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ABSTRACT

In this thesis, we study system-theoretic model reduction techniques for special classes
of nonlinear systems, namely, bilinear and quadratic-bilinear (QB) control systems.
There is a large variety of applications, where control systems can be modeled as one
of the above-mentioned nonlinear systems, for example, boundary control problems,
�ow problems, neuronal dynamics. Our particular focus lies on balancing-type and
H2-optimal model reduction problems of the latter nonlinear systems. In the �rst part
of the thesis, we focus on balancing-type model reduction for bilinear and QB control
systems. We begin by revisiting the connection between the Gramians and energy func-
tions of bilinear systems and introduce a concept of truncated Gramians. We further
study balanced truncation model reduction technique for QB systems by extending the
idea of Gramians for bilinear systems and propose algebraic Gramians for the latter
systems. We additionally establish connections between the proposed Gramians and
the energy functionals for QB systems. Moreover, we discuss the usage of Gramians in
the model reduction framework of QB systems. In the second part of the thesis, we turn
our attention to interpolation-based H2-optimal model reduction. In this direction, we
derive interpolation-based model reduction conditions for QB control systems, which
aim at minimizing a system norm of the QB system, namely a truncated version of
the H2-norm of the latter system. Based on these conditions, we propose an iterative
scheme that approximately satis�es the derived optimality conditions. Lastly, we in-
vestigate interpolation-based model reduction for bilinear systems that are subject to
algebraic constraints. We show how to extend the existing knowledge of model reduc-
tion for linear descriptor systems to interpolation-based model reduction for specially
structured bilinear descriptor systems (DAEs). We also propose several modi�ed iter-
ative schemes, leading to locally H2-optimal reduced-order systems for the structured
bilinear DAEs. By means of several numerical examples, we compare the e�ciency of
all the proposed model reduction schemes for bilinear and QB systems with the existing
state-of-the-art methods.
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ZUSAMMENFASSUNG

In dieser Arbeit untersuchen wir systemtheoretische Modellreduktionstechniken für
spezielle Klassen nichtlinearer Systeme, insbesondere betrachten wir bilineare und quadratisch-
bilineare (QB) Eiggangs/Ausgangs-Systeme. Es gibt eine groÿe Vielfalt von Anwendun-
gen, bei denen Eiggangs/Ausgangs-Systeme als eins der oben genannten nichtlinearen
Systeme modelliert werden können, zum Beispiel Strömungsprobleme, Randsteuerungs-
probleme und neuronale Dynamiken. Unser besonderer Fokus liegt dabei auf bal-
ancierenden und H2-optimalen Modellreduktionsproblemen zu letztgenannten nichtlin-
earen Systeme. Im ersten Teil der Arbeit konzentrieren wir uns auf die balancierende
Modellreduktion für bilineare und QB Eiggangs/Ausgangs-Systeme. Wir beginnen
damit, die Verbindung zwischen den Gramschen und den Energiefunktionalen bilin-
earer Systeme erneut aufzugreifen und ein Konzept von abgeschnittenen Gramschen
einzuführen. Wir untersuchen weiterhin die Modellreduktionsmethode des balancierten
Abschneidens für QB Systeme, indem wir die Idee der Gramschen für bilineare Systeme
erweitern und algebraische Gramsche für die letztgenannten Systeme vorschlagen. Wir
stellen auÿerdem die Verbindung zwischen den vorgeschlagenen Gramschen und den
Energiefunktionalen für QB Systeme her. Darüber hinaus diskutieren wir die Verwen-
dung von Gramschen in kontext der Modellreduktion für QB Systeme. Im zweiten Teil
der Arbeit widmen wir uns der interpolationsbasierten H2-optimalen Modellreduktion.
Diesbezüglich leiten wir interpolationsbasierte Modellreduktionsbedingungen für QB
Steuersysteme ab, die darauf abzielen, eine gewisse Systemnorm des QB Systems zu
minimieren, nämlich eine abgeschnittene Version der H2-Norm. Basierend auf diesen
Bedingungen schlagen wir ein iteratives Verfahren vor, das die abgeleiteten Optimal-
itätsbedingungen näherungsweise erfüllt. Schlieÿlich untersuchen wir interpolations-
basierte Modellreduktionsmethoden für bilineare Systeme mit algebraischen Nebenbe-
dingungen. Wir zeigen, in der literature verfügbare verfahren zur Modellreduktion von
linearen Deskriptorsystemen auf die interpolationsbasierte Modellreduktion für speziell
strukturierte bilineare Deskriptorsysteme erweitert werden kann. Wir schlagen ebenso
mehrere modi�zierte iterative Schemata vor, die zu lokalH2-optimalen reduzierten Sys-
temen für die strukturierten bilinearen DAEs führen. Anhand mehrerer numerischer
Beispiele vergleichen wir die E�zienz aller vorgeschlagenen Modellreduktionsverfahren
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für bilineare und QB Systeme mit der existierender Methoden.
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Chapter 0. Acronyms and Notation xxiv

x vector ∈ Rn

xk kth entry of x
A matrix ∈ Rn×m

Aij the (i, j)th entry of A
A(i : j, :), A(:, k : `) rows i, . . . , j of A and columns k, . . . , ` of A
A(i : j, k : `) rows i, . . . , j of columns k, . . . , ` of A
AT the transpose of A
A−1 inverse of nonsingular A
A−T , inverse of AT

In, I identity matrix of size n× n, or of suitable size
0n×m, 0 zero matrix of size n×m, or of suitable size
eni ith column of the identity matrix of size n× n, i.e., In
rank (A) rank of a matrix A
span (A) subspace spanned by the columns of a matrix A
orth (A) orthonormal subspace spanned by the columns of a matrix

A
Σl linear control system . . . . . . . . . . . . . . . . . . . . . .Equation (2.1)
ΣB bilinear control system. . . . . . . . . . . . . . . . . . . . .Equation (3.1)
ΣQB quadratic-bilinear control system . . . . . . . . . . Equation (4.1)
Kq(A, b) Krylov subspace spanned by {b, Ab, . . . , Aq−1b}
1r := (1, . . . , 1)T ∈ Rr

Λ(A), Λ(A,M) spectrum of matrix A/matrix pair (A,M)
σmax(A), σmin(A) the largest/smallest singular value of A
tr (A) :=

∑n
i=1 aii, trace of A

‖u‖p := p

√
n∑
i=1

|ui|p for u ∈ Cn and 1 ≤ p <∞
‖u‖∞ the maximum norm (‖u‖∞ = maxi |ui|)
A⊗B the Kronecker product of A and B . . . . . . . (De�nition 2.23)
vec (A) vectorization operator applied to matrix A (De�nition 2.23)
Im vectorized identity matrix of dimension m, i.e., Im =

vec (Im)
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1.1. Motivation of Model Order Reduction
In engineering studies such as control design, prediction, and optimization of dynamical
systems, numerical simulations are considered to be one of the fundamental tools for
studying various properties. These dynamical systems are generally governed by partial
di�erential equations (PDEs), or ordinary di�erential equations (ODEs), or a combi-
nation of both. Furthermore, sometimes these dynamical systems are also subject to
some constraints, coming from some practical considerations, or restrictions from the
environments, or by the laws of physics. Thus, we obtain a set of di�erential equations
along with algebraic equations. Such systems are called di�erential-algebraic equations
(DAEs), or descriptor systems.
Highly accurate mathematical models, describing dynamical behaviors of the system

are desirable for engineering design studies. However, these models are generally com-
plex in nature, thus are computationally cumbersome. The word complex might have
di�erent interpretations. For instance, one way to think of complex systems is a sys-
tem with a large number of degrees of freedom. As a result, we obtain a large number
of equations, which is also called the state dimension. This can be viewed as a com-
plex model since numerical simulations of such systems with a large number of states
(large-scale systems) are very computationally expensive and might be ine�cient, too.
Furthermore, to capture the dynamics of many real-life applications, nonlinear terms

need to be added to describe the system dynamics accurately. These nonlinear terms
make engineering studies di�cult. Hence, such mathematical models also belong to

1
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the category of complex systems. Additionally, as mentioned before, sometimes alge-
braic constraints are also necessary to completely describe the dynamics, which also
makes the numerical analysis very complicated. These models can also be described as
complex systems.
In this thesis, we mainly focus on the dynamical systems that have high state-space

dimensions and special structure of their nonlinear terms. These systems are controlled
by external forces which are called control inputs. Formally, these systems are of the
form

Eẋ(t) = f(x(t)) + g(x(t))u(t), (1.1)

where x(t) ∈ Rn is state vector or solution trajectory of the system, f : Rn → Rn

and g : Rn → Rn×m are smooth nonlinear functions, E ∈ Rn×n might be singular, and
u(t) : R→ Rm is the input vector at time t and is an L2 bounded function. Additionally,
the system (1.1) is generally a high �delity model, i.e., n ∼ O(105)− O(106).
Furthermore, from a practical point of view, it is hardly possible to observe the whole

state x(t), instead we are interested either in very few state components or a function
of the state vector. Therefore, we often have an output equation as well, which has of
form

y(t) = h(x(t)) + k(x(t))u(t), (1.2)

where y(t) ∈ Rp is an output vector and h : Rn → Rp and k : Rn → Rp×m are smooth
nonlinear functions. Although the dynamics of the system are governed by a large state
vector x(t) ∈ Rn, commonly, the numbers of the observed outputs and control inputs
are relatively small, i.e., m, p � n. In most cases, we are interested in knowing how
the control inputs in�uence the output of the system. For this, there exists a mapping
M : Rm → Rp which maps the input to the output of the system.
As noted before, numerical simulations of these complex systems are numerical ine�-

cient and expensive. Furthermore, on several occasions, the storage of these large-scale
systems can also cause some troubles. This inspires model order reduction (MOR),
which aims at constructing simple and reliable surrogate models that approximate the
input-output behavior of the original model. Precisely, our focus is to determine a
surrogate model (reduced-order model) of the form

Ê ˙̂x(t) = f̂(x̂(t)) + ĝ(x̂(t))u(t),

ŷ(t) = ĥ(x̂(t)) + k̂(x̂(t))u(t),
(1.3)

where x̂(t) ∈ Rn̂ is a reduced state vector or solution trajectory of the reduced-order

system, f̂ : Rn̂ → Rn̂, ĝ : Rn̂ → Rn̂×m, ĥ : Rn̂ → Rp and k̂ : Rn̂ → Rn̂×m are reduced
nonlinear functions, and Ê ∈ Rn̂×n̂. In a conventional MOR problem, we essentially,
want to minimize ‖y(t) − ŷ(t)‖ while ensuring the order of the reduced-order system
(1.3) is much less than the one of the original system (1.1), i.e., n̂ � n. Additionally,
the important properties such as stability and passivity of the original system are
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preserved in the reduced-order system (1.3). These surrogate models can then be used
in engineering studies, which make numerical simulations faster and e�cient.
In the past decades, numerous theoretical and computational aspects for MOR of

linear systems have been developed; e.g., see [7, 15, 17, 31, 34, 115]. These systems are
of the form

Ex(t) = Ax(t) +Bu(t),

y(t) = Cx(t) +Du(t),
(1.4)

where x(t) ∈ Rn, u(t) ∈ Rm and y(t) ∈ Rp are state, input and output vectors,
respectively, and all other system matrices are of appropriate sizes. These methods
have been successfully applied in various �elds, e.g., optimal control, PDE constrained
optimization, uncertainty quanti�cation, see, for example [31, 37, 89].
However, the dynamics of the several real-life applications, e.g., �ow problems, are

hard to capture using linear systems. Therefore, in recent years, MOR of nonlinear
systems has gained signi�cant interest with a goal of extending the MOR techniques
based on systems theory from linear systems to nonlinear ones, for example, MOR
techniques for linear systems such as balanced truncation [7, 103], or the iterative
rational Krylov method (IRKA) [79]. The main obstacle in extending these methods
to nonlinear systems is that it is hard to obtain an analytic expression or knowledge
about the system dynamics. However, by considering special explicit expressions of
nonlinear functions in (1.1) and (1.2), we can attempt to derive the analytic expressions,
describing the dynamics of the nonlinear system. In this thesis, we, thus, consider
two crucial classes of nonlinear systems: the �rst consists of bilinear systems which
act as a bridge between fully nonlinear systems and linear systems, and the second
one comprises the quadratic-bilinear systems which cover a large number of smooth
nonlinear systems. We provide detailed descriptions of these nonlinear systems in their
respective chapters; therefore, we refrain ourselves from giving details about these
systems here.

1.2. Motivating Examples
In this section, we provide a couple of motivating examples, arising in di�erent areas
of science and engineering that illustrate practical usages of MOR.

Electrical circuits
As motivating examples, we consider systems or models arising from electrical engi-
neering since model reduction of various electrical circuits are considered in this thesis.
Depending on the consideration of electrical components, the resulting mathematical
models can be di�erent. For instance, we consider an electric circuit as shown in
Figure 1.1, where a source of voltage is applied across a capacitor; but one can also
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Figure 1.1.: An RLC circuit diagram.

consider a source of current being applied across a capacitor. Such electric circuits can
be modeled, for example, by Kircho�'s law. In case all the electrical components are
constant for the circuit shown in Figure 1.1, a mathematical model can be given by a
linear descriptor system. However, in practice, there are several applications, where,
for instance, resistors follow a nonlinear dynamics, thus leading to nonlinear models. In
Chapters 4 and 5, we consider an electrical circuit ladder, where resistance dynamics
are governed by a function containing exponential nonlinearity. However, it can be
modeled as a quadratic-bilinear control system as well.
There are also engineering applications, where electric components are a function

of parameters, e.g., the resistance R depends on a parameter p as R(p) = R0 + pRp,
where R0 and Rp are constants. This can lead to a linear parametric descriptor system.
Although in this thesis, we particularly do not focus on model reduction for parametric
systems, there is an interesting and strong connection between linear parametric sys-
tems and bilinear control systems; see, e.g., [20]. A detailed description of such a model
is given in Chapter 6. We will consider model reduction of various electrical circuits in
Chapters 4 to 6, where a detailed modeling of these circuits is explained.

The FitzHugh-Nagumo system
As a second motivating example, we consider a model which describes the activation and
de-activation of a spiking neuron. This model, proposed by FitzHugh and Nagumo, is a
simpli�ed model of Hodgkin�Huxley model, which explains a spiking neural dynamics
in a detailed manner. The FitzHugh-Nagumo (F-N) model is described by the following
coupled nonlinear PDEs

εvt(x, t) = ε2vxx(t) + f(v(x, t))− w(x, t) + g, (1.5a)

wt(x, t) = hv(x, t)− γw(x, t) + g, (1.5b)

where f(v) = v(v − 0.1)(1 − v); ε, γ, h, g are constant terms, and the variables v
and w represent a voltage and a recovery voltage related to the neuron subject to an
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Figure 1.2.: Typical dynamical behavior for FitzHugh-Nagumo Model.

external excitation source. This model is an example of a relaxation oscillator. This is
mainly due to the fact that the system will exhibit an excursion in a phase-space as the
external excitation exceeds its threshold values, and after a while, the variables v and
w are relaxed to their rest values. Such a phenomenon can be seen in Figure 1.2, which
is a 3-dimensional �gure, showing evolutions of the variables v and w with time. Even
though discretizing these coupled PDEs (1.5) leads to a polynomial control system of
order 3, rather than a bilinear or a quadratic-bilinear system, in Chapter 4, we will
discuss how to rewrite such a polynomial control system equivalently into a quadratic-
bilinear control systems. This allows us to employ model reduction techniques for
quadratic-bilinear systems, developed in Chapters 4 and 5 of this thesis.

