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ABSTRACT

Recurrence analysis was introduced to infer the degree of separation between a “control” and an “anomaly”
ensemble of, say, seasonal means simulated in general circulation model (GCM ) experiments. The concept of
recurrence analysis is described as a particular application of a statistical technique called multiple discriminant
analysis (MDA). Using MDA, univariate recurrence is easily generalized to multicomponent problems. Algorithms
that can be used to estimate the level of recurrence and tests that can be used to assess the confidence in a priori
specified levels of recurrence are presented. ’

Several of the techniques are used to reanalyze a series of El Nifio sensitivity experiments conducted with
the Canadian Climate Centre GCM. The simulated El Niiio response in. DJF mean 500 mb height are all
estimated to be more than 94% recurrent in the tropics and are estimated to be between 90% and 95% recurrent
in the Northern Hemisphere between 20° and 60°N latitude.

Discrimination rules that can be used to classify individual realizations of climate as members of the control
or “experimental” ensemble are obtained as a by-product of the multiple recurrence analysis. We show that it
is possible to make reasonable inferences about the state of the eastern Pacific sea surface temperature by

“classifying observed DJF 500 mb height fields with discrimination rules derived from the GCM experiments.
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1. Introduction

The concept of recurrence analysis was recently in-
troduced to the meteorological literature by Storch and
Zwiers (1988). In that paper, which we will subse-
quently refer to as SZ, the concept was dealt with in a
univariate manner. In the present paper the concept is
extended to the multivariate domain.

Recurrence analysis is a tool that can be employed
in the analysis of climate experiments with general cir-
culation models (GCMs), and in model-model and
model-reality comparisons. The aim is to characterize
aspects of the two climates that are significantly differ-
ent and recurrent. For example, in an El Nifio sensi-
tivity experiment such as the one discussed in SZ, the
aim is to discover aspects of the GCM’s response to a
given sea surface temperature (SST) anomaly that are
likely to recur each time a new, independent realization
of the perturbed climate is simulated.

Geometrically the concept is very simple: the dif-
ference between two climates is “recurrent” if very little
overlap between the probability distributions describes
the realizations of climate states in the two climates.
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A schematic diagram of the concept is given in Fig,. 1.
We suppose for the moment that climate states can be
represented by bivariate Gaussian distributions. Figure
1 shows two such distributions corresponding to two
different climates. The centroids of the two populations
are sufficiently separated that in any statistical test with
reasonably sized samples we would come to the con-
clusion that the means of the two climates are well
separated. On the other hand, there is overlap between
the two distributions, and hence the parent population
of a realization that is chosen randomly from one of
the two climates cannot be determined with complete
reliability. Thus, the difference between the two cli-
mates is not 100% recurrent. A precise definition of
the concept in the case of a univariate state “vector”
is given in SZ. An appropriate definition for the mul-
tivanate case will be given below.

In section 2 we discuss the connection between re-
currence analysis and multiple discriminant analysis
and review some of the rich statistical literature on the
latter subject. Several multivariate techniques for es-
timating the degree of recurrence are described in sec-
tion 3. Some multivariate tests for a priori specified
levels of recurrence are described in section 4. A re-
analysis of the El Nifio sensitivity experiments de-
scribed by SZ, using multivariate techniques rather
than univariate techniques, appears in section 5. The
paper concludes with a brief discussion in section 6.
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FiG. 1. A schematic illustration of the probability density functions of two Gaussian
populations defined on a two-dimensional state space. The means of the two distributions
are separated by the vector (1, 1)” and they have common variance-covariance matrix

1.0 0.5
z= (0.5 1.0)'
2. Multiple discriminant analysis

The concept of recurrence analysis described by SZ
is very similar to that used by statisticians in multiple
discriminant analysis (MDA). In MDA it is presumed
that observations come from one of two (or several)
populations. Samples taken from the two (or more)
populations in question are used to estimate a rule with
which to classify future observations of unknown origin
as belonging to one of the parent populations. Having
estimated such a discrimination rule, probabilities of
misclassification can be estimated, and the “signifi-
cance” of the rule can be tested. Anderson (1984 ) con-
tains a good description of MDA in a rather general
setting. Penfield and Koffler (1985) give a short over-
view of some of the statistical literature on the subject.

The probabilities of misclassification are directly re-
lated to the degree of recurrence of the climate response:
If the degree of recurrence is small the probability of
misclassification will be large and vice versa. Alter-
nately, a probability of misclassification (or level of
recurrence ) can be specified a priori and a test can be
conducted to determine whether it is possible to dis-
criminate between the two climates to that degree. Thus
the tools of MDA provide an immediate generalization
of recurrence analysis to multivariate problems.

a. A brief introduction

To begin the discussion we describe briefly the der-
ivation of Fisher’s linear discriminant function (LDF),
which is often used in MDA. First suppose that we
have an /-dimensional state vector Z which was ob-
served in one of two climates (the “experimental” II,
and the “control” II.). The problem is to determine
which of the two climates generated the observed vec-
tor. If f.(z) and f.(z) are the probability density func-
tions of state vectors observed in the experimental and
control climates respectively, then a reasonable ap-

proach is to form a likelihood ratio and to classify Z
according to the rule

[ IL,,
Y A=

HL"
If the relative costs of misclassification, say c, (the cost
of classifying Z € 11, when Z actually comes from II.)
and ¢,, are known, and if the prior probabilities g, and
g. that Z comes from the experimental or control cli-

mates are known, then an “optimal” rule that mini-
mizes expected cost is given by

E{He, if f(2)/f(2)=k
I,

otherwise
where k = c.g./c4g.-
Under the Gaussian assumption and after taking logs
(1) reduces to

if f(2)/f(2)=>1

otherwise.

(1)

(2)

Hey if (Z - ﬂc)tzc_l(z - ﬂc) - (Z - ﬂe)t
zel x3(z-w)>50niZd ~ iz @)
II., otherwise.

The quantity (z — )27 (z — ) — (2 — pe)'Z:' (2
— p) is referred to as the “quadratic discrimination
function” (QDF). Fisher’s linear discrimination func-
tion (LDF) is obtained by making the further assump-
tion that control and experimental variance-covariance
matrices, =, and 2., are equal. In this case we have

o, if zZ7'(u.— n)
zZe = (ke + 1) Z7 (e — 1c)/220, (4)
II., otherwise

where 2 is the common variance-covariance matrix.
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It is easily shown that the discrimination statistic
given by

W(z) = ztzal(ﬂe — Hc)
— (et 1) 27 (e — 1)/2 (5)

has a Gaussian distribution with mean * V?/2 and
variance V2 where V2 is the Mahalanobis distance:

V2= (se — Fvc)tz—l(l»‘ve - ). (6)

The sign of the mean of W (z) depends upon whether
Z comes from the experimental or control climate.
Thus the probabilities of misclassification are

Pr{efc} =Pr{cle} = ®(-V/2) (7

where ®(- ) denotes the distribution function of a stan-
dard Gaussian random variable.

