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System on Chip is a hardware solution combining different hardware devices in the same chip. In particular, the 

XILINX Zynq solution, implementing an ARM processor and a configurable FPGA on the same chip, is a 

candidate technology for a variety of applications of interest in fusion research, where FPGA fast logic must be 

combined with CPU processing for high-level functions and communication. Developing Zynq based applications 

requires the development of the FPGA logic using the XILINX Vivado IDE, mapping information between the 

FPGA device and the processor address space, developing the kernel drivers for interaction with the FPGA device 

and developing the high level application programs in user space for the supervision and the integration of the 

system. The paper presents a framework that integrates all the above steps and greatly simplifies the overall 

process.  The framework has been used for the development of a programmable timing device in Wendelstein 7-X. 

The development of new devices integrating data acquisition and timing functions is also foreseen for RFX-mod.   
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1. Introduction 

The use of FPGA based solutions in control and data 

acquisition systems (CODAS) for nuclear fusion devices 

has been in the past rather limited if compared to other 

physics experiments such as accelerators. This fact is 

mainly due to the different requirements: while in 

accelerators it is necessary to handle a very large amount 

of fast events from detectors, requiring fast data 

reduction on the fly based on coincidences, in fusion 

experiments a lower number of channels is used, 

typically requiring the acquisition of input signals for 

data storage and possibly real-time control. Therefore, 

fusion experiment use more conventional electronic 

devices such as transient recorders, replaced in recent 

long lasting experiments by Analog to Digital (ADC) 

devices supporting a continuous output data stream. 

Moreover, the dynamics of the phenomena controlled in 

real-time, such as plasma stability, require in most cases 

a response time of the order of milliseconds, whereas the 

control of the fastest phenomena such as vertical 

stabilization in tokamaks require a response time of the 

order of 100 µs. These requirements can be satisfied 

using the current computer technology making therefore 

the use of general purpose computers preferable over 

specialized FPGA solutions. Developing FPGA solutions 

requires in fact skills and expertise in the Hardware 

Description Languages (HDL) and hardware interfaces.  

Considering also that the integration of custom FPGA 

systems in CODAS normally requires developing some 

kind of specialized communication protocol, the amount 

of required human resources to implement such solutions 

is often unaffordable, especially in small laboratories. 

For this reason, FPGA solutions have been in the past 

limited to specific applications in diagnostics [1,2]. A 

notable exception is certainly represented by the RIO 

FPGA architectures [3] (Compact RIO and Flex RIO) 

which provide an easy FPGA programming and 

integration via LabVIEW and have been widely adopted 

for plasma control [4] and other diagnostic applications 

[5].  This solution, proposed by National Instruments, 

aims at leveraging the power of FPGA by removing the 

main barriers in their usage, that is the expertise required 

in HDL programming and interfacing with the rest of the 

system. This solution is however quite expensive and 

closed to the specific choice in hardware and in the 

programming environment. A new modern approach for 

the integration of high-level software components with 

the power of the FPGA logic design is obtaining 

growing attention in the market of embedded 

technologies and exploits the System on Chip (SoC) 

solution that combines different hardware devices in the 

same chip. The main hardware competitors leading the 

SoC FPGA market are Intel/Altera and Xilinx, both 

proposing almost the same development solutions but 

with their own proprietary software. In particular the 

XILINX Zynq architecture [6], implementing an ARM 

processor and a configurable FPGA in the same chip, is 

a valuable candidate technology for a variety of 

applications of interest in fusion research, where FPGA 

fast logic can be combined with software functions 

carried out by a CPU for high level functions and 

communication.  

A considerable number of heterogeneous hardware 

from many vendors have been released profiting of the 

high integration of SoC devices. The main advantages 

that these chips brings to the programmable logic are the 

possibility to interface and share hardware features that 

are typical of a complete system such as the DMA 

controller and external interfaces like Ethernet or SATA. 

Many software solutions have been also proposed, to 

guide the developer through the non-trivial mechanisms 

of the FPGA to system interfacing, as well as covering 



 

different programming approaches: from low level 

synthesis of Verilog and VHDL hardware description, to 

the higher level toolchains that compile real 

programming languages like SystemC OpenCL and 

others [7,8]. 

In this paper we present yet another choice named 

Anacleto (Another auto config for logic evaluation 

toolchains), particularly targeted to the GNU Linux 

embedded devices, that has been developed by RFX 

consortium and aims at proposing a unified standard 

workflow to the FPGA developer for programming both 

the logic and the software components in a uniform and 

portable way. 

