
author’s email: andrea.rigoni@igi.cnr.it

A framework for the integration of the development process of Linux

FPGA System on Chip devices

A.Rigoni
a
, G. Manduchi

a
, A. Luchetta

a
, C. Taliercio

a
, T. Schröder

b

a
 Consorzio RFX (CNR, ENEA, INFN, Università di Padova, Acciaierie Venete SpA), Padova, Italy

b
Max-Planck-Institut für Plasmaphysik, D-17491 Greifswald, Germany

System on Chip is a hardware solution combining different hardware devices in the same chip. In particular, the

XILINX Zynq solution, implementing an ARM processor and a configurable FPGA on the same chip, is a

candidate technology for a variety of applications of interest in fusion research, where FPGA fast logic must be

combined with CPU processing for high-level functions and communication. Developing Zynq based applications

requires the development of the FPGA logic using the XILINX Vivado IDE, mapping information between the

FPGA device and the processor address space, developing the kernel drivers for interaction with the FPGA device

and developing the high level application programs in user space for the supervision and the integration of the

system. The paper presents a framework that integrates all the above steps and greatly simplifies the overall

process. The framework has been used for the development of a programmable timing device in Wendelstein 7-X.

The development of new devices integrating data acquisition and timing functions is also foreseen for RFX-mod.

Keywords: FPGA, System on Chip, ADC, Timing Systems.

1. Introduction

The use of FPGA based solutions in control and data

acquisition systems (CODAS) for nuclear fusion devices

has been in the past rather limited if compared to other

physics experiments such as accelerators. This fact is

mainly due to the different requirements: while in

accelerators it is necessary to handle a very large amount

of fast events from detectors, requiring fast data

reduction on the fly based on coincidences, in fusion

experiments a lower number of channels is used,

typically requiring the acquisition of input signals for

data storage and possibly real-time control. Therefore,

fusion experiment use more conventional electronic

devices such as transient recorders, replaced in recent

long lasting experiments by Analog to Digital (ADC)

devices supporting a continuous output data stream.

Moreover, the dynamics of the phenomena controlled in

real-time, such as plasma stability, require in most cases

a response time of the order of milliseconds, whereas the

control of the fastest phenomena such as vertical

stabilization in tokamaks require a response time of the

order of 100 µs. These requirements can be satisfied

using the current computer technology making therefore

the use of general purpose computers preferable over

specialized FPGA solutions. Developing FPGA solutions

requires in fact skills and expertise in the Hardware

Description Languages (HDL) and hardware interfaces.

Considering also that the integration of custom FPGA

systems in CODAS normally requires developing some

kind of specialized communication protocol, the amount

of required human resources to implement such solutions

is often unaffordable, especially in small laboratories.

For this reason, FPGA solutions have been in the past

limited to specific applications in diagnostics [1,2]. A

notable exception is certainly represented by the RIO

FPGA architectures [3] (Compact RIO and Flex RIO)

which provide an easy FPGA programming and

integration via LabVIEW and have been widely adopted

for plasma control [4] and other diagnostic applications

[5]. This solution, proposed by National Instruments,

aims at leveraging the power of FPGA by removing the

main barriers in their usage, that is the expertise required

in HDL programming and interfacing with the rest of the

system. This solution is however quite expensive and

closed to the specific choice in hardware and in the

programming environment. A new modern approach for

the integration of high-level software components with

the power of the FPGA logic design is obtaining

growing attention in the market of embedded

technologies and exploits the System on Chip (SoC)

solution that combines different hardware devices in the

same chip. The main hardware competitors leading the

SoC FPGA market are Intel/Altera and Xilinx, both

proposing almost the same development solutions but

with their own proprietary software. In particular the

XILINX Zynq architecture [6], implementing an ARM

processor and a configurable FPGA in the same chip, is

a valuable candidate technology for a variety of

applications of interest in fusion research, where FPGA

fast logic can be combined with software functions

carried out by a CPU for high level functions and

communication.

A considerable number of heterogeneous hardware

from many vendors have been released profiting of the

high integration of SoC devices. The main advantages

that these chips brings to the programmable logic are the

possibility to interface and share hardware features that

are typical of a complete system such as the DMA

controller and external interfaces like Ethernet or SATA.

