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Next-generation sequencing (NGS) studies have tremendously 
advanced our understanding of the genes, pathways and molecular pro-
cesses that underly most commonly diagnosed human cancers. These 
efforts have identified core sets of ‘driver’ genes that are frequently 
mutated across a wide spectrum of different cancer entities1,2. Although 
the genetic underpinnings of some cancers were largely resolved  
during the first ‘wave’ of NGS studies, especially for comparatively  
simple malignancies driven by deregulation of a single pathway3,4,  
others remain enigmatic and require further interrogation with  

sufficient power to overcome confounding molecular heterogeneity 
and diversity.

Medulloblastoma (MB) (World Health Organization grade IV) is a 
highly malignant childhood brain tumour that has been the subject of 
several NGS studies conducted by the International Cancer Genome 
Consortium (ICGC)5–8, the Paediatric Cancer Genome Project 
(PCGP)9, and the Medulloblastoma Advanced Genomics Consortium 
(MAGIC)10,11. Consensus molecular subgroups of MB, namely WNT, 
SHH, Group 3 and Group 4, exhibit distinctive transcriptional and 

Current therapies for medulloblastoma, a highly malignant childhood brain tumour, impose debilitating effects on the 
developing child, and highlight the need for molecularly targeted treatments with reduced toxicity. Previous studies 
have been unable to identify the full spectrum of driver genes and molecular processes that operate in medulloblastoma 
subgroups. Here we analyse the somatic landscape across 491 sequenced medulloblastoma samples and the molecular 
heterogeneity among 1,256 epigenetically analysed cases, and identify subgroup-specific driver alterations that include 
previously undiscovered actionable targets. Driver mutations were confidently assigned to most patients belonging to 
Group 3 and Group 4 medulloblastoma subgroups, greatly enhancing previous knowledge. New molecular subtypes were 
differentially enriched for specific driver events, including hotspot in-frame insertions that target KBTBD4 and ‘enhancer 
hijacking’ events that activate PRDM6. Thus, the application of integrative genomics to an extensive cohort of clinical 
samples derived from a single childhood cancer entity revealed a series of cancer genes and biologically relevant subtype 
diversity that represent attractive therapeutic targets for the treatment of patients with medulloblastoma.
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epigenetic signatures that define clinically relevant patient subsets12,13. 
WNT and SHH subgroup MBs are primarily driven by mutations 
leading to constitutive activation of the Wingless and Sonic hedgehog 
signalling pathways, respectively. By contrast, the genetics and biology 
underlying the Group 3 and Group 4 MB subgroups remain less clear12. 
Targeted therapies for MB are scarce yet desperately needed, warranting 
intensive investigation into the full range of genetic lesions and mole
cular heterogeneity that contribute to MB subgroups, especially as it 
relates to poorly characterized Group 3 and Group 4 disease. Here we 
report the genomic landscape across a series of 491 previously untreated 
MBs. Our comprehensive and integrative approach to this multilayered 
dataset provides considerable biological insight into each of the core 
subgroups, including the identification of new subgroup-specific driver 
genes, epigenetic subtypes, and candidate targets for therapy. This data-
set provides a rich resource for the cancer genomics community and 
will serve as the foundation of ongoing and future candidate-driven 
functional studies focused on resolving MB aetiology.

Patient cohorts and genomic datasets
Patient-matched tumour and non-tumour (blood) Illumina DNA 
sequences were collected from a total of 579 untreated patients 
diagnosed with MB that were sequenced at one of four participat-
ing institutions (see Methods). After eliminating samples with poor 
quality sequencing data (based on quality control measures), samples 
sequenced more than once (that is, duplicate cases analysed at different 
sequencing sites or sequencing of patient-matched primary and relapse 
pairs), samples lacking molecular subgroup annotation, and cases 
with clear molecular evidence for misdiagnosis, we amassed a final 
cohort of 491 diagnostic MBs with matched normal samples for further  
analysis, including standardized sequence alignment and filtering, 
as well as harmonized single nucleotide variant (SNV), indel, and 
structural variant calling (Fig. 1). Germline and somatic alterations 
were annotated primarily from whole genomes (n = 390; n = 190 
published5,6,9 and 200 unpublished) while the remaining alterations 
were derived from published whole exomes (n = 101)5,14. Patient ages 
ranged from 1 month to 50 years (median age = 8 years; Supplementary  
Table 1). Verification of MB diagnosis and subgroup status was  
established using a molecular classification approach based on DNA 
methylation arrays15 (see Methods). Illumina 450 k methylation array 
data were generated for 1,256 MBs, including 396 out of 491 (80.7%) 
of the NGS cohort. Transcriptome data were acquired through RNA 
sequencing (RNA-seq; n = 164) and Affymetrix expression arrays 
(n = 392). Chromatin immunoprecipitation followed by sequencing 
(ChIP–seq) data were generated for several chromatin marks (such 
as H3K27ac and CTCF) on a subset of the cohort (Supplementary 
Table 1). Mutations, structural variants and supporting epigenetic and  
transcriptional data can be freely explored online through multiple data 
portals (see ‘Data availability’ in Methods).

Mutational signatures operative in MB
Mutational signatures have been extensively catalogued across a broad 
spectrum of cancerous tissues, and for many of these, underlying exo
genous and endogenous processes have been described. A seminal 
pan-cancer analysis that included 100 MBs (not split by subgroup) 
revealed three predominant signatures active in MB16: signatures 
1, 5 and 8. Here we analysed a total of 440,459 somatic mutations 
across 385 MB genomes divided into molecular subgroups (5 out of 
390 whole-genome sequencing (WGS) cases were excluded owing to 
quality control issues) and detected 24 signatures with a mutation 
contribution of at least 5% in one or more samples (Extended Data 
Fig. 1a). Signature 1, associated with patient age at diagnosis, was the 
most common signature in all subgroups (Extended Data Fig. 1a, b).  
Signature 3, which was not previously detected in MB16 and has been 
linked with underlying BRCA1 and BRCA2 mutations in breast, 
aggressive prostate, and pancreatic cancers16,17, was unexpectedly  
observed in most of the patients with Group 3 and Group 4 MB, and  

a subset of patients with SHH MB. Additional subgroup-enriched  
signatures included signatures 18 (Group 3; P = 4.7 × 10−5) and 5 
(Group 4; P = 1.0 × 10−11), the latter being positively correlated with 
patient age (Extended Data Fig. 1a–e).

Five MBs were identified as potential outliers with respect to mutation 
burden, harbouring more than 5,000 somatic mutations per genome 
compared to the median of 698 mutations per genome observed for 
the entire cohort (Extended Data Fig. 1f, g). ICGC_MB62 (SHH)  
harboured over 25,000 mutations and was the only MB we considered 
a bona fide hypermutator among the cohort (Extended Data Fig. 1f–h).  
Most somatic mutations in this patient were C>A and C>T  
substitutions, known to be distinct peaks in signature 10 and consistent  
with altered activity of the replication factor DNA polymerase ε, 
encoded by POLE, which we determined to be somatically mutated18,19. 
Similarly, ICGC_MB265 exhibited a disproportionally high mutation 
load ascribed to signature 6 (Extended Data Fig. 1f, g), the latter reported 
to be associated with mismatch repair deficiencies and explained by the 
somatic MLH1 mutation we identified in this patient.

Subgroup-specific drivers and pathways
Genome-wide analysis of somatic SNVs identified known hotspot vari
ants in the TERT promoter as the only confident region of significant 
mutation in the noncoding MB genome (Extended Data Fig. 2a–c; 
Supplementary Table 2). In the coding space and as expected, several 
known and presumed MB driver genes were revealed in our series, 
including PTCH1, DDX3X, KMT2D (formerly known as MLL2) and 
others, many of which showed clear subgroup-specificity (Fig. 2a–c; 
Extended Data Fig. 3a, b; Supplementary Table 2). Most recurrently 
mutated genes contributed to fewer than ten patients each (≤5%), 
revealing a long ‘tail’ of low-frequency gene alterations that may have 
unappreciated yet crucial roles during MB pathogenesis. Structural 
variants generating fusion transcripts that involve known MB driver 
genes were detected by integrating patient-matched structural vari-
ant breakpoints with transcriptome sequencing data, including rare 
events that recurrently target GLI2, PTEN and PVT1 (Extended Data 
Fig. 4; Supplementary Table 2). Pathogenic germline variants that 
affect known MB predisposition genes including PTCH1, SUFU and 
TP53 were predominantly restricted to patients with SHH MB and are 
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Figure 1 | Summary of MB genomic datasets. Graphical summary of 
genomic, epigenomic, and transcriptomic MB datasets analysed in the study.
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extensively detailed in a parallel study investigating more than 1,000 
MB germ lines (Supplementary Table 2) (S.M.W. et al., manuscript 
submitted).

