¢ = —11.8), an area covering Indonesia (min-
imum of ¢ = —7.7), and two small spots over South
America and southern Africa.

The tropical temperature response of —2RC (Fig.

6c) is confined to the Pacific. Over most of the mid-
latitude Southern Hemisphere including Australia, lo-
cally significant positive temperature anomalies have
evolved. The —2RC 84%-recurrent portion is larger
than in the 82/83 experiment covering the equatorial
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Pacific from 150°E to 100°W and also a small spot
over Australia.

2) NONPARAMETRIC APPROACH

We also tested the temperature and height data for
(¢', 0.50)-recurrence with ¢' = 98% by counting the
number T of experimental outcomes larger (smaller)
than X, (X;—,-). As mentioned above, the probability
of obtaining 7 = m = 5 is at most 3% if the response
is less than (g', 0.50)-recurrent. The 98th quantile of
the control distribution was estimated by fitting the
Gaussian distribution to the control sample and deriv-
ing the corresponding quantile from the fitted distri-
bution.

The T = m = 5 contours analyzed in the three ex-
periments 82/83, 2RC and —2RC are shown in Figs.
7 and 8 for 500 mb height and temperature respectively.
The results are similar in character but do not coincide
closely with those of the parametric analysis technique.
With respect to geopotential height, 2RC appears to
have the weakest recurrent response in the tropics,
while —2RC and 82/83 generate recurrence patterns
of similar extent, which contradicts the findings with
the parametric test.

Apart from small areas in 2RC and —2RC over
western Siberia, which are connected with the same
sign of anomaly, the recurrent 500 mb temperature
response is confined entirely to the tropics in all three
experiments. The 82/83 and 2RC responses differ over
the maritime continent and the India Ocean, which is
reasonable because of the large-scale, positive SST
anomaly in this area mentioned above. The —2RC re-
sponse is associated with the smallest recurrence area
which lies primarily in the Pacific. Thus, with respect
to temperature, the nonparametric analysis yields re-
sults which are physically more reasonable than those
obtained with the parametric one.

Differences in test results are most likely the result
of small experimental samples and the fact that not
the same information is used in both tests. The para-
metric test is based primarily on the distance between
sample means while the nonparametric test is essen-
tially a comparison of the extremes of the two samples.
In the case of the parametric test the null hypothesis
is rejected when y > X + 6.25-S,-(1/n + 1/m)'? or
when y is more than approximately 3-S5, from the
control sample mean (because S, is dominated by the
standard deviation S, of the control sample unless the
control and experimental variances are vastly different).
On the other hand, the null hypothesis is rejected by
the nonparametric test if the smallest experimental ob-
servation y|;)is more than 2 - S, from the control mean.
It is easy to see that both conditions will not be satisfied
simultaneously at all points. Also, because the tested
fields have strong large-scale spatial correlation struc-
ture, we can expect that there will be discrepancies over
large areas. These difficulties will be less pronounced
when sample sizes are larger because the nonparametric
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test will then involve a less variable order statistic than
the first order statistic ;. As will be shown below,
discrepancies between test results are not due to dif-
ferences in control and experimental variances.

Differences in control and experimental variances
affect the interpretation of test results as has been noted
in section 4b. The variances of the 500 mb height fields
in the experimental and control samples (not shown)
are not generally significantly different in the positive
SST anomaly experiments but in both cases the ratio
of variances is less than 1 over most of the globe, sug-
gesting that ensemble variance has been reduced by
imposing positive SST anomalies. On the other hand,
variances have been significantly increased in the trop-
ics in the negative SST anomaly experiment (—2RC).
Variances are reduced in the Southern Hemisphere in
this case, but not significantly.

