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Abstract: Current approaches to parameter estimation and model invalidation are often
inappropriate for biochemical reaction networks. This is because often only noisy measurements
and sparse experimental data is available, and since they do not take the special structure of
biochemical reaction networks into account.
In this work a new method to prove model invalidity and to estimate parameters is introduced.
It is based on a certificate of non-existence of feasible parameterizations for a given models.
This is done by reformulating the model invalidation task into a set-based feasibility problem.
As shown, due to the polynomial structure of many biochemical reaction systems, it is possible
to relax the non-convex feasibility problem into a semidefinite program and thus to obtain
conclusive results on model invalidity and parameter estimation. Our framework allows us to
consider the arising difficulties posed by biochemical reaction networks by taking the specific
structure of the dynamics and model outputs into account. It also enables us to discard large
parameter regions as infeasible. We also show on a well-known biological example, namely the
Michaelis-Menten and the Henri kinetics, how with this method it is possible to discriminate
between model hypotheses and how to estimate parameters.

1. INTRODUCTION

In systems biology, modeling is an important tool for anal-
ysis and prediction of metabolic and signal transduction
processes. Limited prior knowledge of the involved reaction
mechanisms and system structure, however, often results
in competing hypotheses, where the kinetic parameters are
often completely unknown or may vary within one order
of magnitude. For a successful analysis, it is important to
discriminate between the alternatives, taking the parame-
ter uncertainty into account, so as to obtain a model that
captures the essential behavior of the process under study.

Model validation consists of checking whether a model is
able to represent a given observed experimental behavior.
However, as is well known (e.g. Epstein and Pojman [1998],
Prajna [2006]), model validation is a misleading term.
Indeed, it is impossible to prove that a model or reaction
mechanism is correct, as to do so an infinite number
of experiments would be required. Thus, the purpose of
model validation techniques is rather to invalidate a model
by proving inconsistency of the model hypotheses with the
experimental data.

Traditional approaches to model validation include ex-
haustive Monte Carlo simulations to check for consistency
with experimental data (Robert and Casella [2004]). In-
deed, simulation is a way to test whether a model can
reproduce some characteristics of the process under study.

However, the computational demands for proving incon-
sistency are in general prohibitive, and such a proof by
simulation is typically not exact.

One of the first works of model validation in the context
of invalidation was given by Smith and Doyle [1992] using
frequency-domain data. Chen and Wang [1996] and Poolla
et al. [1994] extended this result so as to consider also
time-domain data. The applicability of these approaches
is however limited to linear models.

Evans et al. [2004] and Schnell et al. [2006] proposed
an analytical approach to extend model distinguishability
to nonlinear models. It involves the construction, when
possible, of a smooth mapping between the two candidate
models (Evans et al. [2004]). The applicability of this
method is however restricted in practice to very small
systems.

Quite recently, Prajna [2006] proposed a model invalida-
tion framework using barrier certificates, which are func-
tions of state-parameter-time. These time barriers sepa-
rate possible model trajectories and measurement data,
allowing to conclusively invalidate a model. Finding such
barrier certificates however is a nontrivial task. Moreover,
the existence of a suitable barrier function cannot be
guaranteed for all invalid models.
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Our work is based on the work of Kuepfer et al. [2007],
which introduced a semidefinite programming approach
for parameter estimation based on stationary measure-
ments. By using a different class of infeasibility certificates
for polynomial reaction mechanisms similar to the one
proposed in Waldherr et al. [2008] for sensitivity analysis,
the method we proposed allows to consider a large class
of nonlinear systems subjected to bounded, but possibly
large, parameter uncertainties and measurement errors.
Different candidate models can be discriminated by prov-
ing inconsistency with the available data while taking
parameter and measurement uncertainties into account.

The proposed approach also lays the basis for model pa-
rameter estimation. By invalidating subsets of the param-
eter space it is indeed possible to classify the admissible
parameter region into feasible regions that explain the
measurements and infeasible regions that do not.

This paper is structured as follows: in Section 2 the invali-
dation setting is considered, the basic results using feasible
parameter sets are presented, and the key ideas of the
proposed model discrimination and parameter estimation
technique are outlined. Then, in Section 3 we show how
to solve the resulting feasibility problem via a convex
semidefinite program, and how the feasible parameter sets
can thus be estimated. In Section 4 we provide examples
on model discrimination and parameter estimation. Our
approach is summarized and discussed in Section 5.