Many software solutions have been also proposed, to

guide the developer through the non-trivial mechanisms

of the FPGA to system interfacing, as well as covering

different programming approaches: from low level

synthesis of Verilog and VHDL hardware description, to

the higher level toolchains that compile real

programming languages like SystemC OpenCL and

others [7,8].

In this paper we present yet another choice named

Anacleto (Another auto config for logic evaluation

toolchains), particularly targeted to the GNU Linux

embedded devices, that has been developed by RFX

consortium and aims at proposing a unified standard

workflow to the FPGA developer for programming both

the logic and the software components in a uniform and

portable way.

It is worth noting that in the development of Anacleto

SoC projects the knowledge of HDL, unlike other

solutions such as the National Instrument RIO LabView

interface, is not hidden by the framework. The aim of

this framework is indeed not to provide a new

programming interface, adding another layer of logic,

but to ease the development process with established

well known open-source build tools. In this way

Anacleto can be a way to access the low level machinery

of the FPGA programming easily and uniformly, and a

much cheaper solution in respect of RIO. Moreover, at

this low abstraction programming level, many of the

features that are usually involved are already provided

free of charge by the chip vendors or with a reasonable

license fee by external contributions, keeping a door

open to a wide market of existing solutions.

The first candidate applications for SoC devices are

timing systems, data acquisition preprocessing and fast

computation. Timing systems represent a classical field

of applications for FPGAs and have been implemented

both in custom systems [9] and commercial products

[10]. A typical timing application uses a

synchronization clock signal distributed, normally via

fiber optic, to all the timing devices and possibly

propagating asynchronous events. The FPGA provides

the generation of the required timing signals (clocks,

triggers, …) based on current configuration loaded in the

system using some kind of hardware interface such as

PCI. A processor would introduce in this case more

flexibility in the management of the configuration,

letting, for example, the configuration be uploaded via

the network.

Integrating configurable FPGAs in data acquisition

would provide much more flexibility in data

management introducing features not currently

supported by ADC devices. An example is the

possibility of managing deferred triggers communicated

via network. Using the network to communicate triggers

in data acquisition introduces delays that may

compromise the precision in the reconstruction of the

acquired signal. However, if a trigger message also

carries the exact trigger time, and assuming that all

devices have a precise knowledge of time (e.g. using

IEEE 1588 timing protocol), it is possible to provide a

correct reconstruction of the signal using an internal

circular buffer maintaining a signal history lasting at

least the delay in trigger communication [11]. The use of

a configurable FPGA in data acquisition could also allow

a significant reduction of the required front end when

integrated signals from electromagnetic probes are

acquired. In this case it would be possible to avoid

analog integration before data acquisition moving

integration to FPGA processing during acquisition.

Fast computation carried out by FPGA allows using

more sophisticated algorithms in real-time plasma

control retaining at the same time the flexibility provided

by a computer system. The same approach could be used

for new data processing algorithms such as feature

detection from acquired video frames. In this case the

processor would supervise data transfer and the FPGA

would carry out intensive computing for feature

detection. It is worth stressing the fact that FPGA

solutions are more difficult to develop in respect of CPU

based ones, and therefore the latter is preferred, provided

it can satisfy the required timing constraints. As a rule of

thumb, CPU based solutions should be considered when

the order of magnitude of the required reaction time of

the system is 100 µs or larger. Shorter times normally

require FPGA implementations, however other factors

may affect the choice, such as memory access issues that

may reduce performance regardless the computational

power, as happens also in large distributed computation

carried out by General purpouse Graphical Processor

Units (GGPUs) [12]

As for other FPGA solutions, SoC systems require

skills and experience. For example, developing Zynq

based applications requires (1) the development of the

FPGA logic, (2) mapping information between the

FPGA device and the processor address space, (3)

developing the kernel driver for interfacing user software

and the FPGA device and (4) developing the high level

software applications in user space for the supervision of

the system and its integration in the central CODAS.

For this reason we have implemented a framework that

integrates the above steps. The framework, described in

the next section, makes the overall process easier,

especially the integration of the FPGA components and

the processor by coordinating all the required tools and

by providing a set of templates that can be adapted to the

specific application.

