A Massively Parallel Computer with User Configurable Hardware

A Massively Parallel Computer with User
Configurable Hardware.

NGEN is a test version of a massively parallel
computer which is reconfigurable by the user in
software right down to the level of the elementary
digital processing and communication. NGEN
arose from the desire to perform long-time
simulations on large populations of strings to
study basic principles of creative information
processing as found in natural evolution. With this
device it will be possible to simulate populations of
thousands of biopolymers for the first time on the
timescale of evolution on the earth (4 billion
years), i. e. for teragenerations (tera=10'2). A linear
tradeoff between computation speed and popula-
tion size has been achieved up to populations in
the millions. NGEN was constructed at the IMB
and came up on the IMB network in June 1994
behaving through its host processor like a unix
workstation. NGEN is not an attempt to compete
in the heady market of computer speed, but rather
to allow a direct access to massively parallel
hardware, matched to the problem at hand, for the
increasing number of scientific problems like mo-
lecular evolution which essentially involve com-
binatorics and automata rules. The computer ar-
chitecture is extremely flexible and will allow the
computation of a wide range of massively parallel
problems including optimization problems, se-
quence alignment, folding, neural nets, cellular au-
tomata, image processing and on-line data-ana-
lysis.

1. Basic Principle of Operation

NGEN has been designed to follow as closely as
possible with available hardware the metaphor of
programmable matter, that is of distributed logic,
locally configurable to emulate local physical,
chemical or biological laws. NGEN does not yet
implement dynamically programmable matter, as
the configuration process requires global inter-

vention and takes a fraction of a second rather
than a microsecond. It does, however, implement
the laws in digital electronic hardware with all the
associated removal of hardware and software over-
head when compared with a software emulation.
Typically, elementary model transitions are ac-
complished at frequencies of tens of MHz and =
parallel for thousands of processors.

While configurable chips (e. g. GALs and EPROMs!
have found their place on almost all commercial
circuit boards nowadays, they must be removed
and reconfigured using higher electric fields or
ultraviolet light in a special device. The SRAM
based Field Programmable Gate Arrays (FPGAs).
on the other hand, may be reconfigured in sofi-
ware. Configurable electronic connections are
achieved using multiple transistors grouped o
form so called programmable interconnect poinis
(PIPs) controlled by memory bits. Such conf-
guration bits are daisy chained to allow them to be
loaded in series, for example from a host com-
puter. Configurable combinatorial logic functions
are constructed using SRAM based look up tables.

NGEN is constructed in a three tiered fashion
using host workstation, control FPGAs and agent
FPGAs. Only a very basic bus interface to the
custom cards comes up when the system is turned
on: just sufficient to allow the control FPGA on
each card to be configured from the host work-
station. Equipped with their own high speed me-
mory, the control FPGAs may be configured o
implement a vast range of bus interface commu-
nication tasks including interrupt handling. Over
105 bits of information control the digital circuits
implemented in the FPGAs. The control FPGA =
not normally configured by the user, although it &=
perfectly possible to adapt the communicatios
between control and agent FPGAs to the task =
hand. The agent FPGAs, each with their own high
speed memory, are then configured in their turs
to implement the massively parallel design

118

Finally, for problems of higher dimensional
topologies (> three dimensions), the very broad
band connection structure between the agent
FPGAs may be flexibly reconfigured in hardware.

Connector

o oz
=

32

SUEANA

Fig. I1: Design layout of NGEN custom boards. Shown are the Jour
basic elements which comprise the NGEN custom boards: FPGAs,
high speed SRAM, connectors and the bus interface. The diagram
shows the hierarchical arrangement of FPGAs, the distribution of
SRAM, the very broad band distributed communication to other
boards via the connectors and the central control FPGA which
specifies the communication with the host computer via the VME
bus.