1.3. Outline of the Thesis
The main goal of this thesis is to study model reduction techniques for nonlinear systems
via systems theory. For this, in Chapter 2, we �rst brie�y provide basic concepts of
linear control theory such as controllability, observability, and stability. For linear
systems, we give primary ideas of projection-based model reduction methods, namely
balanced truncation, and interpolation-based methods. Next, we revise the concepts
of energy functionals and adjoint systems for nonlinear systems which play a critical
role when we discuss balanced truncation for bilinear and quadratic-bilinear systems
in Chapters 3 and 4, respectively. We also aim at providing necessary tensor theory
tools. Related to it, we present various expressions and formulas related to Kronecker
products, and matricizations concepts of a tensor which are heavily utilized mainly in
Chapter 5.
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In Chapter 3, we discuss balancing-based model reduction for bilinear control sys-
tems. We �rst provide control-theoretic concepts for bilinear systems. Subsequently,
we review the balanced truncation method for bilinear systems as it is widely studied
in the literature, see, e.g. [26]. We recall the connection of energy functionals and
Gramians of the bilinear systems. Afterwards, we introduce a concept of truncated
Gramians of bilinear systems and investigate their interpretations with respect to en-
ergy functionals of the latter systems. We also discuss the advantages of the truncated
Gramians from the model reduction perspective. Lastly, we illustrate the e�ciency
of the reduced-order systems, obtained using the truncated Gramians by means of a
couple of numerical examples.
In Chapter 4, we focus on extending the balancing-type model reduction framework

to quadratic-bilinear (QB) control systems. We begin by illustrating the process of
quadratic-bilinearization, allowing us to rewrite smooth nonlinear systems into the QB
form. We then derive the Gramians for the latter class of nonlinear systems, extending
the Gramians of linear or bilinear systems. We provide connections of the energy
functionals and the proposed Gramians of QB systems. We discuss the usage of the
Gramians in balancing QB systems, allowing us to construct reduced-order systems.
We illustrate the proposed balancing method by means of various semi-discretized
nonlinear PDEs.
Chapter 5 is devoted to the interpolation-based model reduction for the latter class of

nonlinear systems. Regarding this, we �rst present a system norm, namely theH2-norm
based on the Volterra series of QB systems, and we then aim at extending the idea ofH2-
optimal model reduction from linear or bilinear systems to QB systems. Subsequently,
we derive the H2-optimality conditions, allowing us to propose an iterative scheme
to construct reduced-order systems which satisfy these derived optimality conditions
approximately. We numerically illustrate the e�ciency of the proposed method for
various semi-discretized nonlinear PDEs and compare it with earlier proposed balanced
truncation approach in Chapter 4 as well as existing methods such as proper orthogonal
decomposition (POD), one-sided and two-sided interpolatory projection methods for
QB systems [25, 78].
In Chapter 6, we brie�y turn our attention towards descriptor systems which certainly

increase the complexity of the reduction methods. For this, we study interpolation-
based model reduction of bilinear descriptor systems, having special index-1 and index-2
structures. We, in particular, investigate H2-optimal approximations of such systems,
allowing us to propose the modi�ed bilinear iterative Krylov algorithm (B-IRKA) for
such specially structured bilinear descriptor systems. Several numerical examples illus-
trate the e�ciency of these proposed algorithms.
We �nally conclude in Chapter 7 with our contributions and provide an overview of

possible research topics which are worthwhile investigating in the future.
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In this chapter, we collect essential mathematical fundamentals which are well-known
in the literature and are used extensively throughout the thesis. In the �rst section,
we present important concepts or results of classical linear control theory, which can
be found in any standard textbook on linear systems, e.g., [87]. Then, we introduce
the ideas of two important system-theoretic model reduction techniques which are the
main focus of this thesis, namely balanced truncation and interpolation-based methods.
Subsequently, we also discuss energy functionals and a concept of dual systems for a
nonlinear system which are crucial tools in studying balancing-type model reduction.
In the end, we present some basic tools from the tensor theory which can be found in,
e.g., [68, 72, 90, 95]. These play a useful role, especially in investigating H2-optimal
model reduction techniques for quadratic-bilinear systems.

2.1. Linear Systems Theory
This section provides the fundamental concepts for linear time-invariant (LTI) systems
from the control theory and linear algebra points of view. All these concepts can be

7
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found almost in every textbook, e.g., see [87, 123]. Since in this thesis we focus on
continuous time-invariant systems, we provide only details for the latter systems. For
this, let us consider an LTI system (ODE) in the state-space representation which is of
the form

ΣL :

{
ẋ(t) = Ax(t) +Bu(t), x(0) = x0,

y(t) = Cx(t) +Du(t),
(2.1)

where A ∈ Rn×n, B ∈ Rn×m, C ∈ Rp×n, and D ∈ Rp×m. The vector x(t) ∈ Rn is the
state of the system; x0 is an initial condition; u(t) and y(t) denote control inputs and
measurable outputs, respectively. The length of the state vector x(t) is called the order
of the system, i.e., the system (2.1) is of order n. If m = p = 1, the system is said to
be single-input single-output (SISO) system, otherwise we refer to it as a multi-input
multi-output (MIMO) system. Furthermore, we denote the system (2.1) by ΣL. First,
we discuss the stability concept of the dynamical system (2.1).
The dynamical system ΣL is internally stable if σ(A) ⊂ C− ∪ ıR with no repeated

eigenvalues over the imaginary axis; otherwise, it is referred to as an internally unstable
system. Moreover, the dynamical system ΣL is internally asymptotically stable if all
the eigenvalues of the matrix A lie in the left open complex plane (C−). In this thesis, in
this thesis, whenever a system is called as an asymptotically stable, it means internally
asymptotic stability of the system.
For a given initial condition x0 and the control input u(t), the solution of the sys-

tem (2.1) at any time instant t is characterized by

x(t) = eAtx0 +

∫ t

0

eA(t−τ)Bu(τ)dτ,

thus,

y(t) = CeAtx0 +

∫ t

0

CeA(t−τ)Bu(τ)dτ +Du(t).

Next, we de�ne the so-called impulse response of the system, which is the system
response of the input signal uk(t) = δ(t), where uk(t) is the kth component of the input
vector u(t), and δ(t) is the Dirac delta distribution. Assuming a zero initial condition
x0 = 0, we obtain the impulse response as follows:

GL(t) = CeAtB +Dδ(t). (2.2)

Subsequently, we discuss the concepts of controllability and observability of the sys-
tem ΣL. They play important roles in solving many problems arising in control theory,
including the model order reduction problem. We begin by noting the controllability
of an LTI system.
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De�nition 2.1 (e.g., [7]):
Consider a linear system ΣL. The system is said to be controllable in the time interval
[t0, tf ], if there exists an input function u(t) of �nite energy such that the system can
be steered from any initial state x(t0) to any �nal state x(tf ). ♦
The follow-up question is how to check weather the system ΣL is controllable or not.

This is clari�ed in the following proposition.

Proposition 2.2:
For a given dynamical system ΣL, de�ne the controllability matrix of ΣL as

R(A,B) =
[
B,AB, . . . , An−1B

]
. (2.3)

Then, the linear system ΣL is controllable if and only if rank (R(A,B)) = n. ♦
The range of the controllability matrix is also known as the nth-order block Krylov
subspace generated by the matrices A and B, i.e., range (R(A,B)) = Kn(A,B).
Furthermore, note that generally it is almost impossible to measure the full state in

practice, especially in large-scale dynamical systems; we rather collect some measure-
ment at selected points y(t), which are given by linear combinations of state vectors.
Thus, it would be interesting to study the observable subspace of ΣL, and for this, in
the following we de�ne �rst the observability concept of the system ΣL.

De�nition 2.3:
Given a dynamical system ΣL. The system is said to observable in [t0, tf ], if for a
given input u(t), the initial condition can be uniquely determined from the given
output y(t) or observations. ♦

Remark 2.4:
If a linear system is internally stable, then the system is also a bounded-input
bounded-output stable. However, conversely, a bounded-input bounded-output sta-
ble system is internally stable as well if the system is controllable and observable. ♦

The concepts of controllability and observability are dual in nature; therefore, the
observability of a system ΣL can be checked by investigating the controllability of the
pair (AT , CT ). Similar to the controllable system, the system is completely observable
if and only if R(AT , CT ) is of the full rank. These concepts of controllability and
observability of a system play a crucial role in model order reduction as we discuss in
the next section.
The controllability and observability concepts can also be de�ned by a means of a

certain type of matrix equations. For this, we de�ne the controllability and observability
Gramians of an asymptotically stable system ΣL, respectively, as follows:

P =

∫ ∞

0

eAtBBT eA
T tdt (2.4)
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and

Q =

∫ ∞

0

eA
T tCTCeAtdt. (2.5)

It is clear from the de�nitions of P and Q that they are symmetric and positive
semi-de�nite matrices. Next, we present the relation between these Gramians and the
solutions of the continuous-time algebraic Lyapunov equation [7, Section 4.3].

Proposition 2.5:
For a given asymptotically stable dynamical system ΣL, let the controllability and
observability Gramians be de�ned as in (2.4) and (2.5), respectively. Then, P and
Q are the unique solutions of the Lyapunov equations

AP + PAT +BBT = 0, (2.6a)

ATQ+QA+ CTC = 0. (2.6b)

♦

These Gramians also give an interpretation whether the system is controllable and
observable or not. If P and Q are positive de�nite matrices, i.e., P > 0 and Q > 0,
then the system is completely controllable and observable. Furthermore, as we see in
the subsequent section, these Gramians also play a crucial role in balancing-type model
order reduction method.
Another important tool to analyze the characteristics of LTI systems is to establish

the input-output relation in the frequency domain, instead of the state-space represen-
tation (2.1). This is obtained by utilizing the Laplace transformation, which is de�ned
in the following.

De�nition 2.6:
Consider a locally integrable function f(t), which is de�ned for all t ≥ 0. Then, the
unilateral Laplace transformation F (s) of f(t) is de�ned as

F (s) := L(f(t))(s) =

∫ ∞

0

e−stf(t)dt,

where s ∈ C, and the above integral exists. ♦
Performing the Laplace transformation to the system (2.1) yields

sX(s)− x0 = AX(s) +BU(s), (2.7a)

Y (s) = CX(s) +DU(s), (2.7b)

where X(s), U(s), and Y (s) are the Laplace transformations of x(t), u(t), and y(t),
respectively. Next, we determine the explicit expression for X(s) using (2.7a) and
substitute it in (2.7b), leading to an expression for Y (s) in terms of the input and the
initial condition:

Y (s) =
(
C (sI − A)−1B +D

)
U(s) + C (sI − A)−1 x0.
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Assuming the zero initial condition, i.e., x0 = 0, we obtain a direct relation between
input and output

Y (s) = GL(s)U(s),

where
GL(s) = C (sI − A)−1B +D.

The function GL(s), via which the input-output mapping is de�ned, is called the trans-
fer function of ΣL. The transfer function contains all the important information about
the system dynamical behavior. Moreover, an advantage of the transfer function is also
that it is independent of the input. Just as a remark, the transfer function GL(s) can
also be derived by taking the Laplace transformation of the impulse response GL(t) of
ΣL.
In the SISO case, the transfer function GL(s) is a rational function of degree n,

i.e., GL(s) = d(s)
n(s)

, where d(s) and n(s) are polynomial functions in the variable s.

Moreover, the zeros of n(s) are called the poles of ΣL. Assuming the matrix A in ΣL

has all distinct eigenvalues, we can write the transfer function GL(s) in the pole-residue
formulation, which is a very useful representation in particular while studying optimal
model reduction problems. This formulation of GL(s) can be given by

GL(s) = C(sI − A)−1B +D =
n∑

j=1

rj
s− λj

+D, (2.8)

where
rj = lim

s→λj
GL(s)(s− λj),

and λj, j ∈ {1, . . . , n} are the eigenvalues of A. Next, we turn our attention to system
norms. Of particular interest for this thesis, we focus on the H2-norm and H∞-norm
which are de�ned as follows for a linear system:

De�nition 2.7:
Consider an asymptotically stable linear dynamical system (2.1) with D = 0 and
assume GL(s) to be the transfer function of the system. Then, the H2-norm of the
system is de�ned by

‖GL‖H2 :=

(
1

2π

∫ ∞

−∞
‖GL(iω)‖2

Fdω

)1
2

,

and the H∞-norm of the system is de�ned as

‖GL‖H∞ = sup
ω∈R

σmax(GL(ıω)),

where σmax(·) denotes the maximum singular value of a matrix. ♦
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The above de�nition of the H2-norm of the system is rather theoretical; however,
an alternative way to compute the H2-norm of a linear system is by using the system
Gramians, which we summarize next.

Lemma 2.8 ([79]):
Consider the asymptotically stable linear system (2.1) with D = 0, and let P and
Q be the controllability and observability Gramians as de�ned in (2.6a) and (2.6b),
respectively. Then, the H2-norm can be computed as

‖GL‖H2 =
√

tr (CPCT ) =
√

tr (BTQB). (2.9)

♦

Another important formula for theH2-norm can be given in terms of the pole-residue
form of the transfer function (2.8). We outline this in the following lemma.

Lemma 2.9 ([79]):
For a given asymptotically stable SISO linear system with D = 0, let λi ∈ C−,
i ∈ {1, . . . , n}, denote its simple poles. Then,

‖GL‖H2 =
n∑

j=1

GL(−λj) res [GL(s), λj] . (2.10)

♦

Having de�ned the system norms, one can measure the quality of a reduced-order
system using these norms. As we will see later, depending on the model reduction
method, we can construct an H2-optimal or H∞-optimal reduced-order system.
All above discussed properties can easily be extended to linear systems, having the

generalized state-space representation as follows:

Eẋ(t) = Ax(t) +Bu(t), (2.11a)

y(t) = Cx(t) +Du(t), (2.11b)

where the matrix E is nonsingular. However, when a linear system is subject to some
constraints, then it leads to a linear descriptor system (DAEs). In such a case, the
matrix E is singular, and the theoretic concepts become much more complicated. Nev-
ertheless, if it is assumed that the matrix pencil αE − βA is regular, that is

det(αE − βA) 6= 0, for some (α, β) ∈ C2,

then we can obtain the transfer function of (2.11) by taking the Laplace transform even
when E is singular:

G
(E)
L (s) = C(sE − A)−1B +D.

The transfer function G
(E)
L (s) is called a proper transfer function if lim

s→∞
G

(E)
L (s) < ∞

and strictly proper in case lim
s→∞

G
(E)
L (s) = 0; otherwise, it is called an improper transfer
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function. Furthermore, when G
(E)
L (s) is not proper, then one can additively decompose

G
(E)
L (s) into two parts as:

G
(E)
L (s) = Gsp(s) + P (s), (2.12)

where Gsp(s) and P (s) are referred to as the strictly proper part and the polynomial

part of G
(E)
L (s). For more details, we refer to, e.g., [125].

2.2. Model Reduction via Projections
Having revised important control theoretic concepts of linear systems, in this section,
we provide a short review of the important model order reduction (MOR) methods for
linear systems which can be found, e.g., in [7, 8, 34, 62, 104, 115]. As already discussed,
the purpose of MOR is to construct a reduced-order system, replicating the dynamical
behavior of the large-scale dynamical system. More precisely, we want to replace the
dynamical system (2.1) by a reduced-order system of the following form:

Σ̂ :

{
˙̂x(t) = Âx̂(t) + B̂u(t),

ŷ(t) = Ĉx̂(t) + D̂u(t), x̂(0) = 0,
(2.13)

where Â ∈ Rn̂×n̂, B̂ ∈ Rn̂×m, Ĉ ∈ Rp×n̂, and D̂ ∈ Rp×m. Our goal is to ensure n̂ � n
and that the error ‖y− ŷ‖ is small in an appropriate norm. Depending on the norm of
the error, many methods have been proposed in the literature, which can be found in
the aforementioned references.
To have the error y− ŷ as an output of a system, we de�ne the so-called error system

as follows:

Σ
(e)
l :

{
ẋ(e)(t) = A(e)x(e)(t) +B(e)u(t),

y(e)(t) = C(e)xe(t) +D(e)u(t), x(e)(t) = 0,
(2.14)

where

A(e) =

[
A 0

0 Â

]
, B(e) =

[
B

B̂

]
, C(e) =

[
C −Ĉ

]
, D(e) = D − D̂.

It can be easily veri�ed that the output of the error system (2.14) is the di�erence be-
tween the output of the original and reduced-order systems, i.e., y(e) = y− ŷ. Moreover,
it can also be con�rmed that the transfer function G

(e)
L (s) of the error system Σ(e) is

given by G
(e)
L (s) := GL(s) − ĜL(s), where GL(s) and ĜL(s) are the transfer functions

of the original and reduced-order systems.
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Next, we focus on constructing reduced-order systems. In this thesis, we aim at
obtaining such systems via a projection-type framework. In other words, the reduced-
order systems are obtained by projecting the high-�delity systems onto a lower dimen-
sional subsystem. We begin by recalling the properties of the projection matrices which
can be found e.g., in [18].

De�nition 2.10:
� A matrix P is called a projection matrix or projection if P2 = P.

� If range (P) = V, then P is said to be the projector onto the subspace V.

� If the projector P is symmetric, i.e., P = PT , then P is an orthogonal projection
(Galerkin projection), else it is referred to as an oblique projector (Petrov-
Galerkin projection).

� Consider a matrix Z ∈ Rn×n with eigenvalue spectrum Λ(Z) = Λ1 ∪ Λ2,Λ1 ∩
Λ2 = ∅. Moreover, assume that V1 is the right Z-invariant subspace cor-
responding to Λ1. Then, a projector to the subspace V1 is referred to as a
spectral projector. ♦

Next, we outline some valuable properties of projectors. We refer to [18, 112] for more
details.

Lemma 2.11:
For a given projector P ∈ Rn×n, the following assertions hold:

1. The matrix In − P is also a projection, called complementary projector.

2. kerP = range (In − P) and ker (In − P) = range (P).

3. If P is a projector onto V, then P is the identity operator on V, i.e., Pv = v, for all v ∈ V.

4. Consider an orthonormal basis matrix V = [v1, . . . , vn̂] ∈ Rn×n̂, and let V be
the subspace spanned by the columns of V , then P = V V T is an orthogonal
projector onto V.