To discriminate potential drivers from passengers, we annotated 
our dataset using MutSigCV20, GenomeMuSiC21 and IntOGen22  
significance algorithms (Fig. 2d; Supplementary Table 2). Overlapping 
the output derived from these analyses identified a core set of high- 
confidence somatic drivers detected by all three algorithms (n = 21 
genes). However, no single significance algorithm demonstrated  
superior sensitivity compared to the others, and many bona fide cancer  
genes failed detection by one or more methods, substantiating our 
approach of unifying results from all three pipelines (Fig. 2e). Most 
candidate driver gene mutations were expressed, although often 
exhibiting variable expression of the mutant allele (that is, PTCH1 
and DDX3X mutations in patients with SHH MB; Extended Data  
Fig. 5a). Similarly, most putative driver gene variants appeared to be 
clonal (that is, estimated cellular fraction of approximately 1.0; see 
Methods), with some exceptions, most notably DDX3X mutations in 
patients with WNT MB (Extended Data Fig. 5b).

Consistent with our previous studies23,24, genetic events targeting 
histone modifiers, especially those regulating lysine methylation and/
or acetylation, were found across subgroups and contributed to a  
considerable proportion of cases (Extended Data Fig. 5c, d), further 
corroborating the hypothesis that deregulation of the epigenetic 
machinery is fundamental to MB development.

WNT subgroup MB
All 36 WNT MBs sequenced in this study were confidently explained 
by mutations in at least one or more driver genes (Extended Data 
Fig. 6a). Somatic CTNNB1 mutations, the hallmark feature of WNT-
driven MB, were found in 86% of patients. Three CTNNB1 wild-type 
MBs harboured pathogenic APC germline variants, explaining the 
WNT pathway activation seen in these patients and underscoring 
the need to perform genetic testing for APC carrier status (that is, 
Turcot syndrome)25 when WNT MB is suspected despite failure to 
detect mutant CTNNB1. Monosomy 6, a signature chromosomal 
alteration characteristic of patients with WNT MB, was confirmed 
in 83% of cases (Extended Data Figs 6a, 7a–c), demonstrating that 
neither CTNNB1 mutation nor chromosome 6 loss are universally 
present in all patients with WNT MB. The latter has direct clinical 
ramifications given that positivity for either of these two features is 
now routinely used to clinically assign patients to this subgroup, an 
approach that will currently miss approximately 10–15% of bona fide 
patients with WNT MB.

Additional WNT subgroup-associated mutations included somatic 
variants that target clinically actionable CSNK2B (14%), EPHA7 (8%), 
and subunits of the SWI/SNF nucleosome-remodelling complex 
(SMARCA4, ARID1A and ARID2; 33%; Extended Data Fig. 6a, c, d). 
Given the epigenetic antagonism known to exist between SWI/SNF 
and the PRC2 polycomb repressive complex26, inhibitors of PRC2 are 
now being evaluated for SWI/SNF-mutant paediatric cancers in clinical 
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Figure 2 | Driver genes and pathways altered in MB. a, Oncoprint 
summarizing recurrently altered genes according to MB subgroup (n = 390; 
WGS series only). b, Top, Venn diagram summarizing the subgroup overlap 
of recurrently mutated genes (≥3 affected cases). Bottom, incidence plot of 
recurrently mutated genes (≥3 affected cases) detected in the series (n = 356 

genes; n = 491 samples). c, Graphical summary of the most frequently 
mutated genes (≥10 affected cases) and their subgroup distribution. d, Venn 
diagram summarizing the significantly mutated gene lists output from 
multiple significance algorithms. e, Results from d restricted to Cancer Gene 
Census (CGC) genes.
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trials (NCT02601937) and based on our findings here, could represent 
a rational targeted therapy for treating WNT MB.

SHH subgroup MB
Building on our previous work6, we reliably assigned at least one driver 
gene to more than 95% of patients with SHH MB, and revealed several 
insights that extend beyond genetic events that target the canonical 
SHH signalling pathway (Extended Data Fig. 6b). IDH1 mutations 
represent a hallmark genetic event in adult patients with glioma that 
exhibit a distinct hypermethylation phenotype (that is, glioma CpG 
island methylator phenotype, G-CIMP)27,28. We identified six IDH1 
R132C mutations (five SHH, one WNT), consistent with a recent 
case report29 (Extended Data Fig. 6e). IDH1-mutant SHH MBs were 
determined to be CIMP+ (Extended Data Fig. 6f, g), confirming that 
these mutations lead to epigenetic consequences reminiscent of those 
reported in other IDH1/2-mutant cancers.

Systematic Gene Ontology (GO) and pathway analysis demonstrated  
significant overrepresentation of somatic alterations that target  
histone acetyltransferase (HAT) complexes in SHH compared to other 
subgroups (q = 2.2 × 10−3; Extended Data Fig. 6h). Genes that encode 
HATs, namely CREBBP, KAT6B and EP300, as well as HAT complex 
regulatory components BRPF1 and KANSL1, all exhibit recurrent, 
mostly SHH subgroup-restricted mutations in our series (19% of 
patients with SHH MB). The mechanism(s) by which deregulation 
of HAT activity cooperates with constitutively active SHH signal-
ling remains poorly defined, warranting further studies to determine 
whether this epigenetic pathway can be exploited therapeutically.

Group 3 and Group 4 subgroup MB
Re-analysis of NGS data derived from previous studies (n = 173)5,9,14 
indicated that less than one-third of Group 3 (32%) and Group 4 (30%) 
cases could be explained by at least one probable driver event (Fig. 3c), 
consistent with the individual estimates reported in those publications. 

In the considerably larger, more integrated dataset analysed here, we  
confidently assigned potential driver events to 76% and 82% of Group 
3 and Group 4, respectively, more than doubling the proportion of 
explained cases per subgroup (Fig. 3a–c). As expected11, MYC ampli-
fications were restricted to patients with Group 3 MB (17%), whereas 
MYCN amplifications were found at a comparable frequency in 
patients with either Group 3 (5%) or Group 4 (6%) MB (Fig. 3a, b).  
Similarly, structural variants leading to aberrant induction of GFI1 or 
GFI1B7 were mutually exclusive and distributed in both subgroups  
(Fig. 3a, b). Mutual exclusivity analysis disclosed that the most promi
nent candidate driver events were largely non-overlapping and very 
few cooperating events were identified (Fig. 3d and data not shown).

Pathway analysis of recurrent genetic events revealed significant 
overrepresentation of genes involved in the Notch and TGFβ signal-
ling pathways in Group 3, and in chromatin modification in Group 4 
(Extended Data Fig. 5c). Aberrant Notch signalling has been repeatedly 
suggested in the MB literature30,31; however, this is, to our knowledge, 
the first report documenting Notch pathway mutations in samples from 
patients with MB. A role for deregulated TGFβ signalling in Group 3 
has been suggested in our previous genomic/epigenomic studies11,32; 
however, functional studies that further substantiate these observations 
are still lacking.