2. MODEL INVALIDATION AND PARAMETER
ESTIMATION

The basis for the modeling of biochemical reaction net-
works is the description of the occurring reactions in the
form

α1S1 + · · · + αns
Sns

→ β1O1 + · · · + βnp
Ono

.

Hereby the substrates Si are processed to the output
products Oi, while the pre-factors αi, βi define the sto-
ichiometric relations of the participating compounds.

Such biochemical reaction networks can be expressed in
terms of ordinary differential equations if spacial and
stochastic effects are neglected. The dynamic models can
then be defined considering the reaction fluxes and the
corresponding balance equations as

ẋ = Nν(x, p), (1)

where x ∈ Rnx denotes the vector of concentrations,
p ∈ Rnp the vector of kinetic parameters, and ν the vector
of fluxes. The stoichiometric matrix N is built up from the
factors αi, βi.

There are many possibilities to describe the reaction fluxes
(see e.g. Cornish-Bowden [2004]), including the law of
mass action, Hill kinetic, and Monod kinetic, the first
approach being one of the most frequently used. Hereby,
the reaction fluxes are proportional to the substrates,
resulting in system (1) with polynomial right-hand side. As
our approach is based on this special structure, we focus
on mass action models.

Describing this model with a suitable discretization
method we obtain the following discrete time model

Σ =

{

x[k + 1] = g(x[k], p),
y[k] = h(x[k], p)

(2)

where k ∈ N is the time index, x[k] ∈ X ⊂ Rnx the
vector of state variables, y[k] ∈ R

ny the model output,
and p ∈ P ⊂ Rnp the parameter vector. In the remainder
we consider g(·, ·) and h(·, ·) to be polynomial functions.
Note that this is a mild assumption, since a large class of
systems biology models is based on mass action kinetics.

Remark 1. This setting can be easily extended to rational
functions, as well as to consider model inputs.

Furthermore, let an experiment be performed with the
real process, and let a sequence of (noisy) measurements
Y = {Yk0

, Yk1
, . . . , YkN

} be taken at times k0, . . . , kN ,
with Yki

⊂ Rny for every i ∈ {0, . . . , N}. We also assume
that the state variables are always in the feasible set X ,
i.e., x[k] ∈ X for all k ∈ {0, . . . , k0, . . . , kN}.
Considering this setup we aimed to solve the model inval-
idation and parameter estimation task. The model invali-
dation problem can then be formulated as follows:

Problem 2. (Model Invalidation). Given a model (2), an
admissible parameter set P , and a measurement sequence
Y, find a feasible parametrization for Σ, i.e., a parameter
p ∈ P for which the model (2) can reproduce an output
trajectory y[k] such that y[ki] ∈ Yki

for every i ∈
{0, . . . , N} for some initial condition, or prove that none
exists.

Note that, in case of a measurement process involving a
stochastic error, it is possible for the actual output to be
missed by the respective measurements. In this case it can
happen to regard a valid model as invalid, or to give an
incomplete parameter estimation.

Traditional approaches to solve Problem 2 include exhaus-
tive Monte Carlo based simulation using random param-
eters and initial conditions sampled respectively from P
and X0. If no trajectory touching the measurements is
found after many simulations, then inconsistency is (sta-
tistically) concluded. Increasing the number of simulations
may improve the reliability of this approach, but it remains
inherently not exact.

Our approach to prove model invalidity is based on a
certificate of non-existence of feasible parametrizations.
Remarkably, this is achieved without direct simulating nor
computing the solution of the model. Moreover, uniqueness
of the solution of the discrete system is not required,
although such a property often holds for most physical
models.

2.1 Proposed Framework

The key idea is to reformulate the invalidation problem
as a feasibility problem. While taking into account the
measurements and parameter bounds as constraints, infea-
sibility of the feasibility problem can be certified for the
considered system class as shown later on. Thus, model
invalidity can be proved.

Two Measurements Let us start considering the simple
case of two measurements Yk,Yk+1 taken at consecutive
time indexes; we define their feasible parameter set as
the set Pk,k+1 = {p ∈ P : ∃x ∈ X | h(x, p) ∈
Yk, h(g(x, p), p) ∈ Yk+1}. We can then show that following
theorem holds:
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Theorem 3. (Model Invalidity): Given a model (2), a
parameter set P , and two consecutive measurements
Yk,Yk+1, the model Σ can be valid for the real system
under study only if Pk,k+1 6= ∅.

