
_______________________________________________________________________________ 
author’s email: simon.dumke@ipp.mpg.de 

Next generation web based live data monitoring for W7-X 

Simon Dumke, Heike Riemann, Torsten Bluhm, Robil Daher, Michael Grahl, Martin Grün, Andreas 

Holtz, Jon Krom, Georg Kühner, Heike Laqua, Marc Lewerentz, Anett Spring, Andreas Werner and 

the W7-X team 

 
Max-Planck-Institut für Plasmaphysik, Teilinstitut Greifswald, Wendelsteinstraße 1, 17491 Greifswald, Germany 

 
The Wendelstein 7-X stellarator experiment by its nature has the need for continuous live data monitoring. New 

technical and security related requirements make a redesign of the monitoring architecture, originating in the first 

years of the century, necessary. Besides that, new developments in technologies, user interfaces and generally IT 

supported work flows, generate new expectations at the system user level, including live remote participation.  

To answer these upcoming demands, the CoDaC team at Wendelstein 7-X has designed a new architecture for 

monitoring data management, distribution and observation. As a very flexible user interface, a client web 

application was developed, utilizing modern technologies like WebSockets and WebGL for high performance live 

data visualization. A touch friendly interface design offers both broad support for new access tools (like tablets, 

smart phones, smart TV sets) and a very flexible and intuitive work flow. 

 

This paper describes the new MonA-LISA monitoring architecture and gives a short overview over the options 

provided by the web based monitoring client.  

 

Keywords: Wendelstein 7-X, continuous operation, remote participation, user tools, online data monitoring, 
CoDaC, Web technologies 

 

1. Introduction 

The Wendelstein 7-X experimental stellarator differs 

from most other fusion experiments in one respect: 

Instead of relatively short pulses for which measured 

data can be stored locally during the experiment, then 

collected centrally and analyzed afterwards, W7-X aims 

for steady state operation and already works with 

multiple discharges preconfigured as one experiment 

program with a duration of up to 10 minutes. This results 

in many special project requirements – one of them 

being continuous monitoring of experimental 

measurement data as well as operational machine data. 

Handling both kinds with one single tool and supporting 

life visualization even of 24/7 data signals reliefs 

scientific experimenters as well as responsible personnel 

from the obligation to work blindly during the 

experiment run. But on the other hand, this requires 

monitoring data to be immediately1 and continuously 
distributed over computer networks for inspection  

1.1 Requirements 

During a live data monitoring session, the group of 

end users is quite varying in respect to numbers of 

clients, diversity and numbers of monitored data signals 

as well as use cases and usage environments. Combined 

with an ever growing number of targeted client tool 

platforms from desktop computers and various mobile 

devices to large-scale control room video wall 

installations, the need arises for a next generation 

network-based, platform independent data monitoring 

                                                   
1 Requirements demand for them to reach the monitoring screen within 
100 milliseconds (where technically possible). 

architecture. The resulting system has to be reliable2, 

highly scalable (for future long term experiments even 

during a measurement session), light and unobtrusive on 

the network infrastructure and to offer users a maximum 

of flexibility in usage and platform support. In addition, 

international cooperation brings the requirement for 

remote participation capabilities. 

1.2 Definition of Signals 

A signal (see also [21]) in the context of this paper is 

a stream of data that provides one data sample per time 

stamp. A sample can be a scalar value (time series signal 

like the current through a specific coil), a vector of scalar 

values (e.g. a spectral energy distribution), or even a 

multi-dimensional matrix of values. For special kinds of 

signals a sample might also be an image (video signal 

like the images from a video camera), a text string 

(textual message signal like Xcontrol's current program 

name [12] or a log message) or even data-less events3. 

2. Related Work 

Live monitoring of measurement data is not yet a 

heavily active field in fusion research, because most 

experiments are presently working with short plasma 

pulses (shots), during which measurements are recorded 

and reviewed and analyzed afterwards. 

2.1 Monitoring at W7-X 

At W7-X, the goal of continuous operation has from 

the beginning been kept foremost in the minds of the 

system architects and CoDaC researchers [1][2][3][4]. 