5. Furthermore, let W ∈ Rn×n̂ be another subspace, spanned by the columns of
the basis matrix W =

[
w1, . . . , wn̂

]
, and assume that W TV is invertible. Then,

P = V (W TV )−1W T is an oblique projector onto V along W. ♦

Coming back to the MOR problem, the state vector x(t) in the system (2.1) is
approximating by an oblique projection P = V (W TV )−1W T , i.e., x(t) ≈ Px(t), leading
to

Pẋ(t) = APx(t) +Bu(t) + ε,
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where ε can be seen as a residual after the approximation. Next, we impose a Petrov-
Galerkin condition by choosing a subspace W which is orthogonal to the residual, i.e.,
ε ⊥W, resulting in

(W TV )−1W T (Pẋ(t)− APx(t)−Bu(t)) = 0. (2.15)

De�ning a reduced state x̂ = (W TV )−1W Tx, Eq. (2.15) yields

˙̂x = Âx̂(t) + B̂u(t), (2.16)

where Â = (W TV )−1W TAV and B̂ = (W TV )−1W T . Furthermore, using the output
equation in the system (2.1), we obtain an approximated output using the reduced
state x̂ as

y ≈ ŷ = CV︸︷︷︸
Ĉ

x̂.

The next follow up question is a choice of subspaces V and W, minimizing the error
‖y − ŷ‖. In the following, we present two prominent MOR methods based on di�erent
ideas that allow us to construct subspaces V and W.

2.2.1. Balanced truncation for linear systems
Balancing-based model reduction is a well-known system-theoretic approach. The main
idea of this method is to identify the states which are important and less important
with respect to the input-output behavior of the system. A less important state can be
de�ned as a state which is hard to control as well as hard to observe. In other words,
a less important state requires a lot of input energy to reach and yet produces very
little output energy. In the following, we provide the formal de�nitions of these energy
functionals.

De�nition 2.12 (e.g., [7]):
The controllability energy functional is de�ned as the minimum amount of energy
required to steer the system from x(−∞) = 0 to x(0) = x0:

Ec(x0) = min
u∈L2(−∞,0]

x(−∞)=0, x(0)=x0

1

2

∫ 0

−∞
‖u(t)‖2dt.

The observability energy functional is de�ned as the energy generated by the nonzero
initial condition x(0) = x0 with zero control input:

Eo(x0) =
1

2

∫ ∞

0

‖y(t)‖2dt. ♦
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Coming back to the linear systems (2.1), these energy functions for a given state can
be easily computed using the system Gramians P and Q as de�ned in (2.6a) and (2.6b).
Precisely, assuming a controllable system, the minimum amount of input energy needed
to reach x0 from the zero initial condition is given by

Ec(x0) =
1

2
xT0 P

−1x0.

Moreover, for an uncontrolled system (u ≡ 0), the energy observable with an initial
condition x0 is given by

Eo(x0) =
1

2
xT0Qx0.

As said, the objective is to �nd the states which are hard to control and hard to
observe. For this, let us consider a linear system (2.1), which is a balanced one that is
de�ned as follows:

De�nition 2.13:
A linear system is called a balanced system if the system Gramians, namely con-
trollability and observability Gramians, are equal and diagonal, i.e., P = Q = Σ,
where Σ = diag (σ1, . . . , σn) and σi ≥ σi+1. Moreover, the σi's are called the Hankel
singular values (HSV) of the system (2.1). ♦
The balanced system immediately suggests that states, requiring a lot of input energy

to reach, yield very little output energy. Therefore, they are less important for the
input-output behavior. Hence, they can be eliminated, thus resulting in a reduced-
order system. However, it is rather unlikely that a given linear system is a balanced
system. Therefore, the �rst step in balanced truncation MOR is to transform a given
linear system into a balanced one via an appropriate balancing transformation T . This
can be achieved by, e.g., the square root balancing method proposed in [67]. Assuming
P > 0, Q > 0, we determine the Cholesky factor of P and Q, i.e, P =: STS and

Q =: RTR. Then, the transformation matrix T is given by T = D−
1
2ZTR and its

inverse T−1 = STUD−
1
2 , where UDZT := SRT . Let us consider a balanced linear

system (2.1), which is partitioned as follows:

[
ẋ1(t)
ẋ2(t)

]
=

[
A11 A12

A21 A22

] [
x1(t)
x2(t)

]
+

[
B1

B2

]
u(t),

y(t) =
[
C1 C2

] [
xT1 (t) xT2 (t)

]T
,

(2.17)

where x1(t) ∈ Rn̂, x2(t) ∈ Rn−n̂, and all other matrices are of appropriate dimensions.

By setting x2(t) ≡ 0, we obtain a reduced-order system Σ̂l = (A11, B1, C1). Moreover,

it can be shown that the reduced-order system Σ̂l is a balanced system also, i.e., P̂ =
Q̂ = diag (σ1, . . . , σn̂), where P̂ and Q̂ are the Gramians of a reduced-order system
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after truncation [7, 103]. In the Petrov-Galerkin formulation, the projection P = VW T ,
where

V = STUn̂D
−1

2
n̂ , W =

(
D
−1

2
n̂ ZT

n̂R

)T
,

and Dn̂ = diag (σ1, . . . , σn̂), and Un̂ Zn̂ denote, respectively, the �rst n̂ columns of
matrices U and Z. Furthermore, the error between the original system Σl and the
reduced-order system Σ̂l can be quanti�ed as follows:

‖GL − ĜL‖H∞ ≤ 2
n∑

k=n̂+1

σk,

where GL(s) and ĜL(s) are the transfer functions of the original and reduced-order
systems. Thus, the above error bounds allows us to construct a reduced-order system
of the appropriate order, satisfying the desired tolerance.

2.2.2. Interpolation-based model reduction
Here, we present the fundamental idea of interpolation-based MOR. For a linear SISO
system, its transfer function GL(s) is a rational function of degree n, where n is the
order of the system. So, the interpolation-based model reduction seeks to determine
another rational function, but of smaller degree, which interpolates the original system
at the prede�ned interpolation points within the complex plane. Precisely, we aim at
constructing a transfer function ĜL(s) such that

GL(λi) = ĜL(λi), i ∈ {1, . . . , n̂},

where λi ∈ C are interpolation points. The next task is to construct an interpolating
reduced-order system. For this, the projector P can be constructed by solving a certain
type of shifted linear systems, see, e.g., [77, 129].

Theorem 2.14:
Consider a linear SISO system, and let {σi}n̂i=1 ∈ C and {µi}n̂i=1 ∈ C be two sets of
interpolation points such that σi, µi /∈ σ(A). Assume the projection matrices V and
W are constructed as follows:

range (V ) = span
(
(σ1I − A)−1B, . . . , (σn̂I − A)−1B

)
, (2.18a)

range (W ) = span
(
(µ1I − A)−TCT , . . . , (µn̂I − A)−1CT

)
. (2.18b)

Assuming W TV is invertible, if a reduced-order system is constructed as

Â = (W TV )−1WAV, B̂ = (W TV )−1WB, Ĉ = CV,
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then
GL(σi) = ĜL(σi), GL(µi) = ĜL(µi).

Moreover, if σi = µi, then

GL(σi) = ĜL(σi), G′l(σi) = Ĝ′l(σi). ♦

The above interpolation conditions can also be achieved for MIMO systems; however,
the numbers of columns of the projection matrices V and W might increase very fast,
depending on the numbers of control inputs and outputs. In order to keep a small
number of columns in the projection matrices, the idea of tangential interpolation can
be employed, see, e.g., [65]. For this, let us consider left and right tangential directions

b̃i ∈ Rm, i ∈ {1, . . . , n̂} and c̃i ∈ Rp, i ∈ {1, . . . , n̂} along with interpolation points
σi ∈ C, µi ∈ C, i ∈ {1, . . . , n̂}. Then, our goal is to derive a reduced-order system,
satisfying

GL(σi)̃bi = ĜL(σi)̃bi, i ∈ {1, . . . , n̂},
c̃Ti GL(µi) = c̃Ti ĜL(µi), i ∈ {1, . . . , n̂}.

(2.19)

The tangential interpolation conditions can be achieved if the projection matrices V
and W are computed as follows:

range (V ) = span
(

(σ1I − A)−1Bb̃1, . . . , (σn̂I − A)−1Bb̃n̂

)
, (2.20a)

range (W ) = span
(
(µ1I − A)−TCT c̃1, . . . , (µn̂I − A)−1CT c̃n̂

)
. (2.20b)

Clearly, the quality of a reduced-order system highly depends on the choice of inter-
polation points and its tangential directions. Several methods are proposed in the
literature, showing how to choose a good set of interpolation points and tangential
directions, see, e.g., [7, 43, 66, 54, 56, 65, 77, 79, 129, 44].

Remark 2.15:
Note that the interpolation point λi and tangential directions b̃i and c̃i should be
closed under conjugation. This means that if the interpolation point λj is a complex

number, then λ̄j should also be an interpolation points. Moreover, if b̃j and c̃j are

the tangential directions corresponding to the interpolation point λj, then
¯̃
bj and ¯̃cj

are the tangential directions corresponding to the interpolation point λ̄j. ♦
In this thesis, we particularly focus on H2-optimal model reduction problems. In the
following, we de�ne the H2 model reduction problem for a linear system.

De�nition 2.16:
Given a transfer function GL(s), a reduced-order system ĜL of order n̂ is said to the
H2-optimal if it satis�es

‖GL − ĜL‖H2 = min
dim(G̃L)=n̂

G̃L stable

‖GL − G̃L‖H2 . ♦
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The above problem for a SISO linear system was initially considered in [101]. Therein,

it was shown that ĜL is a locally H2-optimal reduced-order system if it interpolates
the original transfer function GL(s) and its derivative G′L(s) at the poles of the re-
duced order system re�ected across the imaginary axis. In other words, the optimality
conditions for a SISO system are :

GL(−λi) = ĜL(−λi), G′l(−λi) = Ĝ′l(−λi), i ∈ {1, . . . , n̂},

where λi are the simple poles of the reduced-order system. This problem was later
considered in [79] for MIMO linear systems. The transfer function of a MIMO system
is a matrix-value rational function, and generally tangential interpolation of the transfer
function is enforced. Using this information, a locallyH2-optimal reduced-order system
ful�lls

c̃Ti GL(−λi) = c̃Ti ĜL(−λi), i ∈ {1, . . . , n̂}, (2.21a)

GL(−λi)̃bi = ĜL(−λi)̃bi, i ∈ {1, . . . , n̂}, (2.21b)

c̃Ti G
′
l(−λi)̃bi = c̃Ti Ĝ

′
l(−λi)̃bi, i ∈ {1, . . . , n̂}, (2.21c)

where diag (λ1, . . . , λn̂) = R−1ÂR,
[
b̃1, . . . , b̃n̂

]
= B̂TR−T and

[
c̃1, . . . , c̃n̂

]
= ĈR.

We have already discussed in this section how to construct an interpolating reduced-
order system for a given set of interpolation points and tangential directions. Moreover,
we know that in order to determine an H2-optimal reduced-order system, we need
to interpolate at the mirror images of the poles of the reduced-order system across
the imaginary axis, using the tangential directions which are determined by spectral
decomposition of the reduced-order system. However, the problem we encounter now
is that we do not know a priori these interpolation points and tangential directions
since these qualities require the reduced-order system which we want to construct. To
overcome this issue, the authors in [79] have proposed a �xed point iterative scheme,
the so-called iterative rational Krylov algorithm (IRKA), see Algorithm 2.1, which upon
convergence yields a reduced-order system, satisfying (2.21) at a modest cost.

2.3. Energy Functionals and Adjoint Systems for
Nonlinear Systems

Here, we discuss two concepts, which are important while extending balanced-type
model reduction from linear systems to special classes of nonlinear systems. We begin
with recapitulating energy functionals for nonlinear systems and their relations with
partial di�erential equations.
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Algorithm 2.1: Iterative rational Krylov algorithm (IRKA) [79].

Input: A,B,C and tol.
1 Make an initial guess of the interpolation points {λi}n̂i=1 and the tangential

directions {b̃i}n̂i=1 and {c̃i}n̂i=1.
2 while relative change in {λi} > tol do
3 Choose V and W such that

4 range (V ) = span
(

(λ1I − A)−1Bb̃1, . . . , (λn̂I − A)−1Bb̃n̂

)
,

5 range (W ) = span
(
(λ1I − A)−TCT c̃1, . . . , (λn̂I − A)−TCT c̃n̂

)
.

Compute reduced-order system matrices:

6 Â = (W TV )−1W TAV , B̂ = (W TV )−1W TB, Ĉ = CV .

Determine the spectral decomposition of Â =: RΛR−1, and assign
λi ← −Λi, where Λi is the ith diagonal entry of Λ.

7 Compute directions
[
b̃1, . . . , b̃n̂

]
← R−1B̂ and

[
c̃1, . . . , c̃n̂

]
← ĈR.

8 return Â, B̂, Ĉ.

2.3.1. Relation of energy functionals with partial differential
equations

From Subsection 2.2.1, we now know that energy functionals, namely controllability
and observability energy functionals, of a system are the main ingredients in balancing-
type model order reduction. We thus �rst discuss these energy functionals for nonlinear
systems. For this, let us consider in the following su�ciently smooth, for example, C∞,
nonlinear asymptotically stable input-a�ne nonlinear system of the form

ẋ(t) = f(x) + g(x)u(t), (2.22a)

y(t) = h(x), x(0) = 0, (2.22b)

where x(t) ∈ Rn, u(t) ∈ Rm, and y(t) ∈ Rp are the state, input and output vectors of
the system, respectively, and also f : Rn → Rn, g : Rn → Rn×m and h : Rn → Rp are
smooth nonlinear functions. Without loss of generality, we assume that 0 is a stable
equilibrium of the system (2.22). The controllability and observability energy function-
als for a general nonlinear system have been studied in the literature; see, e.g., [74, 114].
In the following, we state the de�nitions of controllability and observability energy func-
tionals for the system (2.22).

De�nition 2.17 ([74, 114]):
The controllability energy functional is de�ned as the minimum amount of energy
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required to steer the system from x(−∞) = 0 to x(0) = x0:

Ec(x0) = min
u∈L2(−∞,0]

x(−∞)=0, x(0)=x0

1

2

∫ 0

−∞
‖u(t)‖2dt. ♦

As can be seen, the controllability energy functional for nonlinear systems has a
similar de�nition as we have in the case of linear systems. Furthermore, initially, the
observability energy functionals are also de�ned analogous to the linear case as follows:

De�nition 2.18 ([114]):
The observability energy functional for the system (2.22) can be de�ned as the energy
generated by the nonzero initial condition x(0) = x0 with zero control input:

Eo(x0) =
1

2

∫ ∞

0

‖y(t)‖2dt. ♦

However, while proposing the above de�nition for the observability energy functional,
the author in [114] has assumed the nonlinear system (2.22) is zero-state observable.
This means that if u(t) = 0 and y(t) = 0 for t ≥ 0, then x(t) = 0 ∀t ≥ 0. As discussed
in [74], for a nonlinear system such a condition can be very strong. As a result, therein,
it is shown how this condition can be relaxed in the context of general input balancing,
and a new de�nition for the observability functionals is provided as follows:

De�nition 2.19 ([74]):
The observability energy functional is de�ned as the energy generated by a nonzero
initial condition x(0) = x0 and by applying an L2-bounded input:

Eo(x0) = max
u∈L2(0,∞),‖u‖L2

≤α
x(0)=x0,x(∞)=0

1

2

∫ ∞

0

‖y(t)‖2dt. ♦

In an abstract way, the main idea of introducing De�nition 2.19 is to �nd the state
component that contributes least from a state-to-output point of view for all possible
L2-bounded inputs. The connections between these energy functionals and the solutions
of the partial di�erential equations are established in [74, 114], which are outlined in
the following theorem.

Theorem 2.20 ([74, 114]):
Consider the nonlinear system (2.22), having x = 0 as an asymptotically stable
equilibrium in a neighborhoodWo of 0. Then, for all x ∈ Wo, the observability energy
functional Eo(x) can be determined by the following partial di�erential equation:

∂Eo
∂x

f(x) +
1

2
hT (x)h(x)− 1

2
µ−1∂Eo

∂x
g(x)g(x)T

∂TEo
∂x

= 0, Eo(0) = −1

2
µ, (2.23)
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assuming that there exists a smooth solution Ēo on Wo, and 0 is an asymptotically
stable equilibrium of f̄ := (f − µ−1ggT ∂

T Ēo
∂x

) on Wo with the negative real number

µ := −‖gT (φ)∂
T Ēo
∂x

(φ)‖L2 , and φ̇ = f̄(φ) with φ(0) = x. Moreover, for all x ∈ Wc, the
controllability energy functional Ec(x) is a unique smooth solution of the following
Hamilton-Jacobi equation:

∂Ec
∂x

f(x) + f(x)
∂Ec
∂x

+
∂Ec
∂x

g(x)gT (x)
∂TEc
∂x

= 0, Ec(0) = 0 (2.24)

under the assumption that (2.24) has a smooth solution Ēc on Wc, and 0 is an

asymptotically stable equilibrium of −
(
f(x) + g(x)gT (x)∂Ēc(x)

∂x

T
)
on Wc. ♦

Note that in De�nition 2.19, the zero-state condition is relaxed by considering an
input that is only L2-bounded. However, an alternative way to relax the zero-state
observable condition is by considering an input which is not only L2-bounded but also
L∞-bounded.
We thus propose a new de�nition of the observability energy functional as follows:

De�nition 2.21:
The observability energy functional can be de�ned as the energy generated by the
nonzero initial condition x(0) = x0 and by applying an L2-bounded and L∞-bounded
input:

Eo(x0) = max
u∈B(α,β)

x(0)=x0,x(∞)=0

1

2

∫ ∞

0

‖y(t)‖2dt,

where Bα,β
def
= {u ∈ Lm2 [0,∞), ‖u‖L2 ≤ α, ‖u‖L∞ ≤ β}. ♦

In this thesis, we use the above de�nition to determine the observability energy func-
tional for quadratic-bilinear control systems in Chapter 4.