In Fig. 1 the difference of means vector g, — u. is
given by (1, 1)’ and the common variance covariance
matrix is given by

5 = ( 1.0 0.5)
05 1.0
so that the Mahalanobis distance V2 = 4/3 and the
probabilities of misclassification are 12.4%. Because the
means of the experimental and control populations are
given by (0.5, 0.5)" and (—0.5, —0.5)", respectively,
the LDF is given by W(z) = $z; + %z,, where z; and
z, are the two components of the bivariate state vector.
A contour diagram of the two distributions is shown
in Fig. 2 as is the line W (z) = 0. The decision Z € I,
is made if the observed Z lies on or above the line; the

decision Z € II. is made if the observed Z lies below
the line.
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FiG. 2. As in Fig. 1, except a contour plot is shown.
The discrimination function W (z) = 0 is also plotted.
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Although there are many ways in which to approach
MDA problems (see Penfield and Koffler 1985; Das
Gupta 1973) the most frequently taken approach is to
assume that Z has a Gaussian distribution with the
same variance—covariance matrix in both climates and
to replace the unknown parameters in (4) with esti-
mates constructed from random samples of state vec-

" tors obtained from both climates. These samples are

frequently referred to as “training samples™ because
they are used in the estimation of the discrimination
rule. Under these circumstances the discrimination
statistic W is given by

W(z) =2'S"H X, — X,)
~ (X, + X)) ST (X — X)/2 (8)

where S'is the pooled sample variance-covariance ma-
trix which is given by
ne ne
S = [E z (xe,' - fe)(xej - x—e)l
i=1 j=1
he ne

+ 32 (= E)xg— £ /Ine + ne— 2] (9)

i=1 j=1
Discrimination rule (4) is replaced with
o, if WwW((z)=0.
YAS
I,

This approach is not particularly robust when data
are non-Gaussian. In this case an approximate trans-
formation to the Gaussian distribution is often made
by using a rank replacement technique such as that
described by Conover and Iman (1980). Specifically,
the observations in both training samples are combined
into a single large pool of observations. Each entry in
each climate state vector contained in the pool is ranked
among the corresponding entries in every other state
vector in the pool. The resulting vectors of ranks are
resegregated according to climate, and the resulting
samples of vectors of ranks are used to conduct a mul-
tiple discrimination analysis. Monte Carlo experiments
conducted by Conover and Iman (1980) indicate that
little is lost by using this rank replacement when data
are Gaussian and that there is considerable improve-
ment in misclassification errors when data are non-
Gaussian.

. (10)
otherwise.

b. Misclassification errors and recurrence analysis

MDA has two roles in recurrence analysis: to provide
a diagnostic description of the degree of recurrence in
a simulated climate’s response to experimental con-
ditions and to provide a foundation for statistical tests
of a priori chosen levels of recurrence.

One useful diagnostic of the degree of recurrence of
the response that MDA can provide is an estimate of
the probability of misclassification, or the misclassifi-
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cation error rate. A small misclassification error rate
indicates very little overlap of the two ensembles of
climate state vectors, and hence a recurrent response.
It should be noted that when we speak of the misclas-
sification error rate, we follow the conventions of the
statistical literature on MDA and refer to Pr{e| ¢}, the
probability of incorrectly classifying Z € II, when in
fact Z € Il.. While it is true that Pr{e|c} = Pr{cle}
in the Gaussian setup, this is not always the case when
data are non-Gaussian.

In fact, three misclassification error rates can be
considered in discrimination problems. These are the
optimal error rate, 6, obtained by classification pro-
cedure (1) in which the distributions and all their pa-
rameters are known; the conditional error rate, & onq,
obtained by a discrimination rule that has been esti-

mated from training samples; and the expected error .

rate, &y, the expectation of the conditional error rate
taken over all possible training samples.

In climate problems both the optimal and condi-
tional error rates are of interest. The optimal error rate
is directly related to the idea of recurrence as defined
by SZ and is in fact a measure of the separation between
the experimental and control climates in an ensemble
sense. An appropriate general multivariate definition
for p-recurrence consistent with the univariate defi-
nition given by SZ is

General definition. The difference between two cli-
mates is said to be p-recurrent if the optimal error rate
for discrimination procedure (1)is 1 — p.

A special parametric form of this definition is ob-
tained if the Gaussian assumption is appropriate. In
this case we have the

Gaussian definition. Suppose that two climates can
be characterized by Gaussian climate state vectors Z,
and Z, that have a common variance—covariance X.
Then the difference between the two climates is said to
be p-recurrent if ®(V/2) = p where V2 is given by (6).

That is, with the Gaussian assumption and common
variance~covariance matrices, the difference between
two climates is p-recurrent if (pe — 1)'Z  '(pe — pe)
= Z, where the latter is the pth quantile of the standard
normal distribution. Note that a response that is 50%
recurrent has corresponding Mahalanobis distance V>
= (0 and a discrimination procedure (1) which has no
skill in distinguishing between control and experimen-
tal climates. Also note that, when the dimension of the
observed “state vector” is one, the difference between
two climates is p-recurrent according to the Gaussian
definition if |u, — p.| = 0Z, where o is the common
standard deviation. In the-example of Figs. 1 and 2 the
difference between the illustrated populations is 87.6%
recurrent.

The conditional error rate is of interest because it
indicates how well we can distinguish between the two
climates in question on the basis of the available data.

FRANCIS W. ZWIERS AND HANS voN STORCH

1541

This is a diagnostic quantity that tells us something
about the utility of studying the samples in hand in
more detail. If the conditional error rate is large, we
have an indication that the two samples are not well
separated and that they may not contain a great deal
of information about differences between the control
and experimental climates. The conditional error rate
is perhaps the more relevant of the two.

We use both the concepts of optimal and conditional
error rate in this paper. An estimator of recurrence will
always have the form 1 — p, where p is an estimator
of the conditional error rate. On the other hand, tests
of hypothesis are concerned with ensemble properties
of the climates in question. Hence a level of recurrence
specified a priori in a test of hypothesis will always
have the form 1 — p, where p is an optimal error rate.

3. Estimating the degree of recurrence

By virtue of the above definition of recurrence, any
estimator of the conditional classification error rate
may also be regarded as an estimator of the degree of
recurrence of the difference between the control and
experimental climates. That is, one minus the estimated
classification error rate is an estimate of the degree of
recurrence. The literature on MDA contains descrip-
tions and simulation studies of many classification error
rate estimators. We will briefly describe a few estimators
in this section and w;ill also briefly touch on the ques-
tion of their uncertainty.

a. Error rate or recurrence estimation

The statistical literature contains many studies on
error rate estimators including Lachenbruch and
Mickey (1968), Efron (1983), Snappin and Knoke
(1984, 1985), Chernick et al. (1985) and Page (1985).
Most studies assess error rate estimators only as esti-
mators of the conditional error rate using criteria such
as mean absolute error and mean squared error. Among
the studies cited above, only Page (1985) assesses error
rate estimators relative to the optimal error rate as well
as the conditional error rate.