Epigenetic refinement of MB substructure
The molecular composition and boundaries defining Group 3 and 
Group 4 MB subgroups are not as clearly demarcated as their WNT 
and SHH counterparts. Notable similarities between Group 3 and 
Group 4 have been discussed, including ambiguous cases that exhibit 
features characteristic of either subgroup33–35. To refine the inter- and 
intra-subgroup heterogeneity underlying MB subgroups, we sought to 
investigate molecular substructure in a series of 1,256 MBs profiled by 
Illumina 450 k methylation array (Extended Data Fig. 8a). Analysis of 
pairwise sample similarities using t-distributed stochastic neighbour 
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Figure 3 | Mutational landscape of Group 3 and Group 4. a, b, Oncoprint  
summaries of recurrently mutated genes, structural variants, overexpression 
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c, Bar graph depicting the proportion of cases per subgroup for which at 
least one driver event could be assigned. The proportion of cases explained 
in previous NGS studies versus the current study is shown. d, Mutually 
exclusive (ME) mutations in Group 3 and Group 4.
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embedding (t-SNE) uncovered notable heterogeneity across the cohort, 
especially in non-WNT subgroups. Restricting our analysis to Group 
3 and Group 4 (n = 740) separated the parental subgroups into up to 
eight subtypes (Fig. 4a, b). Iterative down-sampling performed on the 
same dataset verified that molecular substructure seems to stabilize 
once 500 or more samples are included in the analysis (Extended Data 
Fig. 8b), exemplifying the power afforded by the high sample number 
included here.

Integration of methylation subtypes with sample-matched genomic 
and transcriptomic data revealed marked enrichment of probable 
driver events in specific subtypes (Fig. 4c; Extended Data Fig. 8c–e). 
For example, somatic events targeting the known MB drivers GFI1B 
(subtype I) and MYC (subtype II), as well as chromatin-modifying 
genes KDM6A and ZMYM3 (both subtype VIII), all demonstrated 
remarkable subtype specificity. Broad copy-number alterations were 
also differentially distributed among subtypes (Extended Data Fig. 8c). 
Analysis of case-matched gene expression array data (n = 248) con-
firmed discriminatory transcriptional features associated with these 
subtypes, including aberrant expression of the MYC and GFI1 family 
oncogenes (Extended Data Fig. 8d, e).

Hotspot insertions target KBTBD4
Recurrent, in-frame insertions targeting KBTBD4 in Group 3 and 
Group 4 were among the most compelling single-gene discoveries in 
this large dataset. Of 20 somatic KBTBD4 variants we identified, 18 
(90%) were determined to be in-frame insertions clustered across just 
six amino acids within the KBTBD4 Kelch domain (Fig. 5a). Notably, 
the predominant insertion inferred in Group 3, of proline and arginine 

at Arg313 (R313>PRR) differed from that observed in Group 4, an 
insertion of proline at Pro311 (P311>PP). Overlaying KBTBD4 muta-
tion status with methylation subtype assignments revealed two tightly 
clustered mutation groups within subtypes II (21%) and VII (14%)  
(Fig. 5b), ranking KBTBD4 as the most prevalent candidate driver  
identified in these subtypes.

KBTBD4 encodes a BTB–BACK–Kelch domain protein belonging 
to a large family of cullin-RING ubiquitin ligase adaptors that facili
tate the ubiquitination of target substrates36. Homology modelling 
of the KBTBD4 Kelch domain with known structures derived from 
other family members (n = 12) verified that the MB-specific insertions 
observed here are unlikely to disrupt the overall structure of the Kelch 
domain but instead converge on the known substrate-binding interface 
described for other family members (Fig. 5c).

Enhancer hijacking activates PRDM6
We previously identified7 GFI1 and GFI1B as new MB oncogenes 
recurrently activated by ‘enhancer hijacking’ in Group 3 and Group 4.  
Expanding on this previous work, we recently developed cis  
expression structural alteration mapping (CESAM)37, an approach 
for systematically inferring enhancer hijacking events genome-wide 
by integrating gene expression and structural variant data that we 
interpret in the context of topologically associated domains (TADs) 
and enhancer annotations. Application of CESAM to MB (n = 164) 
confidently identified GFI1B among the most highly significant  
candidate genes subject to enhancer hijacking, substantiating the 
robustness of our method (Extended Data Fig. 9a). The top-ranking  
gene uncovered by CESAM, however, was PRDM6 (chr5q23),  
encoding a poorly characterized SET-domain containing protein. 
Notably, PRDM6 maps approximately 600 kb downstream of SNCAIP, 
a gene known to be targeted by highly recurrent, stereotypical tan-
dem duplications uniquely restricted to patients with Group 4 MB11 
(Fig. 6a). In the context of Group 4 patients harbouring SNCAIP-
associated structural variants analysed here, PRDM6 expression was 
markedly upregulated (at least 20-fold), considerably more than any 
other gene mapping within the proximal TADs including SNCAIP  
(Fig. 6b; Extended Data Fig. 9b).
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Using our recently published MB enhancer data32 and structural 
variant breakpoints to identify putative promoter–enhancer juxtapo-
sition as a consequence of structural variants, we identified a significant 
enrichment of structural variants associated with rearrangements that 
link PRDM6 to Group 4 enhancer elements (P < 0.0001, permutation 
test). The SNCAIP locus overlaps a strong Group 4-specific super- 
enhancer (Fig. 6c). Notably, the structural variants observed in PRDM6-
activated Group 4 converge on the SNCAIP super-enhancer, consist-
ent with enhancer hijacking (Fig. 6c). Integrative analysis of CTCF  
chromatin data revealed notable clustering of structural variant 
breakpoints proximal to CTCF-binding sites associated with the TAD  
boundary separating the SNCAIP and PRDM6 loci (Fig. 6c). 
Collectively, these data suggest that structural variants targeting 
the SNCAIP locus disrupt the local chromatin environment to pro-
mote de novo interactions between the SNCAIP super-enhancer and  
gene promoters in the neighbouring TAD, thus leading to aberrant gene 
induction, most notably PRDM6 (Fig. 6d).

Discussion
Our highly integrative genomic analysis of the paediatric brain tumour 
MB has enabled the discovery of new cancer genes and actionable 
pathways, effectively assigning candidate drivers to most tumours 
across molecular subgroups. The sizable increase in power over pre-
vious studies has allowed us to deal more effectively with the intrinsic 
heterogeneity characteristic of MB, splitting the entity into molecularly 
distinct consensus subgroups and subtypes within them, summarizing 
the disease as a collection of several diseases rather than a single entity.

At the level of individual genes, novel candidate drivers were dis-
covered in each of the consensus subgroups. Hotspot insertions that  

target KBTBD4 were not featured in previous MB NGS studies, proba-
bly owing to inferior cohort sizes and insensitive indel-calling pipelines. 
KBTBD4 insertions were highly specific for discrete patient subtypes 
that were devoid of other obvious oncogenic driver events, suggesting 
that these mutations are functional. Likewise, PRDM6—a presumed 
histone methyltransferase38 not previously implicated in MB—was 
identified as the probable target of SNCAIP-associated enhancer hijack-
ing in Group 4, now representing the most prevalent driver alteration 
in this subgroup. Studies further detailing the normal, physiological 
cellular functions of KBTBD4 and PRDM6 and how somatic alterations 
targeting these genes specifically contribute to MB pathogenesis are 
essential and will be required to determine their potential ‘actionability’ 
in affected patients.

The relatively recent recognition of consensus MB subgroups has 
rapidly changed the way MB is studied in the research setting and how 
it is diagnosed and treated in the clinic39. Still, considerable molecular 
and clinical heterogeneity has been demonstrated11,40, suggesting that 
currently defined MB subgroups are likely to be an oversimplification 
of true molecular substructure. Methylation analysis of over 1,250 MBs 
discovered new tumour subtypes enriched for specific genetic and 
transcriptional signatures, especially those underlying Group 3 and 
Group 4. Definitive de-convolution of these subtypes will enable a 
better understanding of the developmental origins of MB, creating a 
path towards the efficient modelling of each individual subtype in the 
correct cellular context using subtype-relevant genetic perturbations. 
Moreover, by redefining molecular substructure as we have described 
here, new opportunities for improved risk-stratification tailored to 
treat individual patient subtypes according to their genotype are likely 
to emerge.
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In conclusion, this study embodies an unparalleled resource of 
high-resolution genetic, epigenetic and transcriptional data for the 
childhood brain tumour MB. Our data underscore the heterogeneous, 
complex nature of disease subgroups and the utility of continued efforts 
to divulge the full spectrum of molecular mechanisms underlying MB 
aetiology. We anticipate that the findings reported here, combined with 
the future exploration and mining of this large genomics resource, will 
undoubtedly advance treatments and the outlook for children and 
families affected by this devastating malignancy.