 2. Framework components

Anacleto uses the Autotools [13] build infrastructure

to organize the most general FPGA workflow acting like

a standard toolchain compilation led by GNU make

targets. The development process remains quite complex

because many components in the final device board must

be orchestrated (i.e. the kernel configuration, the

customization of drivers to handle the newly created

device, and so forth) but nevertheless the compilation is

managed almost in automatic manner and, once the

project is properly defined, all the steps are covered by

Makefile targets that can be chained in a single make

run. In order to develop a SoC application, it is necessary

firstly to select the hardware system. Because we

decided to make use of the Xilinx Zynq devices, as a

first attempt, three low-cost solutions have been

considered: RedPitaya [14], ZedBoard [15] and

Parallella [16]. RedPitaya is intended to be used as a

stand-alone system for handling digital and analog I/O

signals. This board hosts ready to use ADC and DAC

components and therefore could result best suited for

developing small self-contained applications, but for the

same reason it shows a reduced flexibility in respect of

the other two for the configuration of the I/O pins. The

other boards are intended to be hosted in a carrier board

and therefore mount no additional I/O devices. In

particular, Parallella is targeted towards computing

intensive applications and hosts an additional processor

with 16 cores.

Several other software components, all free of

charge, are required for developing a SoC application an

deploying it into the target board. First of all, it is

necessary to download from XILINX the Integrated

Development Environment (IDE) tool VIVADO for

HDL programming (Verilog and VHDL are the

supported languages). In order to be used on a specific

target, VIVADO requires a target-specific configuration,

provided by the board developer, which specifies how

the processor is configured in that particular board.

Currently only Red Pitaya configuration is managed in

the framework, but it is foreseen that configuration files

from Zed Board and Parallella will be included, adding

the choice of the target board in the configuration steps.

VIVADO provides a set of configurable Intellectual

Property (IP) components that carry out the connectivity

between the processor (dual core ARM Cortex A9 in the

Zynq chip mounted on Red Pitaya) and the FPGA

application. When no DMA is involved, communication

between the processor and the FPGA application is

carried out by a configurable number of 32 bit registers

and, optionally, one or more interrupt lines. When the

developer creates a new project for a FPGA application,

the IDE creates a set of IP components, carrying out the

handshaking with the internal bus (AXI bus) used to

exchange information between the processor and the

FPGA application. The IDE provides the definition of a

set of 32 bit signals that can be used by the FPGA

application for communication. In a typical use case,

such signals will represent the configuration to be

uploaded to the FPGA application, but they can be used

to exchange input and output data as well. After

developing the specific application, the IDE will

generate the binary code to be downloaded into the

FPGA. Other configurable IP components provided by

VIVADO allow the definition of up to two DMA

channels for FPGA applications handling data streaming.

The configuration of the interface, i.e. number of

shared registers, interrupt lines, and DMA channels must

also be reflected in the device memory map of the

processor. XILINX provides a github project hosting an

adapted version of Linux kernel 4.4 in a Debian

distribution. The project includes the toolchain for ARM

processor and the kernel sources and a tool for the

generation of the device-tree structure, used by Linux

Kernel 4.4 for device abstraction [17]. Basically, a

device-tree description provides information about the

connected devices including memory addresses and size

of the device registers. In this case, the device-tree

description will include the registers used to

communicate with the FPGA application. The specific

device-tree for the Zynq chip is generated from the

current VIVADO project by the Hardware Software

Interface component belonging to the XILINX system

development kit. The same component can generate

templates for Bare Metal implementation, Linux and

FreeRTOS. In particular the Linux driver template is

generated within the framework based on the selected

data transfer type (mapped registers and/or DMA).

Once Linux and the corresponding device-tree have

been built, the final step is the development, starting

from the generated template, of a Linux device driver

that will allow user programs interact with the FPGA

application. In the simplest configuration, a buffer in

user space is mapped against the sets of registers defined

in the FPGA application so that information is

exchanged by reading and writing that buffer.

From the above description, it is clear that building a

SoC system from scratch is not an easy task, despite the

availability in the web of all required tools. The

presented framework integrates all the above steps and

greatly simplifies the overall process. In particular, the

framework:

- Supervises he compilation of the toolchain and the

Linux kernel using the components taken from the

XILINX repository;

- Handles the management of the VIVADO project

and the required IP components for FPGA

integration;

- Supervises the construction of the device-tree

required for the proper mapping of the FPGA

registers into processor address space;

- Provides templates for the development of the

required Linux drivers.

Figure 1: steps in building a new system.