Error rate estimators fall into two groups: namely,
parametric and nonparametric. Parametric estimators
are constructed assuming that the climates are Gaussian
with common variance-covariance matrices and that
discrimination rule (4) is used. The simplest of these
estimators, referred to as the “D-method” in the lit-
erature, is computed by replacing the Mahalanobis
distance V2 in (7) with the sample equivalent D2. The
latter is given by

D? = (X, — X)'S7H(Xe — Xo). (11)
Page (1985) shows that this estimator is optimistically
biased as an estimator of both the optimal and con-
ditional error rates. Considerable improvement is ob-
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tained if $~! in (11) is replaced with an unbiased es-
timator of £7'. The result is a “shrunken” estimator
of the Mahalanobis distance, which is given by D32
= (ne+ n.—1—3)D?*/(n,+ n,— 2) and is subsequently
substituted into (7). The resulting error rate estimator
is referred to as the “DS-method” in the literature.
Page (1985) reviews several other error rate esti-
mators as well. In agreement with an earlier simulation
. study reported by Lachenbruch and Mickey (1968),
the estimator with the best overall performance among
those tested by Page was the “OS-estimator.” This es-
timator is based on an asymptotic approximation for
the conditional error rate (Okamoto 1963, 1968) which
is expressed in terms of 7., n., / and V>. When DS? is
used as an estimator of V2 the result is an error rate
estimator (referred to as the “OS-method”) that has
low mean absolute error both as an optimal and a con-
ditional error rate estimator. The OS-estimator is de-
scribed in appendix A. Another estimator that is also
based on an asymptotic expansion and performed well
as a condition error rate estimator (but not as an op-
timal error rate estimator) in Page’s Monte Carlo ex-
periments is the “M-method” estimator described by
McLachlan (1975). It is described in appendix B.
Nonparametric error rate estimators use only the
" information contained in the training samples. As op-
posed to asymptotic expansions, they do not rely on
assumed parametric models such as the Gaussian dis-
_ tribution. The simplest of these, the “ R-method,” ap-
plies the estimated discrimination rule to every obser-
vation in the control climate training sample, and
counts the number of times an observation is misclas-
sified. This estimate of the conditional error rate is often
referred to as the “apparent error rate.” As with the D-
method, it is optimistically biased (Lachenbruch and
Mickey 1968; McLachan 1976). Lachenbruch (1967)
proposed the “leave-one-out” method (referred to as
the “U-method”) as a nearly unbiased estimator of
conditional error rate. An observation is selected from
the control climate training sample, a discrimination
rule is estimated from the remaining observations, and
the selected observation is classified using this rule. This
process is repeated for every observation in this training
sample, and the number misclassified is used to esti-
mate the conditional error rate.

Several authors have suggested and studied many
other nonparametric conditional error rate estimators
(Lachenbruch and Mickey 1968; Efron 1983; Chernick
et al. 1985; Snappin and Knoke 1985) as well as the
R and U estimators. Nonparametric error rate esti-
mators are generally robust relative to parametric es-
timators but as a rule do not perform as well as para-
metric estimators whén the data actually come from
Gaussian distributions. It is very difficult to recommend
a particular error rate estimator that works well in all
situations. The results of the various simulation studies
that have been reported suggest that the choice of es-
timator depends somewhat upon the dimension of the
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observed state vectors and the “distance” between the
control and experimental climate ensembles. As a gen-
eral rule, however, it appears that Efron’s 0.632 esti-
mator may be one of the best nonparametric error rate
estimators (Efron 1983; Chernick et al. 1985).

The 0.632 estimator is a weighted average of two -
estimators, R and ¢,, defined by

Geong = 0.368R + 0.632¢ (12)
where R is the apparent error rate and ¢, is a bootstrap
estimate of the error rate. Specifically, bootstrap sam-
ples are taken from the training samples; these samples
are used to estimate a discrimination rule; and the ob-
servations in the control climate training sample that
were excluded from the corresponding bootstrap sam-
ple are classified with the estimated rule. The average
misclassification rate over many such bootstrap sam-
ples is reported as ¢,. This is somewhat different than
the standard bootstrap estimator of &g described by
Efron because ¢, estimates the error rate directly while
the standard bootstrap estimates the bias of the appar-
ent error rate. Efron’s choice of 0.632 as the weight
which is placed on e, was determined more or less
heuristically: The asymptotic proportion of a training
sample contained in each bootstrap sample is 0.632.

b. Uncertainty of estimates

An estimate of the degree of recurrence is not very
useful without some indication of its uncertainty. Un-
fortunately, this aspect of error rate estimation has not
been discussed a great deal in the MDA literature. As
we have seen, most error rate estimators are quite
complex and thus it is not usually possible to derive
estimates of their standard errors. There are, however,
a couple of exceptions to this statement.

McLachlan (1975) was able to show that the M-
method estimate of the conditional error rate is
asymptotically a Gaussian random variable with vari-
ance o2 (given in appendix B), which is a function
of the Mahalanobis distance V2. Thus an asymptotic
(1 — &) X 100% confidence interval for this parametric
error rate estimator is given by M + g5, Z,_,,, where
op? is evaluated using the shrunken estimator of V?
and Z,_,,; is the 1 — a/2 quantile of the standard
normal distribution.

Each classification in the leave-one-out procedure
may be thought of as an almost independent binomial
trial with probability 1 — p of success where p is the
degree of recurrence (Lachenbruch 1967). Thus the
standard error of U (and 1 — U) is approximately

ov={p(1 = p)/n}'? (13)
A corresponding estimate is given by oy = {U(1
— U)/n.}'"? and an approximate (1 — a) X 100%
confidence interval is given by U + 6yZ;_,/>.
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4. Multivariate tests for recurrence

We have already described several diagnostic mea-
sures of the degree of recurrence of the difference be-
tween two climates in the form of both parametric and
nonparametric error rate estimators. In this section we
will describe some procedures that can be used to look
for evidence of a priori specified levels of recurrence.
The appropriate null and alternate hypotheses for all
tests that we will discuss are

Hy: The experimental climate response
is less than p-recurrent (14a)

H.: The experimental climate response
is at least p-recurrent (14b)

where p has a specific value which is chosen a priori.

Storch and Zwiers (1988) describe several univariate
statistical tests that can be used to look for specific
levels of recurrence. These tests can be characterized
as one of two types. In the first approach the a priori
specified minimum degree of recurrence is used to de-
velop a parametric noncentral difference of means test.
We will describe two such tests for the multivariate
case. These tests will be developed directly without us-
ing any of the tools of MDA. In the second approach
the degree of recurrence is estimated (either paramet-
rically or nonparametrically) and a test is conducted
to see if this estimate is consistent with the a priori
specification. We will use the tools of MDA to describe
one test of this kind. Neither approach is perfect. The
former assumes that the Gaussian model with common
variance—covariance matrices and independent climate
realizations is correct. The latter is not constrained as
strongly by such assumptions, but does not take into
account the fact that a conditional error rate estimator
is used to estimate the optimal error rate. For all tests
it is implicit that the training samples and individual
realizations of the climate state vectors are independent
of each other.

a. Parametric tests

The parametric tests that we consider are both based
on the Hotelling T2 statistic, which is the multivariate
analogue of the Student’s t-statistic. The Hotelling’s
T? statistic (Morrison 1976) is given by

T? = [n.n./(n. + n;)ID?. (15)

Under the null hypothesis
F=((n.+n.—1-1)/[l(n,+ n.—2)))T* (16)

is distributed as a noncentral F random variable with
land n, + n, — | — 1 degrees of freedom (df) and
noncentrality parameter

8% = [nen./(ne + n)JV2. (17)
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According to the Gaussian definition of p-recurrence
the relationship between p and the Mahalanobis dis-
tance V? is given by

p=®(V/2). (18)

Thus the noncentrality parameter of the F distribution
may be specified a priori as

8% = 4[nen./(n, + n)1Z,2 (19)

where Z, is the pth quantile of the standard Gaussian
distribution. Having derived the noncentrality param-
eter for the test of recurrence from null hypothesis (14a)
it is necessary to determine a “p-value” for the com-
puted T2 by integrating the density function of the
noncentral F distribution. The null hypothesis is then
rejected if the computed p-value (which is the signif-
icance of the observed 7?) is less than «. Determining
the p-value directly from the density of the noncentral
F distribution is a nontrivial problem because this dis-
tribution does not have a closed analytic form. For-
tunately, there is a good approximation to this distri-
bution that only requires the numerical integration of
the incomplete Beta function. It is described in appen-
dix C.