2.3.2. Hilbert adjoint operator for nonlinear systems
The importance of the adjoint operator (dual system) can be seen, particularly, in the
computation of the observability energy functional or Gramian. For general nonlinear
systems, a duality between controllability and observability energy functionals is shown
in [64] with the help of state-space realizations for nonlinear adjoint operators. In what
follows, we brie�y outline the state-space realizations for nonlinear adjoint operators of
nonlinear systems. For this, we consider a nonlinear system of the form

ΣNL :=

{
ẋ(t) = A(x, u, t)x(t) + B(x, u, t)u(t),

y(t) = C(x, u, t)x(t) + D(x, u, t)u(t), x(0) = 0
(2.25)
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in which x(t) ∈ Rn, u(t) ∈ Rm, and y(t) ∈ Rp are the state, input and output vectors
of the system, respectively, and A(x, u, t), B(x, u, t), C(x, u, t) and D(x, u, t) are ap-
propriately sized matrices. Also, we assume that the origin is a stable equilibrium of
the system. The Hilbert adjoint operators for the general nonlinear systems have been
investigated in [64]. Therein, they also discussed the connection between the state-
space realization of the adjoint operators and the port-control Hamiltonian systems,
leading to the state-space characterization of the nonlinear Hilbert adjoint operators
of ΣNL : Lm2 [0,∞)→ Lp2[0,∞). In the following lemma, we summarize the state-space
realization of the Hilbert adjoint operator of the nonlinear system.

Lemma 2.22 ([64]):
Consider the system (2.25) with the initial condition x(0) = 0, and assume that
the input-output mapping u → y is denoted by the operator ΣNL : Lm2 [0,∞) →
Lp2[0,∞). Then, the state-space realization of the nonlinear Hilbert adjoint operator
Σ∗ : Lm+p

2 [0,∞)→ Lm2 [0,∞) is given by

Σ∗NL(ud, u) :=





ẋ(t) = A(x, u, t)x(t) + B(x, u, t)u(t), x(0) = 0,

ẋd(t) = −AT (x, u, t)xd(t)− CT (x, u, t)ud(t), xd(∞) = 0,

yd(t) = BT (x, u, t)xd(t) + DT (x, u, t)ud(t),
(2.26)

where xd ∈ Rn, ud ∈ Rp and yd ∈ Rm can be interpreted as the dual state, dual input
and dual output vectors of the system, respectively. ♦

We will see the importance of dual systems in determining the observability energy
functional or observability Gramian for bilinear systems and quadratic-bilinear systems
mainly in Chapter 4.

2.4. Tensor Theory Concepts
In this section, we review some basic concepts from tensor algebra which can be found
e.g., in [68, 72, 90, 95] We begin by de�ning the Kronecker product of matrices and
vectorization of matrices.

De�nition 2.23 ([68]):
Consider two matrices X =

[
x1, . . . , xm

]
∈ Rn×m and Y ∈ Rp×q. Then, vec (X) is

determined by stacking the columns of X on top of each other, i.e.,

vec (X) =



x1
...
xm


 . (2.27)
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The Kronecker product of two matrices X and Y is determined by

X ⊗ Y =



x11Y · · · x1mY
...

...
xn1Y · · · xnmY


 , (2.28)

where xij is the (i, j)th entry of the matrix X. ♦
Next, we note the following important properties of the vec (·) operator and the

Kronecker product.

Proposition 2.24:
Let X ∈ Rn×m, Y ∈ Rm×q, Z ∈ Rq×r, T ∈ Rr×s. Then,

tr (XY ) =
(
vec
(
XT
))T

vec (Y ) = (vec (Y ))T vec (X) , (2.29a)

vec (XY Z) = (ZT ⊗X) vec (Y ) , (2.29b)

(X ⊗ Z)(Y ⊗ T ) = (XY ⊗ ZT ). (2.29c)

♦

Now we turn our attention towards tensors. Tensors are a natural extension of the
concept of a matrix and consist of several matrices. Vectors and matrices can also
be interpreted as tensors of order 1 and 2, respectively. However, in the following we
de�ne a tensor of a general order `.

De�nition 2.25:
A K-order tensor X ∈ Rn1×···×nK is a K-dimensional array of entries Xi1,...,iK ∈ R,
where ij ∈ {1, . . . nj} and j ∈ {1, . . . , K}. ♦
Next, we review the concept of matricization of a tensor. Similar to how rows and

columns are de�ned for a matrix, one can de�ne a �ber of X by �xing all indices
except for one, e.g., X(:, i, j),X(i, :, j) and X(i, j, :). The mathematical operations,
involving tensors, are easier to perform using its corresponding matrix representations.
Therefore, there exists a very well-known process of unfolding a tensor into a matrix,
called matricization of a tensor.

De�nition 2.26 (e.g., [95]):
By X(k), we denote the matrix that is obtained by unfolding the K-order tensor
X ∈ RI1×I2×···×IK along the kth dimension, k ∈ 1, 2, . . . , K. This k-matricization
is formally obtained via the mapping of the tensor indices (i1, i2, . . . , iK) onto the
matrix indices (ik, j) via

j = 1 +
K∑

l=1,l 6=k
(il − 1)Jl, where Jl :=

l−1∏

m=1,m6=l
Im.
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In this thesis, we only focus on 3-order tensors, i.e. X ∈ Rn1×n2×n3 , and show the
tensor properties using the 3-order tensor. However, these properties can be extended
to a general K-order tensor. For a 3-order tensor, there are 3 di�erent ways to unfold
it, depending on its mode-µ �bers that are used for the unfolding. In the following
example, we illustrate how a 3rd order tensor X ∈ Rn×n×n can be unfolded into di�erent
matrices.

Example 2.1:
Consider a 3rd order tensor Xn×n×n whose frontal slices are given by matrices Xi ∈
Rn×n as shown in Figure 2.1.

X1 ∈ Rn×n

X2 ∈ Rn×n

Xn ∈ Rn×n

Figure 2.1.: Representation of a tensor using frontal slices [95].

Then, its mode-µ matricizations, µ ∈ {1, 2, 3}, are given by

X(1) = [X1, X2, . . . , Xn], X(2) = [XT
1 , X

T
2 , . . . , X

T
n ], and

X(3) = [vec (X1) , vec (X2) , . . . , vec (Xn)]T . ♦

Similar to the matrix-matrix product, one can also perform a tensor-matrix or tensor-
tensor multiplication. Of particular interest for this thesis are tensor-matrix multipli-
cations, which can be performed by means of matricizations; e.g., see [95]. For a given
tensor X ∈ Rn×n×n and a matrix A ∈ Rn1×n, the µ-mode matrix product is denoted
by X ×µ A =: Y, i.e., Y ∈ Rn1×n×n for µ = 1. In the case of the µ-mode matrix
multiplication, the mode-µ �ber is multiplied with the matrix A, which can be written
as

Y = X×µ A⇔ Y(µ) = AX(µ).

Furthermore, if a tensor is given as

Z = X×1 A×2 B ×3 C, (2.30)

where A ∈ Rn1×n, B ∈ Rn2×n and C ∈ Rn3×n, then the mode-µ matriciziations of Z
satisfy:

Z(1) = AX(1)(C ⊗B)T , Z(2) = BX(2)(C ⊗ A)T , Z(3) = CX(3)(B ⊗ A)T . (2.31)

Using these properties of the tensor products, we now introduce our �rst result on
tensor matricizations.
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Lemma 2.27:
Consider tensors X,Y ∈ Rn×n×n and let X(i) and Y(i) denote, respectively, their mode-
i matricizations. Then,

tr
(
X(1)(Y(1))T

)
= tr

(
X(2)(Y(2))T

)
= tr

(
X(3)(Y(3))T

)
. ♦

Proof. We begin by denoting the ith frontal slice of X and Y by Xi and Yi, respectively;
see Figure 2.1. Thus,

tr
(
X(1)(Y(1))T

)
= tr

([
X1, X2, . . . , Xn

] [
Y1, Y2, . . . , Yn

]T)

=
n∑

i=1

tr
(
XiY

T
i

)
=

n∑

i=1

tr
(
XT
i Yi
)

= tr
([
XT

1 , X
T
2 , . . . , X

T
n

] [
Y T

1 , Y
T

2 , . . . , Y
T
n

]T)
= tr

(
X(2)(Y(2))T

)
.

Furthermore, since tr
(
XTY

)
= vec (X)T vec (Y ), this allows us to write

tr
(
X(1)(Y(1))T

)
=

n∑

i=1

tr
(
XT
i Yi
)

=
n∑

i=1

vec (Xi)
T vec (Yi) .

Since the ith rows of X(3) and Y(3) are given by vec (Xi)
T and vec (Yi)

T , respectively, it
holds that

∑n
i=1 vec (Xi)

T vec (Yi) = tr
(
X(3)(Y(3))T

)
. This concludes the proof.

Next, we consider a tensor H ∈ Rn×n×n. Also, we assume H to be symmetric. This
means that for given vectors u and v,

H(1)(u⊗ v) = H(1)(v ⊗ u), (2.32)

where H(1) is the mode-1 matricization of H. This condition provides the additional
information that the other two matricization modes of H are the same, i.e.,

H(2) = H(3). (2.33)

The additional property that the Hessian is symmetric will allow us to derive some
new relationships between matricizations and matrices, that will prove to be crucial
ingredients in simplifying the expressions arising in the derivation of optimality condi-
tions in Chapter 5.

Lemma 2.28:
Let H ∈ Rn×n×n be a 3-order tensor, satisfying (2.32) and (2.33), and consider
matrices A,B,C ∈ Rn×n. Then,

H(1)(B⊗ C)
(
H(1)

)T
= H(1)(C⊗B)

(
H(1)

)T
, and (2.34)

(vec (B))T vec
(
H(2)(C⊗A)(H(2))T

)
= (vec (C))T vec

(
H(2)(B⊗A)(H(2))T

)

= (vec (A))T vec
(
H(1)(C⊗B)(H(1))T

)
. ♦
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Proof. We begin by proving the relation in (2.34). The order in the Kronecker product
can be changed via pre- and post-multiplication of appropriate permutation matrices;
see [86, Sec. 3]. Thus,

B⊗ C = S(C⊗B)ST ,

where S is the permutation matrix S =
∑n

i=1((eni )T ⊗ In ⊗ eni ). We can then write

H(1)(B⊗ C)
(
H(1)

)T
= H(1)S(C⊗B)

(
H(1)S

)T
. (2.35)

We now manipulate the term H(1)S:

H(1)S =
n∑

i=1

H(1)((eni )T ⊗ In ⊗ eni ). (2.36)

Furthermore, we can write In as the Kronecker product

In =
n∑

j=1

(enj )T ⊗ enj , (2.37)

and since we know that for vectors f, g ∈ Rq, fT ⊗ g = gfT , we can write (2.37) in
another form as

In =
n∑

j=1

enj (enj )T . (2.38)

Substituting these relations in (2.36) leads to

H(1)S =
n∑

i=1

n∑

j=1

H(1)((eni )T ⊗ (enj )T ⊗ enj ⊗ eni )

=
n∑

i=1

n∑

j=1

H(1)
(
enj ⊗ eni

) (
(eni )T ⊗ (enj )T

) (
∵ for f ∈ Rq, fT ⊗ f = ffT

)

=
n∑

i=1

n∑

j=1

H(1)(eni ⊗ enj )((eni )T ⊗ (enj )T ). (∵ the relation (2.32)) (2.39)

Next, we use the Kronecker multiplication property in (2.39). Thus, we obtain

H(1)S = H(1)

(
n∑

i=1

eni (eni )T ⊗
n∑

j=1

enj (enj )T

)

= H(1)(In ⊗ In) = H(1). (from (2.38))
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Substituting the above relation in (2.35) proves (2.34). For the second part, we utilize
the trace property (2.29a) to obtain

(vec (B))T vec
(
H(2)(C⊗A)(H(2))T

)
= tr


BTH(2)(C⊗A)︸ ︷︷ ︸

=L(2)

(H(2))T


 ,

where L(2) ∈ Rn×n2
can be considered as a mode-2 matricization of a tensor Ln×n×n.

Using Lemma 2.27 and the relations (2.31), we obtain

tr
(
L(2)(H(2))T

)
= tr

(
L(3)(H(3))T

)
= tr

(
CTH(3)(B⊗A)(H(3))T

)

= tr
(
CTH(2)(B⊗A)(H(2))T

)
(using (2.33))

= (vec (C))T vec
(
H(2)(B⊗A)(H(2))T

)
.

Furthermore, we also have

tr
(
L(2)(H(2))T

)
= tr

(
L(1)(H(1))T

)
= tr

(
ATH(1)(C⊗B)(H(1))T

)

= (vec (A))T vec
(
H(1)(C⊗B)(H(1))T

)
,

which completes the proof.

Next, we prove the connection of a certain permutation matrix to the Kronecker
product.

Lemma 2.29:
Consider matricesX, Y ∈ Rn×m. De�ne the permutation matrix T(n,m) ∈ {0, 1}n2m2×n2m2

as
T(n,m) = Im ⊗

[
Im ⊗ en1 , . . . , Im ⊗ enn

]
⊗ In. (2.40)

Then,
vec (X ⊗ Y ) = T(n,m) (vec (X)⊗ vec (Y )) . ♦

Proof. Let us denote the ith columns of X and Y by xi and yi, respectively. We can
then write

vec (X ⊗ Y ) =




vec (x1 ⊗ Y )
...

vec (xm ⊗ Y )


 . (2.41)

Now we concentrate on the ith block row of vec (X ⊗ Y ), which, using (2.29b) and
(2.29c), can be written as

vec (xi ⊗ Y ) = vec ((xi ⊗ In)Y ) = (Im ⊗ xi ⊗ In) vec (Y )

=
(
Im ⊗

[
x

(1)
i en1 + · · ·+ x

(n)
i enn

]
⊗ In

)
vec (Y ) , (2.42)
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where x
(j)
i is the (j, i)th entry of the matrix X. An alternative way to write (2.42) is

vec (xi ⊗ Y ) = [Im ⊗ en1 ⊗ In, . . . , Im ⊗ enn ⊗ In] (xi ⊗ Inm) vec (Y )

= ([Im ⊗ en1 , . . . , Im ⊗ enn]⊗ In) (xi ⊗ vec (Y )).

This yields

vec (X ⊗ Y ) =




([Im ⊗ en1 , . . . , Im ⊗ enn]⊗ In) (x1 ⊗ vec (Y ))
...