As a consequence, if Pk,k+1 = ∅ then we can say that
the model (2) and its admissible parameter set P are
invalidated by the measurements {Yk,Yk+1}.

The proof of Theorem 3 is simply done by contradiction.
Suppose that a feasible parametrization p∗ ∈ P for
Y = {Yk,Yk+1} exists, while Pk,k+1 = ∅. By definition
of feasible parametrization, there exists a trajectory for
which y[k] = h(x[k], p) ∈ Yk and y[k+1] = h(x[k+1], p) ∈
Yk+1, with x[k + 1] = g(x[k], p). It is then straightforward
to see that p∗ ∈ Pk,k+1, contradicting Pk,k+1 = ∅.

As measurements are not necessarily taken at consecutive
time steps, let us extend the above definition to a pair
of arbitrary measurements Yk and Yk+m. We can then
extend define the feasible parameter set as Pk,k+m = {p ∈
P : ∃x ∈ X | h(x, p) ∈ Yk, h(gm(x, p), p) ∈ Yk+m}, where
gm(·, ·) denotes the composition of g m-times. It is then
easy to see that Theorem 3 remains valid.

Note that Pk,k+m is the projection on Rnp of the higher-

dimensional set F (P ,Yk,Yk+m) ∈ R(m+1)nx+2ny+np de-
fined by the system































y[k] = h(x[k], p)
y[k + m] = h(x[k + m], p)
x[i] = g(x[i − 1], p) i ∈ M \ {k}
x[i] ∈ X i ∈ M
y[k] ∈ Yk

y[k + m] ∈ Yk+m

p ∈ P ,

(3)

where M = {k, . . . , k + m}. We denote as feasibility
problem for Yk,Yk+m the problem of checking whether
F (P ,Yk,Yk+m) = ∅. An efficient approach to the solution
of the feasibility problem (3) for polynomial systems is
provided in the next section.

Multiple Measurements It is important to note that the
equation system (3) could be easily extended to consider
multiple measurements at once, simply including the con-
straints corresponding to the intermediates. As the number
of measurements increases, this approach quickly becomes
computationally prohibitive. Therefore, we now consider
a less demanding, though more conservative, approach
to model invalidation allowing to consider an arbitrary
number of measurements. Key idea is to split the overall
problem into a number of smaller problems and subse-
quently to infer the overall solution.

Consider the scheme depicted in Figure 1, where the mea-
surements are indicated by error bars. Here, Pi,j ⊆ P
indicate the feasible parameter sets reproducing output
trajectories being pairwise consistent with the measure-
ments Yi and Yj . Necessarily, if one of the parameter sets
Pi,j is empty, then the model (2) is invalid. We additionally
require a consistent parametrization of the model (2),
defined as

y

1 2 3 4
k

P1,2

P2,3

P3,4

Y1

Y2

Y3

Y4

p1

p2

P1,2

P2,3

P3,4

PY

Fig. 1. Description of the invalidity approach. If the inter-
section of the feasible parameter sets is the empty set,
then the model is invalidated by the measurements.

PY =

N−1
⋂

i=0

Pi,i+1.

Note that PY provides an estimate of the model parame-
ters. Thus, a strict criteria for model invalidity considering
multiple measurements is given by:

Corollary 4. (Model Invalidity). If PY = ∅ then the
model (2) and the admissible parameter set P are invali-
dated by the measurements Y.

In the remainder, we show how to solve the feasibility
problem given by the equations (3) for the considered
system class. In particular, we provide an algorithm to
bound the feasible parameter set by partitioning the
parameter space. Via infeasibility certificates, introduced
in the next section, it is possible to classify subsets of the
parameter space in order to obtain an outer-approximate
of PY .

3. BOUNDING FEASIBLE PARAMETER SETS

In this section we focus on how to estimate the feasi-
ble parameter sets for the considered problem class. In
general, the feasibility problem F (P ,Yk,Yk+m) (3) is a
non-convex NP-hard optimization problem. Non-convexity
results from the nonlinearities of the model equations.