An equivalent approach to the testing problem using
the same parametric setting is to ask, “At what level
of recurrence is the observed T2 just large enough to
reject (14a) at the « significance level?” If this level is
greater than p (14a) can be rejected at the « level. In
order to apply this approach it is necessary to estimate
the value of the noncentrality parameter for which (15)
is just barely sufficient evidence to reject (14a). That
means we must find 62 such that 77 is equal to the
critical value of the « level test of significance. In other
words, we solve the following integral equation for
8%(a, T?):

o= fw gl ne+n.—1—1,8%a T?)df (20)
F

where g(+3 [, n.+ n. — 1 — 1, §*(a, T?)) is the prob-
ability density function for the noncentral F distribu-
tion with / and »n, + n. — [ — 1 df and noncentrality
parameter 8%(a, T?), and F is given by (16). The so-
lution is then substituted into (19) to obtain a Gaussian
quantile, say Zs. 12y, and finally the Gaussian distri-
bution function is evaluated at Zjs, 72) to obtain an
estimate of p. This estimate is given by

Bla, T?) = ([nenc/ (e + 1)1 6(a, T?)/2). (21)

If p(«, T?) is greater than the value specified in (14a),
the hypothesis is rejected. Note that throughout this
development we have written é and p as explicit func-
tions of « and 7" to emphasize this dependence.

This test is in fact equivalent to the noncentral 77
test described above, but it has the added advantage
that it is possible to obtain additional diagnostic in-
formation by evaluating and plotting p(«, T?) for var-
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ious values of a. Note that p(«, T?) is a monotonically
increasing function of a which takes values in the in-
terval [0.5, 1.0]. Also note that the function is only
defined for those significance levels « at which 772 is
sufficient evidence to reject the -null hypotheses of
equality of means. If 72 > T»? then p(e, Ti%) > p(a,
T»?) for all « in the interval [0, 1] for which both func-
tions are defined.

b. A nonparametric test

A nonparametric test of (14) can be constructed
easily and directly when the U-method is used to es-
timate the misclassification error rate. With the U-
method (and to a lesser extent, the R-method ) we can
think of the classifications of the withheld observations
as n, very nearly independent trials (see Lachenbruch
1968). Therefore, under the null hypothesis that the
response is p-recurrent, the total number of observa-
tions that are misclassified by the cross-validation pro-
cedure has approximately a binomial distribution with
n. trials and probability of “success” 1 — p. It is there-
fore possible to determine a p-value for the observed
U and hence conduct a test of (14a) based on the U-
method. When n.(1 — p) > 5 and n.p > 5 the Gaussian
approximation to the binomial distribution may be
used. In this case 1 — U can be standardized as

Z=(1-U-p)/lp(1 = p)/n]'"?

and a p-value can be determined by determining the
area under the standard Gaussian curve to the right
of Z.

(22)

5. An application

As an example of a multivariate recurrence analysis,
we reanalyze the El Niiio sensitivity GCM experiments
that have already been considered in SZ. The experi-
ments were conducted with the Canadian Climate
Centre (CCC) GCM (Boer et al. 1984a,b). The control
ensemble consists of 76 December-January~February
(DJF) means that were extracted from three extended
control simulations using climatologically varying sea
surface temperature (SST). (The analysis reported in
SZ used only 30 control DJF means.) The experimental
ensemble consists of 5 DJF means extracted from sim-
ulations with anomalous SST in the equatorial Pacific.
The SST anomalies used were twice the Rasmusson
and Carpenter (1982) anomaly (2RC), minus twice
this anomaly (—2RC) and the observed DJF anomaly
during the 1982/83 El Nifio. Results of the 1982/83
simulation have previously been described by Boer
(1985).

In SZ we considered 500 mb height and temperature
and found almost identical results for these two pa-
rameters. For the sake of brevity, we limit ourselves to
500 mb height in this paper. This is a less than ideal
choice in tropical regions because of the baroclinic na-
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ture of the tropical response to anomalous SST's. How-
ever, we made our less than optimal choice so that we
could use a locally available dataset of twice-daily 1000
and 500 mb height analyses in our analysis of the sen-
sitivity experiments.

Using univariate recurrence analysis we showed in
SZ that there was a locally significant highly recurrent
response in large portions of the tropics (Figs. 4-8 in
SZ) and in a few extratropical locations. In that paper
we also conducted a multivariate significance analysis
on the equality of means: In all three experiments the
mean DJF 500 mb heights in the control and the dis-
turbed climates were inferred to be significantly different.

a. Data compression

To estimate the degree of recurrence it is necessary
to use discrimination rule ( 10) or to calculate statistic
D?(11). Thus the inverse of the estimated covariance
matrix S (9) must exist, implying that the number of
samples must be at least as large as the number of de-
grees of freedom.

In our example the data are given on a 64 by 32
Gaussian grid and hence represent points in a 2048- .
dimensional vector space. On the other hand, only 81
control and experimental realizations of the DJF mean
are available in any one climate comparison. It is thus
necessary to reduce the degrees of freedom drastically
prior to the multivariate recurrence analysis. A good
way to do this is to project the raw 64 by 32 gridpoint
fieids onto a few a priori chosen “guess patterns™ (cf.
Storch 1987). A recurrence analysis is subsequently
performed in the low-dimensional space spanned by
the guess patterns.

The best guess patterns are those which incorporate
some prior knowledge about the expected signal. Such
patterns should be chosen in such a way that they span
a (preferably low dimension) subspace of the observing
space which is likely to contain most of the signal vari-

‘ance. A choice of patterns that does not satisfy this

basic requirement would result in a situation in which
statistical inferences are technically correct but irrele-
vant because they concern small, obscure components
of the signal. Knowledge about appropriate guess pat-
terns might come from similar previous experiments,
observations, or simplified theory. Empirical orthog-
onal functions (EOFs) may be used as guess patterns
in the absence of appropriate prior knowledge because
they are known to approximate observed variability in
an optimal way.

We will conduct analyses with the first five and first
ten EOFs of simulated DJF mean 500 mb height in two
equatorially centered latitude bands. For the present ex-
ample we also have available a priori “observational
knowledge” in the form of Northern Hemisphere mean
500 mb height fields for winters (DJF) 1955 to 1984.
This time interval includes a series of El Nifio events.
The range of variation in the 500 mb height anomaly
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patterns which corresponds to these El Nifio events
(specifically 1957, 1963, 1965, 1969, 1972 and 1982;
Wright 1984) are taken to represent variation that is
likely to occur in similar future events. They are there-
fore used as guess patterns in our study (section 5c).
The 500 mb height analyses are only available at lati-
tudes north of approximately 20°N and thus the cor-
responding anomaly patterns are useful only for ex-
amining the extratropical response of the simulated cli-
mate to anomalous SSTs in the Northern Hemisphere.

b. Using EOFs as guesses

We conducted our initial analysis using EOFs as
guess patterns in two latitudinal bands; the “tropical”
band which extends from 30°S-30°N and the “global”
band which extends from 60°S-60°N. The data for
our analyses, which were provided on a Gaussian grid,
were first interpolated to a 5° by 5° latitude-longitude
grid and then averaged over 10° latitude by 20° lon-
gitude grid boxes. EOFs were computed from the vari-
ance—covariance matrix of the 76 control samples for
each latitude band. We conducted analyses using the
first five and first ten EOFs as guess patterns in our
analysis. The first five (ten) EOFs of the tropical band
explain 67% (83%) of the variance of 500 mb height
simulated in that band by the control simulations. The
corresponding figure for the global band is 56% (76%).
Because the variance of 500 mb height is small in the
tropics, the EOFs of the global band represent spatial
structures that are primarily extratropical. We therefore
expect a strong signal in the tropical band and a weaker
signal in the global band because most of the signal is
confined to the equatorial Pacific.