2. Hardware and Software

A hardware manual was produced which docu-
ments the detailed charactersitics of NGEN. At
this stage of development, the computer is parti-
cularly well suited to integer arithmetic and logical
computations that exploit the massively parallel
architecture with up to 40,000 user-specified pro-
cessors. Since the configuration is done in hard-
ware, processing speeds at the clock frequency of
up to 40MHz for the user specified operations may
be achieved. The computer operates currently on
a 32bit VMEBus and consists of an HP742i (cf
HP715/50MHz) host, 18 identical custom-made
boards and a high resolution graphics board.
40MB fast (15nsec) RAM is distributed between
162 FPGAs (Field Programmable Gate Arrays) on
the 18 reconfigurable boards (see Fig. 1). In
addition to the relatively slow VMEBus interface, a
flexibly reconfigurable 288 bit-wide interface in 9-
bit modules allows a hardware reconfiguration of
the total architecture for superplanar architectures
such as 3D and hypercube connection geometries
between the user-defined processors. A summary
of the essential hardware statistics is shown in
Fig. 2.

User access to the hardware capabilities of NGEN
has been implemented at two levels. A run time
environment, as extension to the unix operating
system, has been written to allow interactive
access to the machine. Design loading, debugging
and execution control as well as 10 control are
available. Debugging is essentially parallel and
symbolic with a single step facility. A graphical
interface should be completed in early 1995, which
will also provide the full palette of interactive
execution control as a callable library of C rou-
tines. Parallel programming consists of the three
steps:

i) processor circuit design (usually done with the
aid of a vendor CAE graphical tool)

119

NGEN Hardware Statistics

Max. Processors
Architecture

EPGAs Chips
Config. Logic Blocks
FPGA 10-Pins
Distr. Mem Chips
Distributed Memory
Boards

Bus

Board Interconnect
Clock

Power Consumption
Cooling

NGEN Runtime Env.
Hos

Host Clock

Host Memory

Host Operating System

Fig. 2: NGEN Hardware Statistics.

93312
1D, 2D, 3D,Torus, Ncube
ete and novel
162 XC4008

324(18* 18) /FPGA .
208 Pins/Chip
SRAM (15ns 8*32Kk)
42 MB (=1296 SRAMs)
18 (6U)
21 Slot VME 32
288 (=32*9) lines/board
16 (40) MHz
<= 1800 Watt
Air
C++ Shell for NGEN
HP743i Workstn Card
100 MHz
64 MB
Unix HPUX 9

ii) design proliferation with the user connection
structure (C program)

iii) execution and IO control program (C pro-
gram)

One example of such a design procedure is for
the case of interacting Turing machines.

3. Application to Genetic Processing

The way in which genetic information processing
models can be captured with simple processor
designs can be best understood by way of a
simple example. In this section we present a
prototype design, based on a simplified model of
interactive molecular evolution driven by purely
local interactions between molecules. Biopoly-
mers such as DNA and RNA store information in
a transmissable form in the sequence of mono-

mers which comprise them. The discovery of
catalytic RNA has lead to much speculation about
an RNA world in which a single type of molecule,
RNA, provided both information transmissability
and catalytic functions for early life. In this simple
model, we also deal with a single type of sequence
which encodes both transmissable information
and catalytic function. All complications of molecu-
lar folding are ignored in the example for clarity.

The molecules are assumed to be subject to
diffusion (resulting in mixing) and pairwise pro-
cessing at reactive centers with properties deter-
mined by the local constellation of other molecular
sequences. The serial processing of pairs of such
molecules, henceforward usually referred to as
strings, allows diffusion and the three features of
Darwinian evolution: amplification, variation and
selection to be captured in a single unit called the
genetic switch. In its simplest form, shown in Fig.
3, this genetic switch implements in its four dif-
ferent states different two output binary functions
of its two binary inputs.