Online Content Methods, along with any additional Extended Data display items and 
Source Data, are available in the online version of the paper; references unique to 
these sections appear only in the online paper.
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Methods
No statistical methods were used to predetermine sample size. The experiments 
were not randomized and investigators were not blinded to allocation during 
experiments and outcome assessment unless stated otherwise.
Patient consent. ICGC samples: all patient material was collected after receiving 
informed consent according to ICGC guidelines and as approved by the institu-
tional review board of contributing centres.

Broad and MAGIC samples: informed consent was provided by the families 
of patients with medulloblastoma treated at Children’s Hospital Boston (Boston, 
Massachusetts, USA), The Hospital for Sick Children (Toronto, Canada), and 
institutions contributing to the Children’s Oncology Group/Cooperative Human 
Tissue Network, under approval and oversight by their respective internal review 
boards.

St Jude samples: human tumour and matched blood samples were obtained with 
informed consent through an institutional review board approved protocol at St 
Jude Children’s Research Hospital (Memphis, Tennessee, USA).
Bam to FASTQ and alignment. NGS data were collected from four primary 
sources (ICGC PedBrain5–7, PCGP9, MAGIC, and the Broad Institute14). To ensure 
all samples were processed with the same analysis pipelines, sequences that were 
not available as FASTQ files were unaligned using the SamToFASTQ tool from 
Picard (http://broadinstitute.github.io/picard). To avoid biases in the insert size 
estimation of the realignment the Bam files were name sorted before the unalign-
ment. The subsequent alignments were done according to the standards defined 
for ICGC PanCancer41. All reads were aligned against the phase II reference of the 
1000 Genomes Project including decoy sequences d5 (ftp://ftp.1000genomes.ebi.
ac.uk/vol1/ftp/technical/reference/phase2_reference_assembly_sequence/hs37d5.
fa.gz) using BWA-MEM (v.0.7.8 using standard values except for invoking -T 0)42.  
The raw Bam files were sorted and duplicates were marked using biobambam 
(v.0.0.148). Sequencing coverage was calculated using custom scripts5. For  
annotations we chose the latest compatible GENCODE version 19 (http://www.
gencodegenes.org/releases/19.html).
Variant calling. Somatic variant calling (SNVs, indels, structural variants and 
CNVs) was done using the DKFZ/EMBL core pipelines in accordance with 
ICGC PanCancer41. The workflow is available on the Dockstore webpage: https:// 
dockstore.org/containers/quay.io/pancancer/pcawg-dkfz-workflow.
SNVs. SNVs were called using the DKFZ samtools-based42 calling pipeline as 
described3,5 using the ICGC PanCancer version. In short, variants were first called 
in the tumour sample and then queried in the control sample. The raw calls were 
then annotated using multiple publicly available tracks such as 1000 Genome 
variants, single nucleotide polymorphism database (dbSNP), repeats and other 
elements. The functional effect of the mutations was annotated using Annovar43 
and the variants were assessed for their confidence and split into somatic and 
non-somatic calls. Owing to the poor coverage of the TERT promoter region,  
variants were called with relaxed stringency manually using custom scripts.
Indels. Raw calls for indels were obtained from Platypus (v.0.7.4)44. Annotation 
and confidence assessment was done similar to SNV processing.
SNV and indel integration. SNVs and indels were integrated using custom scripts. 
Variant frequencies were calculated for the whole cohort and for each subgroup 
individually. To increase the already high specificity of the workflows45, we man-
ually checked all functional variants (non-synonymous, stop-gain, stop-loss and 
splice-site SNVs and in-frame, frame-shift and splice-site indels), in genes that 
had at least three hits in the cohort. For manual curation, we used a custom script 
to take screenshots for each variant and then scored the confidence randomly at 
least three times for each call.
Structural variants. Structural variants were inferred using DELLY46 following 
a standardized method across all samples (matched tumour/normal pairs) and 
using the cancer genome analysis workflow of ICGC PanCancer (https://dcc.icgc.
org/pcawg). In brief, the same workflow was used to predict structural variants 
in a set of 1,105 germline samples from healthy individuals belonging to phase 
I of the 1000 Genomes Project (http://1000genomes.org). Predicted structural 
variants in the MB samples were considered somatic if they were detected in less 
than 1% of the 1000 Genomes Project samples. Furthermore, identified somatic 
structural variants were additionally required to be absent in all remaining MB 
germline samples from this study and absent in a set of germline samples derived 
from different tumour entities sequenced as part of ICGC. To exclude false posi-
tive predictions caused by low-quality mapping reads, only high-confidence calls 
were considered by applying additional filtering, specifically requiring at least 4 
supporting sequencing read pairs with a minimum mapping quality of 20, and an 
structural variant size between 100 bp and 500 Mb.
CNVs. Copy number status was estimated using ACEseq (allele-specific copy 
number estimation from sequencing) (K.K. et al., manuscript in preparation). 
The method uses both, a coverage ratio of tumour and control over genome  