                                                   
2 Reliable in the sense of getting back up to running conditions after a 
(unlikely) full drop out within 10 minutes. 
3 Event signals like the start of a new Xcontrol program segment, 
where the time stamp itself is the relevant information 



 

This also led to much research and development in the 

field of online data monitoring [5], driven by a 

sophisticated requirements analysis [6]. 

Specifically, Hennig et al. described “A concept of 

online monitoring for the Wendelstein 7-X experiment” 

in 2004 [7], thereby laying the base for years of research, 

work, usage and studies, culminating in the new W7-X 

monitoring architecture described herein. Most concepts 

and analysis from that time are still valid and have 

heavily influenced this current work, although the whole 

system has evolved over the years. The most profound 

differences from this early design are (or are caused by) 

the necessary drop of the UDP multicast reliance and the 

technological step forward to modern web technologies 

on the client side.4 

2.2 Other Applications of Online Data Monitoring 

While data monitoring is not yet a hot topic in fusion 

research, other fields of science and business do handle 

similar requirements and demands with similar solutions. 

Konno et al. [8], designed their monitoring system 

for the Double Chooz reactor neutrino experiment 

(presented at CHET2010). Their goal was the creation of 

a general software framework for online data 

monitoring, although they were limited to a very specific 

kind of data (histogram data in this case). The system 

they came up with has many similarities with the new 

W7-X monitoring architecture described in this paper, 

although it can neither handle the flexible data types 

needed within the W7-X project nor offer the required 

scalability because of its reliance on a single server for 

data collection and distribution. 

In times of growing process and home automation, 

online data monitoring is also a topic heavily discussed 

outside the purely scientific world [9], and many tools 

and libraries exist to assist in the process of 

implementing an online data monitoring system [10]. 

3. MonA-LISA Architecture 

To meet the demands and requirements of the 

Wendelstein 7-X stellarator fusion project, the Control, 

Data Acquisition and Communication (CoDaC) group at 

W7-X developed and implemented the new data 

monitoring architecture MonA-LISA described in this 

paper, comprising four primary components:  

 Distributed acquisition: A specialized data source 
component for the on-site data acquisition 

framework 

 Flexible distribution: A runtime-scalable, stackable 
network of data multiplexers, managing client 

subscriptions 

 Centralized knowledge: A central repository of 

knowledge about all available data signals 

 Comfortable access: A highly flexible client web 
application allowing subscription and visualization 

of measured data signals, events, experiment 

progress etc. 

                                                   
4 Web technologies were chosen for their platform independency, their 
broad support and their probability of broad and long term availability. 

3.1 Context 

The MonA-LISA architecture is embedded into the 

existing CoDaC environment at W7-X. The scope of the 
architecture begins at the point where monitoring data 

comes in and ends with the visual delivery to the client 

user’s screen. As opposed to previous definitions [7], 

this scope does not include any data analysis features 

(producing derived data from measured inputs) anymore. 

Instead, this functionality is now provided by the 

CoDaStation framework [13] and the W7-X Online 

Analysis framework (see Fig. 1). The architectures data 

source (MonA, see 3.2) is therefore integrated into a 

CoDaStation, which supplies the data to finally be 

visualized for the user. 

 
Fig. 1 - Data Analysis within the CoDaStation Framework 

Information about the available data signals resides 

within the configuration database [14]. This information 

is (more or less) static, as it reflects the current state of 

the W7-X machine. From it, the MonA-LISA 
architecture derives its knowledge about those signals. 

Most diagnostic systems do only supply live data 

during the experiment run, or even only for a small 

portion of it. This non-static information is derived on 

the fly by the components of the MonA-LISA 

architecture themselves. 

3.2 Architecture Overview 

The MonA-LISA architecture consists of four 
primary components (Fig. 2):  

 
Fig. 2 - Components of the MonA-LISA Architecture 

MonA (Monitoring Add-on) is a CoDaStation add-
on for the acquisition of monitoring data in the 

CoDaStation environment. When provided with data by 

the CoDaStation infrastructure, MonA re-formats those 

data, splits them into signals5 and packages those data 

for transfer to a preconfigured LISA. 

