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The gyrokinetic stability of electron-positron plasmas contaminated by ion (proton)
admixture is studied in slab geometry. The appropriate dispersion relation is derived and
solved. Stable K-modes, the universal instability, the ion-temperature-gradient driven
instability, the electron-temperature-gradient driven instability, and the shear Alfvén
wave are considered. It is found that the contaminated plasma remains stable if the
contamination degree is below some threshold and that the shear Alfvén wave can be
present in a contaminated plasma in cases where it is absent without ion contamination.

1. Introduction

The prospects of creating electron-positron pair plasmas magnetically confined in
dipole or stellarator geometries have been discussed since early 2000’s (Pedersen et al.

2003, 2012). In near future, the first experiment aiming at this goal will be constructed
(Saitoh et al. 2015). It is planned to confine electron-positron plasmas in a cylindrical
ca. 20 litre vacuum vessel with a levitated coil. The electrons are to be injected with
an electron gun and the positrons will be supplied from the research neutron source at
the Technical University of Munich. One expects the following plasma parameters: the
plasma density in the range 1010m−3 < n < 1012m−3, the temperature in the range
1eV < T < 10eV, the Debye length λD =

√

ǫ0T/(2ne2) < 10−2 m, and the gyroradius
ρ ≪ λD. Recently, efficient injection and trapping of a cold positron beam in a dipole
magnetic field configuration has been demonstrated by Saitoh et al. (2015). This result
is a key step towards the ultimate aim of creating and studying of the first man-made
magnetically-confined pair plasma in the laboratory.
It has been shown by Helander (2014) that pair plasmas possess unique gyrokinetic

stability properties thanks to the mass symmetry between the particle species. For
example, drift instabilities are completely absent in straight unsheared geometry, e. g. in
a slab. They can be destabilised only in the presence of magnetic curvature in more
complicated confining fields. Helander & Connor (2016) found that this result persists also
in the electromagnetic regime. But, what happens if the perfect mass symmetry between
the positively charged particles (positrons) and the negatively charged ones (electrons) is
broken? This can happen if some fraction of ions (e. g. protons) is introduced into the pair
plasma, which probably will be the case in experiments since the pumping and vacuum
systems are never completely perfect. Then one could expect that the drift instabilities
will reappear.
In this paper, we address the effect of proton contamination on the gyrokinetic stability

of pair plasmas. We find that drift instabilities can indeed appear in contaminated pair
plasmas if the proton fraction exceeds some threshold. Also, we find that the shear
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K-modes (ion type) stable electrostatic

K-modes (electron type) stable electrostatic

universal instability density gradient electrostatic

ITG instability ion temperature gradient electrostatic

ETG instability electron temperature gradient electrostatic

Shear Alfvén waves stable electromagnetic

Table 1. Gyrokinetic modes in slab geometry. The mode name appears in the first column. The
second column indicates if the mode is stable or not. For unstable modes, the destabilising
gradient is written. The third column indicates if the mode requires an electromagnetic
component to exist or if the electrostatic perturbation is sufficient. In pure pair plasmas, only
K-modes of the electron type exist. Other modes require some degree of proton contamination.

Alfvén wave is present in contaminated plasma even if the ion contamination is small.
Its frequency, however, increases rapidly when the ion fraction becomes negligible.
The structure of the paper is as follows. In §2, the general electromagnetic dispersion

relation is derived. It describes slab gyrokinetic stability in plasmas with an arbitrary
number of species, although we consider only three species in this work. Solutions of
this dispersion relation can be classified with respect to the driving gradient, stability
and nature of the perturbations (electrostatic or electromagnetic). A brief summary of
the modes existing in a shearless slab is given in Table 1. In §3, the stable part of the
gyrokinetic spectrum (K-modes) is addressed. In §4, §5 and §6, drift instabilities in three-
component plasmas are considered. In §7, the shear Alfvén wave in electron-positron-ion
plasmas is described. Conclusions are summarised in §8.

2. Dispersion relation

Following Helander (2014) and Helander & Connor (2016), we use gyrokinetic theory
to analyse the linear stability of electron-positron-ion plasmas. It is convenient to write
the gyrokinetic distribution function in the form:

fa = fa0

(

1− eaφ

Ta

)

+ ga = fa0 + fa1 , fa1 = − eaφ

Ta
fa0 + ga (2.1)

Here, fa0 is a Maxwellian, a is the species index with a = e corresponding to electrons,
a = p to positrons, and a = i to the ions, ea is the electric charge, fa1 is the perturbed
part of the distribution function, and ga is the non-adiabatic part of fa1. The linearised
gyrokinetic equation in this notation is

iv‖∇‖ga + (ω − ωda)ga =
ea
Ta

J0

(

k⊥v⊥
ωca

)

(

ω − ωT
∗a

)

(φ− v‖A‖) fa0 (2.2)

with J0 the Bessel function, ω the complex frequency of the mode, ωca the cyclotron
frequency, k⊥ the perpendicular wave number, v‖ and v⊥ the parallel and perpendicular
velocities, φ the perturbed electrostatic potential and A‖ the perturbed parallel magnetic
potential in the Coulomb gauge. We consider unsheared slab geometry with the coordi-
nates (x, y, z), a uniform magnetic field B = Bez pointing in the z-direction and plasma
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profiles which are non-uniform in the x-direction. In slab geometry, the drift frequency
ωda = 0. Other notation used is

ωT
∗a = ω∗a

[

1 + ηa

(

v2

v2tha
− 3

2

)]

, v =
√

v2‖ + v2⊥ , k⊥ =
√

k2x + k2y (2.3)

ω∗a =
kyTa

eaB

d lnna

dx
, ηa =

d lnTa

d lnna
, vtha =

√

2Ta

ma
(2.4)

