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Abstract We study the classical NP-hard problems of finding maximum-size sub-
sets from given sets of k terminal pairs that can be routed via edge-disjoint paths
(MaxEDP) or node-disjoint paths (MaxNDP) in a given graph. The approximabil-
ity of MaxEDP/MaxNDP is currently not well understood; the best known lower
bound is 2Ω(

√
log n), assuming NP � DTIME(nO(log n)). This constitutes a signifi-

cant gap to the best known approximation upper bound of O(
√
n) due to Chekuri et

al. (Theory Comput 2:137–146, 2006), and closing this gap is currently one of the
big open problems in approximation algorithms. In their seminal paper, Raghavan
and Thompson (Combinatorica 7(4):365–374, 1987) introduce the technique of ran-
domized rounding for LPs; their technique gives an O(1)-approximation when edges
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(or nodes) may be used by O (log n/ log log n) paths. In this paper, we strengthen
the fundamental results above. We provide new bounds formulated in terms of the
feedback vertex set number r of a graph, which measures its vertex deletion distance
to a forest. In particular, we obtain the following results:

– For MaxEDP, we give an O(
√
r log(kr))-approximation algorithm. Up to a log-

arithmic factor, our result strengthens the best known ratioO(
√
n) due to Chekuri

et al., as r ≤ n.
– Further, we show how to route Ω(OPT∗) pairs with congestion bounded
by O(log(kr)/ log log(kr)), strengthening the bound obtained by the classic
approach of Raghavan and Thompson.

– For MaxNDP, we give an algorithm that gives the optimal answer in
time (k + r)O(r) · n. This is a substantial improvement on the run time of
2krO(r) · n, which can be obtained via an algorithm by Scheffler.

We complement these positive results by proving that MaxEDP is NP-hard even
for r = 1, and MaxNDP is W[1]-hard when r is the parameter. This shows that
neither problem is fixed-parameter tractable in r unless FPT = W[1] and that our
approximability results are relevant even for very small constant values of r .

Keywords Disjoint paths · Approximation algorithm · Feedback vertex set ·
Fixed-parameter algorithm
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1 Introduction

In this paper, we study disjoint paths routing problems. In this setting, we are given
an undirected graph G and a collection M = {(s1, t1), . . . , (sk, tk)} of vertex pairs,
called terminal pairs, that can be thought of being source–destination pairs. The goal
is to select a maximum-sized subsetM′ ⊆ M of the pairs that can be feasibly routed,
where a routing ofM′ is a collection P of paths such that, for each pair (si , ti ) ∈ M′,
there is a path in P connecting si to ti . In the Maximum Edge Disjoint Paths
(MaxEDP) problem, a routing P is feasible if its paths are pairwise edge-disjoint,
and in the Maximum Node Disjoint Paths (MaxNDP) problem, a routing P is
feasible if its paths are pairwise node-disjoint. Throughout this paper, a solution to
MaxEDP or MaxNDP is a feasible routing P of a subset M′ ⊆ M.

Disjoint paths problems are fundamental problems with a long history and signif-
icant connections to optimization and structural graph theory. The decision versions
EDP of MaxEDP and NDP of MaxNDP ask whether all of the pairs can be routed.
When the number of pairs is part of the input,EDP andNDP areNP-complete [22,29].
In undirected graphs,MaxEDP and MaxNDP are solvable in polynomial time when
the number of pairs is a fixed constant; this is a very deep result of Robertson and
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Seymour [42] that builds on several fundamental results in structural graph theory
from their graph minors project.

In this paper, we consider the optimization problemsMaxEDP andMaxNDPwhen
the number of pairs is part of the input. In this setting, the best approximation ratio for
MaxEDP is achieved by an O(

√
n)-approximation algorithm [11,35], that is, by an

algorithm that routesΩ(OPT /
√
n) pairs, where OPT is the number of pairs in an opti-

mum routing and n is the number of nodes. However, the best known lower bound for
undirected graphs is only 2Ω(

√
log n), assuming NP � DTIME(nO(log n)) [19]. Bridg-

ing this gap is a fundamental open problem that seems quite challenging.
Most of the results for routing on disjoint paths use a natural multi-commodity flow

relaxation as a starting point. A well-known integrality gap instance due to Garg et
al. [26] shows that this relaxation has an integrality gap of Ω(

√
n), and this is the

main obstacle for improving the O(
√
n)-approximation ratio in general graphs. This

led Chekuri et al. [15] to study the approximability of MaxEDP with respect to the
treewidth of the underlying graph. In particular, they pose the following conjecture:

Conjecture 1 [12] The integrality gap of the standard multi-commodity flow relax-
ation for MaxEDP is Θ(w), where w is the treewidth of the graph.

Recently, Ene et al. [21] showed thatMaxEDP admits anO(w3)-approximation algo-
rithm on graphs of treewidth at most w. Theirs is the best known approximation ratio
in terms of w, improving on an earlier O(w · 3w)-approximation algorithm due to
Chekuri et al. [15]. This shows that the problem seems more amenable on “tree-like”
graphs.

However, for w = ω(n1/6), the bound is weaker than the bound of O(
√
n).

In fact, EDP remains NP-hard even for graphs of constant treewidth, namely
treewidth w = 2 [39]. This further rules out the existence of a fixed-parameter algo-
rithm for MaxEDP parameterized by treewidth, assuming P �= NP. Therefore, to
obtain fixed-parameter tractability results as well as better approximation guarantees,
one needs to resort to parameters stronger than treewidth.

Another route to bridge the large gap between approximation lower and upper
bounds for MaxEDP is to allow the paths to have congestion c: that is, instead of
requiring the routed paths to be pairwise disjoint, at most c paths can use an edge. We
can also think of this problem that each edge has a capacity c; thus, on unit-capacity
graphs we ask for solutions without congestion. In their groundbreaking work, Ragha-
van and Thompson [40] introduced the technique of randomized rounding of LPs to
obtain polynomial-time approximation algorithms for combinatorial problems. Their
approach allows to routeΩ(OPT∗) pairs of paths with congestionO (log n/ log log n),
where OPT∗ denotes the value of an optimum solution to the multi-commodity flow
relaxation. This extensive line of research [2,17,31] has culminated in a logO(1) k-
approximation algorithm with congestion 2 for MaxEDP [20]. A slightly weaker
result also holds for MaxNDP [10].

1.1 Motivation and contribution

The goal of this work is to study disjoint paths problems under another natural mea-
sure for how “far” a graph is from being a tree. In particular, we propose to examine
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MaxEDP and MaxNDP under the feedback vertex set number. It denotes the small-
est size r of a feedback vertex set of a graph G, which is a subset R of nodes for
which G − R is a forest. Note that the treewidth of G is at most r + 1. Therefore,
given the NP-hardness of EDP for treewidth w = 2 and the current gap between
the best known upper bound O(w3) and the linear upper bound suggested by Con-
jecture 1, it is interesting to study the stronger restriction of bounding the feedback
vertex set number r of the input graph. Our approach is further motivated by the fact
that MaxEDP is efficiently solvable on trees by means of the algorithm of Garg et
al. [26]. Similarly,MaxNDP is easy on trees (see Theorem 3). Throughout this work,
the parameter r will denote the feedback vertex set number of a graph.

Our main insight is that one can in fact obtain bounds in terms of r that either
strengthen the best known bounds or are almost tight (see Table 1). It therefore seems
that the parameter r correlates quite well with the “difficulty” of disjoint paths prob-
lems.

Our first result allows the paths to have small congestion: in this setting, we
strengthen the result, obtained by the classic randomized LP-rounding approach of
Raghavan and Thompson [40], that one can always route Ω(OPT∗) pairs with con-
gestion O (log n/ log log n) with constant probability.

Theorem 1 There is a polynomial-time algorithm for MaxEDP that produces—with
constant probability—a routing of Ω(OPT∗) paths with congestion
O (log(kr)/ log log(kr))whereOPT∗ is the value of an optimum solution to the multi-
commodity flow relaxation, k is the number of terminal pairs and r is the feedback
vertex set number.

In other words, we show that there is anO(1)-approximation algorithm for MaxEDP
with congestion O (log(kr)/ log log(kr)).

Our secondmain result builds upon Theorem 1 and uses it as a subroutine.We show
how to use a routing for MaxEDP with low congestion to obtain a polynomial-time
approximation algorithm forMaxEDPwithout congestion that performs well in terms
of r .

Theorem 2 There is a polynomial-time algorithm for MaxEDP that produces—with
constant probability—a routing of OPT∗/O(

√
r log(kr)) paths with no congestion

where OPT∗ is the value of an optimum solution to the multi-commodity flow relax-
ation, k is the number of terminal pairs and r is the feedback vertex set number.