windows and the B-allele frequency (BAF). It produces copy number calls as well 
as estimates for tumour ploidy and tumour cell content. During pre-processing 
of the data, allele frequencies were obtained for all SNP positions recorded in 
dbSNP47 v.135. To improve sensitivity with regards to imbalanced and balanced 
regions, SNP positions in the control were phased with impute248. Additionally, 
the coverage for 10-kb windows with sufficient mapping quality and read density 
was recorded and subsequently corrected for GC-content and replication timing to 
remove coverage changes introduced by these biases. The genome was segmented 
using the PSCBS package in R49 while incorporating structural variant breakpoints 
defined by DELLY. Segments were clustered using k-means clustering according 
to their coverage ratio and BAF value and neighbouring segments that fell into 
the same cluster were joined. Focal segments (<9 Mb) were stitched to the more 
similar neighbour.
Focal CNVs. To reliably call focal CNVs in genes of interest, we extracted over-
lapping breakpoints from the raw structural variant calls. To increase specificity, 
the events were then visualized using custom plotting scripts. Events ≤ 10 Mb were 
considered to be focal.
Chromosomal aberrations. Chromosome arm-level gains, losses, and loss of 
heterozygosity were manually annotated using coverage plots from ACEseq that 
include BAF plots for loss of heterozygosity detection.
Clonality analysis of small mutations. To assess the clonality of somatic small 
mutations (SNVs and indels) in high-quality WGS cases, tumour purity as well as 
the copy number status for somatic mutations was estimated using ACEseq (K.K. 
et al., manuscript in preparation) and the clonality was calculated (observed allele 
frequency/estimated purity × local copy number). A clonality of at least 1 corre-
sponds to at least one allele being mutated after local copy number and purity cor-
rection. Since we could not confidently differentiate between clonal and subclonal 
events in hyperploid (n > 3) genomes, we restricted our analysis to samples with 
estimated ploidies of n ≤ 3.
Expression analysis of mutated alleles. Expression of the main variants displayed 
in the oncoprints for samples with available RNA-seq data were determined and 
the frequency of the expressed allele was estimated. Specifically, variants were 
examined using samtools42 mpileup and then plotted as a fraction of the total 
expression observed for the respective gene. Since the representation of indels in 
the RNA BAM files (aligned using STAR65) was different than that used for DNA 
alignments (aligned using BWA-MEM42), the expression of indels was determined 
manually using the IGV genome browser.
Genome-wide SNV analysis. To identify genomic regions with single recurrent 
mutations or clusters of recurrent mutations we used a windows-based approach 
in which we binned the human genome in non-overlapping windows of various 
sizes ranging from 50 bp to 500 bp. For each window we calculated its mutational 
recurrence (that is, the number of patients having at least one mutation in the 
given window). To estimate the background mutational rate, the ‘global’ model was 
used: we stratified the genome into 25 evenly sized groups of genomic windows 
with similar genetic and epigenetic background based on the combined vector of 
five genetic and epigenetic features (replication timing, gene expression level, GC 
content, H3K9me3 and open versus closed chromatin conformation; as described 
in V.A.R. et al., manuscript in preparation). Using these background mutational 
rate estimates we computed an enrichment score, binomial P value, and negative 
binomial test P value for each genomic window. To choose the significance cut-off 
that would provide reproducible results we performed cross-validations (samples 
were segregated by subgroup). On the basis of the results of cross-validations, we 
chose a combination of the window size (200 bp), test statistic and a cut-off value 
(binomial P value cut-off = 10−25) that ensured high precision and recall values 
based on precision-recall analysis. Recall was calculated as the number of regions 
that satisfy the cut-off in results obtained on both halves of the dataset; precision 
was calculated as a fraction of the recalled regions to the total number of regions 
satisfying the cut-off in each of the datasets. We then used the chosen parameters 
and executed the pipeline on the complete dataset.
Oncoplots. The data from the variant calling workflows were summarized using 
custom scripts and plotted into oncoplots using the R package complex heat maps50.  
Frequencies of events were adjusted to the number of samples that could be anno-
tated for the respective event (that is, samples where we could not call CNVs were 
not counted and shaded light grey for CNV relevant genes). Subgroup enrichment 
for specific genes was determined using Fisher’s exact test and a threshold of the 
Benjamini–Hochberg-adjusted P value (P ≤ 0.05).
Significance workflows. The significance of somatic mutations (SNVs, indels) 
was determined using three published methods: MutSigCV20, IntOGen22 v.2.4.2 
and MuSiC21 v.0.4. The corresponding input data formats were parsed from our 
custom VCF files and loaded into the respective tools. The programs were run 
using default settings. Significant genes were determined using the recommended 
significance thresholds for each of the output files.
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Copy number integration/significance. Significant copy number gains and 
losses (WGS samples; n = 352) were calculated using GISTIC51 v.2.0.22. We used 
a custom script to parse the region based output from ACEseq into a segmented 
data format suitable for GISTIC. Regions containing false positive recurrent events 
mainly around centromeres and telomeres were excluded from the analysis. The 
following 38 samples were excluded from the analysis owing to low data quality: 
ICGC_MB126, ICGC_MB143, ICGC_MB147, ICGC_MB149, ICGC_MB246, 
ICGC_MB256, ICGC_MB304, ICGC_MB305, ICGC_MB306, ICGC_MB62, 
ICGC_MB800, ICGC_MB89, ICGC_MB92, ICGC_MB94, MDT-AP-0009, 
MDT-AP-1200, MDT-AP-1367, MDT-AP-1369, MDT-AP-1403, MDT-AP-1405, 
MDT-AP-2073, MDT-AP-2110, MDT-AP-2111, MDT-AP-2115, MDT-AP-2116, 
MDT-AP-2307, MDT-AP-2514, MDT-AP-2532, MDT-AP-2673, MDT-AP-2719, 
MDT-AP-2745, MDT-AP-2774, MDT-AP-3017, MDT-AP-3019, MDT-AP-3399, 
MDT-AP-3402, SJMB015 and SJMB019. GISTIC was run separately for each  
subgroup using a length cut-off of 0.5 chromosome arms, a noise threshold of  
0.3 copies, a cap of 1.5, a confidence level of 0.95 and gene GISTIC for the deletion 
analysis.
Mutation signatures. Mutation signatures are calculated based on trinucleotides 
centred at somatic SNVs. Therefore, the immediate 3′ and 5′ nucleotides of all 
somatic SNVs were extracted from the reference genome and the obtained trinu-
cleotides were converted to pyrimidine context resulting in 96 possible mutation 
types. Directly adjacent SNVs (multiple nucleotide variants, MNVs) were excluded 
for mutational signature analysis. For each sample, its mutational profile was cal-
culated by counting the number of occurrences of each of the possible 96 mutation 
types. By combining mutational profiles of all samples per entity, mutational cata-
logues for signature extraction were compiled. The mutational profile of a tumour, 
and therefore, the mutational catalogue of a tumour type, is supposed to reflect a 
combination of mutational processes (signatures) acting on their genomes, where 
each mutational process has different intensities (exposures). This is modelled 
as a system of matrices for signatures (P), exposures (E) defining the observed 
mutational catalogue (M): M ≈ P × E.

To decipher ‘de novo’ signatures, we implemented and applied the method 
described previously52 to the mutational catalogue of each subgroup. To iden-
tify highly similar and distinct signatures, all signatures were compared across 
tumour types and to published signatures (available in the COSMIC database) 
based on their cosine similarity16. All detected signatures could be assigned to 
one of the known signatures with a cosine similarity of at least 0.85. To achieve 
maximum resolution per sample, we finally aimed for a sample-wise re-extraction 
of exposures from the mutational profiles using quadratic programming with the 
reference signature set as P and exposures in E as unknown variables. The resulting 
exposures were used for further downstream analyses and visualization. Signature 
probability distributions are displayed for the 96 mutation types according to the 
representation described previously16. Association of signature exposures and 
age at diagnosis were calculated by generalized linear models in all subgroups. 
Specificity of exposures for one or more subgroups (that is, significant enrichment 
of exposure compared to the other groups) was determined using ANOVA and 
post hoc Tukey’s test.
DNA methylation array processing. DNA methylation profiling of MB samples 
was performed using the Infinium HumanMethylation450 BeadChip array (450 k 
array) according to the manufacturer’s instructions (Illumina). Data were primar-
ily generated at the DKFZ Genomics and Proteomics Core Facility (Heidelberg, 
Germany) and The Hartwell Center at St Jude Children’s Research Hospital 
(Memphis, USA). MB subgroup status was inferred as previously described15 or 
inherited from published annotations9,14.

DNA methylation data of 1,256 samples presented in this study were gene
rated from both fresh-frozen and formalin-fixed paraffin-embedded (FFPE) tissue 
samples. For most fresh-frozen samples, more than 500 ng of DNA was used as 
input material. 250 ng of DNA was used for most FFPE tissues. On-chip quality 
metrics of all samples were carefully controlled. Samples were also checked for 
unexpected genotype matches by pairwise comparison of the 65 genotyping probes 
on the 450 k array.

All DNA methylation analyses were performed in R v.3.3.0 (R Development 
Core Team, 2016). Raw signal intensities were obtained from IDAT-files using the 
minfi Bioconductor package53 v.1.18.0 using default settings. A correction for the 
type of material (FFPE/frozen) was performed by using the removeBatchEffect  
function of the limma package v.3.24.15. The log2-transformed intensities of 
the methylated and unmethylated signal were corrected individually. Beta-
values were calculated from the retransformed intensities using an offset of 100  
(as recommended by Illumina) and used for all downstream analyses.

The following criteria were applied to filter out probes prone to yield inaccu-
rate methylation levels: removal of probes targeting the X and Y chromosomes 
(n = 11,551), removal of probes containing an SNP (dbSNP132Common) within 

five base pairs of and including the targeted CpG site (n = 24,536), and probes 
not mapping uniquely to the human reference genome (hg19) allowing for one 
mismatch (n = 9,993). In total, 438,370 probes were kept for analysis.

For unsupervised t-SNE analysis of 1,256 MB samples, we selected the 22,349 
most variably methylated probes across the dataset (s.d. > 0.25). Pairwise sample 
distances were calculated by using 1 minus the weighted Pearson correlation coef-
ficient as the distance measure. Pairwise Pearson correlation was calculated using 
the wtd.cors function of the weights package v.0.85. We used the probe standard 
deviation subtracted by 0.25 as the weight, giving more variable probes greater 
influence. The resulting distance matrix was used to perform the t-SNE analysis 
(Rtsne package v.0.11). The following non-default parameters were used: theta = 0, 
is_distance = T, pca = F, max_iter = 2000. Resulting clusters were annotated as 
WNT, SHH, Group 3 and Group 4 based on classification using a previously 
described 48 CpG signature15.

A similar approach was used for the unsupervised analysis restricted to Group 
3 and 4 samples (n = 740, 12,454 most variable probes, s.d. > 0.25), and for the 
downsampling analysis. To ensure a similar rotation of samples, t-SNE analysis 
was performed by using the sample coordinates obtained after 150 iterations of 
the analysis of all MB samples as initialization points, and then performing an 
additional 1,850 iterations for the respective subset of samples. For the analysis 
of Group 3 and Group 4 samples, clusters were annotated using the DBSCAN  
algorithm as implemented in the dbscan package v.0.9-7. The following non-default 
parameters were used: minPts = 16, eps = 3.9. Subsequently, samples not assigned 
to any cluster were iteratively merged to their nearest cluster.