Here, ma is the particle mass, na is the ambient particle density, and the sign convention
is such that ω∗i 6 0, ω∗p 6 0, and ω∗e > 0. For simplicity, we will assume kx = 0
and k⊥ = ky throughout the paper. Taking the Fourier transform along the parallel
coordinate, we obtain:

(ω − k‖v‖)ga =
ea
Ta

J0

(

k⊥v⊥
ωca

)

(

ω − ωT
∗a

)

(φ− v‖A‖) fa0 (2.5)

This equation is trivially solved:

ga =
ω − ωT

∗a

ω − k‖v‖

eafa0
Ta

J0 (φ− v‖A‖) (2.6)

The gyrokinetic quasineutrality condition and the parallel Ampere’s law are
(

∑

a

nae
2
a

Ta
+ ǫ0 k

2
⊥

)

φ =
∑

a

ea

∫

gaJ0d
3v , A‖ =

µ0

k2⊥

∑

a

ea

∫

v‖gaJ0d
3v (2.7)

Here, ǫ0 is the electric permittivity and µ0 is the magnetic permeability of free space.
For the electromagnetic dispersion relation, it is convenient to define:

Wna = − 1

navntha

∫

ω − ωT
∗a

ω − k‖v‖
J2
0 fa0 v

n
‖ d3v (2.8)

Taking velocity-space integrals, one finds:

Wna = ζa

{

(

1− ω∗a

ω

)

ZnaΓ0a +
ω∗aηa
ω

[

3

2
ZnaΓ0a − ZnaΓ∗a − Zn+2,aΓ0a

]}

(2.9)

Here, the following notation is employed:

1

λ2
Da

=
e2ana

ǫ0Ta
,

1

λ2
D

=
∑

a

1

λ2
Da

, ba = k2⊥ρ
2
a , ρa =

√
maTa

|ea|B
(2.10)

Γ∗a = Γ0a − ba

[

Γ0a − Γ1a

]

, Γ0a = I0(ba)e
−ba , Γ1a = I1(ba)e

−ba (2.11)

Zna =
1√
π

∞
∫

−∞

xne−x2

dx

x− ζa
, ζa =

ω

k‖vtha
(2.12)

with I0 and I1 denoting the modified Bessel functions of the first kind. Using this notation,
we can cast the field equations into the form:

(

1 + k2⊥λ
2
D

)

φ+
∑

a

λ2
D

λ2
Da

(

W0a φ−W1a A‖vtha

)

= 0 (2.13)

A‖ +
1

c2

∑

a

vtha
k2⊥λ

2
Da

(

W1a φ−W2a A‖vtha

)

= 0 (2.14)
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Figure 1. Left: gyrokinetic frequency spectrum for conventional plasmas including sound wave
and the electrostatic limit of the Alfvén wave. Right: low-frequency part of the spectrum
(K-modes of the ion type).

Computing the determinant of this system of equations, we find the electromagnetic
dispersion relation describing electron-positron-ion plasma in slab geometry:

(

1 + k2⊥λ
2
D +

∑

a

λ2
D

λ2
Da

W0a

)(

1− 2
∑

a

βa

k2⊥ρ
2
a

W2a

)

(2.15)

+ 2
∑

a

λ2
D

λ2
Da

W1avtha
∑

a

βa

k2⊥ρ
2
a

W1a

vtha
= 0

Here, βa = µ0naTa/B
2. The electrostatic limit corresponds, as usual, to βa = 0.

In the following, we will use this dispersion relation in order to describe instabilities
which can appear in three-component plasmas. This will give us insight into the general
properties of the gyrokinetic stability of such plasmas.

3. Gyrokinetic stable modes

We first consider the case of a pure electrostatic electron-positron plasma. Assuming
quasineutrality ω∗p = −ω∗e, equal temperatures Tp = Te, and equal temperature
gradients ηp = ηe, we can reduce the dispersion relation to

1 + k2⊥λ
2
D + ζZ0 = 0 (3.1)

with the electron and positron Finite Larmor Radius (FLR) effects neglected for sim-
plicity, implying that Γ0e = Γ0p = 1. Here, we use the notation Z0 = Z0e = Z0p and
ζ = ζe = ζp. Equations of this type have been considered in detail by Fried & Gould
(1961) and Yegorenkov & Stepanov (1987, 1988) for conventional (hydrogen) plasmas.
In a hydrogen plasma, equation (3.2), similar to Eq. (3.1), describes the plasma stability
in the absence of the density and temperature gradients for Ti = Te:

1 + k2⊥λ
2
D +

1

2
[ζiZ0(ζi)Γ0i + ζeZ0(ζe)Γ0e] = 0 (3.2)

This equation has an infinite number of solutions, called K-modes (Yegorenkov &
Stepanov 1987, 1988). These modes can be of the ion type with ζi > 1 and ζe ≪ 1, or
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Figure 2. Left: the imaginary part of the spectrum in a homogeneous plasma. Right: the same
in the presence of an ion temperature gradient κTiρi = 0.1 with κTi = − d lnTi/dx. In this
Figure, i-modes denote modes rotating in the ion diamagnetic direction (corresponding to the
negative frequencies, recall the sign convention ω∗i < 0 and ω∗e > 0) and e-modes correspond
to modes rotating in the electron diamagnetic direction (positive frequencies).

of the electron type with ζe > 1. In Fig. 1, the spectrum resulting from Eq. (3.2) for the
conventional plasma is plotted including K-modes of the ion type. This spectrum was
computed numerically using the Nyquist technique (Carpentier & Santos 1982; Davies
1986). The staircase-like visual appearance of Figs. 1 and 2 is an artefact caused by
the density of the roots of the dispersion relation increasing towards the origin of the
coordinates. This complicates the numerical solution in this area.