1) ESTIMATED LEVEL OF RECURRENCE

The level of multiple recurrence was estimated using
the D, DS, M, OS, U and 0.632 methods. If possible,
the standard error was also estimated. The results ob-
tained from the raw data and from the rank-trans-
formed data (Conover and Iman 1980) are very con-
sistent indicating the appropriateness of the Gaussian
assumption. Therefore only results obtained using the
untransformed reduced data are displayed in Table 1.

Table 1 reveals some interesting characteristics of
the various error rate estimators. The optimistic bias
of the D method is clearly evident when estimates of
recurrence made with this method are compared with
those made by other parametric methods. Differences
between DS, M and OS are always smaller than the
corresponding estimated standard error of M. Seem-
ingly, the only real distinction among parametric es-
timators lies between D and the rest, and we conclude
that DS is an adequate parametric estimator of multiple
recurrence.

The nonparametric estimates of recurrence made
by the U and 0.632 methods are consistent with the
parametric estimates but are clearly more variable. This
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consistency is another indication of the validity of the
Gaussian assumption in the present problem.

There are some interesting differences between the
results obtained using only five EOFs as guess patterns
and those obtained using ten EOFs (Table 2). In the
tropical band, the estimated level of recurrence is at
least 96% (99.9% ) when five (ten) EOFs are used as
guess patterns. When five EOFs are used the 1982/83
signal is strongest with an estimated level of recurrence
of at least 99.9%; the 2RC signal is weakest with esti-
mated levels of recurrence of approximately 98%.
When ten EOFs are used very strong recurrent signals
are detected in all three experiments. The ranking of
the signals is different (—2RC is the strongest; 2RC is
the weakest) but less relevant because of the strength
of the signal in all cases. The differences between the
two analyses show, particularly in the 2RC and —2RC
experiments, that the simulated atmosphere’s response
to the prescribed anomalous boundary conditions has
a structure which is not well represented by only a few
EOFs of the control climate. Apparently these re-
sponses are not easily described in terms of the pre-
dominant modes of variation which are simulated in
the control climate in the tropical region. This is rea-
sonable because El Nifio excited tropical disturbances
are known not to be part of the internal atmospheric
variability but rather, are due to external forcing.

The estimated levels of multiple recurrence are
weaker if global data are considered. When five EOFs
are used as guess patterns there are only small differ-
ences between experiments in the strength of the mea-
sured response. The strongest (weakest) signal is ob-
served in the —2RC (2RC) simulated mean DJF height
which is estimated to be approximately 88% (84%) re-
current with a standard error of approximately 3%.
When ten EOFs are used there are somewhat larger
differences in the strength of the measured response.
The strongest (weakest) signal is observed in the 2RC
(—2RC) experiment with approximately 98% (93%)
recurrence with a standard error of approximately 1.2%
(2.3%). As anticipated, features that contribute strongly
to the signal in the tropical band are not well repre-
sented by the global region EOFs of the control climate
because these EOFs represent primarily extratropical
variation. Even so, the use of ten EOFs does enable us
to capture considerably more of the signal than the use
of only five EOFs.

2) MINIMUM SIGNIFICANT LEVEL OF RECURRENCE

The minimum level of significant recurrence, p(a,
T?), is the least number p so that null hypothesis Hy?
may be rejected with risk o given the observed T2.
Curves of p(a, T?) for tropical and global 500 mb
height using the first five and ten EOFs as guess patterns
are shown in Fig. 3.

Figure 3 shows that in the case of the tropical band,
all responses are consistent with at least 99% recurrence
at the 5% significance level with the exception of the
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TABLE 1. Results of a multiple recurrence analysis of the El Nifio sensitivity experiments when five EOFs are used in the EOF truncation
of the data. The row labeled T2 contains values of the T? statistic for the comparison of control and experiraental means indicated in the
column headings. Rows labeled D, DS, M, OS, U and 0.632 contain corresponding estimates of the degree of recurrence. Entries in parentheses
are corresponding estimates of standard error of the recurrence estimates. Standard error estimates for M and U are evaluated using expressions
(B2) and (13) respectively. Rows labeled Hp contain p-values for tests of the hypotheses indicated using the test statistics indicated in

parentheses. All probabilities are given in percent.

30°S-30°N 60°5-60°N
Experiment 2RC —2RC 1982/83 2RC —2RC 1982/83
T? 98.3 197.4 232.5 20.2 28.9 219
D 99.9 >99.9 >99.9 85.0 89.3 86.0
DS 98.6 >99.9 >99.9 84.1 88.4 85.0
M 98.6 >99.9 >99.9 84.1 88.3 85.0
0.9) 3.4) 2.9 (3.3)
0s 98.3 99.9 >99.9 84.7 88.5 85.5
U 96.1 100.0 100.0 82.9 85.5 84.2
(2.2) 4.3) (4.0) (4.2)
0.632 96.3 >99.9 100.0 82.7 88.4 84.0
Hy™(T?) 0.0 0.0 0.0 0.4 0.0 0.2
Ho*™(T?) 0.0 0.0 0.0 65.1 ‘328 58.2
H®*U) - 0.2 0.0 0.0 60.6 36.3 48.0

response to the 2RC anomaly at the five EOF data
truncation. This response is consistent with only 95%
recurrence at the 5% significance level. Apparently a
considerable portion of the signal is projected onto
tropical band EOFs 6-10 in the 2RC case.

We see somewhat similar behavior in the global band
in the sense that a considerable portion of the signal
in the 2RC case is projected onto (global band) EOFs
6-10. The response to the 2RC anomaly in the global
band is the largest of all measured global responses
when projected onto ten EOFs and the least of all mea-
sured global responses when projected onto five EOFs.
A distinguishing feature of the global responses is that
they are much more clearly delineated in Fig. 3 than
the tropical responses. They are also much less inter-
esting, however, because they are not nearly as strong.

The measured responses range from being consistent
with approximately 92% recurrence at the 5% level
(2RC, 10 EOFs) to 67% recurrence at the 5% level
(2RC, 5 EOFs). In the latter case the estimated level
of multiple recurrence is approximately 84% with a
standard error of 3.4%, suggesting that a realization of
DJF mean 500 mb height from the 2RC experiment
would be misclassified as belonging to the control cli-
mate approximately 9%-23% percent of the time. This
is evidence for considerable overlap of the populations
of seasonal means of these climates.

The use of ten EOFs in the data truncation uncovers
stronger evidence for recurrence both in the tropical
and global bands. In the case of the tropical band, the
observed response is consistent with a minimum of
99% recurrence at the 5% significance level in all three

TABLE 2. As Table 1, except ten EOFs are used in the EOF truncation.