In particular, our algorithm strengthens the best known approximation algorithm for
MaxEDP on general graphs [11] as always r ≤ n, and indeed it matches that algo-
rithm’s performance up to a logarithmic factor. Substantially improving upon our
bounds would also improve the current state of the art of MaxEDP. Conversely, the
result implies that it suffices to study graphs with close to linear feedback vertex set
number in order to improve the currently best upper bound of O(

√
n) on the approx-

imation ratio [11].
Our algorithmic approaches harness the forest structure of G − R for any feedback

vertex set R. However, the technical challenge comes from the fact that the edge set
running between G − R and R is unrestricted. Therefore, the “interaction” between R
and G − R is non-trivial, and flow paths may run between the two parts in an arbi-
trary manner and multiple times. In fact, we show that MaxEDP is already NP-hard
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if R consists of a single node (Theorem 5); this contrasts the efficient solvability on
forests [26].

In order to overcome the technical hurdles, we propose several new concepts, which
we believe could be of interest in future studies of disjoint paths or routing problems.

In the randomized rounding approach of Raghavan and Thompson [40], it is shown
that the probability that the congestion on anyfixed edge is larger than c log n/ log log n
for some constant c is at most 1/nO(1). Combining this with the fact that there are at
most n2 edges, yields that every edge has bounded congestion with high probability.
The number of edges in the graph may, however, be unbounded in terms of r and k.
Hence, in order to prove Theorem 1, we propose a non-trivial preprocessing step of
the optimum LP solution that is applied prior to the randomized rounding. In this step,
we aggregate the flow paths by a careful rerouting so that the flow “concentrates”
in O(kr2) nodes (so-called hot spots) in the sense that if all edges incident on hot
spots have low congestion, then so have all edges in the graph. Unfortunately, for any
such hot spot the number of incident edges carrying flow may still be unbounded in
terms of k and r . We are, however, able to give a refined probabilistic analysis that
suitably relates the probability of exceeding the congestion bound to the amount of
flow on the respective edge. Since the total amount of flow traversing any given hot
spot is at most k, the probability that there is an edge incident on this hot spot that
violates the congestion bound is inverse polynomial in r and k.

The known O(
√
n)-approximation algorithm for MaxEDP by Chekuri et al. [11]

employs a clever LP-rounding approach. If there are many long flow paths in the LP
solution, then there must be a single node carrying a significant fraction of the total
flow and a good fraction of this flow can be realized by integral paths by solving a
single-source flow problem. If the LP solution contains many short flow paths, then
greedily routing these short paths yields the bound. Essentially, this follows from the
fact that routing a short path blocks only a small amount of flow. In order to prove
Theorem 2, we also distinguish two cases. We are interested, however, in the number
of nodes in R that a flow path is visiting rather than in its length. In the first case,
there are many paths, each of which is visiting a large number of nodes in R. Here, we
reduce to a single-source flow problem in a similar way to the approach of Chekuri
et al. The second case where a majority of the flow paths visit only a few nodes in R
turns out to be more challenging, since any such path may still visit an unbounded
number of edges in terms of k and r . We use two main ingredients to overcome these
difficulties. First, we apply our Theorem 1 as a building block to obtain a solution with
logarithmic congestion while losing only a constant factor in the approximation ratio.
Secondly, we introduce the concept of irreducible routings with low congestionwhich
allows us to exploit the structural properties of the graph and the congestion property
to identify a sufficiently large number of flow paths blocking only a small amount of
flow.

Note that the natural greedy approach of always routing the shortest conflict-free
path gives only an approximation ratio ofO(

√
m) forMaxEDP, wherem is the number

of edges. We believe that it is non-trivial to obtain our bounds via a more direct or
purely combinatorial approach.

Our third result is a fixed-parameter algorithm for MaxNDP in k + r .
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Theorem 3 MaxNDP can be solved in time (k + r)O(r) · n on graphs with k terminal
pairs, feedback vertex set number r , and n vertices. When a minimum feedback vertex
set is given, it can be even solved in time (8k + 8r)2r+3 · O(n).

This run time is polynomial for constant r .We also note that, for small r , our algorithm
is asymptotically significantly faster than the fastest known algorithm for NDP, by
Kawarabayashi and Wollan [30], which requires time at least quadruple-exponential
in k [1]. Namely, if r is asymptotically less than triple-exponential in k, our algorithm
is asymptotically faster than theirs. We achieve this result by the idea of so-called
essential pairs and realizations, which characterizes the “interaction” between the
feedback vertex set R and the paths in an optimum solution. Note that in our algorithm
of Theorem 3 the parameter k does not appear in the exponent of the run time at all.
Hence, whenever r = o(k/ log k), our algorithm is asymptotically faster than reducing
MaxNDP to NDP by guessing the subset of pairs to be routed (at an expense of 2k in
the run time) and using Scheffler’s [43] algorithm forNDPwith run time 2O(r log r) · n;
for r = Ω(k/ log k), our algorithm is asymptotically not slower.

Once a fixed-parameter algorithm for a problem has been obtained, the existence
of a polynomial-size kernel comes up. Here we note that MaxNDP does not admit a
polynomial kernel for the combined parameter k + r , unless NP ⊆ coNP/poly [7].

Another natural question is whether the run time f (k, r) · n in Theorem 3 can
be improved to f (r) · nO(1). We answer this question in the negative, ruling out the
existence of a fixed-parameter algorithm for MaxNDP parameterized by r (assum-
ing FPT �= W[1]):
Theorem 4 MaxNDP in unit-capacity graphs is W[1]-hard parameterized by feed-
back vertex set number.

This contrasts the known result that NDP is fixed-parameter tractable in feedback
vertex set number [43]—which further stresses the relevance of understanding this
parameter.

For MaxEDP, we prove that the situation is, in a sense, even worse:

Theorem 5 MaxEDP is NP-hard for unit-capacity graphs with feedback vertex set
number r = 1 and EDP is NP-hard for unit-capacity graphs with feedback vertex set
number r = 2.

This theorem also shows that our algorithms are relevant for small values of r , and
that they nicely complement the NP-hardness for MaxEDP in capacitated trees [26].

Our results are summarized in Table 1.

Related work Our study of the parameter feedback vertex set number is in line with the
general attempt to obtain bounds for MaxEDP (or related problems) that are indepen-
dent of the input size. Besides the above-mentionedworks that provide bounds in terms
of the treewidth of the input graph, Günlük [27] and Chekuri et al. [16] give bounds
on the flow-cut gap for the closely related integer multi-commodity flow problem;
their bounds are logarithmic with respect to the vertex cover number of a graph. This
improved upon earlier bounds of O(log n) [36] and O(log k) [4,37]. As every vertex
cover is in particular a feedback vertex set of a graph, our results for disjoint path
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Table 1 Summary of results obtained in this paper

EDP MaxEDP NDP MaxNDP

r = 0 Poly [26] Poly [26] Poly [43] Poly (Thm. 3)

r = 1 Open NP-hard (Thm. 5) Poly [43] Poly (Thm. 3)

Const. r ≥ 2 NP-hard (Thm. 5) NP-hard (Thm. 5) Poly [43] Poly (Thm. 3)

Param. r Para-NP-hard (Thm. 5) FPT [43] W[1]-hard (Thm. 4)

O(
√
r log(kr))-approx (Thm. 2) Exact (k + r)O(r)n (Thm. 3)

O(1)-approx. w. cg. O
(

log(kr)
log log(kr)

)
(Thm. 1)

problems address a generalization of graphs with bounded vertex cover number. Bod-
laender et al. [7] showed that NDP does not admit a polynomial kernel parameterized
by vertex cover number and the number k of terminal pairs, unlessNP ⊆ coNP/poly;
therefore,NDP is unlikely to admit a polynomial kernel in k + r either. Ene et al. [21]
showed that MaxNDP is W[1]-hard parameterized by tree-depth, which is another
restriction of treewidth that is incomparable to feedback vertex set number.

The basic gap in understanding the approximability of MaxEDP has led to sev-
eral improved results for special graph classes, and also our results can be seen in
this light. For example, polylogarithmic approximation algorithms are known for
graphs whose global minimum cut value is Ω(log5 n) [41], for bounded-degree
expanders [8,9,25,32,36], and for Eulerian planar or 4-connected planar graphs [31].
Constant factor approximation algorithms are known for capacitated trees [13,26],
grids and grid-like graphs [3,5,33,34]. For planar graphs, there is a constant-factor
approximation algorithm with congestion 2 [44]. Very recently, Chuzhoy et al. [18]
gave a Õ(n9/19)-approximation algorithm for MaxNDP on planar graphs. However,
improving the O(

√
n)-approximation algorithm for MaxEDP remains elusive even

for planar graphs.

2 Preliminaries

We use standard graph theoretic notation. For a graph G, let V (G) denote its vertex
set and E(G) its edge set. The length of a path is the number of its edges. A feedback
vertex set of a graph G is a set R ⊆ V (G) such that G − R is a forest. A minor of
a graph G is a graph H that is obtained by successively contracting edges from a
subgraph of G (and deleting any occurring loops). A class G of graphs isminor-closed
if for any graph in G also all its minors belong to G.