In Fig. 2, one sees that, as Fried & Gould (1961) suggested, most of the solutions of
Eq. (3.2) are strongly damped, satisfying |γ| ∼ |ω|. The least damped solutions can be
destabilised by plasma profile gradients leading either to the Ion Temperature Gradient
driven instability (ITG), or the Electron Temperature Gradient driven instability (ETG),
or the universal instability, driven by the density gradient. This is shown in Fig. 2,
where the effect of the ion temperature gradient on the gyrokinetic spectrum in a
conventional plasma can be seen. In pure pair plasmas, however, the electron and the
positron diamagnetic contributions cancel also in presence of profile gradients, making
such plasmas absolutely stable in slab geometry within the gyrokinetic description.
Note however, that perfect symmetry between the electron and positron density and
temperature profiles is required to guarantee the cancellation of the diamagnetic terms.
While density profiles are always identical for the two species in a quasineutral plasma,
the temperature profiles can differ. In this case, a pure pair plasma can be temperature-
gradient unstable, as we will see in the following. The gradient-driven instabilities can
also appear if a pair plasma is “contaminated” by protons or other ions.

Some analytic progress can be made for K-modes in an electron-positron plasma. As-
suming ζe = ζp ≫ 1 and |γ| ∼ |ω|, the plasma dispersion function can be approximated:

Z0(ζe) ≈ 2i
√
πe−ζ2

e − 1

ζe
− 1

2ζ3e
(3.3)
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Figure 3. “K-mode” solution of the dispersion relation for a pure pair plasma. All modes are
strongly damped. Here, k⊥λD = 0 has been assumed. The numerical solution of Eq. (2.15) is
compared with the analytic result Eq. (3.8).

Using this expansion and neglecting the Debye length, k⊥λD ≪ 1, we obtain:

4i
√
πζ3ee

−ζ2

e = 1 (3.4)

Introducing the notation ζe = x−iy and assuming x = ±(y+∆) with ∆ ≪ y (Yegorenkov
& Stepanov 1987, 1988), we can write the dispersion relation in the form:

8y3
√
2πe−2y∆ exp(2iy2 − iπ/4) = 1 ≡ exp(2πmi) (3.5)

Splitting this relation into equations for the argument and for the absolute value and
employing ∆/y ≪ 1, we obtain:

2y2 − π/4 = 2πm , 8y3
√
2πe−2y∆ = 1 (3.6)

Thus, an infinite family of solutions is found:

ym =
√

πm+ π/8 ≈
√
πm , ∆m =

ln(8y3m
√
2π)

2ym
, xm = ±(ym +∆m) (3.7)

Finally, we write our solutions in the form:

ωm = ±k‖vthexm , γm = − k‖vtheym (3.8)

These relations describe strongly-damped K-modes in a pure electron-positron plasma.
In Fig. 3, we compare these analytic results with the numerical solution of the original
dispersion relation Eq. (2.15) and find very good agreement. Note that the expansion
Eq. (3.3) is valid form ≫ 1. For lowm, the dispersion relation must be solved numerically.
In a conventional hydrogen plasma, one can make the usual assumption ζi ≫ 1

and ζe ≪ 1 corresponding to the K-modes of the ion type. In this case, the following
expansions of the plasma dispersion function can be used:

Z0(ζi) = 2i
√
πe−ζ2

i − 1

ζi
− 1

2ζ3i
, Z0(ζe) = i

√
π − 2ζe (3.9)

which lead to the approximated dispersion relation (assuming k⊥λD ≪ 1):

(1− Γ0i/2) +

(

iζi
√
πe−ζ2

i − 1

4ζ2i

)

Γ0i +O(ζe) = 0 (3.10)
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Figure 4. “K-mode” solution of the dispersion relation for conventional plasma assuming
k⊥λD = 0. One can see the ion and the electron parts of the spectrum. The numerical solution
of Eq. (2.15) is compared with the analytic result Eq. (3.13). For the numerical solution, we set
the density and temperature gradients appearing in Eq. (2.15) to zero.

For simplicity, we neglect FLR effects, implying Γ0i = 1. Also, the small contribution
1/(4ζ2i ) ≪ 1 can be neglected compared to the other terms. Then, we obtain:

2iζi
√
πe−ζ2

i + 1 = 0 (3.11)

Using the notation ζi = x − iy with x = ±(y +∆) and employing ∆ ≪ 1, we can split
the dispersion relation into equations for the argument and for the absolute value:

2y
√
2πe−2y∆ exp(2iy2 − 3πi/4) = 1 ≡ exp(2πmi) (3.12)

Finally, the solutions for the K-modes of the ion type are

ym =

√

πm+
3π

8
≈

√
πm , ∆m =

ln(2y
√
2π)

2y
, xm = ±(ym +∆m) (3.13)

In Fig. 4, these analytic results are compared with the numerical solution of the original
(exact) dispersion relation Eq.(2.15).
Interestingly, the same dispersion relation can be obtained for K-modes in a pure pair

plasma keeping the Debye length finite. In this case, the dispersion relation Eq. (3.4) is
replaced by

4i
√
πζ3e e

−ζ2

e + 2ζ2ek
2
⊥λ

2
D = 1 =⇒ 2i

√
πζee

−ζ2

e + k2⊥λ
2
D = 0 (3.14)

which reduces to Eq. (3.11) if k⊥λD ≫ 1/ζe with k⊥λD replacing 1 and ζe replacing ζi.
Going back to a hydrogen plasma, we consider a regime with ζi ≫ ζe ≫ 1 corresponding

to the K-modes of the electron type. In this case, we can expand

Z0(ζi) = 2i
√
πe−ζ2

i − 1

ζi
− 1

2ζ3i
, Z0(ζe) = 2i

√
πe−ζ2

e − 1

ζe
− 1

2ζ3e
(3.15)

A dispersion relation very similar to that describing the K-modes of the ion type, see
Eq. (3.11), can be derived for the K-modes of the electron type keeping ion FLR terms
and neglecting the electron FLR effects. This can be done since ρe ≪ ρi; it implies
Γ0e ≈ 1. In this case, we obtain:

1− Γ0i

2
+

(

iζe
√
πe−ζ2

e − 1

4ζ2e

)

+O
(

1

ζ2i

)

= 0 (3.16)
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Figure 5. Frequency and growth rate of the universal mode as functions of the Debye length in a
contaminated pair plasma with the positron fraction νp = 0.7. The parameters are k⊥ρi = 0.1,
k‖ρi = 7.43 × 10−4, κniρi = κneρi = κnpρi = 0.3, and κTiρi = κTeρi = κTpρi = 0.0 with

κna = −d lnna/dx and κTa = − d lnTa/dx. For these parameters, ω∗/ωci = kyκniρ
2

i = 0.03.