It is worth noting that in the development of Anacleto 

SoC projects the knowledge of HDL, unlike other 

solutions such as the National Instrument RIO LabView 

interface, is not hidden by the framework. The aim of 

this framework is indeed not to provide a new 

programming interface, adding another layer of logic, 

but to ease the development process with established 

well known open-source build tools. In this way 

Anacleto can be a way to access the low level machinery 

of the FPGA programming easily and uniformly, and a 

much cheaper solution in respect of RIO. Moreover, at 

this low abstraction programming level, many of the 

features that are usually involved are already provided 

free of charge by the chip vendors or with a reasonable 

license fee by external contributions, keeping a door 

open to a wide market of existing solutions. 

The first candidate applications for SoC devices are 

timing systems, data acquisition preprocessing and fast 

computation. Timing systems represent a classical field 

of applications for FPGAs and have been implemented 

both in custom systems [9] and commercial products 

[10].  A typical timing application uses a 

synchronization clock signal distributed, normally via 

fiber optic, to all the timing devices and possibly 

propagating asynchronous events. The FPGA provides 

the generation of the required timing signals (clocks, 

triggers, …) based on current configuration loaded in the 

system using some kind of hardware interface such as 

PCI. A processor would introduce in this case more 

flexibility in the management of the configuration, 

letting, for example, the configuration be uploaded via 

the network.  

Integrating configurable FPGAs in data acquisition 

would provide much more flexibility in data 

management introducing features not currently 

supported by ADC devices. An example is the 

possibility of managing deferred triggers communicated 

via network. Using the network to communicate triggers 

in data acquisition introduces delays that may 

compromise the precision in the reconstruction of the 

acquired signal. However, if a trigger message also 

carries the exact trigger time, and assuming that all 

devices have a precise knowledge of time (e.g. using 

IEEE 1588 timing protocol), it is possible to provide a 

correct reconstruction of the signal using an internal 

circular buffer maintaining a signal history lasting at 

least the delay in trigger communication [11]. The use of 

a configurable FPGA in data acquisition could also allow 

a significant reduction of the required front end when 

integrated signals from electromagnetic probes are 

acquired. In this case it would be possible to avoid 

analog integration before data acquisition moving 

integration to FPGA processing during acquisition.  

Fast computation carried out by FPGA allows using 

more sophisticated algorithms in real-time plasma 

control retaining at the same time the flexibility provided 

by a computer system. The same approach could be used 

for new data processing algorithms such as feature 

detection from acquired video frames. In this case the 

processor would supervise data transfer and the FPGA 

would carry out intensive computing for feature 

detection. It is worth stressing the fact that FPGA 

solutions are more difficult to develop in respect of CPU 

based ones, and therefore the latter is preferred, provided 

it can satisfy the required timing constraints. As a rule of 

thumb, CPU based solutions should be considered when 

the order of magnitude of the required reaction time of 

the system is 100 µs or larger. Shorter times normally 

require FPGA implementations, however other factors 

may affect the choice, such as memory access issues that 

may reduce performance regardless the computational 

power, as happens also in large distributed computation 

carried out by General purpouse Graphical Processor 

Units (GGPUs) [12]    

As for other FPGA solutions, SoC systems require 

skills and experience. For example,   developing Zynq 

based applications requires (1) the development of the 

FPGA logic, (2) mapping information between the 

FPGA device and the processor address space, (3) 

developing the kernel driver for interfacing user software 

and the FPGA device and (4) developing the high level 

software applications in user space for the supervision of 

the system and its integration in the central CODAS.  

For this reason we have implemented a framework that 

integrates the above steps. The framework, described in 

the next section, makes the overall process easier, 

especially the integration of the FPGA components and 

the processor by coordinating all the required tools and 

by providing a set of templates that can be adapted to the 

specific application. 

 2. Framework components 

Anacleto uses the Autotools [13] build infrastructure 

to organize the most general FPGA workflow acting like 

a standard toolchain compilation led by GNU make  

targets. The development process remains quite complex 

because many components in the final device board must 

be orchestrated ( i.e. the kernel configuration, the 

customization of drivers to handle the newly created 

device, and so forth ) but nevertheless the compilation is 

managed almost in automatic manner and, once the 

project is properly defined, all the steps are covered by 

Makefile targets that can be chained in a single make 

run. In order to develop a SoC application, it is necessary 

firstly to select the hardware system. Because we 

decided to make use of the Xilinx Zynq devices, as a 

first attempt, three low-cost solutions have been 

considered: RedPitaya [14], ZedBoard [15] and 



 

Parallella [16]. RedPitaya is intended to be used as a 

stand-alone system for handling digital and analog I/O 

signals. This board hosts ready to use ADC and DAC 

components and therefore could result best suited for 

developing small self-contained applications, but for the 

same reason it shows a reduced flexibility in respect of  

the other two for the configuration of the I/O pins. The 

other boards are intended to be hosted in a carrier board 

and therefore mount no additional I/O devices. In 

particular, Parallella is targeted towards computing 

intensive applications and hosts an additional processor 

with 16 cores.  