LISA (Local Information Stream Accumulator) is a 

light weight data stream multiplexer and subscription 
handler for signal data produced by MonA(s) and asked 

                                                   
5 SignalConsumers in the CoDaStation world really do consume groups 
of signals (often referred to as streams in reference to the analogous 
ArchiveDB concept) 



 

for by DAVInCI(s). When a MonA connects to a LISA 

via TCP and offers monitoring data for a specific signal, 

LISA registers itself with CatERInA as a source for the 

specific signal. Clients (like DAVInCIs) looking for that 

signal will then find the LISA in the central data base 

(CatERInA), connect to it and subscribe the signal. 

All data packets LISA receives from a MonA are 

forwarded immediately and unchanged to all subscribing 

clients. MonA and LISA are working together following 

a Producer Consumer Pattern [15]. 

CatERInA (Catalog for Exchange and Relay of 

Information Availability) is the central information 

repository in the MonA-LISA network. It offers and 

maintains a list of all signals that are (possibly) available 

for monitoring through the MonA-LISA network. LISAs 

supply information about the signals that can be 

subscribed from them to CatERInA. The W7-X 

configuration database acts as a background information 

source for CatERInA, which regularly updates the list of 

all possibly existing signals. 

DAVInCI (Data Access, Visualization and 

Information Client Interface) is the web and browser 

based user interface to the MonA-LISA network. It 

offers the user options to select and visualize an arbitrary 

number of signals from the list of all available 

monitoring data. To achieve this, DAVInCI interacts 

with LISA and CatERInA following the Publisher 

Subscriber Pattern [11]: DAVInCI handles the un-/ 

subscription and reception of the signals’ data from the 

MonA-LISA network (more precisely, from the 

corresponding LISAs) and regularly asks CatERInA6 for 

an update of the signals and sources list. 

3.3 LISA as the core of flexibility 

The core of the MonA-LISA architecture’s flexibility 

that makes it lightweight, scalable and adaptable is 

LISA, the general purpose monitoring data multiplexer. 

In a straight forward and simple deployment set, one 

or multiple MonAs would deliver all their monitoring 

data to a single LISA instance, which would than 

distribute them to all interested parties (Fig. 3). 

 
Fig. 3 - A single LISA 

In a more demanding environment (with lots of data, 
many clients etc.), multiple LISA instances can be 

deployed to each handle a subset of all available data 

streams to distribute the load among them. In that 

scenario, each specific signal will be available through  

                                                   
6 CatERInA (being web server, the single-source-of-truth in the MonA-
LISA network and a must-be-known for all clients) also acts as a web 
server for the static files of the web based DAVInCI client application. 

one specific LISA7 while each LISA can be responsible 

for an arbitrary number of signals (Fig. 4). 

 
Fig. 4 - LISA with siblings 

If such siblings are not enough to handle the load 
(e.g. one high bandwidth signal like a video stream is 

subscribed by a great many clients), LISA can also be 

stacked (or get child nodes): A stacked LISA subscribes 

one signal (or multiple signals, or all) from its parent 

LISA and thereby becomes a source for that signal itself. 

This means, it informs CatERInA that it can offer data 

for that signal, accepts client subscriptions for it and 

forwards all data packets from its parent to the registered 

subscribers. A fully deployed MonA-LISA in the W7-X 

environment is depicted in Fig. 5. 

 
Fig. 5 - MonA-LISA – fully deployed at W7-X 

By repeatedly applying the orthogonal concepts of 
stacked and sibling LISAs, very complex and flexible 

networks can be created. 

The stacked LISA functionality can also be used to 

deploy domain specific LISAs. An example for this use 

case is remote participation via the W7-X extranet. A 

LISA process running on a computer within the extranet 

can subscribe all (relevant) signals from the primary 

LISA instances and offers its services via CatERInA. 

Extranet clients are then allowed to access the web 

server on CatERInA (e.g. via reverse proxy server) and 

the domain specific LISA. All signal subscriptions from 
within the extranet will then be handled by this single 

LISA8, removing the remote participation load from the 

internal systems9. 