30°S-30°N 60°S-60°N ‘
Experiment 2RC —2RC 1982/83 2RC —2RC 1982/83

T? 222.1 389.2 294.5 88.7 48.0 51.0
D >99.9 >99.9 >99.9 98.5 94.5 95.0
DS >99.9 >99.9 >99.9 97.8 93.1 93.7
M >99.9 >99.9 >99.9 97.6 92.8 93.4

(1.2) (2.3) 2.2)
oS 99.9 >99.9 >99.9 97.4 93.0 93.5
U 100.0 100.0 100.0 98.7 90.8 89.5

(1.3) (3.3) (3.5)
0.632 100.0 100.0 100.0 98.7 93.4 93.0
Hy(T?) 0.0 0.0 0.0 0.0 0.0 0.0
H%(T?) 0.0 0.0 0.0 0.1 12.4 9.1
Ho*™U) 0.0 0.0 0.0 0.0 5.4 9.5
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FIG. 3. Function (e, T?) evaluated using values of the 72 statistic
representing differences between control and experimental DJF 500
mb height in the 30°N-30°S and 60°N-60°S latitude bands. Seasonal
means were projected onto the first five (ten) EOFs of the control
sample in the same latitude band.

experiments. In the case of the global band the 2RC
experiments give rise to a response that is at least 92%
recurrent at the 5% level. The magnitudes of the —2RC
and 1982/83 responses are similar and are consistent
with at least 80% recurrence at the 5% level. In the case
of the —2RC experiment the estimated level of recur-
rence is approximately 93% with a standard error of
2.3% suggesting that realizations of DJF mean 500 mb
height from the —2RC climate would not be correctly
identified only 2%-12% of the time. In other words,
there is a lot of information by which to characterize
the results of the experiments even in the case of the
weakest response.

3) T? AND U SIGNIFICANCE TESTS

Tests of hypotheses that the response is 50% recur-
rent and no more than 84% recurrent have been con-
ducted using the parametric 72 approach. Rejecting
the null hypothesis Hy*** is equivalent to rejecting the
null hypothesis of equal means. The 84% level was
chosen because in the univariate Gaussian case it is
equivalent to a separation of means of at least two
standard deviations (see SZ). The results are included
in Tables 1 and 2.
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The tropical height signal in all three experiments
is significantly recurrent at the 84% level using both
data truncations. Because H,%* = H,°°% the null hy-
pothesis of equal means must also be rejected.

A global nonzero 84%-recurrent signal is identified
at the 10% significance level in the height fields of the
warm SST anomaly experiments but not in the cold
SST anomaly experiment —2RC (10 EOF truncation).
The H*** could not be rejected for any experiment
when only five EOFs were used for data truncation.
The null hypothesis of equal means, however, is easily
rejected at the 5% significance level in all experiments
using both data truncations. This is not a great surprise;
the relatively large control sample that is available im-
plies that the T>-test for equal means will be quite
powerful and thus quite sensitive to small signals.

The results obtained with the U-method testing
Hy®** are quite similar to those obtained with the 7
test with one exception.

4) CROSS-CLASSIFICATION OF RESPONSES

A by-product of the multiple recurrence analysis is
discrimination rule (10), which can be used to make
a decision about whether a particular mean DJF 500

‘mb height anomaly stems from a simulation forced

with positive (negative) SST anomalies or a control
run. To test the power of the discrimination rules found
in the three SST anomaly experiments we used the
discrimination rule based on one experiment to classify
the individual outcomes of the other two experiments.
The results for the “tropical” and “global” latitudinal
belts are given in Table 3.

In the tropical area, the discrimination rules based
on EOF truncation of the data appear to be quite pow-
erful. Using the empirical evidence (based on the first
five EOFs) of the 2RC (1982/83) experiment, five
(three) DJF means of the other warm SST anomaly
experiment, 1982 /83 (2RC), are classified as being af-
fected by a warm equatorial SST anomaly. When the
response is projected onto ten EOFs the result is im-
proved somewhat with four 2RC DJF means classified
as belonging to the 1982/83 ensemble. Correctly, none
of the —2RC DJF means is identified as being influ-
enced by anomalous positive El Nifio type SSTAs when
either EOF truncation is used.

The results for the “global” data, 60°S~60°N, in-
dicate that the EOF-based “global field” discrimination
rules are unreliable, even when the higher EOF trun-
cation is used. Only one of the outcomes of the warm
SST anomaly experiments is classified as being forced
by a warm equatorial SST anomaly. One of the out-
comes of the cold anomaly experiment is also classified
in this way.

¢. Using observed anomalies as guesses

We found above that the DS estimator is adequate
in the present circumstances and that the 72%- and the
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TABLE 3. Classification of five individual response patterns simulated in the three GCM experiments (row headings) using the discrimination
rule (10) based on the outcome of the other experiments (column headings). The data compression is based on EOF truncation using the
first five (ten) EOFs. The entry “5” in the “2RC” column and “1982/83(30°S-30°N)” row (5 EOFs) indicates that all five tropical anomalies
simulated in the five “1982/83” experiments are classified as belonging to the “2RC” ensemble and not to the control ensemble, if the
empirical knowledge of the “2RC” experiment is used to formulate the classification rule.

Five EOFs Ten EOFs
Region Experiment 2RC —2RC 1982/83 2RC —2RC 1982/83
30°S-30°N 2RC — 0 3 — 0 4
—2RC 0 — 0 0 — 0
1982/83 5 0 — 5 0 —
60°S-60°N 2RC — 0 0 — 0 1
—2RC 1 — 1 1 —_ 1
1982/83 0 0 — 0 0 —_—

U significance tests yield equivalent results. Therefore,
we limit ourselves only to the DS estimator and the
T?-test in this subsection. Anticipating that the bulk
of the El Nifio related information is located in the
tropics and midlatitudes, we disregard all data north
of 60°N. Analyses of the six observed positive SST
anomaly guess patterns are available only in the
Northern extratropics at latitudes greater than 20°N.
Therefore, the tropical band considered in this subsec-
tion covers only 20°~30°N and the global band is taken
to be 20°-60°N.

1) ESTIMATED LEVEL OF RECURRENCE

In the tropical band the estimated level of recurrence
ranges between 94% (—2RC) and 99% (2RC) as is
shown in Table 4. In the global band the estimates
range between 90% (1982/83) and 95% (—2RC). For
the tropical band the estimated level of recurrence is
comparable to (less than) that obtained with five EOFs
for 2RC (—2RC, 1982/83). This weak result using the
observed guess patterns is not surprising because in-
formation about the expected form of the response is
missing from most of the tropical band that was used
in conjunction with the EOFs. In the case of the global
band, the estimates of recurrence are comparable to
those obtained with the ten EOF data truncation even
though there are fewer guess patterns which are known
over less than half of the tropical band used with the

TABLE 4. As in Table 2 except results are for a multiple recurrence
analysis of the El Nifio sensitivity experiments when observed El
Nifio anomalies are used as guess patterns. Only results for the DS
estimator and the T>-test are shown. All probabilities are given in %.

20°-30°N 20°-60°N
Experiment 2RC —2RC 1982/83 2RC —-2RC 1982/83
T? 166.4 51.0 56.6 50.0 56.4 34.2
DS 99.9 942 95.1 94.1 951 90.1
Hy™(T?) 0.0 0.0 0.0 0.0 0.0 0.0
229

Ho¥*%(T?) 0.0 33 1.6 3.5 1.7

EOFs. This clearly shows that the Northern Hemi-
sphere extratropical observed guess patterns are very
efficient tools for extracting information about the na-
ture of the model’s response to anomalous equatorial
forcing.