For an instance (G,M) of MaxEDP/MaxNDP, we refer to the vertices participat-
ing in the pairs M as terminals. It is convenient to assume that M forms a matching
on the terminals; this can be ensured by making several copies of the terminals and
attaching them as leaves. Hence, we can also assume that all terminals are leaves.

Multi-commodity flow relaxation We use the following standard multi-commodity
flow relaxation for MaxEDP that we will call MaxEDP LP (there is an analogous
relaxation for MaxNDP). We use P(u, v) to denote the set of all paths in G from u
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to v, for each pair (u, v) of nodes. Since the pairs in M form a matching, the sets
in {P(si , ti ) | (si , ti ) ∈ M} are pairwise disjoint. LetP = ⋃k

i=1 P(si , ti ). The LP has
a variable f (P) for each path P ∈ P representing the amount of flow on P . For each
pair (si , ti ) ∈ M, the LP has a variable xi denoting the total amount of flow routed for
the pair (in the corresponding integer program, xi denotes whether the pair is routed
or not). The LP imposes the constraint that there is a flow from si to ti of value xi .
Additionally, the LP has constraints that ensure that the total amount of flow on paths
using a given edge (respectively node for MaxNDP) is at most 1.

maximize
k∑

i=1

xi

subject to
∑

P∈P(si ,ti )

f (P) = xi ≤ 1 for each i = 1, . . . , k;
∑

P∈P : e∈P

f (P) ≤ 1 for each e ∈ E(G);

f (P) ≥ 0 for each P ∈ P.

It is well-known that the relaxation MaxEDP LP can be solved in polynomial time,
since there is an efficient separation oracle for the dual LP (alternatively, one can write
a compact relaxation). We use ( f, x) to denote a feasible solution toMaxEDP LP for
an instance (G,M) of MaxEDP.

As noted in the introduction, MaxEDP LP has an integrality gap of Ω(
√
n)

as shown by Garg et al. [26]. The integrality instance on an n × n grid (of
treewidth Θ(

√
n)) exploits a topological obstruction in the plane that prevents a large

integral routing; see Fig. 1.
We will use the following result by Chekuri et al. [11, Sect. 3.1]; see also

Proposition 3.3 of Chekuri et al. [14].

Proposition 1 (Chekuri et al. [11]) Let ( f, x) be a fractional solution to the LP
relaxation of a MaxEDP instance (G,M). If some node v is contained in all flow

s1

s2

sk

t1 t2 tk

Fig. 1 An instance with an integrality gap of Ω(
√
n) for MaxEDP [26]: Any integral routing routes at

most one pair, whereas a fractional multi-commodity flow can send 1/2 unit of flow for each pair (si , ti )
along the canonical path from si to ti in the grid
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paths of f , then we can find an integral routing of size at least
∑

i xi/12 in polynomial
time.

As a corollary of Theorem 2, we immediately obtain the following proposition
about the integrality gap of MaxEDP LP.

Corollary 1 The integrality gap of the multi-commodity flow relaxation forMaxEDP
with k terminal pairs isO(

√
r log(kr)) for graphs with feedback vertex set number r .

Let f be a multi-commodity flow assigning to each path P ∈ P a non-
negative flow value f (P). The flow f is said to have congestion c if it satisfies
a modification of MaxEDP LP where we replace, for each edge e ∈ E(G), the
constraint

∑
P∈P : e∈P f (P) ≤ 1 with

∑
P∈P : e∈P f (P) ≤ c. In the particular case

where f is integral we also speak of a routing f with congestion c.

3 Bi-criteria approximation for MaxEDP with low congestion

We present a randomized rounding algorithm that will lead to the proof of Theorem 1.
First we will modify a fractional solution to the multi-commodity flow relaxation and
then run a randomized rounding procedure.

3.1 Algorithm

Consider an instance (G,M) of MaxEDP. Let k denote the number of terminal pairs
in M, and let R be a feedback vertex set of G that we construct by taking the union
of the terminals inM and any 2-approximate minimum feedback vertex set; note that
such an approximation can be obtained in polynomial time [6]. Thus, |R| ≤ 2r + 2k.

First, solve the corresponding MaxEDP LP. We obtain an optimal extreme point
solution ( f, x). For each (si , ti ) ∈ M, this gives us a setP ′(si , ti ) of positive weighted
paths that satisfy the LP constraints. Formally,

P ′(si , ti ) = {P ∈ P(si , ti ) | f (P) > 0}.

Since we have an extreme point solution, the number of tight constraints is not
smaller than the number of variables. Hence, given the numbers of constraints and
variables, the number of constraints that are not tight is polynomially bounded
in the input size. Consequently, the same bound holds for the cardinality of the
set P ′ = ⋃k

i=1 P ′(si , ti ). In what follows, we will modify P ′ and then select an
(unweighted) subset P ′

Sol of P ′ that will form our integral solution.
Each P ∈ P ′ has the form (r1, . . . , r2, . . . , r�) where r1, . . . , r� are the nodes in R

that are traversed by P in this order. For every j with 1 ≤ j ≤ � − 1, we call the
path (r j , . . . , r j+1) a subpath of P . For every subpath P ′ of P , we set f (P ′) = f (P).
Let S be the multi-set of all subpaths of all paths in P ′. Let F = G − R be the forest
obtained by removing R.

Wenowmodify somepaths inP ′, one byone, and at the same time,we incrementally
construct a subset HAlg ⊆ V (F) in several steps. We will refer to the nodes in HAlg as
hot spots. When the construction of HAlg is complete, every subpath in S will contain
at least one hot spot, that is, a node in HAlg.

123



Fleszar et al.

h(P )

R

P

P

root

(a)
R

u v
P

(b)

u v

Fig. 2 Example of the flow aggregation step: a A subpath P (highlighted in dashed gray) enters a tree
(solid black edges) where h(P) (white node) is its closest node to the root. A path P ′ (highlighted in solid
gray) contains a different subpath with the same endpoints u, v ∈ R as P . bWe reroute P ′ by replacing its
subpath between u and v with a copy of P

Initially, let HAlg = ∅. Consider any tree T in F and fix any of its nodes as a root.
Then let ST be the multi-set of all subpaths in S that, excluding the endpoints, are
contained in T . For each subpath P ∈ ST , define its highest node h(P) as the node
on P closest to the root. Note that P ∩ T equals P ∩ F and that P ∩ T is a path. Now,
pick a subpath P ∈ ST that does not contain any node in HAlg and whose highest
node h(P) is farthest away from the root. Consider the multi-set S[P] of all subpaths
in ST that are identical to P (but may be subpaths of different flow paths in P ′).
Note that the weight f (S[P]) of S[P] defined as

∑
P∈S[P] f (P) is at most 1 by the

constraints of the LP. Let u, v ∈ R be the endpoints of P . We define Suv as the set of
all subpaths in S\S[P] that have u and v as their endpoints and that do not contain
any node in HAlg.

Intuitively speaking, we now aggregate flow on P by rerouting as much flow as
possible from Suv to P . To this end, we repeatedly perform the following operation
as long as f (S[P]) < 1 and Suv �= ∅. We pick a path P ′ in S that contains a subpath
in Suv; see Fig. 2. We reroute flow from P ′ by creating a new path P ′′ that arises
from P ′ by replacing its subpath between u and v with a new path identical to P ,
and assign it the weight f (P ′′) equal to min{ f (P ′), 1 − f (S[P])}. Then we set the
weight of (the original path) P ′ to max{0, f (P ′) + f (S[P]) − 1}. We update the
sets P ′, P ′(si , ti ), S, ST , S[P] and Suv accordingly.

As soon as f (S[P]) = 1 orSuv = ∅, wemark h(P) as a hot spot and add it to HAlg.
Then, we proceed with the next P ∈ ST that does not contain a hot spot and whose
highest node h(P) is farthest away from the root. If no such P is left, we consider the
next tree T in F .

At the end, we create our solution P ′
Sol by randomized rounding: We route every

terminal pair (si , ti ) with probability xi . In case (si , ti ) is routed, we randomly select
a path from P ′(si , ti ) and add it to P ′

Sol where the probability that the path P is taken
is f (P)/xi .

3.2 Analysis

First, observe that x did not change during our modifications of the paths, as the
total flow between any terminal pair did not change. Thus, the expected number of
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pairs routed in our solution P ′
Sol is

∑k
i=1 xi ≥ OPT∗. Using the Chernoff bound,

the probability that we route less than OPT∗/2 pairs is at most e−1/8OPT∗
< 1/2,

assuming OPT∗ > 8.
In the above algorithm, we guarantee that when we aggregate flow on a path P , then

the total amount of all flow paths containing P as a subpath has increased to at most 1.
Nevertheless, the flow f may have congestion greater than 1 after this modification.
This is because P may intersect flowpaths that contain only a proper subset of the edges
of P . For instance, consider the situation where we increase f (S[P ′]) for a subpath P ′
that initially contained a tight edge e (that is, an edge e with

∑
P∈P : e∈P f (P) = 1).