Using this framework, a SoC FPGA application can

be built from scratch by executing the general steps

described in Figure 1:

Figure 2: Blocks generated by the VIVADO tool in a SoC project.

As shown in the schema, the overall workflow can be

splitted in two main stages: the building of the board

system comprising the operating system kernel and

software, and the specific project building with the

definition of the logic and the software drivers that

compile against the built kernel. The same board system

can be shared among different specific projects and

many different projects can be also installed in the same

board. The reported steps depict a possible procedure

example through the development process a developer

would follow, that is:

1) Clone the framework from the github repository

at: [https://github.com/mildstone/anacleto]

2) boostrap command that will set-up the

environment and download all the required

components and tools;

3) configure to set-up the system before building

the toolchain and the Linux Kernel; this also

compiles and shows a graphical user interface

that eases the selection of the required options.

4) make to compile the toolchain and then the

Linux Kernel;

5) make new-project to start a new VIVADO

project for the development of the specific

FPGA components in VHDL or Verilog. All the

IP components required for SoC interface are

created and can now be configured using

VIVADO graphical interface;

6) make write-project once the logic has been

defined with external sources and VIVADO

project block designs, the whole project

definition can be stored in the repository in the

form of a script able to regenerate the project

from scratch, even using different versions of

VIVADO.

7) At this point the FPGA application can be

developed. It is also necessary to write the Linux

driver for communication and a skeleton Linux

driver source file is generated by the framework,

based on the current configuration of the

interface IP components. Then make starts both

the logic synthesis and the compilation of

software components.

8) make deploy to generate the device-tree,

compile the Kernel module, download the kernel

and the bitstream into the target device.

Figure 2 shows the blocks generated by the VIVADO

tool when a new SoC project is created. The top left

block defines the processor; the bottom left block defines

reset logic and the block in the middle defines the bus

logic. The top right block hosts specific FPGA firmware

(the timing device in this case) and it is connected to the

bus logic block via the AXI bus. Other modules can be

defined as well, all connected to the same AXI bus.

These modules can then be adapted to connect the

interface registers to the specific FPGA firmware.

3. Implemented and foreseen applications

The presented framework has been used to develop a

general purpose timing device to be used in Wendelstein

7-X diagnostics. The timing device is implemented in a

Red Pitaya board and defines two digital outputs to

generate clock and gate signals, and two digital inputs to

receive a synchronizing 10 MHz clock and a trigger

signal. The board is configured via software to generate

a pre-programmed timing sequence after the system has

been armed and a trigger input signal has been received.

The timing sequence is communicated via TCP/IP to the

ARM processor hosted in the Zynq chip of the Red

Pitaya board. In this case a set of registers have been

defined as interface between the processor and the FPGA

application, without using interrupt lines. All registers

except one are used to specify the time sequence. The

remaining register is used as command register to arm

and disarm the board. Not considering the time required

for developing the FPGA application written in VHDL

the creation of the new project, the adaption of the driver

from the template and the deploy required less than one

working day.

The same github repository used to host the

framework components has been used to host the timing

board project and it is foreseen that all the new

developed projects will be hosted there.

We are currently considering the usage of Zed Board

for developing a new fast ADC to be used to acquire

electromagnetic probes in the upgrade of the RFX-mod

experiment currently in construction at Consorzio RFX

[18]. In this experiment a large (~1000) number of

electromagnetic signals is foreseen, where a configurable

subset will be used for real-time control. All the acquired

signals will be stored at full speed (up to 1 MHz) during

the pulse in RAM memory and will be read after the

discharge, using the traditional transient recorder

organization (RFX-mod carries out short duration

discharges), but at the same time a subsampled version

of the signal will be made available for real-time control.

For this purpose, 16 channels from a fast and insulated

ADC, already used for vertical stabilization at JET [19],

will be connected to the digital inputs of the SoC board.

Each ADC channel will provide a 50 MHz signal

carrying the serialized bits of every sample (ADC

conversion is performed at 18 bits). The FPGA firmware

will de-serialize the input channel, send the samples to

RAM via a DMA channel, perform digital filtering for

subsampling, and send subsampled data at 10 kHz via

the second DMA link to the processor that will send

samples via UDP to the real-time control system.