2) T? SIGNIFICANCE TESTS

Curves of p( e, T?) for near tropical and extratropical
Northern Hemisphere 500 mb height projected onto
the six observed El Nifio 500 mb height anomalies are
shown in Fig. 4. In the tropical band the responses are
found to be at least 84% recurrent at a significance
level no greater than 3.3%. In the global band the re-
sponses to the warm and cold doubled Rasmussen and
Carpenter anomaly are found to be at least 84% re-
current at a significance level no greater than 3.5%. It
is rather puzzling that the response to the observed

-1982/83 SST anomaly, which is estimated to be 90%

recurrent, is the weakest response of the three experi-
ments. While the response in this experiment was found
to be significantly greater than 50% recurrent, its level
of recurrence was not found to be significantly greater
than 84%. This weak result shows that the response of
the CCC GCM to the observed 1982 /83 SST anomaly
in the NH extratropical region is considerably different
from most of the six El Nifio DJF 500 mb height
anomalies that are used as guesses.

3) CLASSIFICATION OF THE EXPERIMENTS

Having found that the recurrence analysis using ob-
served El Nifio guesses is competitive in the global band
with the analysis using ten EOFs, we repeat the cross-
classification done in section 5b (4) using the discrim-
ination rules based on the observed El Nifio guess pat-
terns. The result is summarized in Table 5.

The result for the near-tropical latitude belt, 20°-
30°N, lies between that obtained with the two EOF
approaches for the tropical band, 30°S-30°N. The re-
sults for the midlatitude band, 20°-60°N, is much im-
proved compared with Table 3. None of the warm
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FIG. 4. As in Fig. 3, except for differences between control and
experimental DJF 500 mb in the 20°~30°N and 20°-60°N latitude
bands. Seasonal means were projected onto the six observed El-Nifio
guess patterns.

event anomalies is categorized as being a cold event
anomaly and vice versa. Three of the 2RC simulations
and one of the 1982 /83 simulations are correctly clas-
sified as being modified by the presence of warm equa-
torial SST anomalies.

TABLE 5. Classification of five individual response patterns sim-
ulated in the three GCM experiments (row headings) using the dis-
crimination rule (10) based on the outcome of the other experiments
(column headings). The data compression is based on six observed
E! Nifio guess patterns. The entry “4” in the “1982/83” column and
“2RC/20°N-30°N" row indicates that four tropical anomalies sim-
ulated in the five “2RC” experiments are classified as belonging to
the “1982/83” ensemble and not the control ensemble, if the empirical
knowledge of the “1982/83” experiment is used.

Region Experiment 2RC —-2RC 1982/83

20°N-30°N 2RC —
—2RC 0
1982/83 0
2RC —
-2RC 0
1982/83 2

4
0
20°N~60°N 1
0

c|lo olle
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d. Classification of observed El Nifio year anomalies

Recurrence analysis classification rules obtained us-
ing ten EOFs and the six observed guess patterns were
used to classify observed DJF 500 mb height for 1955
to 1984 inclusive. For the purposes of this classification,
rules based on an EOF truncation of the data were
rederived using only data in the near-tropical and ex-
tratropical latitude bands. EOFs of the control climate
appropriate to the regions under consideration were
employed. The results of these area-restricted recur-
rence analyses are summarized in Table 6. With the
exception of the response to the 1982/83 experiment
these results are comparable to those obtained with the
observed guesses. In the case of the 1982/83 experi-
ment the EQFs clearly do a better job of identifying
the signal.

The classifications which were made as a byproduct
of the area restricted analysis are summarized in Fig.
5. The diagrams display pairs of box plots indication
the distribution of Wright’s (1984 ) eastern tropical Pa-
cific SST index for the nonwarm (noncold) and warm
(cold) classifications. The box plots schematically de-
pict the median values (the central horizontal bar),
the 25th and 75th percentiles (the lower and upper
horizontal bars, respectively) and the extremes (the
endpoints of the vertical line segments) of the SST in-
dex values observed in classified years for each rule
and classification.

As can be seen from Fig. 5, the combined use of -
observed guesses in the near-tropical band and empir-
ical knowledge from the —2RC experiments (Fig. 5a)
resulted in the best classification of observed DJF 500
mb height means into cold and noncold events. In this
case all four generally recognized cold events (1955,
1970, 1973 and 1975) were correctly classified as cold
events. Five of the remaining six realizations of DJF
mean 500 mb height that were classified as cold events
(1961, 1962, 1964, 1967, and 1984) are years with
below average values of the SST index. The last year
classified (1983) has an average SST index. The com-
bined use of observed guesses in the near-tropical band
and empirical knowledge from the 2RC experiments

TABLE 6. As in Table 2 except results are for a multiple recurrence
analysis of the El Nifio sensitivity experiments when the first ten
EOFs of the control climate DJF 500 mb means are used as guess
patterns. EOFs were computed for the 20°-30°N ““near-tropical”
band and the 20°-60°N “extratropical” band. Only results for the
DS estimator and the T?-test are shown. All probabilities are given
in %.

20°-30°N 20°-60°N
Experiment 2RC —2RC 1982/83 2RC —2RC 1982/83
7 190.8  56.5 102.7 89.0 432 62.5
DS >99.9 946 98.5 978 920 95.5
H™(T?) 0.0 0.0 0.0 0.0 0.0 0.0
H¥™(T?) 0.0 5.1 0.0 00 195 2.6
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FIG. 5. Distribution of Wright’s SST index by classification rule and classification. The horizontal line in the interior of each box indicates
the median of the distribution. The lower and upper edges of each box indicates, respectively, the 25th and 75th percentiles of the distribution.
The ends of the vertical line segments indicate the extremes of the distributions. Plus (minus) signs indicate years in which Wright’s index
is greater (less) than the mean. One sign indicates that the index has a value which differs from the mean by less than one standard deviation;
two signs indicate that its value is different from the mean by at least one standard deviation. (a) Distributions for rules using the observed
guess patterns in the 20°~30°N latitude band. (b) As in (a), but for rules using ten EOFs. (c) Distributions for rules using the observed
guess patterns in the 20°-60°N latitude band. (d) As in (¢), but for rules using ten EOFs.

resulted in the best classification of observed DJF 500
mb height means into warm and nonwarm events. In
this case four of the six El-Nifios are correctly classified
as warm events. The two additional years that were
classified as warm years (1968, 1978) are years with
above normal values of the SST index. Note that the
entire distribution of SST index values for years clas-
sified as warm (cold) years lies above (below) the mean
index value in the case of the rule based on the 2RC
(—2RC) experiment. Also note that the interquartile
ranges of the nonwarm (noncold) and warm (cold)
distributions are clearly separated. The rule based on
the 1982/83 experiment was less successful, but the
warm classification still corresponds to above average
values of the SST index. . ]
Classifications made using the first ten EOFs in the

‘

near-tropical band as guess patterns (Fig. 5b) were very
similar to those made with the observed anomaly pat-
terns. In the case of rules based on the 2RC and —2RC
experiments the classifications resulted in the same
pleasing separation of distributions of SST index values.