After increasing f (S[P ′]), the total amount of flow paths going through e is greater
than 1. However, the congestion of the modified flow f is always at most 2 as shown
by the following lemma.

Lemma 1 The congestion of the flow f is at most 2.

Proof In our algorithm,we increase the flowonly along flow subpaths that are pairwise
edge-disjoint. To see this, consider two distinct flow subpaths P and P ′ on which we
increase the flow. If there were an edge e lying on P and P ′, then both subpaths
traverse the same tree in the forest F . Assume, without loss of generality, that P was
considered before P ′ by the algorithm. Then the path from e to the root would first
visit h(P) and then h(P ′). Hence, h(P) would be an internal node of P ′. This yields
a contradiction, as h(P) was already marked as a hot spot when P ′ was considered.
This shows that we increased the flow along any edge by at most one unit. Hence, f
has congestion at most 2. �


We now bound the congestion of the integral solution obtained by randomized
rounding. In the algorithm, we constructed a set HAlg of hot spots. As a part of the
analysis, we will now extend this set to a set H as follows. Initially, H = HAlg. We
build a sub-forest F ′ of F consisting of all edges of F that lie on a path connecting
two hot spots. Then we add to H all nodes that have degree at least 3 in F ′. Since the
number of nodes of degree 3 in any forest is at most its number of leaves and since
every leaf of F ′ is a hot spot, it follows that this can at most double the size of H
to 2|HAlg|. Finally, we add all nodes of the feedback vertex set R to H and mark all
nodes in H as hot spots.

Lemma 2 The number |H | of hot spots is at most 2k|R|2 + |R|.
Proof To this end, fix two nodes u, v ∈ R and consider the set of flow subpaths with
endpoints u and v for which we added their hot spots to HAlg. Due to the aggregation
of flows in our algorithm, all except possibly one of the subpaths are saturated, that
is, they carry precisely one unit of flow. Since no two of these subpaths are contained
in a same flow path of f and since the flow value of f is bounded from above by k,
we added at most k hot spots for the pair u, v. Since there are at most |R|2 pairs in R,
the claim follows.

Definition 1 A hot spot u ∈ H is good if the congestion on any edge incident on u is
bounded by 12 log(k|R|)/ log log(k|R|); otherwise, u is bad.
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Lemma 3 Let u ∈ H be a hot spot. The probability that u is bad is bounded from
above by 1/(k2|R|3).
Proof Let e1 = uv1, . . . , e� = uv� be the edges incident on u and, for each i
with 1 ≤ i ≤ �, let fi be the total flow on the edge uvi . Since any flow path visits
at most two of the edges incident on u, the total flow

∑�
i=1 fi on the edges incident

on u is at most 2k.
For any i with 1 ≤ i ≤ �, we have fi = ∑

P : P�ei f (P), where P runs over the
set of all paths connecting some terminal pair and containing ei . For 1 ≤ j ≤ k, we
define

fi j =
∑

P∈P(s j ,t j ) : P�ei
f (P)

as the total amount of flow sent across ei by the terminal pair (s j , t j ). Recall
that x j is the total flow sent for the terminal pair (s j , t j ). The probability that
the randomized rounding procedure picks a certain path P ∈ P(s j , t j ) is precisely
x j · (

f (P)/x j
) = f (P). Given the disjointness of the respective events, the prob-

ability that the pair (s j , t j ) routes a path across ei is precisely fi j . Let Xi j be the
binary random variable indicating whether the pair (s j , t j ) routes a path across ei .
Then P

[
Xi j = 1

] = fi j . Let Xi = ∑k
j=1 Xi j be the number of paths routed across ei

by the algorithm. By linearity of expectation,

E [Xi ] =
k∑
j=1

E
[
Xi j

] =
k∑
j=1

fi j = fi .

In the following, we assume that k is sufficiently big ( k ≥ ee
e
). Note that this

assumption is feasible asMaxEDP can be efficiently solved when k is constant [42].
Fix any edge ei . Set

δ = 6 · log(k|R|)
log log(k|R|)

and δ′ = 2δ/ fi − 1. Note that, for fixed i , the variables in {Xi j | 1 ≤ j ≤ k} are
independent. Hence, by the Chernoff bound, we have

P [Xi ≥ 2δ] ≤ P
[
Xi ≥ (1 + δ′) fi

]
<

(
eδ′

(1 + δ′)1+δ′

) fi

≤
(

fi
2

)2δ

·
(e
δ

)2δ

≤ fi
2

· e−6· log(k|R|)
log log(k|R|) log

(
log(k|R|)

log log(k|R|)
)

(1)

≤ fi
2k3|R|3 . (2)
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Fig. 3 Two examples of an
edge e with two hot spots z
and z′ (white nodes) being direct
to e. Note that there is no hot
spot in between z and z′. Any
path routed by our algorithm that
visits e must visit ez or ez′ . Such
a path P is highlighted in gray

e

z
ez

z ez

P e

z
ez

P

z ez

For Eq. 1, we use fi ≤ 2 (see Lemma 1) and e/δ ≤ δ−1/2. For Eq. 2, we use

log log log(k|R|)
log log(k|R|) ≤ 1

e
<

1

2
.

Now, applying the union bound, we can infer that the probability that any
of the edges incident on u carries more than 2δ paths, that is, more than
12 log(k|R|)/ log log(k|R|) paths, is at most

∑
i

fi
2k3|R|3 ≤ 2k

2k3|R|3 = 1

k2|R|3 .

�

Lemma 4 If every hot spot is good, then the congestion on every edge is bounded
from above by 24 log(k|R|)/ log log(k|R|).
Proof Consider an arbitrary edge e = uv that is not incident on any hot spot. In partic-
ular, this means that e lies in the forest F = G − R. A hot spot z in F is called direct
to e if the path in F from z to e excluding e does not contain any hot spot other than z.

We claim that there can be at most two distinct hot spots z, z′ direct to e. If there
were a third hot spot z′′ direct to e, then consider the unique node z0 ∈ V (F) such
that no two of the hot spots z, z′, z′′ are connected in F − z0. Such a node z0 exists,
since z, z′, z′′ cannot lie on a common path in F as they are all direct to e. The node z0,
however, would be added as a hot spot at the latest when H was built. Now this is a
contradiction, because then one of the paths connecting z, z′ or z′′ to ewould contain z0
and thus one of these hot spots would not be direct to e.

Now we show the lemma assuming that there are two distinct hot spots z, z′ direct
to e. If there were only one or no hot spot direct to e, then we can apply a similar
argument as the following one.

Now, let P be an arbitrary path that is routed by our algorithm and that traverses e,
and let P ′ ∈ S be the subpath of P visiting e; see Fig. 3.

Consider the two paths in F connecting z to e and z′ to e. Let ez and ez′ be the
edges on these paths incident on z and z′, respectively. By our construction, P ′ must
visit a hot spot in F . If P ′ visited neither z nor z′, then P ′ would contain a hot spot
direct to u or to v that is distinct from z and z′—a contradiction. Hence P ′ and thus
also P visit ez or ez′ . The claim now follows from the facts that, first, this holds for
any path traversing e, and that, secondly, z and z′ are good, and that, thirdly, therefore
altogether at most 2 · (12 log(k|R|)/ log log(k|R|) paths visit ez or e′

z .
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Now we are ready to prove Theorem 1.

Proof of Theorem 1 We show that the algorithm presented in Sect. 3.1 produces—
with constant probability—a routing with Ω(OPT∗) paths with congestion
O (log(kr)/log log(kr)). As argued above, the probability that we route less
than OPT∗/2 paths is at most 1/2. By Lemma 2, the number of hot spots is at most
2k|R|2+|R| ≤3k|R|2. Thus, Lemma 3 implies an upper bound of 3k|R|2/(k2|R|3) =
3/(k|R|) on the probability that at least one of these hot spots is bad. Hence, by
Lemma 4, we route with probability 1 − 1/2 − 3/(k|R|) at least OPT∗/2 pairs with
congestion at most 24 log(k|R|)/ log log(k|R|). Since the probability is bounded from
below by a positive constant for sufficiently big k, the statement of the theorem follows
by using |R| ≤ 2r + 2k and |R| ≥ r .

4 Refined approximation bound for MaxEDP

In this section,we provide an improved approximation guarantee forMaxEDPwithout
congestion, thereby proving Theorem 2.

4.1 Irreducible routings with low congestion

We first develop the concept of irreducible routings with low congestion, which is
(besidesTheorem1) a key ingredient of our strengthened bound on the approximability
of MaxEDP based on feedback vertex set number.

Consider any multigraph G and any set P of (not necessarily simple) paths in G
with congestion c. We say that an edge e is redundant in P if there is an edge e′ �= e
such that the set of paths in P covering (containing) e is a subset of the set of paths
in P covering e′. For instance, if G contains at least two edges, then any edge that is
not covered by any path in P is redundant in P .

Definition 2 The set P is called an irreducible routing with congestion c if each edge
belongs to at most c paths of P and there is no edge redundant in P .