The two left states of the switch allow the in-
coming strings to pass unchanged or to swap their
contents. Random changes between these two
states between molecules for an array of these
switches in two dimensions allows an implemen-
tation of molecular diffusion. Changes in state dur-
ing the transmission of a pair of molecules allows
genetic recombination and mutation. The two
right hand states allow specific copying of the
contents of one of the two incoming strings onto
both outputs. This allows both amplification and
selection at the level of whole strings and mutation
and recombination when the state changes during
the processing of two strings. Elongation and
shortening of strings are also thereby possible,
but insertions and deletions are not included in
the elementary version of the model. Simple ex-
tensions to allow variable length processing have
been worked out.

120

'l
\

Fig.3: Genetic Switch. The genetic switch is a two input, two output
switch which processes genetic sequences base by base. The switch
has four states and depending on whether switching is applied
inside or at the end of successive sequences, a wide range of
dynamical mixing or variation (mutation, recombination etc) of
the strings can be realized.

The state of the switch is regarded as a sim-
plification of the complex local chemical environ-
ment to which the biopolymers are subject, in-
cluding in general bound enzymes. It is important
for proper diffusion of the molecules, that the
diffusive state of the switch be as uncorrelated as
possible with the sequences of the molecules
passing through the switch. Moreover, the state of
the switch should change much more frequently
between molecules than during molecular pro-
cessing. The copying state of the switch should,
depending on the model being studied, depend on
the strings passing through the switch and/or the
sequences of other (third party) strings near the
switch. Differential amplification is then either a
direct result of differences in sequences passing
through a switch or of the different enzymatic
properties of strings in modulating the states of
switches or both. Specific third party control of the
switches by enzymatic sequences opens up an-
other level of complexity in the evolutionary be-
haviour. Even in the absence of such effects, the
selection may be frequency dependent as in the
theory of evolutionary games: the reproductive

success of a sequence depends on the constitution
of the rest of the population.

The strings are implemented in memory cells
addressed as shift registers which are distributed
in a regular lattice through the FPGA and con-
nected pairwise at the genetic switch nodes. The
population of strings extends into the off chip
memory and local memory in the FPGA is used to
retain individual pairs of strings prior to sequence
dependent switching decisions. Data flow of the
strings through the shift registers and switches is
constant at the clock speed (up to 4x107 bits/sec).
The switches simply control the way in which
incoming bits from two converging shift registers
are disributed on the two diverging shift registers.
The states of the switch are determined by rules
which in general depend on both sequences as in
evolutionary game theory, giving rise to concen-
tration dependent effects.

A number of geometrical considerations have
proved important in establishing a correct physical
description of the diffusional processes underlying
population mixing. An array of switches with two
inputs and two outputs can be linked up in a
variety of different topologies. A simple rotational-
ly symmetric solution consists of a chequerboard
on a square lattice with two basic units with op-
posing inputs vertical (outputs horizontal) in one
case and horizontal (outputs vertical) in the other.
This configuration allows the population to be
loaded initially following square wave shaped
paths. Unfortunately, as pointed out by B. Bodde-
ker, for a population of strings of constant length,
this topology partitions the strings into four
categories which never meet in the population and
as such would provide an unphysical bias for
variable string length simulations. B. Boddeker
discovered a simple connection topology, illustrat-
ed in Fig. 4, which contains primitive cycles of
lengths three and four allowing complete mixing
of the population. This type of geometry is just as

121

easy to implement on NGEN because of the
configurable nature of the local connection
structure. Alternatively, the square lattice can be
retained and a differential time delay introduced
on one of the two incoming strings. The latter
method has the advantage, that the residence time
for strings in the active processor plane (between
sojourns in the deep SRAM based shift registers)
is also different, resulting in a diffusive mixing of
the entire population. The utilization of this device
of hyperplane mixing solves the problem of
efficient data flow for populations larger than can
be retained in the processors simultaneously,
extending the population sizes from the 104 to the
106 level. Current work involves a four input, four
output processor with two delay channels but here
we continue with the simple example of two input
and two output processor described above.