Classifications made in the extratropical region using
the observed guess patterns (Fig. 5¢) were surprisingly
successful. The 2RC rule misclassified only one year
with a below normal SST index (1959) and correctly.
identified four warm events. The 1982/83 rule iden-
tified five of the six warm events, but made a gross
error by also classifying the 1955 cold event as a warm
event. The —2RC rule identified only two of four cold
events and it misclassified three years with above nor-
mal SST index. These rules likely have a considerable
amount of artificial skill because the dataset of anomaly
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patterns that is classified includes patterns used in their
derivation. This is underscored by the performance of
the extratropical rules based on EOFs (Fig. 5d), which
were much more conservative than those using the ob-
served patterns.

6. Discussion

In this paper we have successfully extended the con-
cept of recurrence analysis to multivariate climate
comparison problems by using the tools of multiple
discriminant analysis. We have described several esti-
mators and tests of recurrence. The latter address hy-
potheses about differences in the ensemble means of
two climates while the former gives an indication of
how much may be learned about differences between
the two climates from the available samples.

We have also described the assumptions that are im-
plicit in the various procedures. The Gaussian as-
sumption can be relaxed by employing nonparametric
procedures or by applying a rank transformation prior
to an analysis. On the other hand the independence
assumption (independent samples and independent
realizations within samples) is implicit in both para-
metric and nonparametric procedures and application
of a rank transformation will not appreciably amelio-
rate problems due to lack of independence. The effect
of the latter is to optimistically bias estimates and tests
of recurrence.

The techniques were successfully applied to a set of
previously analyzed El Nifio sensitivity experiments
conducted with the CCC GCM. The results of this
analysis are consistent with but more easily interpreted
than those obtained in the univariate recurrence anal-
ysis described by SZ. We have seen that it is possible
to derive discrimination rules that can differentiate re-
liably between realizations from the CCC GCM control
climate and from CCC GCM climates with anomalous
boundary forcing, even when the response is considered
in large tropical and extratropical regions.

It was possible to derive discrimination rules that
could discriminate between warm (cold) and nonwarm
(noncold) years with a considerable degree of reliability
by using rather limited empirical knowledge from sen-
sitivity experiments conducted with the CCC GCM.
This satisfying result indicates that the GCM not only
responds significantly to anomalous SSTs, but that it
does s0 in a way that the observed extratropical North-
ern Hemisphere atmosphere apparently recognizes.
Thus, we conclude that the sensitivity experiments
simulate, in a recurrent way, at least some of the char-
acteristics of a true El Nifio.

The example illustrates that the simple DS estimator
of recurrence will be adequate for many climate com-
parison problems provided that the dimensionality of
the data has been suitably reduced; however, there are
good reasons to use several parametric and nonpara-
metric procedures and to analyze both the reduced data

FRANCIS W. ZWIERS AND HANS voN STORCH

1551

and its rank transformation. Inconsistency among a
group of estimators or tests indicates that the assump-
tions required for some of these procedures are not
being satisfied. When this is the case the estimator or
test with the least restrictive set of assumptions should
be given the greatest weight.
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APPENDIX A
Description of the OS Error Rate Estimator

Okamoto (1963, 1968) described an asymptotic ex-
pansion for the probability of misclassifying an obser-
vation from the control population as an observation
from the experimental population when both popu-
lations are Gaussian with common variance-covari-
ance matrix, and when classification decisions are made
with Fisher’s linear discrimination statistic (8). This
expansion is given by

a a) as
Prielcy =®(u)+ 24243 210 72
{l } ( ) n. Re n 2 2

b
+ —=
nene

b
+ =4
n.Ne

b | b

n ?+O(n"3) (A1)

where ®(-) is the standard Gaussian cumulative dis-
tribution function and
n=n.+n,—2
a, = (do* + 3ldy?)/(2V?)
a = [do* — (I — 4)dp*]/(2V?)
as = (I - 1)d*/2
by = [do® + 6(1 +2)de® + (I + 2)(9! + 16)dy’
+ 20/(1 + 2)dy*]/(8V*)
by = [do® — 2(1 — 10)dy® + (I — 6)(I — 16)do*
+4(1 = 4)(I - 6)dy*1/(8V*)
biz = [do® + 2(1 + 8)do® — 3(/* — 10/ — 16)dy*
— 12/(1 — 6)dy*]/(4V*)
b= (I—D[d®+3( + 4)dy*

+ 6(1 + 4)dy?]/(4V?)
by = (I— 1)[do® — (I — 8)do* — 2(1 — 4)ds*1/(4V?)
by = [1— 1)((I + 1)do* + 41d,2}/8 '
and
do®> = —u¢(u)
do* = (3u — w?)P(u)
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dof = —u(15 — 104 + u*)o(u)
do? = (105u — 10513 + 21u° — u”)d(u)
u=-v/2

where ¢( - ) is the standard Gaussian probability density
function.

The OS-estimator of the misclassification error rate
(Page 1985) is obtained by substituting the shrunken
estimator

DS = [[(ne+ ne — l— l)/(ne +n.— 2)]
X (Xe = X)'S7 (X — X)]'? (A2)

for V in the expressions above.

APPENDIX B
Description of the M Error Rate Estimator

McLachlan (1975) described the M-method esti-
mator of the misclassification error which, like the OS
estimator, is based on an asymptotic expansion for the
probability of misclassifying. The M estimator is given
by

M = &(—DS/2) + ¢(—DS/2){{(/ — 1)/DS}/n.
+ (DS/32){4(4] — 1) — DS?}/n
+ (I = 1)(I = 2)/(4DSn2)
+{(I-1)/64} {—DS? + 8(2/ + 1)DS
+ (16/DS)}/(n.n)
+ (DS/12288){3DS® — 4(24/ + 7)DS*
+ 16(48/% — 48/ — 53)DS?

+192(—8/+ 15)}}/n? (B1)

where ®, ¢, u, n and DS are as defined in appendix A.
McLachlan also demonstrated that M is asymptotically
approximately a Gaussian random variable with mean
Pr{e|c} and variance 62(V?). The latter is given by

o*(V?) = {#(-V/2)*} {;:— +(V?/8)/n

+{V2+4(31—4)+ (I*— 4+ 5)(16/V%)}/
(4n)* + {(V* = 21)/8} /(nen,)

+ {V4+ 20111 — 16)V>+'8(5/ — 4)}/(64n.n)

+ {V* = 2(1+ 4)V? + 8} /(64n.n)

+ {2V® + 16(2/ — 5)V* — 32(4] — 13)V?}/

(32n)2] . (B2)
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APPENDIX C

Tiku’s Approxfmation of the Noncentral
F-Distribution

Tiku (1965, 1966) and Pearson and Hartley (1976)
describe an accurate approximation for the distribu-
tion of a noncentral F random variable ¥’ with non-
centrality parameter 62 and with », and v, degrees of
freedom. The approximation, which requires the nu-
merical evaluation of the incomplete beta function, is
given by

1
B(a, B)

where B(e, 3) is the beta function and

Pr{F'>F} ~

Yo
J; x (1 — x)#'dx (C1)

a=r/2, B=r/2

] -1
w1+ 5 x)
1 4] h
2] _ (V1+52)]
c=—2_fp 722
(Vz_z){ 141
vy 1 H

n (v +m—2)K

,=(l'2—2) E l/2_,1
o1 2 E—4) ]
E=H?/K3

K= (n+8)%+ (v, — 2)(v; + 26%)

H=2 + 633+ 3(v, + 62)(v; + 26%) (v, — 2)
+ (v + 36%) (v, — 2)2.
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