To understand some of the effects of unequal vari-
ance consider the case in which both ensembles are
Gaussian but have different variances. In this situation
it can be shown that g-recurrence is equivalent to (¢’,
0.5)-recurrence where g and ¢’ are related by the equa-
tion Z,» = (1 + gy/0y)+ Z,. When ¢' is fixed, as in the
nonparametric test, the degree of equivalent g-recur-
rence depends on the ratio of experimental to control
variance. When variances are equal, evidence for (98%,
50%)-recurrence is also evidence for 84%-recurrence.
When the experimental variance is the greater, evidence
for (98%, 50%)-recurrence is evidence for something
less than 84%-recurrence. That is, the test for (98%,
50%)-recurrence becomes somewhat liberal when it is
interpreted as a test for 84%-recurrence. The opposite
occurs when the control variance is the greater of
the two. .

The analysis is more difficult in the case of the para-
metric test because development of a parametric test
which takes differences in variance into account is not
mathematically tractable. However, we can make some
observations about the asymptotic version of the para-
metric test. First we note that the denominator of #-
statistic (1) is an estimate of o, [1/m + (a,/0,)*/n]"2.
Then, if we assume that the variances are known
and replace the denominator of (1) with this expres-
ston, the resulting statistic has a Gaussian distribution
with mean Z,-(1 + o,/0)* {mn/[n + m(o,/0,)*]}'?
and variance [m + n(o,/0)*]/[n + m(c,/ox)*] when
the response is g-recurrent. Thus, the critical value for
the asymptotic test of g-recurrence is Z,-(1 + o,/
ox)° {mn/[n + m(o'y/a'x)zl} 2+ AR {[m + n(o'y/ax)z]/
[n + m(s,/0,)?]}"". This reduces to (8) when the vari-
ances are equal. With n = 30 and m = 5 the critical
value is greater than given by (8) when the experimental
variance is greater than the control variance, and hence
the asymptotic test using (8) is liberal. The opposite
occurs when the control variance is greater than the
experimental variance.

It is difficult to say whether this behavior is also
characteristic of the nonasymptotic test, but the sug-
gestion is that both the parametric and nonparametric
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FI1G. 7. (98%, 50%)-recurrent response of 500 mb height simulated in (a) the 82/83 experiment,
(b) the 2RC experiment and (c) the —2RC experiment as determined by the nonparametric test.

tests are affected by unequal variance in the same way ance in this case, and as we will see, the asymptotic
when they are thought of as tests for g-recurrence. The =~ version of the parametric test is only mildly affected.
same considerations can be made if we think of the = When the response is (¢, 0.5)-recurrent, the asymptotic
tests as tests for (g’, 0.5)-recurrence. As noted above, test statistic has a Gaussian distribution with mean
the nonparametric test is not affected by unequal vari-  Z,- {mn/[n + m(ay/ax)z]} 172 and variance [m + n(o,/
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FIG. 8. (98%, 50%)-recurrent response of 500 mb temperature simulated in (a) the 82/83 experiment,
(b) the 2RC experiment, and (c) the —2RC experiment as determined by the nonparametric test.

0x)°1/[n + m(a,/a,)?]. Thus the critical value when this
test is regarded as a test of (¢', 0.5)-recurrence is
Zy - {mnfln+m(o,/ o)1} + Z_o- {[m + n(o,/0.)')/
[n + m(o,/0,)*1}'/%, which again reduces to (8)
when the variances are equal. This latter expression is

almost constant over a large range of variance ratios.
Thus both tests appear to be unaffected by differences
in variance when they are regarded as tests for (¢’, 0.5)-
recurrence. Because the experimental and control
variances are apparently different, the tests, particularly
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in the case of the negative SST anomaly experiment,
should only be interpreted as tests for (98%, 50%)-
recurrence.

6. Conclusions

In the ordinary testing setup one asks if the mean
of the observed variable under experimental conditions
is significantly different from the mean under control
conditions. Equivalently, one might ask whether the
experimental treatment, such as altering the SSTs, has
an effect upon a model’s climate. Unfortunately, ad-
dressing the results of an experiment in this way does
not necessarily lead to the identification of the pre-
dictable, or stable, part of the response. We have at-
tempted to address this problem by describing a num-
ber of tests which focus on whether the ensemble of
control climate states is far enough from the ensemble
of experimental climate states to enable identification
of recurrent aspects of the experimental response. That
is, does the response have certain attributes which one
would be likely to observe each time a new realization
is observed under experimental conditions?