Here, recall that ζi ≫ ζe. At finite k⊥ρi ≫ 1/ζe, implying 1−Γ0i ≫ 1/ζ2e , one can neglect
the last term in Eq. (3.16), transforming it to

2iζe
√
πe−ζ2

e + (1− Γ0i) = 0 (3.17)

This equation and, hence, its solution coincide with the dispersion relation Eq. (3.11) for
the K-modes of the ion type if we replace the last term in Eq. (3.11) with (1− Γ0i) and
ζi with ζe. In the opposite limit of negligible k⊥ρi ≪ 1/ζe, the dispersion relation for the
K-modes of the electron type, Eq. (3.16), becomes

iζe
√
πe−ζ2

e − 1

4ζ2e
= 0 ⇐⇒ 4iζ3e

√
πe−ζ2

e = 1 (3.18)

This equation and its solution coincide exactly with the pair-plasma K-mode dispersion
relation with k⊥λD neglected, see Eq. (3.4).
In a three-component plasma with the ion fraction νi = ni/ne, the K-mode dispersion

relation for ζe ≫ 1 (electron type) becomes

νi(1− Γ0i) + (2− νi)

(

2iζe
√
πe−ζ2

e − 1

2ζ2e

)

+O
(

1

ζ2i

)

= 0 (3.19)

The last term (∼ 1/ζ2e ) is negligible unless νi → 0 or k⊥ → 0. Here, electron and positron
FLR effects have been neglected.
In summary, K-modes, considered in this Section, are the only solutions of the slab

dispersion relation in pure electron-positron plasma for arbitrary density and temperature
profiles provided these profiles coincide for the two species. If the positron and the electron
temperature profiles differ, a temperature-driven instability can appear also for pure pair
plasma in slab geometry. This will be considered in more detail in the following.

4. Universal instability

The first unstable mode to be considered is the universal instability driven by the
density gradient. For simplicity, we assume the temperature profiles to be flat and equal,
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One sees that the ion density gradient and the ion contamination must be larger than some
threshold for the mode to become unstable. The ion density gradient κniρi = 0.3 has been used
for the νi dependence (figure on the right).

i. e. Ti = Te = Tp. In this case, the dispersion relation is

1 + k2⊥λ
2
D +

1

2

∑

a=i,p,e

νaζa

(

1− ω∗a

ω

)

Z0aΓ0a = 0 (4.1)

Here, νa = na/ne is the density fraction corresponding to a particular species a = i, e, p.
For electrons, νe = 1. Taking the limit k‖vthi ≪ ω ≪ k‖vthe, we obtain:

Z0i ≈ − 1

ζi
, Z0e ≈ i

√
π (4.2)

Let us introduce the notation ω∗ = −ω∗i. Employing the quasineutrality, νe = νp + νi
and νiω∗i + νeω∗e + νpω∗p = 0, we obtain to lowest order:

[

2
(

1 + k2⊥λ
2
D

)

− νiΓ0i

]

ω − νiω∗Γ0i + iζe
√
π
[

ω(νe + νp)− νiω∗)
]

= 0 (4.3)

Here, the electron and positron FLR have been neglected Γ0e = Γ0p = 1. We solve the
dispersion relation for ω = ωr + i γ assuming ωr ≫ γ. Then, to the lowest order,

ωr =
νiω∗Γ0i

2 (1 + k2⊥λ
2
D)− νiΓ0i

, γ =
2ωr

k‖vthe

√
π νiω∗

k2⊥λ
2
D + (1− Γ0i)

[2 (1 + k2⊥λ
2
D)− νiΓ0i]

2 (4.4)

One sees that in the long-wavelength limit, Γ0i → 1, the universal mode is unstable for
finite k⊥λD with ωr independent of λD and γ proportional to k2⊥λ

2
D for small k2⊥λ

2
D.

For large k2⊥λ
2
D, both ωr and γ are proportional to 1/k2⊥λ

2
D. This behaviour is seen in

the numerical solution of the dispersion relation Eq. (2.15) shown in Fig. 5. Here, we
use the parameters k⊥ρi = 0.1, k‖ρi = 7.43 × 10−4, κniρi = κneρi = κnpρi = 0.3,
and κTiρi = κTeρi = κTpρi = 0.0 with κna = − d lnna/dx and κTa = − d lnTa/dx.
For these parameters, ω∗/ωci = kyκniρ

2
i = 0.03. Recall that x denotes the direction of

non-uniformity of the plasma profiles, see §2.
From Eq. (4.4) one sees that to be unstable at λD = 0, the universal mode needs a

finite and large enough value of 1 − Γ0i, which is the case if k⊥ρi ∼ 1. The numerical
solution corresponding to this case is shown in Fig. 6. The dispersion relation (2.15) is
solved for the parameters k⊥ρi = 2.0, k‖ρi = 7.4 × 10−4, κTi = κTe = 0, λD = 0. One
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sees that the universal instability can exist in pair plasmas in slab geometry but requires
both the proton fraction and the ion density gradient to exceed some threshold. Note that
one would have to include resonant contributions (e. g. proportional to e−ζ2

i ) and other
higher-order terms into the growth rate calculation to find the threshold analytically.
Such terms have been omitted in the derivation of Eq. (4.4), which is therefore valid only
in the unstable domain. It is however straightforward to find the threshold numerically.
Practically, it suggests that the universal mode will be stable in pair plasmas if the proton
contamination is small. Interestingly, the positron density gradient has zero effect on the
universal mode if quasineutrality ne = np+ni is assumed since any effect of the positron
density gradient on the universal mode is perfectly cancelled by the electrons. Note,
however, that the positrons still contribute through their finite fraction since νi = 1−νp.