In contrast to a feasible routing of aMaxEDP instance,we do not require an irreducible
routing to connect a set of terminal pairs. If there is an edge e redundant in P , we
can apply the following reduction rule: we contract e in G and we contract e in every
path of P that covers e. By this, we obtain a minor G ′ of G and a set P ′ of paths
that consists of all the contracted paths and of all paths in P that were not contracted.
Thus, there is a one-to-one correspondence between the paths in P and P ′.

We make the following observation about P and P ′.

Observation 1 A subset of paths in P ′ is edge-disjoint in G ′ if and only if the corre-
sponding subset of paths in P is edge-disjoint in G.

As applying the reduction rule strictly decreases the number of redundant edges, an
iterative application of this rule yields an irreducible routing on a minor of the original
graph.
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Theorem 6 Let G be a minor-closed class of multigraphs and let pG be a positive
integer. If for each graph G ∈ G and every non-empty irreducible routingP on G with
congestion c there exists a path in P of length at most pG , then the average length of
the paths in P is at most c · pG .
Proof Take a path P0 of length at most pG . Contract all edges of P0 in G and obtain
a minor G ′ ∈ G of G. For each path in P contract all edges shared with P0 to obtain a
setP ′ of paths. Remove P0 along with all degenerated paths fromP ′, thus |P ′| < |P|.
Note thatP ′ is an irreducible routing onG ′ with congestion c. We repeat this reduction
procedure recursively on G ′ and P ′ until P ′ is empty; this happens after at most |P|
steps. At each step, we decrease the total path length by at most c · pG . Hence, the
total length of paths in P is at most |P| · c · pG .

As a consequence of Theorem 6, we get the following result for forests.

Lemma 5 Let F be a forest and let P be a non-empty irreducible routing on F with
congestion c. The average path length in P is at most 2c.

Proof We show that P contains a path of length at most 2. Then the lemma follows
immediately by applying Theorem 6 and using the fact that (simple) forests are minor-
closed.

Take any tree in F , root it with any node and consider a leaf v of maximum depth.
If v is adjacent to the root, then the tree is a star and every path in the tree has length at
most 2. Otherwise, let e1 and e2 be the first two edges on the path from v to the root.
By the definition of irreducible routing, the set of all paths covering e1 is not a subset
of the paths covering e2; hence, e1 is covered by a path which does not cover e2. Since
all other edges incident to e1 end in a leaf, this path has length at most 2.

Note that the bound provided in Lemma 5 is actually tight up to a constant. Let c
be an arbitrary integer greater than one. Consider a graph that is a path of length c − 1
with a star of c − 1 leaves attached to one of its endpoints. The c − 1 paths of length c
togetherwith the 2c − 2paths of length 1 forman irreducible routingwith congestion c.
The average path length is

(c − 1)c + (2c − 2)

3c − 3
= c + 2

3
.

4.2 Approximation algorithm

Consider an instance (G,M) of MaxEDP with k terminal pairs. Let R be a 2-
approximate minimum feedback vertex set in G; recall that we can obtain R in
polynomial time [6]. Furthermore, let c = O (log(kr)/ log log(kr)) be the bound on
the congestion of our algorithm in Theorem 1.

We solve the corresponding MaxEDP LP and obtain an optimal extreme point
solution ( f, x) of total flow | f | = OPT∗. By the same argument as in Sect. 3, the
number of all paths with a positive flow value is polynomially bounded in the input
size. Let ρ = √|R|/c and let P be the set of all paths with a positive flow value that
visit at most ρ nodes of R.
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Below we argue how to use R, P and f to obtain a feasible routing of
Ω

(| f |/(c√|R|)) paths. This routing yields an overall approximation ratio of
O (√

r log(kr)
)
and will prove Theorem 2.

We distinguish the following two cases.

Case 1 The total flow of P is at least | f |/2. We compute a new flow ( f ′, x′), where
we set f ′(P) = f (P) for every path P in P , and f ′(P) = 0 for any other path P .
Thus, we have | f ′| ≥ | f |/2. By applying our algorithm of Sect. 3 on ( f ′, x′), we
efficiently compute with constant probability a routing P with congestion c contain-
ing Ω(| f ′|) = Ω(| f |) paths. Note that all paths in P visit at most ρ nodes of R.
Initialize P ′ with P . As long as there is an edge e not adjacent to R that is redundant
in P ′, we iteratively apply the reduction rule (see Sect. 4.1) on e by contracting e in
the graph as well as in every path that covers it. Let G ′ be the obtained minor of G
with forest F ′ = G ′ − R.

Note that F ′ is simple (in contrast to G ′ that might contain multiple edges) as we
contracted edges only in the (simple) forest G− R. The obtained set P ′ is a set of (not
necessarily simple) paths inG ′ corresponding toP . In order to obtain a feasible routing
for (G,M) of size Ω (| f |/(cρ)), it suffices by iterated application of Observation 1
to P and P ′ that we efficiently find a subset P ′

Sol ⊆ P ′ of pairwise edge-disjoint paths
of size |P ′

Sol| = Ω
(|P|/(cρ)

)
.

To obtain P ′
Sol, we first bound the total path length in P ′. Removing R from G ′

“decomposes” the set P ′ into a set S of subpaths lying in F ′, that is,

S = {S is a connected component of P ∩ F ′ | P ∈ P ′}.

Observe that S is an irreducible set of F ′ with congestion c, as the reduction rule is
not applicable anymore. (Note that a single path in P ′ may lead to many paths in the
cover S which are considered distinct.) Thus, by Lemma 5, the average path length
in S is at most 2c.

Let P be an arbitrary path in P ′. Each edge on P that is not in a subpath in S is
incident on a node in R, and each node in R is incident on at most two edges in P .
Together with the fact that P visits less than ρ nodes in R, there are less than 2ρ edges
of P outside S. By the same fact, P contributes at most ρ subpaths to S. Given that
the average length of the subpaths in S is at most 2c, we can upper bound the total path
length

∑
P∈P ′ |P| by |P ′|ρ(2c + 2). Let P ′′ be the set of the |P ′|/2 shortest paths

in P ′. Hence, each path in P ′′ has length at most 4ρ(c + 1).
We greedily construct a feasible solution P ′

Sol by iteratively picking an arbitrary
path P from P ′′, adding it to P ′

Sol and removing all paths from P ′′ that share some
edge with P (including P itself). We stop when P ′′ is empty. As P ′′ has congestion c,
we remove at most 4ρc(c + 1) paths from P ′′ per iteration. Thus,

|P ′
Sol| ≥ |P ′′|/(4ρc(c + 1)) = Ω

(
|P|/(c√|R|)

)
.

Case 2 The flow of P is less than | f |/2. Then, the flow of all paths visiting at least ρ
nodes of R is at least | f |/2. Let P ′ be the subset of these paths and let f ′ be the sum
of all these flows. Note that f ′ provides a feasible solution to relaxation MaxEDP
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LP for (G, M) of value at least | f |/2. Since every flow path in f ′ has length at
least ρ, the total inflow of the nodes in R is at least | f ′|ρ. By averaging, there must
be a node v ∈ R of inflow at least ρ| f ′|/|R| = | f ′|/(c√|R|). Let f ′′ be the subflow
of f ′ consisting of all flow paths visiting v. This subflow corresponds to a feasible
solution ( f ′′, x′′) of the LP relaxation of value at least | f ′|/(c√|R|) ≥ | f |/(2c√|R|).
Using Proposition 1, we can recover an integral feasible routing of size at least

∑
i

x ′′
i /12 ≥ | f |/(24c√|R|) = Ω

(
| f |/(c√|R|

)
.

This completes the proof of Theorem 2. �


5 Fixed-parameter algorithm for MaxNDP

We give a fixed-parameter algorithm for MaxNDP that solves any
instance (G,M) in time (k + r)O(r) · n, where r denotes the feedback vertex set
number of G, k = |M| and n = |V (G)|. A feedback vertex set R of size r can be
computed in time rO(r) · n [38].

By the matching assumption (see Sect. 2), each terminal in M is a leaf. We can
thus assume that none of the terminals is contained in R.

Consider anoptimal routingP of thegivenMaxNDP instance and the setMR ⊆ M
of terminal pairs that are connected via P by a path that visits at least one node
in R. Let P ∈ P be a path connecting a terminal pair (si , ti ) ∈ MR . This path has
the form (si , . . . , r1, . . . , r2, . . . , r�, . . . , ti ), where r1, . . . , r� are the nodes in R that
are traversed by P in this order. The pairs (si , r1) and (r�, ti ) as well as (r j , r j+1)

for j = 1, . . . , � − 1 are called essential pairs for P . A node pair is called essential
if it is essential for some path in P . Let Me be the set of essential pairs.