                                                   
7 CatERInA collects the information about which LISA distributes 
which signals and makes this knowledge available to clients 
8 The extranet-LISA is not reachable by internal clients and is therefore 

ignored as a potential data source.  In the same manner, extranet clients 
can solely reach that LISA. 
9 More precisely, limiting the load to that generated by one local client. 



 

4. Implementation and operation 

In accordance with established W7-X CoDaC 

procedures, the infrastructure components MonA, LISA 

and CatERInA are implemented using the Java 

programming language. While MonA (as a CoDaStation 

Add-On) has to be Java anyway, for LISA and 

CatERInA the same language was chosen in order to get 

maximum advantage of the CoDaC tool chain [20].  

Since this approach introduces some risk of reduced 

system performance, the overall system load (focused at 

the multiplexer node LISA) is minimized by making 

LISA as thin an interface layer as possible10 and through 

the heavy use of performance optimized asynchronous 

I/O via the Netty networking framework [16]. 

This leaves a single heavy duty module within the 

MonA-LISA system: The data visualization part of the 

DAVInCI client. 

4.1 DAVInCI – web client design considerations 

In order to achieve a maximum of flexibility in target 

device and platform support and a reduced complexity in 

the software deployment, the DAVInCI client of the 

MonA-LISA architecture was designed as a browser-

based web application. This point took heavy influence 

into two main decision points of the implementation: 

4.1.1 Data distribution technology 

Excluding the historically important possibility of 

HTTP long polling [17]11, two technological possibilities 

for the reception of asynchronous or streaming data are 

supported in current web browsers: WebSockets[18] and 

WebRTC[19].  

While WebSockets are an extension of the traditional 

HTTP protocol aiming to support bidirectional, stream 

oriented binary or textual data communication between 

web server and client, WebRTC is a new technology 

with the purpose to allow direct peer-to-peer 

communication between web application instances (each 

running inside a web browser on any internet connected 

device). 

WebRTC's orientation for real time data streaming, 

as well as its flexibility in terms of stream/message 

orientation and reliability make the technology a 

seemingly optimal candidate for the task. But further 

research into this field reveals two critical points 

standing against it, and finally tips the scale towards 

WebSockets: 

 Immaturity: WebRTC is not yet fully standardized, 
browser support is lacking and “server side” 

                                                   
10 LISA only inspects the first 12 bytes of each incoming data packet, 
makes some basic checks, dissects the signal ID from there and 
immediately forwards the untouched data packet to all subscribers. 

MonA-LISA can deliver data from source (MonA)  to sink (DAVInCI) 
within a measured average of 1.4 msec. Additional latency will be 
introduced by the data acquisition before reaching MonA and by the 
screen update rate of the browser/WebGL implementation after 
reaching DAVInCI. 
11 Long polling is regarded by many as a conceptual breach of the http 

design principles used to support asynchronous interrupt or streaming 
data with a technology that did not originally include such support. For 
this reason, its use is generally discouraged. 

software implementations/libraries outside the 

browser world are very few and limited. 

 Complexity: The WebRTC stack targets browser-
to-browser P2P communication and therefore also 

handles fields like NAT12 traversal, signaling etc. 

These features are all unnecessary inside the MonA-

LISA architecture but introduce a lot of complexity 

in both implementation and application. 

In order to keep the option to switch to WebRTC (or 

any other future alternative technology) when maturity 

and library support have grown, the application layer 

protocol used for MonA-LISA has been designed as self 

containing, message oriented, binary and carrier 

independent, and the system as a whole was created with 

a focus on modularity and extensibility. 

4.1.2 Data visualization framework 

The most important part of the online data 

monitoring system (besides the distribution of 

monitoring data) is the visualization of data. To realize 

this inside a web browser environment, two and a half 

technologies are generally referred: 

 Scalable Vector Graphics (SVG) [22] is a XML-
based open markup language format for vector 

graphics. It has strong support throughout modern 

web browsers and can be freely created, modified 

and formatted from JavaScript using the established 

Document Object Model (DOM) [23] API. The 

specific task of rendering high quality plot graphs 

using this technique has already been implemented 

by many groups as diverse open source and/or 

commercial JavaScript libraries like D3.js [24], 

Chartist [25], Plotly.js [26]13 and many more. 