([Im ⊗ en1 , . . . , Im ⊗ enn]⊗ In) (xm ⊗ vec (Y ))




= (Im ⊗ [Im ⊗ en1 , . . . , Im ⊗ enn]⊗ In)



x1 ⊗ vec (Y )

...
xm ⊗ vec (Y )




= (Im ⊗ [Im ⊗ en1 , . . . , Im ⊗ enn]⊗ In)






x1
...
xm


⊗ vec (Y )




= (Im ⊗ [Im ⊗ en1 , . . . , Im ⊗ enn]⊗ In) (vec (X)⊗ vec (Y )) ,

which proves the assertion.
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3.1. Introduction
In this chapter, we study balancing-type model order reduction (MOR) of a special
class of nonlinear systems. In Chapter 2, we have brie�y outlined the model reduction
via balanced truncation for systems that are linear in the state and in the control
input, leading to linear time-invariant (LTI) systems of the form (2.1). As a �rst step
in the direction of nonlinear systems, we discuss the class of bilinear systems, which are
independently linear in the state and in the input, but not jointly. These systems are
considered to be a potential bridge between fully nonlinear systems and linear systems.
More precisely, these systems are of the form

ΣB :




ẋ(t) = Ax(t) +

m∑

k=1

Nkx(t)uk(t) +Bu(t),

y(t) = Cx(t), x(0) = x0,

(3.1)

31
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where x(t) ∈ Rn, u(t) ∈ Rm and y(t) ∈ Rp are the state, input and output vectors of the
system at time t, respectively, and uk(t) is the kth component of the input u(t). The
numbers m and p represent the quantities of inputs and outputs. All system matrices
are of appropriate dimensions. One can also think of a mass matrix E in front of ẋ(t),
but to keep the discussion simple, we consider the matrix E to be the identity. Also, we
consider a �xed initial condition x0 of the system. However, without loss of generality,
we assume a zero initial condition, i.e., x0 = 0. In case x0 6= 0, one can transform the
system by de�ning new appropriate state variables as x̃(t) = x(t) − x0, ensuring the
zero initial condition of the transformed system, e.g., see [15].
Applications of bilinear systems can be found in various �elds such as nuclear fusion,

mechanical brakes or biological species [41, 102, 111]. Further, the applicability of the
systems (3.1) in MOR for stochastic control problems is studied in [26, 83, 107] and for
MOR of a certain class of linear parametric systems in [20]. Moreover, nonlinear systems
can be approximated by bilinear systems via Carleman bilinearization [70, 111]. Our
goal is to construct another low-dimensional bilinear system, having the same structure
as (3.1):

Σ̂B :





˙̂x(t) = Âx̂(t) +
m∑
k=1

N̂kx̂(t)uk(t) + B̂u(t),

ŷ(t) = Ĉx̂(t), x̂(0) = 0,
(3.2)

where Â, N̂k ∈ Rn̂×n̂, B̂ ∈ Rn̂×m and Ĉ ∈ Rp×n̂ with n̂ � n, ensuring y ≈ ŷ for all
admissible inputs u ∈ Lm2 [0,∞).
Several methods for linear systems have been extended to bilinear systems such as

balanced truncation [5, 26] and interpolation-based MOR [12, 21, 40, 59, 49, 57]. In
this chapter, we only focus on balancing-based MOR for bilinear systems and we will
discuss interpolation-based MOR for bilinear systems in detail later in Chapter 6. As
noted in Chapter 2, the concept of balanced truncation relies on energy functionals,
namely controllability and observability energy functionals, of the system. These en-
ergy functionals allow us to �nd those states that are hard to control as well as hard
to observe; thus, they are the less important for the input-output behavior of the sys-
tem. Truncating such states leads to reduced-order systems. This problem for bilinear
systems was �rst discussed in [91], and later on, it was taken up in [5, 6, 26, 49]. For
this, algebraic Gramians for bilinear systems were proposed in [5], which allow us to
identify less important states with respect to the input/output mapping, although the
physical interpretation of these Gramians is not as clear as in the linear case. The con-
nections between these Gramians and the energy functionals of bilinear systems have
been studied in [26, 73] for state vectors that are multiples of the canonical unit vectors.
Furthermore, the relations between the Gramians and the controllability/observability
of bilinear systems have also been studied in [26].
It is worth mentioning that the balancing concept for general nonlinear systems has

been studied in a series of papers, see, e.g., [63, 75, 114], where a new notion of controlla-
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bility and observability energy functionals has been introduced. Although theoretically,
the balancing concept for nonlinear systems is appealing, it is seldom applicable in the
large-scale setting from the computational perspective. This is due to the fact that
the energy functionals are solutions of nonlinear Hamilton-Jacobi equations, which are
extremely expensive to solve for large-scale systems, see Section 2.3.
Coming back to the algebraic Gramians of bilinear systems, the main bottleneck in

using these Gramians in the MOR context is their computational cost as we are required
to solve a couple of generalized Lyapunov equations. Though recently there have been
many advances in methods to determine the low-rank solutions of these generalized
Lyapunov equations; see [24, 118]. This motivates us to investigate an alternative pair
of Gramians for bilinear systems, which we call truncated Gramians (TGrams) that are
computationally cheaper to compute.
The structure of the chapter is as follows. In the subsequent section, we provide

the necessary control theoretic concepts of bilinear systems. This includes the Volterra
series representation of bilinear systems, possible stability criteria and derivation of
Gramians of bilinear systems. In Section 3.3, we study the connection between these
Gramians and energy functionals for an arbitrary state vector, in contrast to [26], where
the connection is shown only for the canonical unit vectors and their multiples. Next,
we discuss how to construct reduced-order systems using the Gramians for bilinear
systems. In Section 3.4, we propose TGrams for bilinear systems and investigate their
connections with the controllability and observability of the bilinear systems. More-
over, we reveal the relation between the TGrams and energy functionals of the bilinear
systems. Then, we discuss the advantages of considering the TGrams in the MOR
context. Subsequently, in Section 3.5, we provide a couple of numerical examples to
illustrate the applicability of the TGrams for MOR of bilinear systems and advantages
of them over standard Gramians of bilinear systems.

3.2. Control Theoretic Concepts
Here, we gather some basic control theoretic concepts of bilinear systems, which will
be useful in the rest of this chapter and in Chapter 6. These concepts and ideas can
be found in several textbooks on bilinear system theory, e.g., see [55, 93, 102, 111]. We
begin with the Volterra series for bilinear systems, relating the output y(t) of ΣB to the
input of the system. For this, we �rst derive the expression for the state x(t) in (3.1)
in terms of the input and system matrices. Assuming bounded and continuous inputs
uk(t) on a time interval [0, T ] and utilizing the Picard-Lindelöf theorem [111, Section
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3.1], one can show that there exists y(t) on [0, T ], satisfying

y(t) =
∞∑

k=1

∫ t

0

∫ σ1

0

· · ·
∫ σk−1

0

gk(t, σ1, . . . , σk)
(
u(t− σ1 − · · · − σk)⊗ · · ·

⊗ u(t− σ1)dσk · · · dσ1

)
,

(3.3)

where
gk(t, σ1, . . . , σk) = CeAtkN̄

(
Im ⊗ eAtk−1N̄

)
· · ·

×
(
Imk−2 ⊗ eAt2N̄

) (
Imk−1 ⊗ eAt1B

)
.

(3.4)

in which N̄ = [N1, . . . , Nm]. The quantities gk(t, σ1, . . . , σk) are also referred to as the
kernels of the Volterra series.
The above form of the Volterra series has kernels in the regular form, e.g., [111]. This,

in particular, helps us in deriving the regular transfer functions of a bilinear system.
Note that there also exist the kernels of the Volterra series, e.g., in triangular form,
see, e.g., [111]. However, the advantage of considering the regular form of the kernels
is that all variables are separable. As we know from the linear case that the impulse
response or kernel has a one-to-one relation to the transfer function of the system, we
thus perform the multi-variate Laplace transform of the degree-k kernels [111], leading
to the kth multi-variate transfer function of a bilinear system in the regular form as

Gk(s1, . . . , sk) = C

(
k−2∏

i=0

Imi ⊗ (sk−iI − A)−1N̄

)
(
Imk−1 ⊗ (s1I − A)−1B

)
. (3.5)

Consequently, in an abstract way, the output of a bilinear system in the frequency
domain can be characterized by means of these multi-variate transfer functions, ex-
tending the transfer function concept of linear systems. However, the real meaning of
the variables s1, . . . , sk in the multi-variate transfer functions of a bilinear system is
still not very well understood.

Remark 3.1:
We note that the expression of the kth order transfer function for a single-input
single-output (SISO) bilinear system is much simpler and is given by

Gk(s1, . . . , sk) = C(siI − A)−1N · · · (s2I − A)−1N(s1I − A)−1B, (3.6)

where N := N1. ♦
Next, we review bounded-input-bounded-output stability of a bilinear system. This

concept has been investigated in [122] in detail, and we outline the main result in the
following theorem.
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Theorem 3.2 ([122]):
Consider a bilinear system ΣB and assume that the matrix A is Hurwitz. This means
that there exist scalars β > 0 and 0 < α ≤ −maxi(Re (λi(A))), satisfying

‖eAt‖ ≤ βe−αt ∀t ≥ 0. (3.7)

Furthermore, let M be such that ‖u‖ =
√∑m

k=1 |uk(t)|2 ≤ M for all t ≥ 0, and
Γ be de�ned as Γ :=

∑m
k=1 ‖Nk‖. Then, the output of ΣB is bounded on [0,∞) for

inputs u if Γ <
α

Mβ
. ♦

As a next step, we introduce the system matrices, the so-called Gramians for bilinear
systems. This concept was �rst discussed in [50], and later on, in [5] the concept of
controllability and observability are generalized based on the kernels of the Volterra
series. For this, let us �rst de�ne

P1(t1) = eAt1B,

Pk(t1, . . . , tk) = eAtk [N1Pk−1, . . . , NmPk−1] , k = 2, 3, . . . ,
(3.8)

which are nothing but the kernels of the Volterra series (3.3). Then, based on (3.8), we
de�ne the reachability Gramian P as

P =
∞∑

k=1

∫ ∞

0

· · ·
∫ ∞

0

Pk(t1, . . . , tk)Pk(t1, . . . , tk)
Tdt1 · · · dtk. (3.9)

Similarly, let us de�ne

Q1(t1) = eA
T t1C,

Qk(t1, . . . , tk) = eA
T tk
[
NT

1 Qk−1, . . . N
T
mQk−1

]
, k = 2, 3, . . . ,

(3.10)

and the observability Gramian Q as

Q =
∞∑

k=1

∫ ∞

0

· · ·
∫ ∞

0

Qk(t1, . . . , tk)Qk(t1, . . . , tk)
Tdt1 · · · dtk. (3.11)

Clearly, P and Q are symmetric and positive semi-de�nite. However, the expressions
for P and Q as shown in (3.9) and (3.11), respectively, involve in�nite terms. Hence,
they may diverge; thus, P and Q may not exist. Therefore, the following theorem, we
provide su�cient conditions under which the Gramians for bilinear systems exist, or in
other words, the in�nite series converge.

Theorem 3.3 ([133]):
Assuming the series (3.9) and (3.11) converge, the reachability Gramian P and the
observability Gramian Q of a bilinear system are given by the series (3.9) and (3.11),
respectively. These series converge if
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(a) the matrix A is Hurwitz, and

(b) ΓN <

√
2α

β
, where ΓN =

√
‖∑m

k=1NkNT
k ‖, and α, β are de�ned in (3.7). ♦

Under these assumptions, in the following, we show the connection between the Grami-
ans P and Q of a bilinear system and generalized linear matrix equations, extending
the well-known Lyapunov equations for linear systems.

Theorem 3.4 ([5, 133]):
Assuming the Gramians P and Q of the bilinear system (3.1) exist, they, respectively,
solve the following generalized Lyapunov equations

AP + PAT +
m∑

k=1

NkPN
T
k +BBT = 0, (3.12a)

ATQ+QA+
m∑

k=1

NT
k QNk + CTC = 0. (3.12b)

♦

Remark 3.5:
In Theorem 3.3, we have noted the conditions under which the series de�ning the
Gramians of a bilinear system converge, and thus, they solve the generalized Lya-
punov equations as indicated in Theorem 3.4. However, as shown in [133], the
solutions of the generalized Lyapunov equations may exist even though their cor-
responding series may diverge. ♦

Before we proceed further, we de�ne the balanced realization of a bilinear system.

De�nition 3.6:
Analog to the linear case, a bilinear system ΣB is said to be balanced if its Gramians
P = Q = Σ solve

AΣ + ΣAT +
m∑

k=1

NkΣN
T
k +BBT = 0,

ATΣ + ΣA+
m∑

k=1

NT
k ΣNk + CTC = 0,

where Σ = diag (σ1, . . . , σn) and σi ≥ σi+1 ≥ 0. ♦

Remark 3.7:
In general, a bilinear system may not be balanced. However, there exists a bal-
anced transformation x 7→ T−1x, leading to a transformed bilinear system, whose
reachability and observability Gramians are equal and diagonal, i.e.,

T−1PT−T = T TQT = Σ = diag (σ1, σ2, . . . , σn) . (3.13)
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Analogous to the linear case (see, e.g., [7]), having the factorizations of P = LLT and

LTQL = UΣ2UT , one �nds the corresponding transformation matrix T = LUΣ−
1
2 .♦

Now, we turn our attention towards de�ning a system norm for a bilinear system
ΣB, which help us to measure the quality of a reduced-order system. In this thesis,
we are also particularly interested in the H2-optimal reduced-order system. Thus, we
de�ne the H2-norm for bilinear system. Recall from linear systems that the H2-norm
of a linear system can be determined in terms of the impulse response of the system or
kernel of the time-evolution equation. Extending this idea to bilinear systems, one can
de�ne the H2-norm of a bilinear system ΣB as follows.

De�nition 3.8 ([60]):
Let ΣB be a bounded-input bounded-output (BIBO) stable bilinear system. Then,
the H2-norm of ΣB is de�ned by

‖ΣB‖H2 =

√√√√tr

( ∞∑

k=1

∫ ∞

0

· · ·
∫ ∞

0

‖gk(t1, . . . , tk)‖2
2dt1 · · · dtk

)
, (3.14)

where gk(t1, . . . , tk) is as given in (3.4). ♦
Note that De�nition 3.8 makes sense in the case when the series in (3.14) convergence,

or equivalently, when the generalized reachability and observability Gramians exist.
Furthermore, the connection between the system Gramians, namely reachability and
observability Gramians, and the H2-norm of ΣB is derived in [133], which is given by

‖ΣB‖H2 =
√

tr (CPCT ) =
√

tr (BTQB), (3.15)

where P and Q are the reachability and observability Gramians and are solutions of
the generalized Lyapunov equations as shown in Theorem 3.4.
Before we conclude the section, we look at an alternative characterization of the kth

order transfer function (3.5) in the pole-residue formulation. This will be very useful
while dealing with bilinear descriptor systems in Chapter 6. Analogous to the linear
case, the kth order multi-variate transfer function can be written in the aforementioned
formulation as follows.

Proposition 3.9 ([60]):
Consider the multi-variate transfer function

Gk(s1, s2, . . . , sk) = C(skI − A)−1N · · · (s2I − A)−1N(s1I − A)−1B

of a SISO bilinear system and let {λ1, λ2, . . . , λn} ⊂ C be the n distinct eigenvalues
of the matrix A. Then, the multi-variate transfer function can also be written in the
pole-residue formulation as follows:

Gk(s1, s2, . . . , sk) =
n∑

l1=1

n∑

l2=1

· · ·
n∑

lk=1

φl1,...,lk
k∏
i=1

(si − λli)
,
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where

φl1,...,lk = lim
sk→λlk

(sk − λlk) lim
sk−1→λlk−1

(sk−1 − λlk−1
) · · · lim

s1→λl1
(s1 − λl1)Gk(s1, . . . , sk).

(3.16)

♦

This pole-residue decomposition of the transfer functions can also be utilized to derive
another expression for theH2-norm of a bilinear system. We summarize in the following
theorem.

Theorem 3.10 ([22, 60]):
Let ΣB be a SISO BIBO-stable bilinear system. Assuming the H2-norm of ΣB exists,
then it can be given in the pole-residue formulation as follows:

‖ΣB‖H2 =
n∑

l1=1

n∑

l2=1

· · ·
n∑

lk=1

φl1,...,lkGk(−λl1 , . . . ,−λlk), (3.17)

where φl1,...,lk are as de�ned in (3.16). ♦
The pole-residue formulation of multi-variate transfer functions and the H2-norm

expression as shown in Theorem 3.10 will play an important role while extending the
existing model reduction techniques for bilinear ODEs to bilinear descriptor systems.
These are discussed in detail in Chapter 6.

3.3. Standard Balanced Truncation Technique for
Bilinear Systems

In this section, we discuss how the Gramians of a bilinear system are related to energy
functionals and then show how to remove states less important for the input-output
behavior, leading to a reduced-order system. We begin by comparing the controllability
and observability energy functionals, denoted by Ec and Eo, respectively, with certain
quadratic forms, given in terms of the Gramians P and Q. As we have seen in the
linear case, the energy functionals Ec and Eo can be exactly determined in terms of
the Gramians of a linear system. This is no longer possible when it comes to nonlinear
systems including bilinear systems. As a remedy, it is desirable to ensure bounds on
the energy functionals in terms of algebraic Gramians of the systems, allowing us still
to �nd the states that are hard to control and hard to observe, at least locally.
This problem initially was investigated in [48, 73], where the expressions for the

gradients of Ec and Eo, in the neighborhood of the origin have been derived. These
are:

∇Ec(x) = P̃ (x)−1x and ∇Eo(x) = Q̃(x)x, (3.18)
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where P̃ (x) and Q̃(x) solve

AP̃ (x) + P̃ (x)AT = −
m∑

k=1

(Nkx+ bj)(Nkx+ bj)
T ,

AT Q̃(x) + Q̃(x)A = −
m∑

k=1

Q̃(x)Nkxx
TNT

k Q̃(x)− CTC.

Based on it, the following bounds for energy functions are derived, assuming P > 0
and one of the Nk is of full rank:

Ec(x0) > xT0 P
−1x0 and Eo(x0) < xT0Qx0. (3.19)

However, going from (3.18) to (3.19) requires an additional integrability condition,
which may not hold in general. This issue is discussed in detail in [26, 127], showing
that this is a key obstacle and where examples explaining the problem are provided.
Coming back to the relation between energy functionals and Gramians, the authors

in [26] have provided another interpretation of these Gramians, which is outlined in
the following theorem.

Theorem 3.11 ([26]):
Let a bilinear system ΣB be a balanced system, i.e., P = Q = Σ > 0. Then, there
exists ε > 0 such that the following bounds hold for all canonical unit vectors ei:

Ec(εei) > ε2eTi P
−1ei = ε2/σi (3.20)

and
Eo(εei) < ε2eTi Qei = ε2σi, (3.21)

where σi is the ith diagonal entry of Σ. ♦
Clearly, it can be seen that bounds for the energy functionals bounds shown in

Theorem 3.11 are very restrictive since they only hold for canonical unit vectors or
its multiples. Therefore, in the following, we provide a result, showing under what
conditions bounds for the energy functionals of bilinear systems hold for an arbitrary
given state. Before we state the corresponding theorem, we introduce a homogeneous
bilinear system, which is used to characterize the observability energy in the system:

ẋ(t) = Ax(t) +
m∑

k=1

Nkx(t)uk(t),

y(t) = Cx(t), x(0) = x0.