This simple processor can be implemented in four
of the primitive configurable logic blocks (CLBs)
which are arranged in an 18x18 array in each
FPGA. The processor consists of local string
storage (2 CLBs), the genetic switch (1 CLB) and
its control (1 CLB), as shown in Fig. 5. The control
can include random and/or sequence dependent
elements. Random bits are generated in parallel
using a cellular automata like construct. Configu-
ration of these four blocks can be achieved inter-
actively by mouse click using a CAE design editor
(XACT design editor: firmware of Xilinx® Inc.).
Programs in conventional computer language, in
this case C, were then written to generate macros
for the proliferation of the processors and to wire
up the desired connection topology. The actual
wire routing is performed automatically with the
aid of a simulated annealing procedure. The de-
sign process is completed by using FPGA firm-
ware to generate a bitstream which can transfer
the digital design to the FPGAs in NGEN. For
more complicated processors, a schematic editor
and automatic partition, place and route firmware

Fig. 4: Olympic Rings Topology.

This topology, in contrast with a square planar one, ensures that all
strings moving stepwise from segment to segment in a synchronized
fashion can eventually meet at some node. Each node, as in the
square planar graph, has four nodes but the graph consists of
elementary three and four cycles whose lowest common denominator
is one.

may be used. The user can choose the level of
interaction with the hardware right down to indivi-
dual gates. An increasingly high level set of design
modules allows a cumulatively more efficient de-
sign process, akin to the use of library routines in
mathematical packages on conventional compu-
ters. For example, adders and multipliers in va-
rious bit widths are provided as design modules in
addition to various register and stack structures.

By this means, 64 such processors were packed
onto each FPGA, leaving ample room at the
periphery for additional test and control struc-
tures, giving a total of 144 x 64= 9216 two string
processors in the machine. The design may be
modified in parallel, using the same macro struc-
ture employed in processor proliferation and

interconnection, leading to an edit, compile and
debug cycle time of just a couple of minutes. After
a number of editing steps, the design should be
fed again through the rip-up routing firmware to
reoptimize the connection structure since perfor-
mance is successively degraded during local chan-
ges to the routing.

4. Application Range

The above example, merely serves to illustrate the
application of very simple processors in massively
parallel simulation. The group has made detailed
plans to extend this type of calculation to realistic
models of coupled macromolecular evolution to
support our experimental program. Sequence de-
pendent binding and catalytic activities may be
modelled which take intramolecular folding and
stochastic kinetics into account. Most importantly,
the modelling level here is at an individual level so
that populations with millions of different se-
quences can be treated without additional compu-
tational overhead. This is important for evolu-
tionary applications at the molecular level, where a
significant fraction (for example 50%) of the popu-
lation consists of unique sequences (i.e. present
in only a single copy).

On the other hand, a much wider range of appli-
cations are possible which reach into and beyond
the disciplines represented at the IMB. For
example, the work of Huang and Lopresti demon-
strates that unprecedented computation power for
sequence analysis can be harnessed without cus-
tom made chips using systolic algorithms to
implement dynamic programming. Here only the
one dimensional connection structure between
FPGAs need be utilized. Two essentially linear
configurable computers, one in the USA and one
in Israel, have been specially designed to foster
such calculations. The ability to perform such
calculations on especially large sequences is a by-
product of NGEN’s architecture. In particular, the

cyclic addressing

|

|

I [
WE —— iz

| MEM RAM

l |

l it j2?! I

| |
20 l
c02| [

[|

| |

| |

[|

X i |
cil o1y SWI | o1
—_—

ci2| |

| OEC EC :

[|

adrin adrout Reset 02

distributed high speed SRAM opens up new
possibilites for multiple sequence alignment.
Other dynamical programming algorithms such as
the N3 alogorithm for RNA secondary structure
can also be implemented on NGEN to run directly
in hardware. Care must be taken that the pro-
blems be formulated to minimize the need for
massively parallel floating point calculations: cur-
rently it is not easy to pack them densely in
FPGAs.