5. ITG instability

For simplicity, we consider the flat-density limit for all species. In this case, it is
convenient to define ωTa = ηaω∗a = kyTa/(eaB) d lnTa/dx, which is finite also at zero
density gradient, with a = i, e, p being the species index. For electrons and positrons, we
also assume flat temperature profiles ωTe = ωTp = 0. Only for ions is the temperature
gradient finite, ωTi 6= 0. To allow for unequal temperatures of different species, we
introduce the notation:

ν̂a =
2 νa/τa

∑

a′ νa′/τa′

(5.1)

with νa = na/ne and τa = Ta/Te. Note that quasineutral plasmas satisfy both
∑

a νa = 2
and

∑

a ν̂a = 2. If the temperatures of all species are equal (τa = 1) in such plasmas, then
ν̂a = νa. Using this notation and assuming, as already mentioned, flat density profiles
for all species (ω∗a = 0), the dispersion relation becomes

1 + k2⊥λ
2
D +

∑

a=i,p,e

ν̂a
2

ζa Z0aΓ0a +
ν̂iωTi ζi
2ω

(

3

2
Z0iΓ0i − Z0iΓ∗i − Z2iΓ0i

)

= 0 (5.2)

We consider the long wave-length limit Γ0a = Γ∗a = 1 for all particle species. For the ITG
instability, we can assume k‖vthi ≪ ω ≪ k‖vthe. Then, the plasma dispersion function
can be expanded as

Z0(ζi) ≈ − 1

ζi
− 1

2ζ3i
− 3

4ζ5i
, Z0(ζp) = Z0(ζe) ≈ i

√
π (5.3)

Using Eq. (2.12), it is straightforward to derive Z2i = ζi(1 + ζiZ0i). Here, one sees that
the fifth-order term must be included into the expansion of Z0i appearing in Z2i since
we need cubic (∼ 1/ζ3i ) terms for the ITG instability and we must keep all of them for
consistency. Neglecting ion FLR effects (i. e. setting Γ0i = 1 and Γ∗i = 1) as well as the
electron and positron contributions (∼ ζe ≪ 1), we obtain to leading order in 1/ζi

1− ν̂i
2
+ k2⊥λ

2
D = − ν̂iωTi

4ωζ2i
+

νi
2ζ2i

(5.4)

Following Coppi et al. (1967), we also assume ωTi ≫ ω. Then

1− ν̂i
2

+ k2⊥λ
2
D = − ν̂iωTi

4ω3
k2‖v

2
thi (5.5)
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Figure 7. Effect of proton contamination on the ITG mode in a pair plasma. The wave numbers
are k⊥ρi = 0.24 and k‖ρi = 7.4 × 10−4. The density and the electron temperature profiles are
flat, κTi = − d lnTi(x)/dx, and τi = 1.

Note that by definition ωTi = ηiω∗i with ω∗i < 0, see §2, and ηi > 0. Hence, ωTi < 0 and
there is an unstable solution of the dispersion relation Eq. (5.5):

ω =
1

21/3

(

ν̂i|ωTi|k2‖v2thi
2− ν̂i + 2k2⊥λ

2
D

)1/3(

− 1

2
+ i

√
3

2

)

(5.6)

This root corresponds to the well-known fluid limit of the slab ITG instability (Coppi
et al. 1967). Note that the real part of the ITG frequency is negative, as expected. One
sees that in an ion-contaminated electron-positron plasma, the frequency and growth rate

of the fluid ITG instability are proportional to
(

ν̂i|ωTi|
)1/3

. Hence, pure pair plasmas

with ν̂i = 0 cannot support the slab ITG. This is an obvious conclusion since absence of
ions guarantees absence of ion temperature gradient driven instabilities. More important,
however, is that, similarly to the frequency and the growth rate, the destabilisation
threshold is also determined by the product ν̂i|ωTi|, and not just |ωTi| as is the case for
conventional (e. g. hydrogen) plasmas. This can be deduced from the fact that ωTi appears
only in combination with νi in the original dispersion relation, Eq. (5.2). Note that the
solution Eq. (5.6) corresponds to the fluid instability and does not contain information
about the threshold. In this paper, we do not derive the threshold analytically, but
we can easily find it numerically. Numerical results demonstrating this prediction are
shown in Fig. 7. Here, the dependence of the ITG frequency and the growth rate on the
proton contamination is plotted. One sees that the absolute value of the frequency indeed
decreases strongly at a smaller proton content, in agreement with the analytic result. One
also sees that the mode is unstable only when the proton content exceeds some threshold,
whose value depends on the ion temperature gradient. This is of practical interest since
it indicates that the ITG modes may be stable at a large ion temperature gradient in
ion-contaminated pair plasmas if the ion fraction is small enough. Other parameters,
such as the density gradient or wave numbers, can affect the value of the threshold, too,
but we keep all other parameters fixed in the calculation shown in Fig. 7, changing only
the proton fraction for two different values of the ion temperature gradient.
Another aspect of practical interest for the pair-plasma experiment (Pedersen et al.