Let F be the forest that arises when deleting R from the input graph G. Let (u, v)

be any pair of nodes in G. A path P in G with endpoints u and v is said to realize
(u, v) if all internal nodes of P lie in F . A set P ′ of paths is said to realize a set of
node pairs if every pair in this set is realized by some path in P ′ and if two paths
in P ′ can only intersect at their endpoints. Note that the optimal routing P induces a
realization of Me in a natural way: The realization consists of all maximal subpaths
of paths in P whose internal nodes all lie in F . Conversely, for any realization P ′
of Me, we can concatenate paths in P ′ to obtain a feasible routing that connects all
terminal pairs inMR . Therefore, we consider P ′ (slightly abusing notation) also as a
feasible routing for MR .

In our algorithm, we first guess the set Me of essential pairs, which implies the
set MR as well as the set MR that we define as MR = M\MR . Then, by dynamic
programming, we construct two sets of paths, Pe and PF , where Pe realizes Me

andPF routes in F a subset ofMR . In our algorithm, the setPe ∪ PF forms a feasible
routing that maximizes |PF | and routes all pairs in MR . Recall that we consider the
realization Pe of Me as a feasible routing for MR .

Now assume that we correctly guessed Me. Below, we will describe an algo-
rithm that uses a dynamic programming table to compute an optimum routing in
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Fv1 Fv2 Fvi Fvcv

v1 v2 vi vcv

v

F i
v

Fig. 4 Subtree Fi
v consists of v and subtrees Fv1 , . . . , Fvi . Recall that only leaf nodes can be terminals or

neighbors of R

time 2O(r)(k + r)O(1) · n. For the sake of easier presentation, first we describe how to
compute the cardinality of such a routing. Then we argue how to find such a routing
without a significant increase in the run time.

5.1 Dynamic programming table

Before we describe the dynamic programming table, we make several technical
assumptions that help to simplify the presentation. First, we modify the input instance
as follows. We subdivide every edge incident on a node in R by introducing a sin-
gle new node on this edge. Note that this yields an instance equivalent to the input
instance. As a result, every neighbor of a node in R that lies in F , that is, every node
in NG(R), is a leaf in F . Moreover, the set R is an independent set in G. Also recall
that we assumed that every terminal is a leaf and that therefore R does not contain any
terminal. We also assume that the forest F is a rooted tree by introducing a dummy
node (which plays the role of the root) and arbitrarily connecting this node to every
connected component of F by an edge. In our dynamic programming table, we will
take care that no path visits this root node. We also assume that F is an ordered tree
by introducing an arbitrary order among the children of every node.

For any node v, let Fv be the subtree of F rooted at v. Let cv be the num-
ber degF (v) − 1 of children of v and let v1, . . . vcv be the (ordered) children of v.
Then, for i = 1, . . . , cv , let Fi

v denote the subtree of Fv induced by the union of v with
the subtrees Fv1, . . . , Fvi ; see Fig. 4. If v is a leaf, we have Fv = v and we define F0

v

as Fv .
We introduce a dynamic programming table T . It contains an entry for every Fi

v

and every subset M′
e of Me. Roughly speaking, the value of such an entry is the

solution to the subproblem, where we restrict the forest to Fi
v , and the set of essential

pairs to M′
e. More precisely, table T contains five parameters: Parameters v and i
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describing Fi
v , a parameter M′

e describing the set of essential pairs, and two more
parameters u and b. The parameter u is either a terminal or a node in R, and b is in
one of the three states: free, to-be-used, or blocked. The value T [v, i,M′

e, u, b] is the
maximum cardinality of a set PF of paths with the following properties:

1. The set PF is a feasible routing of some subset ofMR .
2. The set PF is completely contained in Fi

v .
3. There is an additional set Pe of paths with the following properties:

(a) The set Pe is a realization of M′
e ∪ {(u, v)} if b = to-be-used. Else, it is a

realization of M′
e.

(b) The setPe is completely contained in Fi
v ∪ R and node-disjoint from the paths

in PF .
4. If b = free, there is no path in Pe ∪ PF visiting v.

If no such set PF exists, then T [v, i,M′
e, u, b] is −∞.

Note that the parameter u is only relevant when b = to-be-used (otherwise, it can
just be ignored). One can think of the three states of b as follows: If b = free, then
there is no path in Pe ∪ PF visiting v, hence, in the future we might consider to add a
path through v. If b = to-be-used, then v is visited by some path in Pe (connecting u
to v) and we cannot add a new path through v. Eventually, if b = blocked, we may add
a path to Pe ∪ PF that goes through v. Hence, v is “blocked” for the future because
of the possibility of having been already visited. Thus, we have

T [v, i,M′
e, u, blocked] ≥ T [v, i,M′

e, u, free] ≥ T [v, i,M′
e, u, to-be-used].

Below, we describe how to compute the entries of T in a bottom-up man-
ner. Having computed T , we obtain the cardinality of the optimum routing P
by |MR | + T [v, cv,Me, u, free], where v is the dummy root node and u is an arbitrary
terminal.
Base case In the base case, the node v is a leaf and we have PF = ∅. Thus, every
entry for v has value either 0 or −∞, depending on whether Me can be routed.
When b = free, no path can visit v and, hence, also Pe = ∅. Thus we set

T [v, 0,∅, u, free] = 0.

Then we set

T [v, 0,M′
e, u, blocked] = 0

if M′
e is either empty, or consists of a single pair of nodes in R ∩ NG(v), or consists

of a single pair where one node is v and the other one is in R ∩ NG(v). Finally, we
set

T [v, 0,∅, u, to-be-used] = 0

if u = v or u is in R ∩ NG(v). For all the other cases where v is a leaf, we set

T [v, i,M′
e, u, b] = −∞.
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Induction step For the inductive step, we first consider i = 1. We have

T [v, 1,M′
e, u, to-be-used] = T [v1, cv,M′

e, u, to-be-used],

since the path in Pe realizing (u, v) has to start at a leaf node of Fv1 . For the other
states of b, recall that every path in Pe ∪ PF connects two leaves in F1

v . Since v has
degree 1 in F1

v , there is no path in Pe ∪ PF visiting v, and we have

T [v, 1,M′
e, u, blocked] = T [v, 1,M′

e, u, free] = T [v1, cv,M′
e, u, blocked].

Now, let i be greater than 1. In a high level view, we guess which part of M′
e

is realized in Fi−1
v ∪ R and which part is realized in Fvi ∪ R. For this, we con-

sider every partition M′
e1 � M′

e2 of M′
e. By our dynamic programming table, we

find a partition that maximizes our objective. In the following, we assume that we
guessedM′

e1 � M′
e2 correctly. Let us consider the different states of b in more detail.

1. When b = free, node v is not allowed to be visited by any path, especially by any
path in Fi−1

v ∪ R. Hence, T [v, i,M′
e, u, free] is equal to

T [v, i − 1,M′
e1, u, free] + T [vi , cvi ,M′

e2, u, blocked].

2. When b = to-be-used, we have to realize (u, v) in Fi
v ∪ R. For this, there are two

possibilities: Either (u, v) is realized by a path in Fi−1
v ∪ R, or there is a realizing

path that first goes through Fvi ∪ R and then reaches v via the edge (vi , v). Hence,
for the first possibility, we consider

T [v, i − 1,M′
e1, u, to-be-used] + T [vi , cvi ,M′

e2, u, blocked],

for the second possibility, we consider

T [v, i − 1,M′
e1, u, free] + T [vi , cvi ,M′

e2, u, to-be-used].

Maximizing over both, we obtain T [v, i,M′
e, u, to-be-used].

3. When b = blocked, we will also consider two cases. In the first one, there is no
path in Pe ∪ PF going through edge (vi , v), hence, we get the term

T [v, i − 1,M′
e1, u, blocked] + T [vi , cvi ,M′

e2, u, blocked].

In the second case, there is a path P in Pe ∪ PF going through edge (vi , v).
Since P is connecting two leaves in Fi

v , a part of P is in Fi−1
v ∪ R and the other

part is in Fvi ∪ R. If P ∈ Pe, then it is realizing a pair of M′
e. Hence, for every

pair (u1, u2) ∈ M′
e, we have to consider the term

T [v, i − 1,M′
e1 − (u1, u2), u1, to-be-used]

+ T [vi , cvi ,M′
e2 − (u1, u2), u2, to-be-used]
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and the symmetric term where we swap u1 and u2. If P ∈ PF , then it is realizing
a terminal pair of MR . Hence, for every pair (u1, u2) ∈ MR we get the term

1 + T [v, i − 1,M′
e1, u1, to-be-used] + T [vi , cvi ,M′

e2, u2, to-be-used]

and the symmetric term where we swap u1 and u2. Note that we count the path
realizing (u1, u2) in our objective. Maximizing over all the terms of the two cases,
we obtain T [v, i,M′

e, u, to-be-used].