 The HTML5 Canvas Element describes a DOM 
element type and a powerful JavaScript API that 

allow the dynamic generation of raster-based 

images14. In short, it allows scripted painting of 

primitives (like lines, curves, circles, texts etc.) on a 

rectangular area inside a browser window. As with 

SVG, many ready-made solutions exist to support 

the rendering of beautiful data plots of innumerable 

kinds, e.g. Chart.js [27] and Flot [28]. 

 For high performance applications, modern 
browsers also support WebGL, an Open GL ES 2.0 

based extension for the HTML5 Canvas15 element 

that allows heavily hardware accelerated graphics to 

be generated and manipulated through JavaScript. 

Using this technology would allow to offload most 

of the heavy lifting of a fluent live data visualization 

to the distributed computing capability of modern 

graphics cards. On the other hand, library support 

for data plot rendering with WebGL is poor, so a 

full low level implementation would be necessary. 

                                                   
12 Network address translation (NAT) is a method of remapping one IP 
address space into another by modifying network address information 
in Internet Protocol (IP) datagram packet headers while they are in 
transit across a traffic routing device. [29] 
13 Plotly.js is based on D3.js. 
14 Often referred to as „pixel graphics“ 
15 Therefore, this is only considered half of a different technology 



 

Intense testing with different JavaScript plotting 

libraries using SVG and classic Canvas painting as well 

as custom tailored WebGL rendering led to the 

conclusion that: 

 The two former methods do produce optically great 

results and offer strong library support. The latter 

has very limited (plotting-related) library support 

and does not look quite as good as with the 

alternative approaches. 

 WebGL does, however, offer such a significant 
performance advantage when rendering large 

volumes of both scalar and profile data (see 4.2) that 

it turned out to be the only viable option for the 

interactive plotting system for MonA-LISA. 

 A low level implementation being necessary for 
WebGL usage anyway, some smart data modeling 

in the MonA-LISA architecture and data flow can 

make use of the low level flexibility to allow high 

grades of performance optimization16. 

4.2 DAVInCI – monitoring client with modern user 

experience 

At the time of this writing, the DAVInCI web client 

implementation fully supports online visualization of: 

 Scalar signals (one value per time stamp, e.g. 
temperature development over time, see Fig. 6 a) 

 Profile signals (one set of multiple values per time 
stamp, e.g. a spectral distribution; different view 

types, see Fig. 6 b)  

 Textual signals (one textual value, long or short, 

reflecting a present state, e.g. the name or 

description of the experiment program currently 

running, see Fig. 6 c) 

 Video signals (e.g. an image reflecting the current 
state of a W7-X component, see Fig. 6 d) 

The modern, touch screen ready user interface allows 

the user to place (using drag and drop techniques) any 

number of signal plots on his screen (Fig. 7 a), to move 

and resize them to accommodate his needs (Fig. 7 b) and 

to add signals for monitoring by dragging them from a 
list of available signals onto those plots (Fig. 7 c). 

A global menu (see Fig. 7 a) and context menu (Fig. 

7 d) offer a selection of global as well as plot- and plot-

type-specific options like applying themes for printing or 

large displays, time scaling (1 second to 24 hours), 

                                                   
16 Testing and analysis revealed a significant amount of computational 
power needed purely for data transcription for different ready-made 
plotting libraries. 

logarithmic scaling of the ordinate axis, different heat 

map color encodings for profile plots (see Fig. 6 b) etc. 

     

   
Fig. 7. DAVInCI – Drag & Drop & Interaction 

When the user leaves the web application, closes the 

web browser etc. his current settings17 (called a preset) 

are stored in the browsers profile and restored on his 

return. There is also a set of project-wide general 

purpose presets available from the menu, and the user 
can always save a current state as a file and later load it 

back into a new DAVInCI session18. 