Several other software components, all free of 

charge, are required for developing a SoC application an 

deploying it into the target board. First of all, it is 

necessary to download from XILINX the Integrated 

Development Environment (IDE) tool VIVADO for 

HDL programming (Verilog and VHDL are the 

supported languages). In order to be used on a specific 

target, VIVADO requires a target-specific configuration, 

provided by the board developer, which specifies how 

the processor is configured in that particular board. 

Currently only Red Pitaya configuration is managed in 

the framework, but it is foreseen that configuration files 

from Zed Board and Parallella will be included, adding 

the choice of the target board in the configuration steps. 

VIVADO provides a set of configurable Intellectual 

Property (IP) components that carry out the connectivity 

between the processor (dual core ARM Cortex A9 in the 

Zynq chip mounted on Red Pitaya) and the FPGA 

application. When no DMA is involved, communication 

between the processor and the FPGA application is 

carried out by a configurable number of 32 bit registers 

and, optionally, one or more interrupt lines. When the 

developer creates a new project for a FPGA application, 

the IDE creates a set of IP components, carrying out the 

handshaking with the internal bus (AXI bus) used to 

exchange information between the processor and the 

FPGA application. The IDE provides the definition of a 

set of 32 bit signals that can be used by the FPGA 

application for communication. In a typical use case, 

such signals will represent the configuration to be 

uploaded to the FPGA application, but they can be used 

to exchange input and output data as well. After 

developing the specific application, the IDE will 

generate the binary code to be downloaded into the 

FPGA. Other configurable IP components provided by 

VIVADO allow the definition of up to two DMA 

channels for FPGA applications handling data streaming.  

The configuration of the interface, i.e. number of 

shared registers, interrupt lines, and DMA channels must 

also be reflected in the device memory map of the 

processor. XILINX provides a github project hosting an 

adapted version of Linux kernel 4.4 in a Debian 

distribution. The project includes the toolchain for ARM 

processor and the kernel sources and a tool for the 

generation of the device-tree structure, used by Linux 

Kernel 4.4 for device abstraction [17]. Basically, a 

device-tree description provides information about the 

connected devices including memory addresses and size 

of the device registers. In this case, the device-tree 

description will include the registers used to 

communicate with the FPGA application. The specific 

device-tree for the Zynq chip is generated from the 

current VIVADO project by the Hardware Software 

Interface component belonging to the XILINX system 

development kit. The same component can generate 

templates for Bare Metal implementation, Linux and 

FreeRTOS. In particular the Linux driver template is 

generated within the framework based on the selected 

data transfer type (mapped registers and/or DMA).   

Once Linux and the corresponding device-tree have 

been built, the final step is the development, starting 

from the generated template, of a Linux device driver 

that will allow user programs interact with the FPGA 

application. In the simplest configuration, a buffer in 

user space is mapped against the sets of registers defined 

in the FPGA application so that information is 

exchanged by reading and writing that buffer.  

From the above description, it is clear that building a 

SoC system from scratch is not an easy task, despite the 

availability in the web of all required tools. The 

presented framework integrates all the above steps and 

greatly simplifies the overall process. In particular, the 

framework: 

- Supervises he compilation of the toolchain and the 

Linux kernel using the components taken from the 

XILINX repository; 

- Handles the management of the VIVADO project 

and the required IP components for FPGA 

integration; 

- Supervises the construction of the device-tree 

required for the proper mapping of the FPGA 

registers into processor address space; 

- Provides templates for the development of the 

required Linux drivers. 

 

Figure 1: steps in building a new system. 

Using this framework, a SoC FPGA application can 

be built from scratch by executing the general steps 

described in Figure 1: 



 

 
Figure 2: Blocks generated by the VIVADO tool in a SoC project. 

As shown in the schema, the overall workflow can be 

splitted in two main stages: the building of the board 

system comprising the operating system kernel and 

software, and the specific project building with the 

definition of the logic and the software drivers that 

compile against the built kernel. The same board system 

can be shared among different specific projects and 

many different projects can be also installed in the same 

board. The reported steps depict a possible procedure 

example through the development process a developer 

would follow, that is: 

1) Clone the framework from the github repository 

at:  [https://github.com/mildstone/anacleto] 

2) boostrap command that will set-up the 

environment and download all the required 

components and tools; 

3) configure to set-up the system before building 

the toolchain and the Linux Kernel; this also 

compiles and shows a graphical user interface 

that eases the selection of the required options. 