Kuepfer et al. [2007] proposed a method that allows to
obtain some results on the infeasibility of polynomial op-
timization problem. By taking advantage of the polyno-
miality, it is possible to relax F (P ,Yk,Yk+m) to a convex
semidefinite program (SDP). Semidefinite programs can
be solved efficiently, e.g. via interior point methods.

To do so, the original feasibility problem is to be reformu-
lated first as a quadratic feasibility problem (QFP). For
simplicity of notation, let us consider two measurements
taken at consecutive time steps. Hereafter, a vector ξ
is constructed containing the monomials of x[k + 1] −
g(x[k], p) and y[k] − h(x[k], p), e.g.

ξT = (1, pi, xj [k], pixj [k], xj [k + 1], yl[k])

for all i ∈ Np, j ∈ Nx, l ∈ Ny, with Np = {1, . . . , np},
Nx = {1, . . . , nx} and Ny = {1, . . . , ny}.

Let Sn be the set of real symmetric n × n matrices,
and let � denote the order operator with respect to the
cone of positive semidefinite (PSD) matrices in Sn. The
equality constraints xi[k + 1] − gi(x[k], p) = 0 and y[k] −
h(x[k], p) = 0 can be written as
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0 = xi[k + 1] − gi(x[k], p) = ξT Qiξ, i ∈ Nx

0 = yi[k] − hi(x[k], p) = ξT Riξ, i ∈ Ny

whereas Qi, Ri are constant symmetric matrices (Qi, Ri ∈
Snξ). Note also that some elements of the vector ξ may be
dependent from one another. Such dependencies can also
be expressed quadratically, i.e.

ξT Diξ = 0, i ∈ Nd,

where Nd = {1, . . . , nd}, nd being the number of depen-
dencies. The feasibility problem (3) can then be written
as

Q(P ,Yk,Yk+1) :=



























find ξ ∈ R
nξ

s.t. ξT Qiξ = 0 i ∈ Nx

ξT Riξ = 0 i ∈ Ny

ξT Diξ = 0 i ∈ Nd

Bξ ≥ 0
ξ1 = 1,

where B ∈ Rnξ×2(nξ−1) is constructed to cover the remain-
der of constraints, i.e. (Yk and Yk+1), the parameter region
P , and restrictions of the state space xi[k] ∈ X .

The obtained QFP can subsequently be relax to a SDP
(Parrilo [2003]). The relaxation is found by setting X = ξ ·
ξT and replacing the condition rank(X) = 1 and tr(X) ≥
1 with the weaker constraint X � 0. This relaxation
is based on an image convexification method (Ramana
[1994]). The relaxed version of the QFP is thus obtained
to as

SDP (P ,Yk,Yk+1) :=











































find X ∈ Snξ

s.t. tr(QiX) = 0 i ∈ Nx

tr(RiX) = 0 i ∈ Ny

tr(DiX) = 0 i ∈ Nd

BXe1 ≥ 0
tr(e1e

T
1 ) = 1

BXBT ≥ 0
X � 0,

where e1 = (1, 0, . . . , 0)T ∈ Rnξ . Note that the relaxation
is conservative. This guarantees that no solution is missed,
but “false” solutions may have been introduced. This does
not lead however to wrong invalidation results. In order
to reduce the number of such wrong solutions, redundant
constraints of the form BXBT ≥ 0 can be introduced
(Kuepfer et al. [2007]).

It is a standard procedure in convex optimization to use
the dual problem to certify infeasibility of the primal prob-
lem (Boyd and Vandenberghe [2004], Luenberger [2003]).
Weak duality of SDP ensures that if the dual problem
is unbounded, then the primal problem is infeasible, as
shown by Waldherr et al. [2008]. The corresponding La-
grangian dual to SDP (P ,Yk,Yk+1) is given by

LD(P ,Yk,Yk+1) =







































max νnν

s.t. BT λ2B + e1λ
T
1 B + BT λ1e

T
1 +

+λ3 +
∑

i∈Nx

νiQi +
∑

i∈Ny

νnx+iRi+

+
∑

i∈Nd

νnx+ny+iDi + νnν
e1e

T
1 = 0

λ1 ≥ 0, λ2 ≥ 0, λ3 � 0,

where λ1 ∈ R2(nξ−1), λ2 ∈ S2(nξ−1), λ3 ∈ Snξ , ν ∈ Rnν are
the free variables, with nν = nx + ny + nd + 1.

pi

pj

pi

pj

⇒

? ? ? ?