4. Conclusions

The SoC architecture proved to be effective in

removing the “knowledge barrier” that prevents FPGA

development in several fusion laboratories, especially

when FPGA solutions are not strictly required to achieve

requirements. The applicability of the SoC architecture

has been further improved by the presented framework,

hiding to the developer several intermediate steps and

exposing only the necessary information for the proper

system configuration. The presented framework however

leaves to the developer the whole responsibility of the

FPGA firmware development, a task that requires

ingenuity and experience. There are however several

applications of interest in fusion that don’t require

sophisticated FPGA firmware, as it has been the case of

the presented timing board. This class of applications is

likely to benefit from SoC architecture, especially when

the set of required tools and configurations is

transparently managed by a tool like the one presented

here.

Another promising field of applications for SoC

architectures is the possibility of moving critical

computation into FPGA, leaving software to supervise

the overall management of computation. This approach

is already exploited in the RIO architecture for

LabVIEW applications and may lead to extremely

performing real-time systems that retain the flexibility of

computer-based solutions, but allow moving time critical

inner loops into FPGA firmware.

References

[1] R. C. Pereira et al. “Pulse Analysis for Gamma-Ray

Diagnostics ATCA Sub-Systems of JET Tokamak” IEEE

Trans. Nucl. Sci , 58, 4 (2011), pp. 1531 - 1537.

[2] S. Hernandez-Montero, J. A. Lopez, M. Sanchez, L.

Esteban “Real Time FPGA-Based Crosstalk Elimination

for Multichannel Interferometry Systems in Fusion

Diagnostics” Real Time Conference (RT), 2012 18th

IEEE-NPSS.

[3] National instruments, Compact RIO platform

http://www.ni.com/compactrio/

[4] L. Giannone, M. Cerna, R. H. Cole, D. Schmidt “Data

acquisition and real-time signal processing of plasma

diagnostics on ASDEX Upgrade using LabVIEW RT”

Fus. Eng. Des. 85, 3, pp. 303-307

[5] M. Ruiz, J. Vega, G. Ratta, E. Barrera, A. Murari, J. M.

López, G. Arcas, R. Meléndez “Real Time Plasma

Disruptions Detection in JET Implemented with the

ITMS Platform Using FPGA Based IDAQ” IEEE Trans.

Nucl. Sci , 58, 4 (2011), pp. 1576 - 1581.

[6] XILINX all Programmable SoC with Hardware and

Software Programmability:

https://www.xilinx.com/products/silicon-

devices/soc/zynq-7000.html

[7] Razvan Nane et al. “A Survey and Evaluation of FPGA

High-Level Synthesis Tools”, IEEE Trans. Comp., 55, 10

(2015), pp 1591 - 1604

[8] XILINX: Cloud Acceleration for RTL, C/C++, and

OpenCL: https://www.xilinx.com/products/design-

tools/software-zone/sdaccel.html

[9] J. Schacht, J. Skodzik, and the CoDaC Team

“Multifunction-Timing Card lTTEV2 for CoDaC Systems

of Wendelstein 7-X”, IEEE Trans. Nucl. Sci , 62, 3 (2015),

pp. 1187-1194

[10] DIO4 timing generator/digital I/O module:

http://www.incaacomputers.com/products/by-

function/digital-io/dio4/

[11] C. Taliercio, A. Luchetta, G.Manduchi, A. Rigoni

“Distributed continuous event – based data acquisition

using IEEE 1588 synchronization and FlexRIO FPGA””

IEEE Trans. Nucl. Sci , , 64, 7 (2017)

[12] T.J. Maceina, G. Manduchi “Assessment of General

Purpose GPU Systems in Real-Time Control”, IEEE Trans.

Nucl. Sci, 64, 6 (2017)

[13] GNU AutoConf Introduction:

http://www.gnu.org/software/autoconf/autoconf.html

[14] RedPitaya home page: https://redpitaya.com/

[15] ZedBoard home page: http://zedboard.org/

[16] Parallella home page: https://www.parallella.org/

[17] Device Tree specification: https://www.devicetree.org/

[18] M.E. Puiatti et al “Extended scenarios opened by the

upgrades of the RFX-mod experiment” 26th IAEA

Fusion Energy Conference (2016)

[19] A. Batista, A. Neto, M. Correia, A.M. Fernandes, B.

Carvalho “ATCA Control System Hardware for the Plasma

Vertical Stabilization in the JET Tokamak” IEEE Trans.

Nucl. Sci , 57, 2 (2010), pp. 583 - 588.