(3.22)

Theorem 3.12:
Consider the bilinear system (3.1), with a stable A, and assume that the system is
asymptotically any state x0 reachable from 0. Let P , Q > 0 be the Gramians of the
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system, respectively, and Ec(x) and Eo(x), respectively, be the controllability and
observability energy functionals of the bilinear system. Then, there exists a small
neighborhood W of 0, where the following relation holds:

Ec(x0) ≥ 1

2
xT0 P

−1x0 if x0 ∈ W (0). (3.23)

Furthermore, for a su�ciently small input u(t) in the homogeneous bilinear sys-
tem (3.22), the following relation holds:

Eo(x0, u) ≤ 1

2
xT0Qx0. (3.24)

♦

Proof. To prove (3.23), we follow the lines of reasoning in [26]. Let us assume that
x0 ∈ Rn is controlled by the input u = ux0 ∈ Lm2 [0,∞), minimizing the input cost
functional in the de�nition of Ec(x0). Using this input, we consider the homogeneous
linear di�erential equation given by

φ̇ =

(
A+

m∑

k=1

Nkuk(t)

)
φ =: Au(t)φ(t),

whose fundamental solution is denoted by Φu. Thus, if we consider the time-varying
system

ẋ(t) = Au(t)x+Bu(t), (3.25)

then its reachability Gramian [120, 128] is given by

Pu =

∫ 0

−∞
Φu(0, τ)BBTΦu(0, τ)Tdτ.

Obviously, the input u also steers the time-varying system (3.25) from 0 to x0. More-
over, to steer the system (3.25), the minimum required input energy is equal to xT0 P

#
u x0,

where P#
u denotes the Moore-Penrose pseudo inverse of Pu. This implies that ‖u‖2

L2
is

larger than the xT0 P
#
u x0, i.e.,

‖u‖2
L2
≥ xT0 P

#
u x0,

Alternatively, one can also determine Pu as an observability Gramian:

Pu =

∫ ∞

0

Ψu(t, 0)BBTΨu(t, 0)Tdt,

where Ψu is the fundamental solution of the dual system, satisfying

Ψ̇u =

(
AT +

m∑

k=1

NT
k uk(−t)

)
Ψu, Ψu(t, t) = I.
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Now, we de�ne x̃(t) = Ψu(t, 0)x0. Further, since the system is assumed to be reachable,
there exists an input u ∈ Lm2 [0,∞), which can steer the system from 0 to x0. This
implies that x̃(t)→ 0 as t→∞. Thus, we have

xT0 Px0 = −
∫ ∞

0

d

dt

(
x̃(t)TPx̃(t)

)
dt

= −
∫ ∞

0

x̃(t)T

(
AP +

m∑

k=1

NkPuk(−t) + PAT +
m∑

k=1

PNT
k uk(−t)

)
x̃(t)dt

= −
∫ ∞

0

x̃(t)T

(
AP + PAT +

m∑

k=1

NkPN
T
k

)
x̃(t)dt

+
m∑

k=1

∫ ∞

0

x̃(t)T
(
NkPN

T
k −NkPuk(−t)− PNT

k uk(−t)
)
x̃(t)dt.

Thus, we get

−
∫ ∞

0

x̃(t)T

(
AP + PAT +

m∑

k=1

NkPN
T
k

)
x̃(t)dt =

∫ ∞

0

x̃(t)TBBT x̃(t)dt

= xT0 Pux0.

Moreover, if

∫ ∞

0

x̃(t)T
m∑

k=1

(
NkPN

T
k −NkPuk(−t)− PNT

k uk(−t)
)
x̃(t)dt ≥ 0, (3.26)

then we have xT0 Px0 ≥ xT0 Pux0. Furthermore, if we assume that the reachable state
x0 lies in a su�ciently small ball W in the neighborhood of 0, then x0 is reached with
a su�ciently small input u, guaranteeing that the condition (3.26) is satis�ed for all
states x0 ∈ W (0). Hence, we obtain

xT0 P
−1x0 ≤ xT0 P

−1
u x0, where x0 ∈ W (0).

Next, we prove the relation (3.24), We begin with the de�nition of the output energy
functional (De�nition 2.21). That is,

Eo(x0, u) =
1

2

∫ ∞

0

‖y(t)‖2 =
1

2

∫ ∞

0

‖Cx(t)‖2 =
1

2

∫ ∞

0

x(t)TCTCx(t).

Substituting for CTC from (3.12b), we obtain

Eo(x0, u) =
1

2

∫ ∞

0

(
−2x(t)TQAx(t)−

m∑

k=1

x(t)TNT
k QNkx(t)

)
dt.
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Next, we substitute for Ax(t) from (3.22) to get

Eo(x0, u) =
1

2

∞∫

0

(
− 2x(t)TQẋ(t) + 2

m∑

k=1

x(t)TQNkx(t)uk(t)−
m∑

k=1

x(t)TNT
k QNkx(t)

)
dt

=
1

2

∫ ∞

0

− d

dt
(x(t)TQx(t))dt+

1

2

∫ ∞

0

x(t)T
( m∑

k=1

[QNk +NT
k Q]uk(t)

−
m∑

k=1

NT
k QNk

)
x(t)dt.

This gives

Eo(x0, u)− 1

2
xT0Qx0 =

∫ ∞

0

x(t)TR(u(t))x(t)dt,

where R(u(t)) =
1

2

m∑
k=1

(
QNkuk(t) +NT

k Quk(t)−NT
k QNk

)
. Hence, we get

Eo(x0)− 1

2
xT0Qx0 = max

u∈B(α,β)

x(0)=x0,x(∞)=0

∫ ∞

0

x(t)TR(u(t))x(t),

where B(α,β)
def
= {u ∈ Lm2 [0,∞), ‖u‖L2 ≤ α, ‖u‖L∞ ≤ β}. First, note that if the term

x(t)TNT
k QNkx(t) in the expression of x(t)TR(u(t))x(t) is equal to zero for some t, then

x(t)TQNkuk(t) is also equal to zero. Thus, if ‖u‖∞ is su�ciently small, meaning β is
small, then R(u(t)) is always a negative semi-de�nite matrix. Therefore, we have

Eo(x0)− 1

2
xT0Qx0 ≤ 0,

concluding the proof.

Theorem 3.12 reveals that energy functionals for bilinear systems can be bounded
by the quadratic form given in terms of Gramians in the neighbourhood of the origin
and for small inputs. However, in Theorem 3.12, it is assumed that the Gramians
are positive de�nite matrices, which might not be the case in general. This issue
has been addressed in [26], and therein, the relations between energy functionals and
the state, lying in ker (P ) or in ker (Q) are provided. It says that if the desired state
x0 6∈ range (P ), then Ec(x0) =∞, and similarly, if an initial state x0 belongs to ker (Q),
then Eo(x0) = 0. This shows that the states x0 with x0 ∈ ker (Q) or x0 6∈ range (P ) do
not play any role in the dynamics of the system; hence, they can be removed. The main
idea of balanced truncation lies in furthermore neglecting the almost uncontrollable and
almost unobservable states (hard to control and hard to observe states). In order to
guarantee that hard to control and hard to observe states are truncated simultaneously,
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Algorithm 3.1: Balanced truncation for bilinear systems.

1 Input: System matrices A,Nk, B and C, and the order of the reduced-order
system n̂.

2 Output: The reduced-order system's matrices Â, N̂k, B̂ and Ĉ.
3 Determine low-rank approximations of the truncated Gramians P ≈ RRT and

Q ≈ SST ;
4 Compute SVD of STR:

STR = UΣV =
[
U1 U2

]
diag (Σ1,Σ2)

[
V1 V2

]T
,

where Σ1 contains the n̂ largest singular values of STR;
5 Construct the projection matrices V and W:

V = SU1Σ
−1

2
1 and W = RV1Σ

−1
2

1 ;
6 Determine the reduced-order system's realization:

Â = WTAV, N̂k = WTNkV, B̂ = WTB, Ĉ = CV.

we need to �nd a transformation of the bilinear into a balanced bilinear system via an
appropriate transformation as stated in Remark 3.7. Without loss of generality, we
consider the following bilinear system being a balanced bilinear system:

[
ẋ1(t)
ẋ2(t)

]
=

[
A11 A12

A21 A22

] [
x1(t)
x2(t)

]
+

m∑

k=1

[
N

(11)
k N

(12)
k

N
(21)
k N

(22)
k

] [
x1(t)
x2(t)

]
uk(t) +

[
B1

B2

]
u(t),

y(t) =
[
C1 C2

] [
xT1 (t) xT2 (t)

]T
,
[
xT1 (0), xT2 (0)

]
= [0, 0]

with the reachability and observability Gramians equal to Σ :

Σ = diag (σ1, σ2, . . . , σn) ,

σi > σi+1 and x1(t) ∈ Rn̂ and x2(t) ∈ Rn−n̂. Fixing n̂ such that σn̂ > σn̂+1, we
determine a reduced-order system of order n̂ by setting x2 = 0 as follows:

ẋ1(t) = A11x1(t) +
m∑

k=1

N
(11)
k x1(t)uk(t) +B1u(t),

ŷ(t) = C1x1(t), x1(0) = 0.

(3.27)

Finally, we again summarize all steps to determine a reduced-order system for the
bilinear system via balancing in Algorithm 3.1.
This provides a good local reduced-order system, but unlike in the case of linear

systems, it is not clear how to quantify the error, occurring due to x2 being removed.
Moreover, it is worth noting that in the linear case, the reduced-order system obtained
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via balanced truncation is a balanced one, which is not the case for bilinear systems,
i.e., the Gramians of (3.27) are neither diagonal nor equal in general.
The main challenge in applying balanced truncation for bilinear systems is that it re-

quires the solution of two generalized Lyapunov equations. In this direction, there have
many advancements to determine low-factors of these generalized Lyapunov equations
in recent times. In [24], the authors have extended the Alternating Direction Implicit
(ADI) iteration method to the generalized Lyapunov, and recently, an e�cient method
using the rational Krylov subspace is also proposed in [118]. But methods are still quite
expensive in a large-scale setting. This motivates us to look at an alternative pair of
Gramians for bilinear systems, which are cheaper to compute and still provide us some
energy functional interpretations.

3.4. Alternative Balancing Approach for Bilinear
Systems

In this section, we seek to investigate an alternative pair of Gramians, the so-called
truncated Gramians (TGrams) for bilinear systems, and discuss their advantages in
balancing-type model reduction. We de�ne TGrams for bilinear systems by considering
only the �rst two terms in the series in (3.9) and (3.11), which depend on the �rst two
kernels of the Volterra series of the bilinear system and its dual, as follows:

PT =

∫ ∞

0

P1(t1)P1(t1)Tdt+

∫ ∞

0

∫ ∞

0

P2(t1, t2)P2(t1, t2)Tdt1dt2, (3.28a)

QT =

∫ ∞

0

Q1(t1)Q1(t1)Tdt1 +

∫ ∞

0

∫ ∞

0

Q2(t1, t2)Q2(t1, t2)Tdt1dt2, (3.28b)

where Pi and Qi are de�ned in (3.8) and (3.10), respectively. Next, we establish the
relations between these TGrams and the solutions of Lyapunov equations.

Lemma 3.13:
Consider the bilinear system (3.1) with the matrix A being Hurwitz. Let PT and QT

be the truncated reachability and observability Gramians of the system as de�ned
in (3.28). Then, PT and QT satisfy the following Lyapunov equations:

APT + PTA
T +

m∑

k=1

NkPlN
T
k +BBT = 0, (3.29a)

ATQT +QTA+
m∑

k=1

NT
k QlNk + CTC = 0, (3.29b)

respectively, where Pl and Ql are the Gramians of the corresponding linear part,
which solve

APl + PlA
T +BBT = 0, (3.30)



45 3.4. Alternative Balancing Approach for Bilinear Systems

ATQl +QlA+ CTC = 0. (3.31)

♦

Proof. The lemma can be proven in a similar way as done in [5, Thm. 1]. However,
for the sake of completeness, we sketch the proof here. We begin with the truncated
reachability Gramian for the bilinear system. The �rst term in (3.28a) is

Pl =

∫ ∞

0

P1(t1)P (t1)Tdt1,

where P1(t) is de�ned in (5.7), solving

APl + PlA
T +BBT = 0, (3.32)

provided A is a Hurwitz matrix, e.g., see [7]. Next, using the second term in (3.28a),
we de�ne

P2 :=

∫ ∞

0

∫ ∞

0

m∑

k=1

eAt2Nke
At1BBT eA

T t1NT
k e

AT t2dt1dt2

=
m∑

k=1

∫ ∞

0

eAt2Nk

(∫ ∞

0

eAt1BBT eA
T t1dt1

)
NT
k e

AT t2dt2

=
m∑

k=1

∫ ∞

0

eAt2NkPlN
T
k e

AT t2dt1dt2.

Again using the integral representation of the Lyapunov equation, e.g. [7], we know
that P2 solves the following (provided A is stable):

AP2 + P2A
T +

m∑

k=1

NkPlN
T
k = 0. (3.33)

Since PT is de�ned as the sum of Pl and P2, it satis�es

APT + PTA
T +

m∑

k=1

NkPlN
T
k +BBT = 0.

Similarly, we can show the result for the truncated observability Gramian for the bi-
linear system. This completes the proof.

The main aim of introducing these TGrams is to use them in the balancing model
reduction technique for bilinear systems; therefore, it is necessary to investigate rela-
tions of these TGrams with the energy functionals of bilinear systems. As a next step,
we compare the energy functionals of the bilinear system and the quadratic forms of
the TGrams.



Chapter 3. Balanced Truncation for Bilinear Control Systems 46

Lemma 3.14:
Consider the bilinear system (3.1), with a stable matrix A and let the system be
asymptotically any state x0 reachable from 0. Let P , Q > 0 and PT , QT > 0 be the
Gramians and TGrams of the system, respectively, and Ec(x) and Eo(x), respectively,
be the controllability and observability energy functionals of the bilinear system.
Furthermore, assume that one of the Nk in (3.1) is of full rank. Then, there exists a
small neighborhood W of 0, where the following relations hold:

Ec(x) ≥ 1

2
xTP−1

T x ≥ 1

2
xTP−1x and x ∈ W (0). (3.34)

Furthermore, if a bilinear system is locally controllable, then, for su�ciently small
inputs, the following relation also holds:

Eo(x) ≤ 1

2
xTQTx ≤

1

2
xTQx. (3.35)

♦

Proof. Let us assume that x0 ∈ Rn is controlled by the input u = ux0 ∈ Lm2 (−∞, 0],
minimizing the input cost functional in the de�nition of Ec(x0). Let Ψu be the funda-
mental solution of the dual system satisfying

Ψ̇u =

(
AT +

m∑

k=1

NT
k uk(−t)

)
Ψu, Ψu(t, t) = I. (3.36)

From the proof of Theorem 3.12, we know that we can de�ne x̃(t) = Ψu(t, 0)x0, satis-
fying x̃(t)→ 0 as t→∞. Now, we consider

xT0 PTx0 = −
∫ ∞

0

d

dt

(
x̃(t)TPT x̃(t)

)
dt

= −
∫ ∞

0

x̃(t)T

(
APT +

m∑

k=1

NkPTuk(−t)

+PTA
T +

m∑

k=1

PTN
T
k uk(−t)

)
x̃(t)dt

= −
∫ ∞

0

x̃(t)T

(
APT + PTA

T +
m∑

k=1

NkPlN
T
k

)
x̃(t)dt

+
m∑

k=1

∫ ∞

0

x̃(t)T
(
NkPlN

T
k −NkPTuk(−t)− PTNT

k uk(−t)
)
x̃(t)dt.
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Thus, we obtain

−
∫ ∞

0

x̃(t)T

(
APT + PTA

T +
m∑

k=1

NkPlN
T
k

)
x̃(t)dt =

∫ ∞

0

x̃(t)TBBT x̃(t)dt

= xT0 Pux0.

Moreover, if

∫ ∞

0

x̃(t)T
m∑

k=1

(
NkPlN

T
k −NkPTuk(−t)− PTNT

k uk(−t)
)
x̃(t)dt ≥ 0, (3.37)

then we have xT0 PTx0 ≥ xT0 Pux0.
Furthermore, if we assume that the reachable state x0 lies in a su�ciently small

ball W in the neighborhood of 0, then x0 is reached with a su�ciently small input u,
guaranteeing that the condition (3.37) is satis�ed for all states x0 ∈ W (0). Hence, we
obtain

xT0 P
−1
T x0 ≤ xT0 P

−1
u x0, where x0 ∈ W (0).

Furthermore, if the reachability Gramian P , which is the solution of (3.12a), is given
by the series (3.8), and PT is determined by the sum of the �rst two terms of this series,
then it is easy to conclude that P ≥ PT > 0. That means, xT0 P

−1x0 ≤ xT0 P
−1
T x0. Thus,

we have xT0 P
−1x0 ≤ xT0 P

−1
T x0 ≤ xT0 P

−1
u x0, where x0 ∈ W (0).

Furthermore, along the lines of Theorem 3.12 (the second part), we can show that

Eo(x0, u)− 1

2
xT0QTx0 =

∫ ∞

0

x(t)TR(u(t))x(t)dt,

where R(u(t)) =
1

2

m∑
k=1

(
QTNkuk(t) +NT

k QTuk(t)−NT
k QlNk

)
. As argued in Theo-

rem 3.12, if ‖u‖L∞ is su�ciently small, then it can be seen that R(u(t)) is a negative
semide�nite matrix. Hence, we get

Eo(x0)− 1

2
xT0QTx0 ≤ max

u∈B(α,β)

x(0)=x0,x(∞)=0

∫ ∞

0

x(t)TR(u(t))x(t)dt ⇒ Eo(x0) ≤ 1

2
xT0QTx0.