Various combinatorial optimization problems, also
those relevant to structural calculations in mole-
cular biology, can also be implemented. Here, a
planned development in the parallel memory ac-

Fig. 5: 4 CLB Prototype Genetic Switch.

The diagram shows a block diagram of
the way in which the logic of the genetic
switch can be packed into four of the
basic configurable blocks at the lowest
level in Xilinx FPGA design. Two of the
blocks (Ram and Mem) simply function
as two parallel shift registers to
propagate and store the sequences
locally, one as control (CTL), to
determine the sequence and

envir pendent changes in
state of the the switch, and the fourth
(SWI) implements the actual switch
which controls the flow of the sequences
between the two inputs i1 and i2 and
the two outputs 01 and 02.

t deob.

123

cess structure for a production version of NGEN
would greatly further enhance the computational
potential.

Finally, we are pursuing plans to utilize the broad
band interface and massively parallel computation
facilities of NGEN to process single photon data
(from low light level fluorescence) from time
resolved images. Our immediate application is in
single molecule selection and spatially resolved
evolution experiments, but the potential applica-
tion field is much wider. Specialized processing
which optimizes temporal and spatial photon
correlation techniques to the detection problem at
hand can be configured in the agent FPGAs which
transmit results via the control FPGAs to the
workstation host. Other sophisticated on-line ac-
quisition filters for experimental data, for example
in NMR, can be implemented by this technique.

5. Conclusion and Future Developments

NGEN is at present established as a configurable,
massively parallel computer at the IMB with soft-
ware support to allow users to explore the ap-
plication of parallel digital hardware to a wide
range of problems of interest to the IMB and the
wider scientific community. It is possible both to
run massively parallel applications on NGEN
under the control of a host workstation or to use
NGEN as a powerful coprocessor callable from
within C programs for user definable tasks.

The latter approach has been pioneered for small
numbers of FPGAs by other groups in Germany.
NGEN’s speciality is to allow massively parallel
programming with a flexible topology.

A major extension of configurable hardware to
increase the communication flexiblity, high speed
distributed memory (population size) and to allow
rapid reconfiguration is planned for the coming
three year period. This development will embrace
optical communication. In the short term, a sig-

nificant step forward in the construction of an
improved version of the current NGEN architec-
ture, which will greatly enhance its application to
problems of combinatorial optimization, is planned
for 1996. Making use of now established electro-
nic expertise and equipment at the IMB, this de-
velopment is achievable at costs equivalent to that
of a single high end workstation, and will cover a
computational niche, complementary to the serial
processing of conventional workstations, namely
custom massively parallel computation, which is a
key one to evolutionary biotechnology.

John S. MCaskill
Molecular Information Processing

References

[1] J.S. M¢Caskill, U. Gemm, T. Maeke, and U.
Tangen. NGEN - A massively parallel recon-
figurable computer: hardware description
manual. Technical Report IMB Jena (1994).

[2] K. Mekelburg, T. Maeke, and J. S. MCaskill.
NGEN - A massively parallel reconfigurable
computer: run time environment. Technical
Report IMB Jena (1994).

[3 J.S. M¢Caskill. NGEN - A massively paral-
lel reconfigurable computer: programming
NGEN hardware with C(++) and the XACT
environment. Technical Report IMB Jena
(1994).

[4] J. M Arnold, D. A. Buell, and E. G. Davis.
“SPLASH 2” in: Proc. 4th annual ACM symp.
on parallel algorithms and architectures
(1992) 316-322.

[5] L. Esterman “Bioaccelerator: A currently
available solution for fast profile and SW
searches”. Biological Computing Division.
Weizmann Institute of Science Rehovot 76100
Israel (1995).

124

	Scan 1
	Scan 2
	Scan 3
	Scan 5
	Scan 6
	Scan 7
	Scan 8