2012) is the effect of the Debye length on the microinstabilities. This effect is usually
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Figure 8. ITG mode in a pair plasma with the proton contamination νi = 0.13 for τi = 1 and
k‖ρi = 7.4× 10−4. Effects of the finite Debye length is considered.

negligible for tokamak or stellarator plasmas, where the Debye length is much smaller
than the ion gyro-radius. In the pair-plasma experiment, however, the Debye length is
not expected to be very small and can become comparable to the proton gyroradius. This
can have a strongly stabilising effect on the ITG stability, as shown in Fig. 8. One sees
that for a given k‖, the ITG instability can disappear for all perpendicular wavelengths
if λD/ρi is large enough.

6. ETG instability

Consider now the case when only electron and positron temperature gradients are
present, i. e. ωT (e,p) 6= 0, while ωTi = 0 and ω∗(e,p,i) = 0 (flat density). Recall that
ωTa = kyTa/(eaB) d lnTa/dx is proportional to the temperature gradient and can be
finite also at ω∗a = 0. In this Section, we will also allow for unequal temperatures
of different species. Therefore, the notation defined in Eq. (5.1) will be used. For the
perpendicular wave numbers, we assume k⊥ρi ≫ 1 implying Γ0i = 0 and Γ∗i = 0. In this
limit, the dispersion relation is

1 + k2⊥λ
2
D +

∑

a=p,e

ν̂a
2

ζa

[

Z0aΓ0a +
ωTa

ω

(

3

2
Z0aΓ0a − Z0aΓ∗a − Z2aΓ0a

)]

= 0 (6.1)

Here, recall that from Eq. (2.12) one can derive Z2a = ζa(1 + ζaZ0a). Assuming large
frequencies ω ≫ k‖vth(e,p), we can write

Z0(ζe,p) ≈ − 1

ζe,p
− 1

2ζ3e,p
− 3

4ζ5e,p
(6.2)

The fifth-order term in this expansion is needed to account for the quadratic (∼ ζ2a)
contribution appearing in Z2a. Assuming in addition small k⊥ρ(e,p) ≪ 1, i. e. Γ0(e,p) = 1
and Γ∗(e,p) = 1, we finally obtain to the leading order

(

ν̂i
2

+ k2⊥λ
2
D

)

+
ν̂eτeωTe + ν̂pτpωTp

4ωζ2e
= 0 (6.3)
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Figure 9. Frequency and growth rate of the ETG mode in a three-component
electron-positron-proton plasma for ωTp = ωTe. One sees that the ion fraction must exceed
some threshold for the ETG to be unstable. Here, k‖ρi = 7.4 × 10−4, κni = κne = κnp = 0,
κTi = 0, κTeρi = κTpρi = 0.1, λD = 0, and τa = 1 with a = (i, e, p).

Here, the relations
∑

a ν̂a = 2 and ζ2p = ζ2e /τp have been employed. Similarly to the ITG
derivation, Eq. (5.5), we have assumed ωTe ∼ ωTp ≫ ω, following Coppi et al. (1967),
i. e. our derivation of Eq. (6.3) follows exactly the same path as in the ITG case, Eq. (5.5).

Let us now consider the case of equal electron and positron temperature profiles,
implying τp = τe = 1 and ωTe+ωTp = 0. Recall that τa = Ta/Te, and our sign conventions
imply ωTe > 0 and ωTp < 0. These conditions are likely since the characteristic time of
the energy exchange between the electrons and the positrons is comparable to their
Maxwellisation time. If the plasma has had time to reach a locally Maxwellian state, as
we have assumed, the electron and positron temperatures should also have equilibrated.
In contrast, the ion temperature can differ from the electron one, implying τi 6= 1. Then,
the unstable solution is

ω =
1

21/3

(

k2‖v
2
the

ν̂i + 2k2⊥λ
2
D

ν̂iτiωTe

)1/3(

1

2
+ i

√
3

2

)

(6.4)

This solution corresponds to the fluid limit of the slab ETG instability, which is similar
to the ITG instability, Eq. (5.6), but has a frequency of the opposite sign. The mode
is expected to be stable in a pure pair plasma ν̂i = 0, as can indeed be seen from the
numerical solution of the full dispersion relation Eq. (2.15), shown in Fig. 9. In Eq. (6.4),
however, also the denominator vanishes at ν̂i = 0 if k⊥λD = 0. This singular limit
contradicts to the assumption ω ≪ ωTe made in the derivation of Eq. (6.4). Therefore
this equation cannot be used at very small νi unless k⊥λD is finite. For finite k⊥λD, there
is no singularity and Eq. (6.4) is valid even at very small νi. For this regime, however, the
finite Debye length effects are important. For example, ω is proportional to (k⊥λD)−2/3

if νi ≪ k2⊥λ
2
D.

Now, we consider a situation in which the electron and the positron temperature
gradients are different for some reason, implying ωTe + ωTp 6= 0. In this case, one can
show that the ETG mode can be unstable also in a pure pair plasma (ν̂i = 0). Assuming
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Figure 10. Frequency and growth rate of the ETG mode in a pure pair plasma when the
symmetry between the species is broken by a difference in the electron and positron temperature
profiles. The electron temperature profile with κTeρi = 0.1 is kept fixed. Here, λD/ρi = 0.1 and
τa = 1 with a = (e, p). Note that ρi =

√
mHTe/(eB) with mH the proton mass is used here as

a normalisation constant since pure pair plasmas do not contain ions.
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Figure 11. Frequency and growth rate of the PTG mode in a pure pair plasma when the
symmetry between the species is broken by a difference in the electron and positron temperature
profiles. The electron temperature profile with κTeρi = 0.1 is kept fixed. Here, λD/ρi = 0.1 and
τa = 1 with a = (e, p). Note that ρi =

√
mHTe/(eB) with mH the proton mass is used here as

a normalisation constant since pure pair plasmas do not contain ions.

for simplicity k⊥λD to be finite, we can write the unstable ETG solution as

ω =
1

21/3

(

k2‖v
2
the

k2⊥λ
2
D

τeτp
τe + τp

[

|ωTe| − |ωTp|
]

)1/3(

1

2
+ i

√
3

2

)