? ? ? ?

? ? ? ?

? ? ? ?

x x x x

x o o o

x o o x

x x x x

Fig. 2. Application of infeasibility certificates. The shaded
area corresponds to the feasible parameter set. The
symbol “x” denotes an infeasible partition, while “o”
a feasible one.

3.1 Estimation of Feasible Parameter Sets

As infeasibility of (3) can be certified solving LD, we
can now outer-approximate the feasible parameter set by
“cutting” off surrounding infeasible regions. The idea is
depicted in Figure 2, where the shaded region encloses the
feasible parameters for the problem.

This approach derives from the one proposed by Kuepfer
et al. [2007], where parameter regions containing no steady
states are similarly estimated via semidefinite program-
ming. Our approach extends this result by taking not only
the dynamical properties of the considered system into
account, but also the model outputs.

In order to reduce the overall computational costs, the
following bisection algorithm is implemented, as it allows
to check groups of partitions simultaneously.

Algorithm 1. Outer-Approximate(Q,Yk,Yk+1)

0. If volume(Q) ≤ ǫ, return Q
1. Compute the Lagrangian dual LD(Q,Yk,Yk+1)
2. If LD is feasible, return ∅
3. If LD is not feasible, partition Q into Q1 and Q2

4. Set Q′
1 := Outer-Approximate(Q1,Yk,Yk+1)

5. Set Q′
2 := Outer-Approximate(Q2,Yk,Yk+1)

6. Return Q′
1 ∪ Q′

2

Note that Pk,k+1 is contained in the set obtained calling
Outer-Approximate(P ,Yk,Yk+1), up to the given preci-
sion threshold ǫ. This results in a robust and convergent
way to explore the parameter space.

Remark 5. The computational time TA of Algorithm 1
is O(N · TD), where TD is the time taken by a single
Lagrangian dual computation and N is the number of dual
evaluations, which depends on the precision threshold con-
sidered in the algorithm. Reducing the threshold increases
exponentially the time required, but it is important to note
that the algorithm can be scheduled in parallel.

The proposed algorithm allows to estimate the feasible
parameter sets. Next we show the application of our
method to example systems.

4. EXAMPLE

As an example for an application of our approach, we
consider two possible reaction mechanisms proposed by
Henri [1902] between an enzyme (E) and a substrate (S)
forming an enzyme-substrate complex (C):
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E + S
p1

⇋
p
−1

C
p2

→ E + P, (4)

and

C
p̃1

⇋
p̃
−1

E + S
p̃2

→ E + P. (5)

These reaction schemes are known nowadays respectively
as the Michaelis-Menten (MM) mechanism of enzyme
activation (4) and as the Henri (H) mechanism (5). Both
reaction schemes and their relevance are discussed in
detail e.g. in Schnell et al. [2006], in which a main result
states that both reaction mechanisms are analytically
distinguishable if the transient initial dynamic of two
independent states is considered. We therefore consider
measurements in the transient phase.

The reaction mechanisms are modeled according to the
law of mass action. Since both mechanisms obey the two
conservation laws

e0 = e(t) + c(t),

s0 = s(t) + c(t) + p(t),

both models can be expressed as second order systems.
Let us then consider a simple first order explicit Euler
discretization scheme (see e.g. Letellier et al. [2004]), given
by

ẋ[k] ≈
x[k + 1] − x[k]

h
,

where h > 0 denotes the size of the discretization step
and x[k] the value of x(t) for t = kh. Fixing e0 = 1, the
corresponding difference equations for the MM mechanism
are given by

s[k + 1] = s[k] + p1h((c[k] − 1)s[k] + KSc[k])

c[k + 1] = c[k] + p1h((1 − c[k])s[k] − KMc[k]),
(6)

where KS = p−1/p1, KM = (p−1 + p2)/p1. For the Henri
mechanism we obtain

s[k + 1] = s[k] + h(p̃1 + p̃2)((c[k] − 1)s[k] − KHc[k])

c[k + 1] = c[k] + p̃1h((1 − c[k])s[k] − K̃Sc[k]),
(7)

where K̃S = p̃−1/p̃1 and KM = p̃−1/(p̃1 + p̃2).