To develop statistical tests which might be used to
address the results of climate experiments in this way,
we introduced the idea. of recurrence. A response to
experimental conditions is recurrent if there is little
overlap between the ensembles of control and experi-
mental climate states. Then several tests were described
which attempt to diagnose the degree of recurrence of
a response. One approach was based on a parametric
model, in which the amount of overlap between en-
sembles “was related to the difference of ensemble
means. The particular test which was developed re-
quires that both ensembles are Gaussian and that they
both have the same variance. A family of nonpara-
metric tests based on the sign test was also developed.
They operate by counting the number of experimental
outcomes that are greater than a given threshold. This
threshold is determined from the sample of control
outcomes. These tests are more rugged but perhaps
less powerful than the parametric test, even when it is
necessary to use parametric models to determine the
threshold. We also described a direct nonparametric
analogue of the parametric test which is based on the
Mann-Whitney statistic, and we described a third type
of nonparametric test which compared the order sta-
tistics of the control and experimental samples.

The parametric test and the sign-test-based non-
parametric test were applied to a set of climate exper-
iments that were conducted with the Canadian Climate
Centre GCM. The example illustrates several things
about recurrence analysis. Features of the response to
the experimental conditions which are recurrent cover
much smaller regions than the regions in which it is
possible to say that experimental and control climates
are significantly different. However, the features which
were identified as being recurrent were physically rea-
sonable, supporting the notion that the use of these
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techniques in climate experiments may allow for a

_clearer understanding of the form of the expected re-

sponse. We were able to identify aspects of the response
in all three experiments which are likely to recur each
time a new realization of the experimental climate is
observed. There were differences between the results
of the two tests which were attributed to small sample
size and the fact that the two tests use different aspects
of the information in the experimental sample. Also,
it was pointed out that care is required in the inter-
pretation of test results because of evidence that the
assumption of equality of variance was violated.

There are still many aspects of this work which are
not yet complete. The tests which have been developed
are univariate tests which can only be applied at in-
dividual grid points or to individual expansion function
coefficients. It has been argued that a recurrent response
at a single grid point may well be strong enough evi-
dence to indicate that control and experimental mean
fields are significantly different from each other. A test
which can indicate whether an entire pattern of re-
sponse is recurrent is presently being developed. Also,
we know very little about the power of the tests which
we have described. This problem will also be addressed
in future work.
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APPENDIX

Derivation of the Significance Level of a Rank Band
Test for Recurrent Differences

In this appendix we derive the significance level of
the test of

Ho: AY > Xos5) <q vs Ha: Y > Xos)>¢q

which is conducted by rejecting Hy when Y, > X(,).
Here we use the notation X, to denote the largest ob-
servation in the control sample and Y, to denote the
smallest observation in the experimental sample. The
significance level « is given by

o= PI'Ob(Y(l) > X(n)l
response is at most (0.5, g)-recurrent)

which is given by |
0 O

a= f L f[X(n), Y(l)]dY(ndX(,,) (A1)
()

where f[X(n, Y(1)] is the joint probability density func-
tion of X, and Y(;) under the null hypothesis. Because
of the independence of the two samples, the joint den-
sity function is given by

S Xy, Yool = gl XAl Y1)l
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where g and A are the density functions of X, and Yy,
respectively. As a consequence of the independence of
observations within samples, the density functions g
and A are given by

g [/Y(n)] = n{F x[X(n)]}"_lj:t[X(n)]
h[Yw) = m{1 — F[Yul}" flYo)

where f, and f, are the density functions of the control
and experimental climate ensembles respectively, and
F, and F, are the corresponding distribution functions.
By substituting these expressions into (A1) and sim-
plifying the integral it can be shown that the significance
level is given by

o]
o= f nELX)"[1 — F )™ Yflx)dx.
—00

This expression may be evaluated numerically after
models have been adopted for the control and exper-
imental climate ensembles. Table 3 was derived by us-
ing Gaussian models with equal variance and a differ-
ence of means p, — p, = ¢Z,. The integral was eval-
uated using an adaptive Rhomberg extrapolation
algorithm.
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