5.2 Analysis

Let us analyze the run time of the algorithm described above. Given R, the forest F
can be computed in time O(r · n). In order to guess Me, we enumerate all potential
sets of essential pairs. To bound the number of potential sets of essential pairs, first
recall that each pair contains at least one node in R. On the other hand, each node in R
appears in at most two pairs and, consequently, |Me| ≤ 2r . Thus, an upper bound
on the number of potential sets for Me is the number of ways to choose up to two
pairs for each node in R. As each node in R is paired with a terminal node or another
node in R, there are at most (2k + r − 1) candidate pairs for it. Hence, there are at
most (2k + r)2r candidate sets to consider. For each particular guess forMe, we run
the dynamic program above. The number of entries in T—as specified by the five
parameters v, i ,M′

e, u and b—for each fixed guess for Me is at most

⎛
⎝ ∑

v∈V (F)

degF (v)

⎞
⎠ · 22r · (2k + r) · 3 = 22r · (2k + r) · O(n).

Among the different entries, those with b = blocked and i > 1 have the highest run
time in the worst case. There, we do not only consider all partitions of M′

e, but for
every partition we also consider every possible node pair that is either an essential
pair in M′

e or a terminal pair in MR . As there are at most 22r partitions of M′
e, at

most 2r essential pairs in M′
e and at most k terminal pairs in MR , we consider at

most 22r + 2 · 22r · (k + 2r) ≤ 22r+1 · (2k + 2r) different terms, including the sym-
metric terms, for computing an entry. For each term,we need constant time for look-up.
Hence, altogether, this gives a run time of

r · (2k + r)2r · 22r · (2k + r) · 22r+1 · (2k + 2r) · O(n) = (8k + 8r)2r+3 · O(n)

assuming that R is given. By computing R in time rO(r) · n, we can bound the total
run time by (k + r)O(r) · n.

5.3 Reconstruction of an optimal routing

Above, we computed only the cardinality of the routing P . Now we discuss how to
compute an optimal routing of size |P| without asymptotically increasing the total
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run time. For every non-leaf entry of T , we take a term that maximized its value and
define the (at most two) entries appearing in the term as its children. We can do this
while computing T without increasing the asymptotic run time. By considering all the
children that (recursively) contributed to the entry with the optimum value of the root
node, we obtain a computation tree. Going over the computation tree from bottom to
top, we compute for each entry of the tree its set of pathsPe ∪ PF . We store the set as a
linked list with pointers to the paths which themselves are stored as linked lists of their
nodes. Whenever we concatenate two lists, we will not create a new copy but reuse
one of them. This will give us constant time for concatenation. Note that for almost all
entries we obtain Pe ∪ PF by just taking the union of the paths of its children. Hence,
we just concatenate the lists of its children (at most two) in constant time. The only
exception are entries where b = blocked and a path P is going through the node given
by the first parameter v of the entry. Here, we obtain P by concatenating two paths,
where each one belongs to a different child of the entry. Then we add the concatenated
path to the union of the remaining paths of the children. The operation to find the
two paths that we want to concatenate takes O(|Pe ∪ PF |) = O(k + r) time. The
remaining steps to compute Pe ∪ PF also take constant time. Thus, for each entry of
the tree, we can bound the run time byO(k + r). Note that in the computation tree there
is exactly one entry for each subtree Fi

v , hence, in total there are O(n) entries. Thus,
our approach takes additional time of (k + r) · O(n) to compute the paths Pe ∪ PF .
Finally, the time needed to accordingly concatenate the paths in Pe to get a routing
forMR takes atmostO(|Pe|2) = O(r2) time.Hence, in time (8k + 8r)2r+3 · O(n)we
can compute an optimal routing, asymptotically matching the time needed to compute
its cardinality.

This finishes the proof of Theorem 3. �


6 Parameterized intractability of MAXNDP for the Parameter r

In this section, we prove Theorem 4, that is, we show that MaxNDP is W[1]-hard
parameterized by feedback vertex set number. This reduction was originally devised
for the parameter tree-depth by Ene et al. [21]; we notice that the same reduction
also works for the parameter r . (Both tree-depth and feedback vertex set number are
restrictions of treewidth, but they are incomparable to each other.)

For sake of completeness, we include the reduction here, and argue about the feed-
back vertex set number of the reduced graph. The reduction is from the W [1]-hard
Multicolored Clique problem [23], where given a graphG and a partition of V (G)

into q independent sets V 1, . . . , V q , we are to check if there exists a q-clique inG with
exactly one vertex in every set V i . By adding dummy vertices, we can assume q ≥ 2
and |V i | = n for some n with n ≥ 2 and every i with 1 ≤ i ≤ q .

Construction Given an instance (G, (V i )
q
i=1) of Multicolored Clique, we aim at

constructing an equivalent instance (H,M, �) of MaxNDP consisting of a graph H
with feedback vertex set number bounded by a function of q, a set M of terminal pairs,
and an integer �. The graph H will contain � node-disjoint paths, each one routing a
distinct terminal pair in M , if and only if (G, (V i )

q
i=1) is a “yes”-instance.

123



New algorithms for maximum disjoint paths based on…

xi
ui,j

xi
v,j

siv

tiv

first(Xi
ui)

last(Xi
ui)

first(Xi
v)

last(Xi
v)

xj
uj ,i

xj
w,i

sjw

tjw

first(Xj
uj )

last(Xj
uj )

first(Xj
w)

last(Xj
w)

pi,j

Fig. 5 Part of the construction of the graph H : The gadgets Wi and W j connected via pi, j . On the left

side, the path Xi
ui

is highlighted in gray

We start by constructing for every set V i a gadget Wi as follows. First, for
every v ∈ V i , we construct a path Xi

v of length q − 2 on the vertex set

{xiv, j | j ∈ {1, . . . , q}\{i}},

where the vertices are connected in any order. Let first(Xi
v) denote any one of the two

endpoints of Xi
v , and let last(X

i
v) denote the other endpoint of X

i
v . Secondly, we select

an arbitrary vertex ui ∈ V i . Thirdly, for every v ∈ V i\{ui }, we add a vertex siv and a
vertex t iv . We make siv adjacent to first(Xi

v) and to first(Xi
ui

). Similarly, we make t iv
adjacent to last(Xi

v) and to last(X
i
ui

); see Fig. 5. We set (siv, t
i
v) as a terminal pair. This

concludes the description of the gadget Wi . Let Mst denote the set of terminal pairs
constructed in this step.

To encode adjacencies in G, we proceed as follows. For every i and j
with 1 ≤ i < j ≤ q , we add a vertex pi, j adjacent to all vertices in {xiv, j | v ∈ V i } and
in {x j

w,i | w ∈ V j }; see Fig. 5. For every edge vw ∈ E(G) with v ∈ V i and w ∈ V j ,

we add a terminal pair (xiv, j , x
j
w,i ). LetMx be the set of terminal pairs constructed in

this step; we have M = Mst ∪ Mx .
Finally, we set the required number � of paths to q(n − 1) + (q

2

)
. This concludes

the description of the instance (H,M, �).

From a clique to disjoint paths Assume that the given instance of Multicolored
Clique is a “yes”-instance, and let {vi | i ∈ {1, . . . , q}} be a clique in G with vi ∈ V i

for each i ∈ {1, . . . , q}. We construct a family of � node-disjoint paths as follows.
First, for every i ∈ {1, . . . , q} and every v ∈ V i\{ui }, we route a path from siv to t iv
through the path Xi

v if v �= vi , and through the path Xi
ui

if v = vi . Note that in this
step we have created q(n − 1) node-disjoint paths connecting terminal pairs, and in
every gadget Wi the only unused vertices are vertices on the path Xi

vi
. To construct

the remaining
(q
2

)
paths, for every i and j with 1 ≤ i < j ≤ q , we take the 3-vertex
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path from xi
vi , j

to x j
v j ,i

through pi, j ; note that the assumption viv j ∈ E(G) ensures

that (xi
vi , j

, x j
v j ,i

) is indeed a terminal pair in M.

From disjoint paths to a clique. In the other direction, let P be a family of � node-
disjoint paths connecting terminal pairs in H . Let Pst ⊆ P be the set of paths
connecting terminal pairs fromMst , and, in an analogousway, letPx ⊆ P be the set of
paths connecting terminal pairs fromMx . Eventually, let P = {pi, j | 1 ≤ i < j ≤ q}.
First, observe that P separates every terminal pair fromMx .Hence, everypath fromPx

contains at least one vertex from P . Since |P| = (q
2

)
, we have |Px | ≤ (q

2

)
, and, con-

sequently,

|Pst | ≥ � −
(
q

2

)
= q(n − 1) = |Mst |.

Thus, Pst routes all terminal pairs in Mst and Px routes
(q
2

)
pairs from Mx .

Since |Px | = |P|, every vertex in P is contained in a path from Px . Consequently, the
paths in Pst cannot use any vertex in P . Therefore, every path in Pst lies inside one
gadget Wi .

Observe that a shortest path between terminals siv and t iv inside Wi is either Xi
ui

or Xi
v prolonged with the terminals at endpoints, and thus contains q + 1 vertices.