(6.5)

The numerical solution of the dispersion relation Eq. (2.15) corresponding to a pure pair
plasma ETG is shown in Fig. 10. This result is valid if the electrons have a steeper
temperature profile. Otherwise, the ETG instability is replaced by the PTG (Positron
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Temperature Gradient driven) instability, which has a negative frequency:

ω =
1

21/3

(

k2‖v
2
the

k2⊥λ
2
D

τeτp
τe + τp

[

|ωTp| − |ωTe|
]

)1/3(

− 1

2
+ i

√
3

2

)

(6.6)

The PTG solution is shown in Fig. 11. One can see that the frequency of the PTG
instability is negative whereas the frequency of the ETG instability, Fig. 10, is positive,
as suggested by Eqs. (6.5) and (6.6). The growth rates of both instabilities are equal.
The absolute values of the ETG and PTG frequencies are equal, too, in agreement with
Eqs. (6.5) and (6.6). Finally, one can see that the growth rate increases with |ωTe+ωTp|
for both instabilities. The modes are stable when |ωTe + ωTp| = 0, as expected. Note
that ωTe/ωci = kyκTeρ

2
i and ωTp/ωci = − kyκTpρ

2
i , so that ωTe + ωTp is proportional

to κTe − κTp. Here, the ion gyroradius ρi =
√
mHTe/(eB) with mH the proton mass is

defined through the electron temperature and used as a normalisation constant in pure
pair plasma, which does not contain ions by definition.

7. Shear Alfvén wave

Finally, we consider a homogeneous plasma (all profiles are flat) and solve the electro-
magnetic dispersion relation Eq. (2.15) at finite β. In this case, there are no sources of
free energy and, hence, no instabilities (all modes are damped or marginal). From the
definition of the plasma dispersion function, Eq. (2.12), one can derive Z1a = 1 + ζaZ0a

and Z2a = ζaZ1a. Assuming k‖vthi ≪ ω ≪ k‖vthe, one can thus write:

Z0i = − 1

ζi
− 1

2ζ3i
+O

(

1

ζ5i

)

, Z0(e,p) = i
√
π +O(ζe) (7.1)

Z1i = − 1

2ζ2i
+O

(

1

ζ4i

)

, Z1(e,p) = 1 +O(ζe) (7.2)

Z2i = − 1

2ζi
+O

(

1

ζ3i

)

, Z2(e,p) = ζe +O(ζ2e ) (7.3)

For flat profiles ω∗a = 0 and ηa = 0. Hence, from Eq. (2.9)

W0a = ζaZ0aΓ0a , W1a = ζaZ1aΓ0a , W2a = ζaZ2aΓ0a (7.4)

We consider perpendicular scales much larger than the electron gyroradius so that one
can neglect electron and positron FLR effects, implying Γ0e = 1 and Γ0p = 1. Employing
the appropriate expansions of the plasma dispersion function, we obtain:

W0i = −Γ0i −
Γ0i

2ζ2i
+O

(

1

ζ4i

)

, W0(e,p) = iζe,p
√
π +O

(

ζ2e,p
)

(7.5)

W1i = − Γ0i

2ζi
+O

(

1

ζ3i

)

, W1(e,p) = ζe,p +O
(

ζ2e,p
)

(7.6)

W2i = − Γ0i

2
+O

(

1

ζ2i

)

, W2(e,p) = ζ2e,p +O
(

ζ3e,p
)

(7.7)

For equal temperatures and charges of the species, Eq. (2.15) becomes
(

1 + k2⊥λ
2
D +

1

2

∑

a

νaW0a

)(

1−
∑

a

2βa

k2⊥ρ
2
a

W2a

)

(7.8)
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+
∑

a

νa W1avtha
∑

a

βa

k2⊥ρ
2
a

W1a

vtha
= 0

Here, the notation βa = µ0naTa/B
2 is used. Note that the usual assumption of small βa

has been implicitly made in the derivation of the original dispersion relation Eq. (2.15)
since we have neglected the parallel magnetic field perturbation δB‖. We substitute the
approximate expressions for Wna, Eqs. (7.5)-(7.7), into the dispersion relation Eq. (7.8).
Note that the small terms of the order 1/ζ2i and 1/ζi must be kept in W0i and W1i,
respectively, since they give order unity contributions in the dispersion relation when
multiplied with ζ2e appearing in W2(e,p) and W 2

1(e,p). For equal temperatures and charges
of the species, implying ζe = ζp, one can write:

ζ2e
ρ2e

=
ζ2i
ρ2i

, ζevthe = ζivthi , βa = νaβe , νi + νp = 1 (7.9)

Using these relations and assuming k‖vthi ≪ ω ≪ k‖vthe, one can write the dispersion
relation to the lowest order as follows:

(

1 + k2⊥λ
2
D − νiΓ0i

2

)[

1− 2βeζ
2
e (1 + νp)

k2⊥ρ
2
e

]

+ (1 + νp)
2 βeζ

2
e

k2⊥ρ
2
e

(7.10)

+
νiβeΓ0i

k2⊥ρ
2
i

[νi
2
(1− Γ0i) + k2⊥λ

2
D

]

= 0

For conventional plasmas with νi = 1 and νp = 0, the long-wavelength approximation
Γ0i ≈ 1 − k2⊥ρ

2
i , valid at small k⊥ρi < 1, and for k⊥λD → 0, this dispersion relation

reduces to the shear Alfvén wave (SAW):

2βeζ
2
i = 1 ⇔ ω2 = k2‖

B2

µ0min0e
= k2‖v

2
A ≡ ω2

A (7.11)

For a finite positron fraction, one can write

2βeζ
2
i =

1

νi

2− νiΓ0i +O(βe)

2− νi

k2⊥ρ
2
i

1− Γ0i
(7.12)

if the Debye length is neglected. In the long-wavelength approximation Γ0i ≈ 1− k2⊥ρ
2
i