For the comparison of IDH1-mutated samples, we restricted the analysis to 
samples of the SHH subgroup that were also part of the sequencing cohort (n = 89). 
The 16,946 most variably methylated probes were used (s.d. > 0.25). One minus 
the Pearson correlation coefficient was used as the distance measure, and average 
linkage was used for hierarchical clustering.

CNV analysis from 450 k methylation array data was performed using the 
conumee Bioconductor package v.1.4.0. A set of 50 control samples displaying a 
balanced copy-number profile was used for normalization.
Gene expression array processing. Samples for which RNA of sufficient quantity 
and quality was available were analysed on the Affymetrix GeneChip Human 
Genome U133 Plus 2.0 Array. Sample library preparation, hybridization and  
quality control were performed according to manufacturer’s protocols. Expression 
data were normalized using the MAS5.0 algorithm of the GCOS program 
(Affymetrix).

Gene expression differences between MB Group 3 and group 4 subtypes were 
analysed using available data for samples that were classified in the initial DBSCAN 
annotation (n = 219 samples). Excluding genes located on chromosomes X and Y, 
differentially expressed genes between subtypes were determined by the ANOVA 
procedure, and using Tukey’s post hoc test. Genes were considered differentially 
expressed if the false discovery rate (FDR)-adjusted P value across subtypes is 
<0.01, and if for at least one comparison between subtypes the absolute difference 
of mean expression levels was larger than 2 and P < 0.01 (n = 869 genes).
RNA-seq and ChIP–seq data generation and analysis. RNA-seq and ChIP–seq 
data were generated and analysed as previously described5,32.
CESAM. CESAM integrates structural variant-derived breakpoints with RNA-seq 
data to identify expression changes associated with breakpoints in cis as described 
in previously37, by performing linear regression of expression (molecular phe-
notype) on structural variant-derived breakpoint (somatic genotype) data. We 
used CESAM as described previously37, with some modifications. In brief, locally 
recurring structural variant breakpoints were assigned to bins if they fell into the 
same pre-annotated TAD, using TAD data from the IMR90 cell line54 (mean TAD 
size = 830 kb). A somatic genotype matrix based on ‘TAD bins’ was constructed 
using BEDTools (v.2.24.0)55 by annotating for every sample the presence/absence 
of breakpoints within a TAD, with ‘TAD bins’ as annotated TAD boundaries54. 
We removed genes with low expression variance (variance below the twentieth 
percentile). To alleviate the effect of gene dosage, we divided each the expres-
sion of each gene by the tumour/normal gene copy-number ratio (derived from 
ACEseq), following log2-transformation. We then related breakpoint presence/
absence patterns with gene expression values using the FastQTL (v.2.1) algorithm56, 
by using a 2 Mb cis-window centred on the midpoint of the TAD. We performed 
1,000 permutations with FastQTL for statistical inference56. To minimize the effect 
of confounders, we used the following covariates in the regression: (i) the total  
number of structural variants for each sample, to adjust for structural variant  
burden effects, and (ii) principal components (PC), based on principal component 
analysis57 on the somatic SCNA-derived breakpoint matrix. We used an FDR of 5% 
using the Benjamini–Hochberg procedure, and required more than 2-fold expres-
sion upregulation relative to controls for reporting CESAM candidate genes. Fold 
change was computed as the median expression in the group of structural variant 
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‘carriers’ compared to the median of ‘non-carrier’ control donors (median values 
were set to a minimum value of 1 FPKM in cases with a lower median expression 
level). To identify structural variants juxtaposing distal enhancers, given a set of 
structural variants each with two breakpoints b1 and b2—with b1 being closest to 
the candidate gene, overlap statistics were computed for the distant breaks b2 for 
the presence within 50 kb of each of a set of subgroup-specific enhancers, which 
was compared to an empirical background distribution by performing 10,000  
randomizations of the b2 breakpoint position.
Creating biological networks from mutation and copy-number data. To con-
struct biologically relevant networks from mutation (SNVs, indels) and CNV data, 
we considered each subgroup independently and put the alterations found in each 
subgroup in the context of a network of known protein–protein interactions. We 
then used the ‘Forest’ tool from the Omics Integrator suite58 that solves the Prize 
Collecting Steiner Forest (PCSF) problem to reduce the size of the network around 
the genomic alterations (SNVs, indels, CNVs) used as inputs.

Assuming that disease-relevant alterations are affecting the same or closely 
related pathways and biological processes, considering the interaction- 
neighbourhood of the alterations (along with the reductionist approach of PCSF) 
allowed us to address two problems: (i) reduce the number of mutations to consider 
as functionally important for each subgroup; and (ii) help us assign rare mutations 
to subgroups.
PCSF methodology. The PCSF approach seeks to find subsets of affected genes 
that belong to the same, possibly underappreciated or unknown, cellular processes. 
It begins by mapping a set of proteins of interest (here: altered genes, as they are 
likely to yield a gene product with altered or no function) onto a combined network 
of physical interactions (‘interactome’) among proteins and between proteins and 
metabolites derived from public databases. Each gene is associated with a ‘prize’ 
derived from its frequency of mutation in a subtype and each interaction is asso-
ciated with a cost that is lowest for the most reliable interactions. PCSF then finds 
a connected subnetwork by optimizing a target function that weighs the prizes 
associated with input nodes (mutation/CNV) in a solution (a connected subgraph 
in the interactome), against ‘penalties’ associated with interactions included in the 
solution and aims to include as many prizes as possible. For more details about how 
the target function is defined, please see Tuncbag et al.58

A PCSF solution not only contains input proteins, but also interacting proteins 
that were not found to be altered, yet are likely to play a role in the same biological 
context (pathway, process, compartment, and so on) as their interaction partners 
(in the context of this algorithm termed ‘Steiner’ nodes”). This is particularly 
helpful in finding relevant pathways in the subsequent functional enrichment 
steps and frequently is able to link relevant molecular entities to the network 
that experimental methods were not able to measure. The resulting subnetwork 
depends on PCSF parameters, including one that effectively controls the size of 
the network (β), one that discourages highly connected hub-nodes in the final 
solution (μ), and one that tunes the number of individual graphs in a solution (ω).  
Each parameter combination results in a different PCSF solution. Below  
we describe the methods we use to choose parameters based on measures of 
network quality.

Aiming to build subgroup-specific networks, we used each gene that was altered 
(primarily SNVs, indels and CNVs) in a subgroup as input for this subgroup. Prizes 
were chosen based on the alteration frequency f of each gene within the subgroup 
and calculated as 1 + f. This strategy assigned similar weights to most of the genes 
as the alteration frequency was less than 5% within a subgroup in most cases with 
few exceptions (for example, CTNNB1, DDX3X and PTCH1).
PCSF parameter selection. We explored and evaluated all combinations of the 
following parameter values for each of the subgroup-specific inputs using an inter-
actome combining interactions from iRefIndex (v.13)59, HMDB60 (v.3.6), and the 
RECON61 (v.2) database: β = {1, 3, 5}, μ = {0.0005, 0.001, 0.005, 0.007, 0.008, 0.009, 
0.01}, ω = {1, 2, 3}, and D = 7 (maximum depth searched). We discarded networks 
that were dominated by ‘hub-nodes’ (networks where a single node connects to 
more than a quarter of the nodes in the network) and selected a parameter set for 
each of the subgroup-network sets to perform subsequent analyses. We focused 
on two criteria when selecting parameter sets: (i) the number of interactions 
selected nodes have in the interactome (‘degree’) should be about the same for 
input-nodes and algorithm-added (‘predicted’) nodes, with a preference for a low 
average degree; (ii) we favour networks with a high input-to-predicted node ratio 
(number of input nodes in network divided by number of nodes added by the 
algorithm in network). Generally speaking, these criteria ascertain that the final 
networks are not dominated by high-degree nodes and that they predominantly 
contain proteins supported by the data. This selection process led us to choose the 
parameter sets {β = 5, μ = 0.007, ω = 1}, {β = 1, μ = 0.007, ω = 3}, {β = 5, μ = 0.009, 
ω = 1} and {β = 5, μ = 0.01, ω = 1} for networks for WNT, SHH, Group 3 and 
Group 4, respectively.