Since the technical works on the W7-X extranet have 

been completed, the MonA-LISA architecture (with the 

DAVInCI web client) also offers life data monitoring via 

that extranet to all members of the W7-X team at:  

 http://datamonitor.ipp-hgw.mpg.de19 

 

5. Conclusions 

Based on the MonA-LISA architecture presented in 

this paper, the DAVInCI web client was realized to 

enable high performance real time data monitoring using 

a modern and intuitive user interface. The existing 

implementation offers plotting options for scalar as well 

as vectorial profile data (2D and 3D plots), textual event 

visualization, experiment progress display and video 

monitoring. The flexibility of the LISA data distribution 

leaves room for many other signal types like 2d Poincare 

plots, 3D machine and plasma visualization etc. 

                                                   
17The settings include the static plot layout/arrangement and signal 
assignment, but no fluent signal data. 
18 The new session can also be on a different computer, e.g. after the 
preset file has been mailed to a colleague. 
19 The link is not publicly available via internet; for extranet access, 
one needs a W7-X team enrollment and sign a software security policy. 

a) 

a) b) 

c) 
d) 

Fig. 6 - DAVInCI – examples of plot types 



 

Inside the IPP, the new system was successfully used 

during OP 1.2a for data monitoring purposes from the 

central W7-X HiperWall (see Fig. 8) as well as control 

room workstations, offices and labs. Up to 50 concurrent 

DAVInCI clients subscribed over 100 different signals, 

with the Xcontrol program progress ([3]; state of the 

running experiment program) and the video stream from 

inside the plasma vessel attracting the most attention. 

Before the beginning of the W7-X operational phase 

OP 1.2a, the MonA-LISA architecture has been fully 

deployed using a single LISA instance. As expected, 

with more and more diagnostic systems supplying data 

during the operational phase, the load on LISA rose 

significantly, so a sibling was set up on a second server 

and the signals split up onto those two machines. 

When W7-X extranet came up in September 2017, a 

domain-specific LISA was stacked above those two. 

Remote participation partners from EUROfusion, PPPL, 

ITER etc. where thereby enabled to follow the 

experiments from outside Greifswald, insulated from the 

internal productive system. With more increase in signal 

load, more siblings and stacked LISAs in both domains 

will be introduced as necessary20. 

6. Acknowledgments 

The authors would like to thank all those unnamed 

(current and former) members of W7-X CoDaC and the 

W7-X Team who have contributed to the monitoring 

architecture and/or to the whole W7-X Data Acquisition 

Framework which gives us things to monitor! 

This work has been carried out within the framework 

of the EUROfusion Consortium and has received funding 

from the Euratom research and training programme 

2014-2018 under grant agreement No 633053. The views 

and opinions expressed herein do not necessarily reflect 

those of the European Commission. 

7. References 

[1] H.-S. Bosch et al.; “Construction of Wendelstein 7-X – 
Engineering a Steady-State Stellarator” - IEEE Transactions on 
Plasma Science 38 (3), 265-273 (2010). DoI: 

10.1109/TPS.2009.2036918 
[2] Ch. Hennig et al.; “Continuous data acquisition with online 

analysis for the Wendelstein 7-X magnetic diagnostics” - Fusion 
Engineering and Design 83 (2008) 321–325 

[3] A. Werner et al.; “Cutting edge concepts for control and data 
acquisition for Wendelstein 7-X” - 10.1109/SOFE.2013.6635430  

[4] T. Bluhm et al.; “Data access and its implementation at 

Wendelstein 7-X” - Fusion Engineering and Design 83 (2008) 
387–392 

[5] Frank Engel; “Architektur für ein Hochleistungs-Monitoring-
System in der Fusionsforschung” – Master Thesis – FH Strahlsund 
– 2012 

                                                   
20 This is done manually; automated scalability of the network is a 
topic for future work 

[6] G. Kühner et al.; “System Requirements - VR-Project: Monitoring 
System“ – Internal RqA IPP Greifswald - 2016 

[7] Ch. Hennig et al.; “A concept of online monitoring for the 

Wendelstein 7-X experiment” - Fusion Engineering and Design 
Volume 71, Issues 1–4, June 2004, Pages 107–110 