2βeζ
2
i =

1

νi
⇔ ω = ωA/

√
νi = k‖

B√
µ0min0i

= k2‖v
2
Ai ≡ ωAi (7.13)

The numerical solution of the full dispersion relation Eq. (2.15) for the shear Alfvén
wave parameters is shown in Fig. 12. One sees, as expected, that the frequency of the
shear Alfvén wave increases very rapidly when νi → 0 (note the logarithmic scale in the
Figure), in agreement with our findings and Helander & Connor (2016). For νi = 1, the
classic shear Alfvén wave is recovered, see Eq. (7.11).
Note that Eq. (7.13) highlights the role of the ions, which carry most of the plasma

inertia even at small νi, but it is singular for νi = 0. This formal singularity can be re-
solved taking the finite Debye length into account. In the long-wavelength approximation
(Γ0i ≈ 1− k2⊥ρ

2
i valid for k⊥ρi < 1), one obtains:

2βeζ
2
i =

2− νi + 2k2⊥λ
2
D

νik2⊥ρ
2
i + 2k2⊥λ

2
D

k2⊥ρ
2
i

2− νi
=

1

νi + 2λ2
D/ρ2i

[

1 +O
(

k2⊥λ
2
D

)]

(7.14)

This equation describes coupling of the “ion shear Alfvén wave”, based on ion inertia, to
a wave travelling at the speed of light (Zocco 2017). Indeed, in a pure pair plasma, the
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Figure 12. Frequency and growth rate of the shear Alfvén wave (SAW) as a function of ion
contamination in a pair plasma for k⊥ρi = 0.05, k‖ρi = 7.4×10−4, λD/ρi = 0.01, and βe = 0.005.
One sees the transition from the SAW regime νi ∼ 1 to a regime of an electromagnetic wave
travelling at the speed of light when νi → 0. The latter limit is not properly described by the
gyrokinetic theory of this paper since the relativistic effects must be taken into account in the
wave dynamics (Zocco 2017).

dispersion relation Eq. (7.14) reduces for small k⊥λD < 1 to

ω2 = k2‖
B2

µ0men0e

ρ2e
2λ2

D

⇔ ω = k‖c (7.15)

As shown in Fig. 12, the shear Alfvén wave (SAW) transforms for νi → 0 into the
electromagnetic wave. The displacement current, not included into the original dispersion
relation Eq. (2.15), must be taken into account for this wave in order to address it
properly, see (Zocco 2017) for details. Recall that we have assumed ω ≪ k‖vthe in our
derivation of Eq. (7.10). Then, the solution ω = k‖c implies c ≪ vthe which physically
cannot be true. Therefore, Eq. (7.15) is just a formal limit to which the shear-Alfvén-
wave solution reduces at νi → 0 and small, but finite, k⊥λD. Note that one can still
satisfy the gyrokinetic ordering ω ≪ ωce for this formal limit, ω = k‖c, if k‖ρe ≪ vthe/c.

For large k⊥λD > 1 and λD > ρi, the long-wavelength approximation cannot be used.
The dispersion relation appropriate for this case is

2βeζ
2
i =

2− νiΓ0i + 2k2⊥λ
2
D

νi(1− Γ0i) + 2k2⊥λ
2
D

k2⊥ρ
2
i

2− νi
(7.16)

For k⊥λD ≫ 1, a solution with ω ∼ k2 can be obtained (recall that 0 6 Γ0i 6 1):

2βeζ
2
e =

k2⊥ρ
2
e

2− νi
⇔ ω =

1

2− νi

k⊥ρe√
βe

k‖vthe (7.17)

A solution of this kind can be found in conventional plasmas, in proton-contaminated
pair plasmas, and in pure pair plasmas as shown in Fig. 13, where the dispersion
relation Eq. (2.15) is solved numerically. The transitions between the shear Alfvén
wave, electromagnetic wave, and the ω ∼ k2 solution can be seen clearly. Note that the
quadratic dispersion relation Eq. (7.17) is formally similar to the whistler wave although
its physics must be different since the Hall effect is absent in pure pair plasmas.
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Figure 13. Frequency and growth rate of the shear Alfvén wave (SAW), “whistler-like”
and electromagnetic (EM) wave as a function of the Debye length in a conventional plasma,
proton-contaminated pair plasma and pure pair plasma. Transitions between different regimes
are clearly seen. The parameters used are k⊥ρi = 0.475, k‖ρi = 7.4 × 10−4, and βe = 0.005.

Note that λD & ρe/
√
βe implies vthe & c. The physics of this case is not properly described

by the gyrokinetic theory of this paper since relativistic effects must be taken into account in
the particle dynamics and distribution functions (Zocco 2017). The “whistler-like” solution is a
formal limit of the shear-Alfvén-wave dispersion relation at large k⊥λD.

8. Conclusions

In this paper, we have studied the gyrokinetic stability of pair plasmas solving the
dispersion relation (2.15) analytically and numerically. It is found that pair plasmas can
support the gyrokinetic ITG, ETG and universal instabilities even in slab geometry if the
proton fraction exceeds some threshold. In practice, however, this threshold is usually
quite large, hopefully large enough to keep the proton content below this value in pair
plasma experiments (Pedersen et al. 2012). These results extend the finding of Helander
(2014) that pair plasmas are stable to gyrokinetic modes in the absence of magnetic
curvature to the cases with small to moderate proton contamination. We find, however,
that pure pair plasmas can have temperature-gradient-driven instabilities, if the electron
and the positron temperature profiles differ. In reality, however, such profiles are unlikely
in steady state, since the characteristic time of energy exchange between the species is
comparable to the Maxwellisation time. In the electromagnetic regime, we find that the
shear Alfvén wave is present in a contaminated plasma. Its frequency increases very
rapidly when the ion fraction becomes negligible.
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