4.1 Model Discrimination

In order to discriminate between both models, we consider
measurements

YH = {y : y[k] = (s[k], c[k]), 3 ≤ k ≤ 7}

taken from the Henri mechanism (H) with (s[0], c[0]) =
(1, 0), h = 0.1sec and the parameter values p̃1 = 1,
p̃−1 = 1, p̃2 = 1. Next, we show that the MM is invalid
with respect to these measurements.

For the invalidation setup, we consider as initial parameter
space PMM a range of one order of magnitude for each
parameter:

1

3
≤ p1, p−1, p2 ≤ 3.

In order to show model invalidity, the feasible parameter
sets P3,4, P4,5, P5,6, and P6,7 for the corresponding time

points are calculated via Algorithm 1. As partition of
the parameter space PMM we chose unitary hypercubes,
whereas each cube is of size 0.05. The feasible parameter
sets are shown in Figure 3.

1

2

3

0.511.522.53

0.5

1

1.5

2

2.5

3

p
1

p
−1

p
2

Fig. 3. Feasible parameter sets from P3,4 to P6,7 from to
dark to light gray matching the measurements.

As can clearly be seen from the Figure 3, the intersection

PY =

6
⋂

i=3

Pi,i+1

of the feasible parameter sets is empty. Thus, the
Michaelis-Menten mechanism with the admitted PMM is
invalidated with respect to the measurements YH .

4.2 Parameter Estimation

In order to estimate the model parameters, we consider
now the measurements y[k] = (s[k], c[k])T , 1 ≤ k ≤ 6
taken from the Michaelis-Menten mechanism (6) with
(s[0], c[0]) = (1, 0), h = 0.1sec and the parameter values
p1 = 1, p−1 = 1, p2 = 1.

The feasible parameter sets Pi,j are estimated considering
Algorithm 1 and depicted in Figure 4. In this case, the
intersection PY according to Corollary 4 is highlighted in
black corresponding to the consistent feasible parameter
set.

0.5

1

1.5

2

0.5
1

1.5
2

2.5
3

0.5

1

1.5

p
1

p
−1

p
2

Fig. 4. Parameter sets. The intersection of the parameter
sets is indicated black.

The complement P \ PY of PY is therefore classified as
infeasible.

As the number of measurements considered increases, the
parameter estimates improve, see Figure 5. Notably, with
this approach large regions of the parameter space can be
discarded considering only a few measurements.

Remark 6. For the examples considered, the Lagrangian
dual is computed within less than one second on a standard
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p1

k
1 2 3 4 5

0.5

1.0

1.5

2.0

2.5

3.0

p−1

k
1 2 3 4 5

0.5

1.0

1.5

2.0

2.5

3.0

p2

k
1 2 3 4 5

0.5

1.0

1.5

2.0

2.5

3.0

Fig. 5. Feasible parameter regions (shaded in the figure)
with respect to the number of measurements taken
into account.

desktop computer using MATLAB 2008 and the SEDUMI
(Sturm [1999]) solver.

5. DISCUSSION AND OUTLOOK

We have studied the problems of model invalidation and
parameter estimation of time-discrete polynomial systems
with uncertain parameters. This is of particular impor-
tance for biochemical reaction networks, as it allows to
discriminate between different model hypotheses. The pro-
posed method provides conclusive results on the invalida-
tion problem even if only imprecise or sparse measure-
ments are available. It furthermore allows to discard large
parameter regions, and therefore complements yet existing
identification methods.

The proposed method is based on the outer-approximation
of the parameter regions consistent with the experimental
data. The parameter regions corresponds to the solution
space of a nonlinear feasibility problem which can be
relaxed to a semidefinite program. The Lagrangian dual of
the SDP allows to efficiently bound the feasible parameter
regions by a bisection algorithm. The derived method
can be applied to a large class of nonlinear systems and
can also be generalized and applied to state estimation
as outlined in Borchers et al. [2009]. An extension to
general nonlinear systems containing discrete variables can
be done considering the same methods as in Hasenauer
et al. [2009].

We have applied our methods to two possible enzyme-
substrate reaction mechanisms. We were able to show
invalidity of one of the mechanisms by considering data
taken from the other one. We also demonstrated the
applicability of our approach to obtain estimates on the
model parameters.

In summary, our approach is a reliable and computation-
ally manageable method for dynamical model invalidation
and parameter estimation. Future work includes the exten-
sion of this approach to experimental design of biochemical
reaction networks.
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