Furthermore, a shortest path between two terminals inMx contains three vertices. We
infer that the total number of vertices on paths in P is at least

|Pst | · (q + 1) + |Px | · 3 = q(n − 1)(q + 1) + 3

(
q

2

)

= q ((n − 1)(q + 1) + (q − 1)) +
(
q

2

)
= |V (H)|.

We infer that every path inPst consists of q + 1 vertices, and every path inPx consists
of three vertices. In particular, for every i ∈ {1, . . . , q} and every v ∈ V i\{ui }, the
path in Pst that connects siv and t iv goes either through Xi

v or Xi
ui
. Consequently, for

each i ∈ {1, . . . , q} there exists a vertex vi ∈ V i such that the path Xi
vi
is not contained

in any path from Pst . Even more, Xi
vi
contains all the vertices ofWi that do not lie on

any path from Pst .
Weclaim that {vi | i = 1, . . . , q} is a clique inG. To this end, consider any pi, j ∈ P .

Since |Px | = |P|, there exists a path in Px that goes through pi, j . Moreover, this
path has exactly three vertices. Since the only neighbors of pi, j that are not used by

paths from Pst are xivi , j and x j
v j ,i

, we infer that (xi
vi , j

, x j
v j ,i

) is a terminal pair in M
and, consequently, viv j ∈ E(G). This concludes the proof of the correctness of the
construction.

Bounding the feedback vertex set numberWe are left with a proof that H has bounded
feedback vertex set number in q.

First, observe that H − P consists of q components, where each component is a
gadget Wi , for some i ∈ {1, . . . , q}. Secondly, consider the endpoints of the path Xi

ui
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a b

cd

(a)

v1

v2

v3

a

b

c

d

(b)

v1

v2

a

b

c

d

(c)

Fig. 6 a Graph H ; it is 3-edge-colorable. b Graph G obtained from H with r = 2. c Graph G obtained
from H with r = 1. The reduction from an Edge 3- Coloring-instance H to an EDP/MaxEDP-
instance (G,M). Dotted curves depict which terminals form a pair in M. The path highlighted in gray
connects the terminal pair {a, d}

from the gadget Wi . Observe that the deletion of both vertices breaks Wi into n
componentswhere each component is a path. Consequently, H has the feedback vertex
set

P ∪ {first(Xi
ui ), last(X

i
ui ) | i = 1, . . . , q}

of size O(q2).
This finishes the proof of Theorem 4. �


7 Hardness of edge-disjoint paths in almost-forests

In this section, we show that EDP is NP-hard already in graphs that become forests
after deleting two nodes. Though this immediately impliesNP-hardness forMaxEDP
in such graphs, we show thatMaxEDP isNP-hard even in graphs that become forests
after deleting just one node. Thus, we prove Theorem 5.

Proof of Theorem 5 Wefirst showNP-hardness of EDP for r = 2.We reduce from the
problem Edge 3- Coloring in cubic graphs, which is NP-hard [28]. Given a cubic
graph H , we construct a complete bipartite graph G, where one of the two partite sets
of V (G) consists of three nodes {v1, v2, v3}, and the other partite set consists of V (H);
see Fig. 6a, b. As for the set M of terminal pairs, let M = {(s, t) | {s, t} ∈ E(H)};
in words, we want to connect a pair of nodes by a path in G if and only if they are
connected by an edge in H . This completes the construction of the instance (G,M)

of MaxEDP. Note that G has feedback vertex set number r = 2; removing from G
any two vertices of {v1, v2, v3} yields a forest.

Regarding correctness of the reduction, we show that H is 3-edge-colorable if and
only if all pairs inM can be routed in G.

In the forward direction, suppose that H is 3-edge-colorable by a proper color-
ing ϕ : E(H) → {1, 2, 3}. For c ∈ {1, 2, 3}, let Ec ⊆ E(H) be the set of edges that
receive color c under ϕ. Then there is a routing in G that, for every c ∈ {1, 2, 3},
routes all terminal pairs {(s, t) ∈ M | {s, t} ∈ Ec} exclusively via the node vc (and
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thus via paths of length 2). Note that this routing indeed yields edge-disjoint paths.
Otherwise there were an edge {s, vc} in E(H) contained in at least two paths that route
two terminal pairs {s, t1} and {s, t2}. Hence, the two edges in E(H) corresponding
to {s, t1} and {s, t2} would receive the same color c in ϕ; a contradiction to the proper
edge-coloring ϕ as both edges are incident on s.

In the backward direction, suppose that all terminal pairs inM can be routed in G.
Since H is cubic, any node s ∈ V (H) is contained in three terminal pairs. Therefore,
no path of the routing can have a node in V (H) as an internal node and thus all paths in
the routing have length 2. Then this routing naturally corresponds to a proper 3-edge-
coloring ϕ of H , where any terminal pair {s, t} routed via vc ∈ {v1, v2, v3} means that
we color the edge {s, t} ∈ E(H) with color c under ϕ.

In order to showNP-hardness ofMaxEDP for r = 1,we also reduce fromEdge 3-
Coloring in cubic graphs and perform a similar construction as described above: This
time, we construct a bipartite graph G with one subset of the partition being {v1, v2},
the other being V (H), and the set M of terminal pairs being again specified by the
edges of H ; see Fig. 6a, c. This completes the reduction. The resulting graph G has
feedback vertex set number r = 1.

We claim that H is 3-colorable if and only if we can route n = |V (H)| pairs in G.
In the forward direction, suppose that H is 3-edge-colorable by a proper color-

ing ϕ : E(H) → {1, 2, 3}. For c ∈ {1, 2, 3}, let Ec ⊆ E(H) be the set of edges that
receive color c under ϕ. Then there is a routing in G that, for every c ∈ {1, 2}, routes
all terminal pairs {(s, t) ∈ M | {s, t} ∈ Ec} exclusively via the node vc (and thus via
paths of length 2). Note that the terminals corresponding to edges receiving color 3
remain unrouted. The reasoning that the resulting routing is feasible is analogous to
the case of r = 2. To see that precisely n terminal pairs are routed overall, observe
that, for each of the n terminals, exactly two of the three terminal pairs are routed.

In the backward direction, suppose that n terminal pairs inM can be routed in G.
Since every terminal v inG has degree two, at most two paths can be routed for v. As n
terminal pairs are realized, this also means that exactly two paths are routed for each
terminal. Hence, none of the paths in the routing has length more than two. Otherwise,
it would contain an internal node in V (H), which then could not be part of two other
paths in the routing. Then this routing naturally corresponds to a partial edge-coloring
of H , where any terminal pair {s, t} routed via vc ∈ {v1, v2} implies that we color the
edge {s, t} ∈ E(H)with color c. Since each terminal v in V (H) is involved in exactly
two paths in the routing, exactly one terminal pair for v remains unrouted. Hence,
exactly one edge incident on v in H remains uncolored in the partial coloring. We
color all uncolored edges in H by color 3 to obtain a proper 3-edge-coloring. �


Thus, we almost close the complexity gap for EDP with respect to the size of a
minimum feedback vertex set, only leaving the complexity of the case r = 1 open.

8 Concluding remarks

In this paper, we examined the problems of routing terminal pairs by edge- and node-
disjoint paths in graphs of bounded feedback vertex set number r .We observed that our
obtained approximability bounds, expressed in terms of r , either strengthen best known
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bounds or they are almost tight. This leads us to the conclusion that the parameter r
in fact captures the “difficulty” of disjoint paths problems.

In particular, for MaxEDP, we obtained a constant-factor approximation algo-
rithm with congestion logarithmic in k + r , where k is the number of terminal pairs.
This strengthens the bound obtained by directly applying the randomized round-
ing technique for LPs introduced by Raghavan and Thompson [40]. Though also
we applied this technique, beforehand we appropriately modified the fractional LP
solution by making use of the forest that one obtains when removing the feed-
back vertex set from the graph. For our next result, we used the solution above to
extract OPT∗ /O(

√
r log(kr)) edge-disjoint paths out of it, where OPT∗ denotes the

value of an optimum fractional solution. This strengthens, up to a logarithmic factor,
the best known bound of OPT∗ /O(

√
n) [11]. We achieved our result by contracting

“redundant” edges in the input graph and in the routing which lead to an “irreducible”
routing from which we could greedily pick up our solution. The result shows that
in order to improve the best known bound it suffices to focus only on graphs with
feedback vertex set number close to n.

We also complemented the upper bounds with hardness results. We observed that
the complexities of both problems, routing node-disjoint paths and edge-disjoint-paths,
differ when r is constant.WhereasNDP [43] andMaxNDP are efficiently solvable for
any constant r ,EDP andMaxEDP areNP-hard even for r = 2 and r = 1, respectively.
Here, the complexity of EDP remains open for r = 1 and we conjecture that this
case can be solved in polynomial time. When considering r as part of the input, we
can separate NDP and MaxNDP (if FPT �= W[1]). We showed W[1]-hardness of
MaxNDP when parameterized by r , whereas NDP is fixed-parameterized tractable
in r [43]. However, we were able to provide a fixed-parameter algorithm for the
combined parameter k + r .
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