[8] Tomoyuki Konno et al.; “Online Data Monitoring Framework 
Based on Histogram Packaging in Network Distributed Data 
Acquisition Systems” – CHEP2010 -
http://www5.dchooz.org/DocDB/0019/001902/001/chep_online_m

onitor.pdf 
[9] Elegato Systems GmbH – Elegato Eve - 

https://itunes.apple.com/us/app/elgato-eve/id917695792?mt=8, 
accessed on 2017-04-03 

[10] Marek Otáhal, Olga Štěpánková; “New Tool for Visualization of 
Time Series and Anomalies in Streaming Data” - Acta Univ. Agric. 

Silvic. Mendelianae Brun. 2016 - DoI: 
10.11118/actaun.2016.64041353P. Eugster et al., The Many Faces 
of Publish/Subscribe, ACM Computing Surveys, Vol. 35, No.2, 
June 2003. 

[11] P. Eugster et al.; “The Many Faces of Publish/Subscribe” - ACM 
Computing Surveys, Vol. 35, No.2, June 2003. 

[12] A. Spring et al.; “Establishing the Wendelstein 7-X steady state 
plasma control and data acquisition system during the first 
operation phase” – Fusion Eng. Des. (2017), 
http://dx.doi.org/10.1016/j.fusengdes.2017.03.127 

[13] T. Bluhm et al., Wendelstein 7-X's CoDaStation: A modular 
application for scientific data acquisition, Fusion Engineering and 

Design 89 (2014) 658-662. 
[14] G. Kühner et al.; “Editor for system configuration and 

experiment program specification” - Fusion Engineering and 
Design 71 (2004) 225–230 

[15] M. Grand; “Patterns in Java — Volume 1”, John Wiley & Sons, 
Inc, 1998 

[16] The Netty project – http://netty.io – accessed on 2016-09-14 
[17] S. Loreto et al.; “Known Issues and Best Practices for the Use of 

Long Polling and Streaming in Bidirectional HTTP” - RFC6202 – 
April 2011 

[18] I. Fette et al.; “The WebSocket Protocol” - RFC6455 – 12.2011 
[19] W3C WebRTC Working Group; “WebRTC 1.0: Real-time 

Communication Between Browsers” – Current Version 
https://www.w3.org/TR/2017/WD-webrtc-20170605/ - 2017-06-05 

[20] G. Kühner et al.; “Progress on standardization and automation in 
software development on W7X” - Fusion Engineering and 
Design 87 (2012) 2232–2237 

[21] J.G. Krom; “Some Ideas about a Storage-Technology-

Independent data-access API for the W7X data-archive: The 
‘Signal Based Access’ API” – 2012-03-19 – W7-X CoDaC 
internal paper 

[22] J. Bowler et al.; “Scalable Vector Graphics (SVG) 1.0 
Specification” – http://www.w3.org/TR/2001/REC-SVG-
20010904/ – accessed 2017-03-24 

[23] J. Robie; “What is the Document Object Model?” – 
https://www.w3.org/TR/WD-DOM/ – accessed 2017-01-13 

[24] M. Bostock et al.; “Data Driven Documents” – https://d3js.org – 
accessed 2016-11-07 

[25] G. Kunz et al.; “Chartist.js – Simple Responsive Charts” –
https://gionkunz.github.io/chartist-js/ – accessed 2016-11-09 

[26] A. C. Johnson et al.; “plotly.js – The open source JavaScript 

graphing library that powers Plotly” – https://plot.ly/javascript/ – 
accessed 2016-11-04 

[27] N. Downie et al.; “Chart.js – Simple yet flexible JavaScript 
charting for designers & developers” – http://www.chartjs.org – 
accessed 2016-11-14 

[28] O. Laursen et al.; “Flot – Attractive JavaScript plotting for jQuery” 

– http://www.flotcharts.org – accessed 2016-11-03 
[29] Javvin Technologies Inc.; “Network Protocols Handbook (2 ed.)” - 

ISBN 9780974094526 - 2005 

Fig. 8. DAVInCI in the W7-X control room 