4) make to compile the toolchain and then the 

Linux Kernel; 

5) make new-project to start a new VIVADO 

project for the development of the specific 

FPGA components in VHDL or Verilog. All the 

IP components required for SoC interface are 

created and can now be configured using 

VIVADO graphical interface; 

6) make write-project once the logic has been 

defined with external sources and VIVADO 

project block designs, the whole project 

definition can be stored in the repository in the 

form of a script able to regenerate the project 

from scratch, even using different versions of 

VIVADO.   

7) At this point the FPGA application can be 

developed. It is also necessary to write the Linux 

driver for communication and a skeleton Linux 

driver source file is generated by the framework, 

based on the current configuration of the 

interface IP components. Then make starts both 

the logic synthesis and the compilation  of 

software components. 

8) make deploy to generate the device-tree, 

compile the Kernel module, download the kernel 

and the bitstream into the target device. 

Figure 2 shows the blocks generated by the VIVADO 

tool when a new SoC project is created. The top left 

block defines the processor; the bottom left block defines 

reset logic and the block in the middle defines the bus 

logic. The top right block hosts specific FPGA firmware 

(the timing device in this case) and it is connected to the 

bus logic block via the AXI bus. Other modules can be 

defined as well, all connected to the same AXI bus. 

These modules can then be adapted to connect the 

interface registers to the specific FPGA firmware. 

3. Implemented and foreseen applications 

The presented framework has been used to develop a 

general purpose timing device to be used in Wendelstein 

7-X diagnostics. The timing device is implemented in a 

Red Pitaya board and defines two digital outputs to 

generate clock and gate signals, and two digital inputs to 

receive a synchronizing 10 MHz clock and a trigger 

signal. The board is configured via software to generate 

a pre-programmed timing sequence after the system has 

been armed and a trigger input signal has been received. 

The timing sequence is communicated via TCP/IP to the 

ARM processor hosted in the Zynq chip of the Red 

Pitaya board. In this case a set of registers have been 

defined as interface between the processor and the FPGA 

application, without using interrupt lines. All registers 

except one are used to specify the time sequence. The 

remaining register is used as command register to arm 

and disarm the board. Not considering the time required 

for developing the FPGA application written in VHDL 

the creation of the new project, the adaption of the driver 

from the template and the deploy required less than one 

working day. 

The same github repository used to host the 

framework components has been used to host the timing 

board project and it is foreseen that all the new 

developed projects will be hosted there.  

We are currently considering the usage of Zed Board 



 

for developing a new fast ADC to be used to acquire 

electromagnetic probes in the upgrade of the RFX-mod 

experiment currently in construction at Consorzio RFX 

[18]. In this experiment a large (~1000) number of 

electromagnetic signals is foreseen, where a configurable 

subset will be used for real-time control. All the acquired 

signals will be stored at full speed (up to 1 MHz) during 

the pulse in RAM memory and will be read after the 

discharge, using the traditional transient recorder 

organization (RFX-mod carries out short duration 

discharges), but at the same time a subsampled version 

of the signal will be made available for real-time control. 

For this purpose, 16 channels from a fast and insulated 

ADC, already used for vertical stabilization at JET [19], 

will be connected to the digital inputs of the SoC board. 

Each ADC channel will provide a 50 MHz signal 

carrying the serialized bits of every sample (ADC 

conversion is performed at 18 bits). The FPGA firmware 

will de-serialize the input channel, send the samples to 

RAM via a DMA channel, perform digital filtering for 

subsampling, and send subsampled data at 10 kHz via 

the second DMA link to the processor that will send 

samples via UDP to the real-time control system.  

4. Conclusions 

The SoC architecture proved to be effective in 

removing the “knowledge barrier” that prevents FPGA 

development in several fusion laboratories, especially 

when FPGA solutions are not strictly required to achieve 

requirements. The applicability of the SoC architecture  

has been further improved by the presented framework, 

hiding to the developer several intermediate steps and 

exposing only the necessary information for the proper 

system configuration. The presented framework however 

leaves to the developer the whole responsibility of the 

FPGA firmware development, a task that requires 

ingenuity and experience. There are however several 

applications of interest in fusion that don’t require 

sophisticated FPGA firmware, as it has been the case of 

the presented timing board. This class of applications is 

likely to benefit from SoC architecture, especially when 

the set of required tools and configurations is 

transparently managed by a tool like the one presented 

here. 

Another promising field of applications for SoC 

architectures is the possibility of moving critical 

computation into FPGA, leaving software to supervise 

the overall management of computation. This approach 

is already exploited in the RIO architecture for 

LabVIEW applications and may lead to extremely 

performing real-time systems that retain the flexibility of 

computer-based solutions, but allow moving time critical 

inner loops into FPGA firmware.  
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