Moreover, if the observability Gramian is determined as a series with positive semidef-
inite summands, then it can also be seen that Q ≥ QT ; hence

Eo(x0) ≤ 1

2
xT0QTx0 ≤

1

2
xT0Qx0.

This concludes the proof.
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To illustrate the relation between energy functionals, Gramians and TGrams of bilinear
systems, we consider the same scalar example as considered in [73].

Example 3.1:
Consider a scalar example (a, b, c, η). We assume a < 0, η2 + 2a < 0 and bc 6= 0
to ensure the existence of P,Q > 0. The energy functionals of the system can be
determined by solving the corresponding nonlinear PDEs [73], yielding

Ec(x) =
2a

η2

[
ηx

ηx+ b
+ log

(
b

ηx+ b

)]
and Eo(x) = −1

2

(
c2

2a

)
x2.

The approximations of the energy functionals using the Gramians are:

E(G)
c (x) =

1

2

(
η2 + 2a

−b2

)
x2 and E(G)

o (x) =
1

2

( −c2

η2 + 2a

)
x2.

The approximations of the energy functionals using TGrams are:

E(T )
c (x) = a

(
−b2 +

η2b2

2a

)−1

x2 and E(T )
o (x) =

1

4a

(
−c2 +

η2c2

2a

)
x2. ♦

The comparison of these quantities by setting the parameters to −a = b = c = η = 1
is illustrated in Figure 3.1.

−0.2 0 0.2
0

2

4

6

8

·10−2

x

Controllability energy comparison

Ec(x)

E
(G)
c (x)

E
(T )
c (x)

−0.2 0 0.2
0

1

2

3

·10−2

x

Observability energy comparison

Eo(x)

E
(G)
o (x)

E
(T )
o (x)

Figure 3.1.: Comparison of the energy functionals of the bilinear system and their ap-
proximations via Gramians and TGrams.

From Lemma 3.14, it is clear that the TGrams for bilinear systems can also be used to
determine the states that absorb a lot of energy, and still produce very little output en-
ergy, at least for a small neighborhood of the origin. However, there are at least a couple
of advantages of considering the TGrams over the Gramians for bilinear systems in the
model reduction framework. Firstly, TGrams can approximate the energy functionals
of the bilinear systems more accurately (at least locally) as proven in Lemma 3.14 and
also illustrated in Example 3.1. Secondly, in order to compute TGrams, we require the
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solutions of four conventional Lyapunov equations, whereas the Gramians require the
solutions of the generalized Lyapunov equations (3.12), which are indeed much more
computationally cumbersome.
Finally, our conclusion is here that if a bilinear system is excited by small exter-

nal inputs, then it is worth to consider TGrams for reducing such bilinear systems,
although it is di�cult to say how small an input can be, which probably depends
on the system matrices. A similar kind of observation has also been noticed in the
literature while investing the truncated H2-optimal interpolation model reduction for
bilinear systems [60]; therein, it has been shown by means of numerical examples that
sometimes a reduced-order system, which locally minimizes the H2-norm based on the
TGrams, performs better in the time-domain simulations than the H2-optimal reduced-
order system. This phenomenon can be explained by TGrams as truncated H2-optimal
model reduction (with truncation index 2) tries to minimize the norm of the error sys-
tem (di�erence between the original and reduced-order systems) based on the proposed
TGrams.
Furthermore, bilinear control systems are strongly connected to parametric linear

systems, see [20]. If the variations of the parameters are small, then it is also worth
applying TGrams over the Gramians. The phenomenon has been also observed while
investigating the truncation H2-model reduction problem [60] for bilinear systems.

3.5. Numerical Experiments
In this section, we illustrate the e�ciency of the reduced-order systems obtained via the
proposed TGrams for the bilinear system and compare it with that of the actual Grami-
ans as discussed in Section 3.3. We denote the Gramians for the bilinear system by
SGrams (standard Gramians) from now on. In order to determine the low-rank factors
of the Gramians for bilinear systems, we employ the most recently proposed algorithm
in [118], which utilizes many of the properties of inexact solutions and uses the ex-
tended Krylov subspace method (EKSM) to solve the conventional Lyapunov equation
up to a desired accuracy. To determine the low-rank factors of the linear Lyapunov
equation, we also utilize EKSM to be in the same line. All the simulations were carried
out in MATLAB version 8.0.0.783(R2012b) on a board with 4 Intel® Xeon® E7-8837
CPUs with a 2.67-GHz clock speed, 8 Cores each and 1TB of total RAM.

3.5.1. Burgers’ equation
We consider a viscous Burgers' equation, which is one of the standard test examples
for bilinear systems; see, e.g., [40]. The dynamics of the system are governed by

∂v

∂t
+ v

∂v

∂x
= µ

∂2v

∂x2
, (x, t) ∈ (0, 1)× (0, T )
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with boundary conditions:

v(x, 0) = 0, x ∈ (0, 1), v(0, t) = u(t), v(1, t) = 0, t ≥ 0.

As shown in [40], a spatial semi-discretization of the governing equation using k equidis-
tant nodes leads to an ODE system having quadratic nonlinearity. However, a quadratic
nonlinear system can be approximated as a bilinear system using Carleman bilin-
earization; see, e.g., [111]. The dimension of the approximated bilinearized system
is n = k + k2. We set the viscosity µ = 0.1 and k = 40, and choose the observation
vector C such that it yields an average value for the variable v in the spatial domain.
Note that the bilinearized system is not anH2 system, which can be checked by looking
at the eigenvalues of the matrix X := (I ⊗ A + A ⊗ I + N ⊗ N). If σ(X) 6⊂ C−, then
the series determining its controllability Gramians diverges. To overcome this issue, we
choose a scaling factor γ for the matrices B and Nk, and the input u(t) is scaled by 1

γ
.

Such an idea was �rst proposed for bilinear systems in [26]. For this example, we set
γ = 0.1, ensuring σ(X) ⊂ C−.
We determine reduced-order systems of orders r = 5 and r = 10 using SGrams and

TGrams, and compare the quality of the reduced-order systems by using two arbitrary
control inputs u(1)(t) = te−t sin(πt) and u(2)(t) = te−t + 1 as shown in Figure 3.2.
More importantly, we also show the CPU-time to determine the low-rank factors of
SGrams and TGrams in the same �gure.
Figure 3.2 also shows that computing TGrams is much cheaper than SGrams. More-

over, we observe that the reduced-order systems based on TGrams are quite competitive
to those computed by SGrams for both control inputs and both orders in this example.

3.5.2. Electricity cable impacted by wind
Below, we discuss an example of a damped wave equation with Lévy noise [108], whose
governing equation is given by

∂2

∂t2
X(t, z) + 2

∂

∂t
X(t, z) =

∂2

∂z2
X(t, z) + e−(z−π

2
)2 u(t) + 2 e−(z−π

2
)2 X(t−, z)∂M(t)

∂t

for t, z ∈ [0, π], where M is a scalar, square integrable Lévy process with mean zero.
The boundary and initial conditions are:

X(t, 0) = X(t, π) = 0 and X(0, z) = 0,
∂

∂t
X(t, z)

∣∣∣∣
t=0

≡ 0.

An approximation for the position of the middle of the cable yields the output

Y (t) =
1

2ε

∫ π
2

+ε

π
2
−ε

X(t, z)dz, ε > 0.
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(a) Burgers' equation: comparison of CPU-time to compute SGrams and TGrams.
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(c) Input u(2)(t) = te−t + 1.

Figure 3.2.: Burgers' equation: comparisons of CPU-time and transient responses of
the original and reduced-order systems for two di�erent orders and for two
inputs.

As can be seen, the governing equation is second order stochastic PDE (SPDE) but
is �rst transformed into a �rst order SPDE followed by the discretization in space.
Following [108], a semi-discretized version of the governing SPDE leads to a linear
stochastic system with x(0) = 0 and t ∈ [0, π]:

dx(t) = [Ax(t) +Bu(t)] dt+Nx(s−)dM(s), y(t) = Cx(t). (3.38)

Here, A, N ∈ Rn×n, B ∈ Rn×m, C ∈ Rp×n, x(t−) := lims↑t x(s) and y is the corre-
sponding output. Moreover, we assume that the adapted control satis�es ‖u‖2

L2
T

:=

E
∫ T

0
‖u(t)‖2

Rm dt <∞. For a detailed discussion, we refer to [108].
In contrast to [108], we �x a di�erent noise process, which allows the wind to come

from two directions instead of just one. The noise term we choose is represented by a
compound Poisson process M(t) =

∑N(t)
i=1 Zi with (N(t))t∈[0,π] being a Poisson process

with parameter 1. Furthermore, Z1, Z2, . . . are independent uniformly distributed ran-
dom variables with Zi ∼ U

(
−
√

3,
√

3
)
, which are also independent of (N(t))t∈[0,π]. This

choice implies E [M(t)] = 0 and E [M2(1)] = 1. Balanced truncation for such an Ito
type SDE (3.38) with the particular choice ofM is also based on Gramians, which ful�ll
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(3.12) with m = 1 and N := N1. Note that although the Gramians of linear stochas-
tic systems and bilinear systems coincide for this case, these Gramians have di�erent
interpretations in the case of a SDE. Nonetheless, to compute a reduced-order system,
we can blindly use SGrams and TGrams for balancing. We �x the dimension of (3.38)
to n = 1000 and set u(t) = ew(t) sin(t) and then run several numerical experiments.
In Figure 3.3, we present three trajectories of the output y. This output shows the po-

sition of the middle of the string. The purely positive input function u(t) = ew(t) sin(t),
t ∈ [0, π], pushes the cable up, where w is a Wiener process that is independent of the

compound Poisson process M(t) =
∑N(t)

i=1 Zi. Due to the randomness represented by
the Wiener process, the input can have completely di�erent intensities. This random-
ness, of course, leads to completely di�erent outputs in Figure 3.3. At the same time
the wind can randomly e�ect the cable which can either move the cable up or down.
If the wind is strong enough, the appearance of the wind is marked by peaks, where
we also have little jumps that are not visible in the graphs in Figure 3.3 due to their
small size.
We apply balanced truncation based on SGrams as described in [35] and compute

the reduced-order systems of order r = 3 and r = 6. We blindly repeat the procedure
for a linear stochastic system but we now replace the SGrams by the TGrams. We
again mention that although the Gramians for linear stochastic systems are the same
as for bilinear systems, they, however, have some di�erent energy interpretations which
have extensively been studied in [107]. We again compute the reduced-order systems
of dimensions r = 3, 6 based on the truncated Gramians.
Next, we discuss the quality of these derived the reduced-order systems and computa-

tional cost to determine the low-rank factors of SGrams and TGrams. In Figure 3.4a, we
see that the TGrams are computationally much cheaper as compared to the SGrams. In
order to compare the quality of the reduced-order systems, we determine the point-wise
deviation and the mean error of the large-scale output with the reduced output based on
the SGrams and the TGrams in Figure 3.4. For the r = 3 case, clearly, the reduced-order
system based on the TGrams outperforms the one based on the SGrams for all three
trajectories (see Figure 3.4b). This also applies for the mean deviation as shown in Fig-
ure 3.4d (left). For the r = 6 case, it is not that obvious anymore. The reduced-order
system obtained by SGrams seems to be marginally more accurate, but still, both meth-
ods result in very competitive reduced-order systems, see Figures 3.4c and 3.4d (right).

3.6. Conclusions
In this chapter, we have discussed balanced truncation for bilinear systems. Firstly, we
studied the relation between energy functionals and the quadratic form of the Grami-
ans for an arbitrary state vector. Then, we have introduced a concept of truncated
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Figure 3.3.: Electricity cable: trajectories for input u(t) = ew(t) sin(t).

Gramians for bilinear systems. These also allow us to �nd the states, which are both
hard to control and hard to observe, like the Gramians for bilinear systems, in the
neighborhood of the origin. We have also shown that the truncated Gramians approx-
imate the energy functionals of bilinear systems better (at least locally) as compared
to the Gramians of the latter systems. Moreover, we have discussed advantages of the
truncated Gramians in the model reduction context. In the end, we have demonstrated
the e�ciency of the proposed truncated Gramians in the model reduction framework
by means of two numerical examples.
As we have seen, these TGrams also provide qualitatively good reduced-order system

for linear stochastic systems as well; however, the energy interpretations for linear
stochastic systems in terms of TGrams is still not clear. So, as a further research topic,
it would be interesting to study the connection. Moreover, it is yet to be studied how to
bound the error between the original and reduced-order systems due to the truncation
of the singular values. It would also be compelling to investigate and derive an error
bound, ensuring an error in the output with a desired tolerance.
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(a) Comparison of CPU-time to compute SGrams and TGrams.

SGrams(r = 5) SGrams(r = 10) TGrams(r = 5) TGrams(r = 10)

0 1 2 3

−8

−6

−4

−2

0

Time (t)

0 1 2 3

−10

−5

0

Time (t)

0 1 2 3

−5

0

Time (t)

(b) ln
(
|y(ω,t)−yr(ω,t)|
|y(ω,t)|

)
with reduced-order dimension r = 3.

0 1 2 3
−20

−15

−10

−5

0

Time (t)

0 1 2 3

−15

−10

−5

0

Time (t)

0 1 2 3
−15

−10

−5

Time (t)

(c) ln
(
|y(ω,t)−yr(ω,t)|
|y(ω,t)|

)
with reduced-order dimension r = 6.

0 1 2 3

−4

−2

Time (t)

0 1 2 3

−8

−6

−4

−2

Time (t)

(d) ln
(
E|y(t)−yr(t)|

E|y(t)|

)
, where r = 3 (left), r = 6 (right).

Figure 3.4.: Electricity cable: comparison of reduced-order systems for
u(t) = ew(t) sin(t).
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4.1. Introduction
In the previous chapter, we have discussed balancing-type model reduction method for
a class of nonlinear systems, the so-called bilinear systems, acting as a bridge between
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fully nonlinear and linear systems. Moving one more step towards nonlinear systems, in
this chapter, we address another vital class of nonlinear systems, the so-called quadratic-
bilinear (QB) systems. These are of the form

ΣQB :




ẋ(t) = Ax(t) +H (x(t)⊗ x(t)) +

m∑

k=1

Nkx(t)uk(t) +Bu(t),

y(t) = Cx(t), x(0) = 0,

(4.1)

where x(t) ∈ Rn, u(t) ∈ Rm and y(t) ∈ Rp are the states, inputs, and outputs of the
systems at time t, respectively; n is the state dimension, and uk is the kth entry of u.
Furthermore, A,Nk ∈ Rn×n for k ∈ {1, . . . ,m}, H ∈ Rn×n2

, B ∈ Rn×m, and C ∈ Rp×n.
There is a variety of applications where the system inherently contains a quadratic

nonlinearity, which can be modeled in the QB form (4.1); e.g., spatial discretizations
of the Burgers' equation, the Allen-Cahn or Chafee-Infante equation, and many other
models from engineering and physics. Moreover, a large class of smooth nonlinear sys-
tems, involving combinations of elementary functions like exponential, trigonometric,
and polynomial functions, etc., can be equivalently rewritten as QB systems (4.1) as
shown in [25, 78]. We discuss this in a great detail in the subsequent section.
For a given QB system ΣQB of order n as shown in (4.1), our aim is to construct a

reduced-order system

Σ̂QB :





˙̂x(t) = Âx̂(t) + Ĥ (x̂(t)⊗ x̂(t)) +
m∑

k=1

N̂kx̂(t)uk(t) + B̂u(t),

ŷ(t) = Ĉx̂(t), x̂(0) = 0,

(4.2)

where Â, N̂k ∈ Rn̂×n̂ for k ∈ {1, . . . ,m}, Ĥ ∈ Rn̂×n̂2
, B̂ ∈ Rn̂×m, and Ĉ ∈ Rp×n̂ with

n̂� n such that the output of the reduced-order system ŷ approximates very well the
output of the original system y in a proper norm for all admissible inputs u ∈ Lm2 [0,∞).
Similar to the linear and bilinear cases, we construct a reduced-order system (4.2)

via projections. Towards this goal, we construct the two basis matrices V , W ∈ Rn×n̂

such that W TV is invertible. Then, the reduced matrices in (4.2) are computed as:

Â = (W TV )−1W TAV, N̂k = (W TV )−1W TNkV, for k ∈ {1, . . . ,m},
Ĥ = (W TV )−1W TH(V ⊗ V ), B̂ = (W TV )−1W TB, and Ĉ = CV.