Measuring robustness to parameter choices. Using these parameters, we ran 
the algorithm 100 times for each of the subgroups, each time slightly altering the 
interaction scores in the interactome to reduce the effect of the fixed scores on the 
selection of nodes in the network. By building the union of these runs for each 
subgroup, we created our final networks. Finally, for each node in each network, 
we calculated a robustness score as the fraction of the 100 networks that contained 
the node.
Network/pathway association. To get an impression of which biological processes 
and pathways are overrepresented in these networks (as well as the entire muta-
tion/CNV dataset), we performed GO enrichment (using the R package topGO 
(https://bioconductor.riken.jp/packages/3.2/bioc/vignettes/topGO/inst/doc/
topGO.pdf) and pathway enrichment (hypergeometric tests using the Molecular 
Signature Database’s (MSigDb v.5.1) C2 gene sets for Canonical Pathways, Biocarta, 
Reactome and KEGG), followed by FDR adjustment of P values (using R’s p.adjust 
function). In the results, we focused our attention to hits with q < 0.01, and, to 
avoid very general sets, limited our final list of hits to examine pathway sets that 
annotate fewer than 300 genes. To link pathways to patients, we matrix multiplied 
the binary ‘patient × gene alteration’ data matrix with a binary ‘gene alteration × 
pathway’ association matrix. We used this matrix as a basis to calculate pathway–
subgroup association frequencies.
Network visualization. All network visualization was done using Cytoscape62 
(v.3). For the final display items, we reduced the size of the networks focusing on 
specific pathways, by filtering out nodes that were not directly associated with 
the pathway of interest, nodes that were not robust across Forest-runs as well as 
interactions (edges) with low interaction scores. While subgroup-networks were 
used to show subgroup-specific annotations (for example, WNT network for high-
lighting physically interacting SWI/SNF complex genes), we used the union of all 
four subgroup-networks as a base for the ‘histone lysine methylation’ network as 
all networks were highly enriched for this process.
CoMEt analysis. Combinations of Mutually Exclusive Alterations (CoMEt) is 
a computational tool that is designed to identify mutually exclusive mutations 
(and other genomic events) in a binary gene by sample matrix63. As input, CoMEt 
requires three main parameters: (i) a matrix of genomic alterations (we included 
SNV and CNA data), (ii) k, the number of mutually exclusive events to be identi-
fied; and (iii) t, the number of groups (‘modules’) of such events. CoMEt returns 
roughly t modules containing k mutually exclusive genes (or slightly different 
numbers if the final processing step of the algorithm finds a better grouping). An 
important metric in analysing these modules is the coverage of the module; that is, 
the fraction of samples that were found to be mutated across the k genes. Another 
important detail is the number of samples in a module that are associated with 
alterations; this number, in the case of this particular dataset, is expected to be low 
owing to the low mutational frequency of most genes.

We ran CoMEt for different combinations of k (between 2 and 5) and t (between 
2 and 5) on the entire dataset and subgroup-only subsets of the data. In addition, 
for the final analysis, we limited the algorithm to only include genes in the search 
that are altered in three or more samples. The main reason for setting this limit 
was to exclude very rare mutations, as most of these events are mutually exclusive 
with most other events by definition. Furthermore, when we ran CoMEt without 
using this limit, it was impossible to determine whether the mutual exclusivity of 
events in the results was a feature of the disease (or disease subtype) or a statistical 
artefact. To avoid this issue, we focused our analysis on modules that included 
genes altered in five or more samples in a particular input dataset. All modules 
reported by CoMEt pass a significance threshold of P < 1/n (with n = 100, the 
number of permutations we ran), meaning all of the modules presented here pass 
this significance threshold.

For the final display of mutual exclusivity figures, we excluded genes from the 
Group 3 module displayed (k = 4, t = 2) to highlight the relationship of mutually 
exclusive genes with higher alteration frequency; and we combined two Group 4 
modules from two different CoMEt runs (k = 3, t = 2 and k = 3, t = 3) to create a 
larger module of mutual exclusivity (KBTBD4 not only mutually exclusive with 
KDM6A, but also with MYCN, and KMT2C).
Structural analysis of KBTBD4 insertions. KBTBD4 is a member of the BTB-
Kelch family proteins, which includes more than 50 members in humans36. 
All KBTBD4 mutations observed in this study localize to the Kelch substrate- 
recognition domain. Although no structure has been determined for the Kelch 
domain of KBTBD4 (KBTBD4Kelch), there is an abundance of structural data 
about the family that allows for construction of homology models, generated 
with SWISS-MODEL64. The homology models of KBTBD4Kelch adopt the  
six-bladed β-propeller fold with each ‘blade’ formed by a four-stranded anti
parallel β-sheet. All mutations observed in our MB series occur in the loop 
between the second and third strands of the second Kelch ‘blade’, a known  
substrate recognition hotspot36.

© 2017 Macmillan Publishers Limited, part of Springer Nature. All rights reserved.

https://bioconductor.riken.jp/packages/3.2/bioc/vignettes/topGO/inst/doc/topGO.pdf
https://bioconductor.riken.jp/packages/3.2/bioc/vignettes/topGO/inst/doc/topGO.pdf


Article RESEARCH

Data availability. Short-read sequencing and microarray data have been deposited 
at the European Genome-Phenome Archive (EGA, http://www.ebi.ac.uk/ega/) 
hosted by the EBI, under accession number EGAS00001001953. Genetic, epige-
netic and transcriptional data can be freely explored using the PeCan (http://pecan.
stjude.org/proteinpaint/study/BT.MB...Pfister%20pan-MB), R2 (https://hgserver1.
amc.nl/cgi-bin/r2/main.cgi?&dscope=MB500&option=about_dscope), and 
PedcBio (http://pedcbioportal.org/study.do?cancer_study_id=medullo_pa_01# 
summary) data portals. All other data are available from the corresponding authors 
upon reasonable request.

41.	 Stein, L. D., Knoppers, B. M., Campbell, P., Getz, G. & Korbel, J. O. Data analysis: 
Create a cloud commons. Nature 523, 149–151 (2015).

42.	 Li, H. et al. The Sequence Alignment/Map format and SAMtools. Bioinformatics 
25, 2078–2079 (2009).

43.	 Wang, K., Li, M. & Hakonarson, H. ANNOVAR: functional annotation of genetic 
variants from high-throughput sequencing data. Nucleic Acids Res. 38, e164 
(2010).

44.	 Rimmer, A. et al. Integrating mapping-, assembly- and haplotype-based 
approaches for calling variants in clinical sequencing applications. Nat. Genet. 
46, 912–918 (2014).

45.	 Alioto, T. S. et al. A comprehensive assessment of somatic mutation detection 
in cancer using whole-genome sequencing. Nat. Commun. 6, 10001 (2015).

46.	 Rausch, T. et al. DELLY: structural variant discovery by integrated paired-end 
and split-read analysis. Bioinformatics 28, i333–i339 (2012).

47.	 Sherry, S. T. et al. dbSNP: the NCBI database of genetic variation. Nucleic Acids 
Res. 29, 308–311 (2001).

48.	 Howie, B. N., Donnelly, P. & Marchini, J. A flexible and accurate genotype 
imputation method for the next generation of genome-wide association 
studies. PLoS Genet. 5, e1000529 (2009).

49.	 Olshen, A. B. et al. Parent-specific copy number in paired tumor-normal 
studies using circular binary segmentation. Bioinformatics 27, 2038–2046 
(2011).

50.	 Johann, P. D. et al. Atypical teratoid/rhabdoid tumors are comprised of three 
epigenetic subgroups with distinct enhancer landscapes. Cancer Cell 29, 
379–393 (2016).

51.	 Mermel, C. H. et al. GISTIC2.0 facilitates sensitive and confident localization of 
the targets of focal somatic copy-number alteration in human cancers. 
Genome Biol. 12, R41 (2011).

52.	 Alexandrov, L. B., Nik-Zainal, S., Wedge, D. C., Campbell, P. J. & Stratton, M. R. 
Deciphering signatures of mutational processes operative in human cancer. 
Cell Reports 3, 246–259 (2013).

53.	 Aryee, M. J. et al. Minfi: a flexible and comprehensive Bioconductor package 
for the analysis of Infinium DNA methylation microarrays. Bioinformatics 30, 
1363–1369 (2014).

54.	 Dixon, J. R. et al. Topological domains in mammalian genomes identified by 
analysis of chromatin interactions. Nature 485, 376–380 (2012).

55.	 Quinlan, A. R. & Hall, I. M. BEDTools: a flexible suite of utilities for comparing 
genomic features. Bioinformatics 26, 841–842 (2010).

56.	 Ongen, H., Buil, A., Brown, A. A., Dermitzakis, E. T. & Delaneau, O. Fast and 
efficient QTL mapper for thousands of molecular phenotypes. Bioinformatics 
32, 1479–1485 (2015).

57.	 Price, A. L. et al. Principal components analysis corrects for stratification in 
genome-wide association studies. Nat. Genet. 38, 904–909 (2006).

58.	 Tuncbag, N. et al. Network-Based interpretation of diverse high-throughput 
datasets through the Omics Integrator software package. PLOS Comput. Biol. 
12, e1004879 (2016).

59.	 Razick, S., Magklaras, G. & Donaldson, I. M. iRefIndex: a consolidated protein 
interaction database with provenance. BMC Bioinformatics 9, 405 (2008).

60.	 Wishart, D. S. et al. HMDB 3.0—The Human Metabolome Database in 2013. 
Nucleic Acids Res. 41, D801–D807 (2013).

61.	 Thiele, I. et al. A community-driven global reconstruction of human 
metabolism. Nat. Biotechnol. 31, 419–425 (2013).

62.	 Cline, M. S. et al. Integration of biological networks and gene expression data 
using Cytoscape. Nat. Protocols 2, 2366–2382 (2007).

63.	 Leiserson, M. D., Wu, H. T., Vandin, F. & Raphael, B. J. CoMEt: a statistical 
approach to identify combinations of mutually exclusive alterations in cancer. 
Genome Biol. 16, 160 (2015).

64.	 Biasini, M. et al. SWISS-MODEL: modelling protein tertiary and quaternary 
structure using evolutionary information. Nucleic Acids Res. 42, W252–W258 
(2014).

65.	 Dobin, A. et al. STAR: ultrafast universal RNA-seq aligner. Bioinformatics 29, 
15–21 (2013).

© 2017 Macmillan Publishers Limited, part of Springer Nature. All rights reserved.

http://www.ebi.ac.uk/ega/
http://pecan.stjude.org/proteinpaint/study/BT.MB...Pfister%20pan-MB
http://pecan.stjude.org/proteinpaint/study/BT.MB...Pfister%20pan-MB
https://hgserver1.amc.nl/cgi-bin/r2/main.cgi?&dscope=MB500&option=about_dscope
https://hgserver1.amc.nl/cgi-bin/r2/main.cgi?&dscope=MB500&option=about_dscope
http://pedcbioportal.org/study.do?cancer_study_id=medullo_pa_01#summary
http://pedcbioportal.org/study.do?cancer_study_id=medullo_pa_01#summary


ArticleRESEARCH

Extended Data Figure 1 | Mutational signatures in MB. a, b, Exposure 
plot (a) and heatmap (b) summarizing mutation signatures 
contributing ≥5% of the overall mutation burden per sample are depicted.  
Asterisks in b indicate subgroup-enriched signatures. c, d, Box plots 
showing the subgroup specificity of signatures 18 (c) and 5 (d). 

e, Correlation of signatures 1 and 5 with patient age. f, Summary of total 
somatic mutation counts observed in the series. g, Bar plot summarizing 
distribution of mutation signatures in MBs with outlier mutation counts. 
h, Rainfall plots depicting somatic mutation burden in typical (top) and 
hypermutated (bottom) SHH MBs.

© 2017 Macmillan Publishers Limited, part of Springer Nature. All rights reserved.
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Extended Data Figure 2 | Genome-wide summary of somatic SNVs. 
a, Precision-recall curves for different binomial P value cut-offs. Minimal 
and maximal precision values are shown in colour, mean precision 
is shown as dotted line. P value cut-offs for 200 bp window sizes are 
indicated. b, Manhattan plot showing the −log10 test statistic of 200 bp 

genomic windows plotted against their respective chromosomal positions. 
Red line indicates the genome-wide significance threshold (P = 10−25). 
High-confidence regions are shown in red; regions representing probable 
false positives are shown in blue. c, Summary of TERT promoter mutations 
observed in the series.

© 2017 Macmillan Publishers Limited, part of Springer Nature. All rights reserved.
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Extended Data Figure 3 | Prevalent candidate driver mutations observed in MB. a, b, Gene-level summaries of SNVs/indels inferred to predominantly 
result in loss-of-function (LOF) (a) or gain-of-function (GOF) (b) of known and putative MB driver genes.
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Extended Data Figure 4 | Summary of fusion gene transcripts detected by RNA-seq. a–c, Schematic summaries of high-confidence fusion transcripts 
targeting known or putative MB driver genes, organized according to MB subgroup.

© 2017 Macmillan Publishers Limited, part of Springer Nature. All rights reserved.



ArticleRESEARCH

Extended Data Figure 5 | Candidate driver genes and pathways in MB 
subgroups. a, b, Box plots summarizing allelic expression fractions (a) and 
estimated clonality (b) inferred for prominent MB driver gene mutations. 
c, GO and pathway summary of recurrently mutated genes in MB. GO and 
pathway categories are grouped according to functional theme and the 

proportion of cases affected by individual pathway alterations are plotted 
per subgroup and across the series. d, Network summary of recurrently 
mutated genes involved in histone lysine methylation (GO accession 
0034968).

© 2017 Macmillan Publishers Limited, part of Springer Nature. All rights reserved.
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Extended Data Figure 6 | Mutational landscape of WNT and SHH MB. 
a, b, Oncoprint summaries of recurrently mutated genes and cytogenetic 
alterations in WNT (a; n = 36 samples) and SHH (b; n = 131 samples). 
c, Gene-level summary of WNT subgroup-enriched CSNK2B and EPHA7 
mutations. d, Summary of SWI/SNF superfamily-type complex (GO 
accession 0070603) mutations observed in patients with WNT MB. 

e, Gene-level summary of somatic IDH1 R132C mutations detected in MB. 
f, Quantification of methylcytosine beta-values detected in IDH1-mutant 
versus wild-type SHH MBs. g, Unsupervised hierarchical clustering of 
SHH MB methylation data, confirming CIMP in IDH1-mutated SHH 
MBs. h, Summary of histone acetyltransferase complex (GO accession 
0000123) mutations observed in patients with SHH MB.

© 2017 Macmillan Publishers Limited, part of Springer Nature. All rights reserved.
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Extended Data Figure 7 | Somatic copy-number alterations in MB. a, Copy-number heat maps for individual MB subgroups derived from WGS series. 
b, Genome-wide copy-number summary plots for the MB dataset shown in a. c, GISTIC plots summarizing significant CNVs according to MB subgroup.

© 2017 Macmillan Publishers Limited, part of Springer Nature. All rights reserved.
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Extended Data Figure 8 | t-SNE analysis of Group 3 and Group 4 
methylation data. a, t-SNE plot of DNA methylation array data for 1,256 
analysed MBs. b, t-SNE analysis of iteratively down-sampled Group 3 and 
Group 4 methylation data. c, Genome-wide copy-number summary plots 

for Group 3/Group 4 methylation subtypes. d, t-SNE plots showing the 
relative, normalized expression intensities of GFI1, GFI1B, MYC, MYCN 
and PRDM6 in methylation subtypes (n = 219). e, Expression heat map 
showing transcriptional diversity among new MB subtypes (n = 248).

© 2017 Macmillan Publishers Limited, part of Springer Nature. All rights reserved.
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Extended Data Figure 9 | SNCAIP-associated enhancer hijacking in 
Group 4 MB. a, Quantile–quantile plot depicting the statistical inference 
of CESAM applied to systematically identify loci targeted by enhancer 

hijacking in Group 3 and Group 4 (n = 164) MB. b, Ascending PRDM6 
expression in Group 4 MB annotated according to SNCAIP structural 
variant status.

© 2017 Macmillan Publishers Limited, part of Springer Nature. All rights reserved.
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