It can be easily seen that the quality of the reduced-order system depends on the
choice of the reduction subspaces spanned by the columns of V and W , respectively.
There exist various MOR approaches in the literature to determine these subspaces.
One of the earlier and popular methods for nonlinear systems is proper orthogonal
decomposition (POD); see, e.g., [10, 47, 88, 96]. POD relies on the Galerkin projection
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P = VVT , where V is determined based on extracting the dominant modes of the
system dynamics from a selection of snapshots of the solution trajectories computed
using some training input. A Petrov-Galerkin-type projection can be obtained using
the dual/adjoining system in either time or frequency domain [110, 130]. Morover,

in this method, one can perform the computation related to Ĥ(x̂(t) ⊗ x̂(t)) in the
reduced-order system (4.2) even more cheaply and quite accurately. For this, there are
some advanced methodologies such as the empirical interpolation method (EIM), the
discrete empirical interpolation method (DEIM), the best point interpolation method
(BPIM), etc. For detail, we refer to [13, 47, 53, 76].
Another popular trajectory-based MOR technique is trajectory piecewise linear (TPWL)

method [109], where nonlinear functions are replaced by a weighted combination of lin-
ear systems. These linear systems can then be reduced by applying well-established
MOR techniques for linear systems such as balanced truncation or the interpolation-
based iterative method (IRKA); see, e.g., [7, 79]. In recent years, reduced basis meth-
ods have been successfully applied to nonlinear systems to obtain reduced-order sys-
tems [13, 76]. In spite of all these, the trajectory-based MOR techniques have the
drawback of being input dependent. This makes the obtained reduced-order systems
inadequate to control applications, where the variation of the input is inherent to the
problem.
Some other ideas, based on interpolation or moment-matching, have been extended

from linear systems to QB systems, with the aim of capturing the input-output behavior
of the underlying system independent of a training input. One-sided interpolatory
projection for QB systems is studied in [11, 78, 105, 106]. Recently, one-sided projection
method has been extended to two-sided interpolatory projection in [23, 25], ensuring
more moments to be matched, for a given order of a reduced-order system. These
methods result in reduced-order systems which does not rely on the training data or
the solution trajectories of speci�c inputs; see also the survey [15] for some related
approaches. Thus, the determined reduced-order systems can be used in input-varying
applications. Although these methods have evolved as an e�ective MOR technique for
nonlinear systems in recent times, shortcomings of these methods are: how to choose an
appropriate order of a reduced-order system and how to select good interpolation points.
Furthermore, the two-sided interpolatory projection method [25] is only applicable
to single-input single-output systems, which is very restrictive, and additionally the
stability of the resulting reduced-order systems also remains another major issue. We
note here that the method proposed in this thesis does not resolve this issue. It remains
an open problem, even in the case of linear systems, to give general conditions for
stability preservation of two-sided projection methods. Moreover, we mention that
there exist methods which relies on the data of the multi-variate transfer functions of
quadratic-bilinear systems, see, e.g., [69, 92]. However, collecting the required data is
a challenging task.
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In this chapter, our focus rather lies on a balancing-type MOR technique for QB
systems. As mentioned earlier, this technique mainly depends on controllability and
observability energy functionals, or in other words, Gramians of the system. In the
previous chapter, we have studied this methodology for bilinear control system, and in
this chapter, we aim at extending this methodology to the QB control systems.
The structure of the chapter is as follows. In the subsequent section, we �rst review

a quadratic-bilinearization process for a nonlinear system and discuss the symmet-
ric structure of the Hessian H in (4.1). In Section 4.3, we propose the reachability
Gramian and its truncated version for QB systems based on the underlying Volterra
series of the system. Additionally, we determine the observability Gramian and its
truncated version based on the dual system associate to the QB system. Furthermore,
we establish relations between the solutions of a certain type of quadratic Lyapunov
equations and the proposed Gramians. Later on, we develop the connection between
the proposed Gramians and the energy functionals of the QB systems, and also reveal
their relations to controllability and observability of the system. Consequently, we uti-
lize these Gramians for balancing of QB systems, which allows us to determine those
states that are hard to control as well as hard to observe. Truncation of such states
leads to reduced-order systems. In Section 4.3.4, we discuss the related computational
issues and advantages of the truncated version of Gramians in the MOR framework.
We further discuss the stability of these reduced-order systems. In Section 4.4, we
test the e�ciency of the proposed balanced truncation MOR technique for various
semi-discretized nonlinear PDEs and compare it with the existing moment-matching
techniques for the QB systems. We �nally conclude with a short summary and future
research topics.

4.2. Quadratic-Bilinearization and Hessian Properties
As noted in the introduction that a large class of nonlinear systems, containing smooth
monovariate variables can be rewritten into the quadratic-bilinear form, we begin by
outlining the process of rewriting a nonlinear system into the QB form (4.1).

4.2.1. Quadratic-bilinearization of nonlinear systems
Let us consider a nonlinear system of the form:

ẋ(t) = f(x(t)) +Bu(t),

y(t) = Cx(t),
(4.3)

where f(x) ∈ Rn → Rn, B ∈ Rn×m and C ∈ Rp×n, and x(t), y(t) and u(t) are the
state, output and input vectors at time t. Rewriting a nonlinear system into the QB
form is called quadratic-bilinearization. This process involves essentially two steps; the
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�rst step is to polynomialization of the nonlinear system, which is followed by the
quadratic-bilinearization of the obtained polynomialized system. We �rst de�ne the
nonlinear system (4.3), which have the polynomialization form.

De�nition 4.1:
A nonlinear system is said to be in the polynomialization form if its all nonlinearities
are in polynomial with respect to its state vector and linear with respect to the
control input. ♦
Polynomialization of the nonlinear system (4.3) can be done in two di�erent ways.

The �rst step is to introduce appropriate new variables, followed by either taking the Lie
derivatives of these newly introduced variables or de�ning some algebraic constraints
in terms of new variables. In the following, we summarize the important steps in order
to polynomialize a nonlinear system:

1. Introduce some appropriate new variables.

2. Replace the nonlinear terms by using new variables, thus resulting in a polyno-
mialized nonlinear system.

3. Derive di�erential equations or de�ne algebraic constraints.

Example 4.1:
To illustrate this process, we consider a nonlinear ODE as follows:

ẋ1(t) = −x1(t) + x3
2(t) + e−x2(t), (4.4a)

ẋ2(t) = −x1 + u(t). (4.4b)

The system (4.4) has cubic and exponential nonlinearities. To polynomialize it, we
�rst introduce a new variable:

z1(t) := e−x2(t).

Now, if we substitute the variable z1(t) in (4.4a), then we obtain

ẋ1(t) = −x1(t) + x3
2(t) + z1(t), (4.5a)

ẋ2(t) = −x1 + u(t). (4.5b)

Next, we derive the di�erential equation for the variable z1(t), which is:

ż1(t) = −e−x2(t)ẋ2(t) = z1(t)x1(t)− z1(t)u(t).

This illustrates how a nonlinear system can be polynomialized. ♦



Chapter 4. Balancing-Based MOR for QB Control Systems 60

The next step is to rewrite a polynomialized nonlinear system into the quadratic-
bilinear form. Once we polynomialize nonlinear systems, we introduce higher-order
terms as new variables and derive the corresponding di�erential equations. For illus-
tration purpose, we again consider the same Example 4.1. After polynomialization of
(4.4), we obtain the following set of ODEs:

ẋ1(t) = −x1(t) + x3
2(t) + z1(t), (4.6a)

ẋ2(t) = −x1(t) + u(t), (4.6b)

ż1(t) = z1(t)x1(t)− z1(t)u(t). (4.6c)

Since Eq. (4.6a) has a cubic order term, we introduce a new variable as z2(t) := x2
2(t)

and derive the corresponding di�erential equation:

ż2(t) = 2x2(t)ẋ2(t) = −2x2(t)x1(t) + 2x2(t)u(t). (4.7)

Thus, the cubic term x3
2(t) in (4.6a) can be replaced by x2(t)z2(t). Hence, we have

completely transformed the nonlinear system (4.4) into a quadratic-bilinear system by
introducing new variables and by deriving their derivatives. However, there are two ma-
jor disadvantages of the quadratic-bilinearization. Firstly, the quadratic-bilinearization
of a nonlinear system destroys the structure of the original nonlinearities; however, this
transformation is exact, i.e., it requires no approximation and does not introduce any
error. Secondly, the dimension of the resulting QB system becomes higher than the
original nonlinear system, whereas our aim is to reduce the state dimensions, but it
eases the model reduction process.
Note that the transformation of a nonlinear system to the QB form is not unique,

and the minimal, or an optimal transformation of a nonlinear system is yet an open
problem. Furthermore, we brie�y like to mention that the similar ideas have been in
the literature for a long time, and it is known as McCormick-Relaxation, see [99]; but,
this idea was used in the model reduction framework for the �rst time in [78].

4.2.2. Symmetrization of the Hessian
Having collected basic properties of tensor algebra in Section 2.4, we here discuss a
connection between the Hessian H of QB systems (4.1) and tensor matricization. Since
H lies in Rn×n2

, one can interpret it as an unfolding of a tensor Hn×n×n. Without loss
of generality, we, in this thesis, assume the Hessian H to be the mode-1 matricization
of H, i.e., H = H(1). Recall from Section 2.4 that a symmetric tensor H satis�es the
following for given vectors v ∈ Rn and w ∈ Rn:

H(v ⊗ w) = H(1) (v ⊗ w) = H(1) (w ⊗ v) = H(w ⊗ v). (4.8)

Moreover, if the tensorH is a symmetric one, thenH(1) or the HessianH has a symmet-
ric structure. However, the Hessian H of a QB system, obtained via semi-discretization
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Algorithm 4.1: Symmetrize the Hessian.

Input: The Hessian H.
Output: The symmetric Hessian H̃.

1 Determine the tensor H such that its mode-1 matricization is H.
2 Compute mode-2 and mode-3 matricization of H, denoting respectively by H(2)

and H(3).

3 Determine another tensor H̃ such that its mode-2 matricization H̃(2) is given by

H̃(2) = 1
2

(
H(2) + H(3)

)
.

4 Then, the symmetric Hessian H̃ = H̃(1).

of the governing equation or after the quadratic-bilinearization of a nonlinear system,
might not have a symmetric structure. But as shown in [25, 39], the Hessian H of a QB
system can be modi�ed in such a way that it has a symmetric structure, without any
change in the dynamics of the systems, i.e., H(x(t)⊗ x(t)) = H̃(x(t)⊗ x(t)), where H̃
has a symmetric structure. In Algorithm 4.1, we summarize the steps to ensure the
symmetric structure of the Hessian, without changing the system dynamics.

Example 4.2 ([39]):
To illustrate this process, we consider a two-dimensional purely quadratic system as
follows:

ẋ(t) = H(x(t)⊗ x(t)),

where

x(t) =

[
x1(t)
x2(t)

]
, H =

[
a b c d
e f g h

]
. (4.9)

Clearly, the Hessian H does not have the symmetric structure, i.e., H(v ⊗ w) 6=
H(w ⊗ v) for given arbitrary vectors v and w. However, the Hessian H in (4.9) can

be changed to a matrix H̃ such that H(x(t) ⊗ x(t)) = H̃(x(t) ⊗ x(t)) but H̃ has a

symmetric structure. To construct such H̃, we follow the steps from Algorithm 4.1:

Step 1. We determine a tensor H ∈ R2×2×2, whose the �rst and second layers, respec-
tively, are:

H(:, :, 1) =

[
a b
e f

]
, H(:, :, 2)

[
c d
g h

]
,

ensuring H(1) = H.

Step 2. Determine mode-2 and mode-3 matricizations of H:

H(2) =

[
a e c g
b f d h

]
, H(3) =

[
a e b f
c g d h

]
. (4.10)
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Step 3. Compute H̃(2) =
1

2

(
H(2) + H(3)

)
:

H̃(2) =

[
a e 1

2
(b+ c) 1

2
(f + g)

1
2
(b+ c) 1

2
(f + g) d h

]
. (4.11)

Step 4. Then, the symmetric Hessian H̃ =: H̃(1) is given by

H̃ =

[
a 1

2
(b+ c) 1

2
(b+ c) d

e 1
2
(f + g) 1

2
(f + g) h

]
. (4.12)

Using simple algebra, it can be veri�ed that H̃(x(t)⊗ x(t)) = H(x(t)⊗ x(t)). More-

over, H̃(v ⊗ w) = H̃(w ⊗ v) for all vectors v and w. This process of symmetrizing
the Hessian can be e�ciently applied to large state-space, sparse dynamical systems.
We also mention that when a tensor is symmetric, then its mode-2 and mode-3 ma-
tricizations coincide, i.e., H(2) = H(3), and it also allows us to established many
important relations among tensors and matrices as noted in Section 2.4. Thus, in
this thesis, without loss of generality, we assume that the Hessian of a QB system
has a symmetric structure. ♦

Before we move on deriving algebraic Gramains for QB systems, we point out that the
quadratic-bilinear control systems (4.1) is somehow a little di�erent than the problem
considered in [78], where the following quadratic-type system has been considered:

ẋ(t) = Ax(t) +H (x(t)⊗ x(t)) +
m∑

k=1

Nkx(t)uk(t) +
m∑

k=1

Lk(x(t)⊗ x(t))uk(t) +Bu(t),

y(t) = Cx(t), x(0) = 0.
(4.13)

where Lk ∈ Rn×n2
and the dimensions of all other matrices are the same as in (4.1). The

quadratic-type system (4.13) contains extra terms which is coupling between quadratic
term and inputs. However, in this thesis, we focus on the quadratic-bilinear systems of
the form as in (4.1), which can be interpreted as a combination of a purely quadratic
system and a purely bilinear system.

4.3. Algebraic Gramians for Quadratic-Bilinear
systems and Model Order Reduction

The main purpose of this section is to determine algebraic Gramians for QB systems
and study their usage in the model order reduction context. Let us consider QB systems



63 4.3. Algebraic Gramians for QB Systems and Model Reduction

of the form

ẋ(t) = Ax(t) +H(x(t)⊗ x(t)) +
m∑

k=1

Nkx(t)uk(t) +Bu(t), (4.14a)

y(t) = Cx(t), x(0) = 0, (4.14b)

where A,Nk ∈ Rn×n, H ∈ Rn×n2
, B ∈ Rn×m and C ∈ Rp×n. Furthermore, x(t) ∈ Rn,

u(t) ∈ Rm and y(t) ∈ Rp denote the state, input and output vectors of the system,
respectively. We begin by deriving the reachability Gramian of the QB system and its
connection with a certain type of quadratic Lyapunov equation.

4.3.1. Reachability Gramian for QB system
In order to derive the reachability Gramian, we �rst formulate the Volterra series for
the QB system (4.14). Before we proceed further, for ease we de�ne the following
short-hand notation:

u(k)
σ1,...,σl

(t) := uk(t− σ1 · · · − σl) and xσ1,...,σl(t) := x(t− σ1 · · · − σl).

We integrate both sides of the di�erential equation (4.14a) in the state variables with
respect to time to obtain

x(t) =

∫ t

0

eAσ1Buσ1(t)dσ1 +
m∑

k=1

∫ t

0

eAσ1Nkxσ1(t)u
(k)
σ1

(t)dσ1

+

∫ t

0

eAσ1H (xσ1(t)⊗ xσ1(t)) dσ1.

(4.15)

Based on the above equation, we obtain an expression for xσ1(t) as follows:

xσ1(t) =

∫ t−σ1

0

eAσ2Buσ1,σ2(t)dσ2 +
m∑

k=1

∫ t−σ1

0

eAσ2Nkxσ1,σ2(t)u
(k)
σ1,σ2

(t)dσ2

+

∫ t−σ1

0

eAσ2H (xσ1,σ2(t)⊗ xσ1,σ2(t)) dσ2

and substitute it in (4.15) to have

x(t) =

t∫

0

eAσ1Buσ1(t)dσ1 +
m∑

k=1

t∫

0

t−σ1∫

0

eAσ1Nke
Aσ2Bu(k)

σ1
(t)uσ1,σ2(t)dσ1dσ2

+

t∫

0

t−σ1∫

0

t−σ1∫

0

eAσ1H(eAσ2B ⊗ eAσ3B) (uσ1,σ2(t)⊗ uσ1,σ3(t)) dσ1dσ2dσ3 + · · · .
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Repeating this process by repeatedly substituting for the state yields the Volterra series
for the QB system. Having carefully analyzed the kernels of the Volterra series for the
system, we de�ne the reachability mapping P̄ as follows:

P̄ = [P̄1, P̄2, P̄3, . . . ], (4.16)

where the P̄i's are:

P̄1(t1) = eAt1B, (4.17a)

P̄2(t1, t2) = eAt2
[
N1, . . . , Nm

] (
Im ⊗ P̄1(t1)

)
, (4.17b)

...
...

P̄i(t1, . . . , ti) = eAti
[
H
[
P̄1(t1)⊗ P̄i−2(t2, . . . , ti−1), P̄2(t1, t2)⊗ P̄i−3(t3, . . . , ti−1),

. . . , P̄i−2(t1, . . . , ti−2)⊗ P̄1(ti−1)
]
,

[
N1, . . . , Nm

] (
Im ⊗ P̄i−1(t1, . . . , ti−1)

) ]
, ∀ i ≥ 3. (4.17c)

Using the mapping P̄ (4.16), we de�ne the reachability Gramian P as

P =
∞∑

i=1

Pi with Pi =

∞∫

0

· · ·
∞∫

0

P̄i(t1, . . . , ti)P̄
T
i (t1, . . . , ti)dt1 · · · dti. (4.18)

In what follows, we show the equivalence between the above proposed reachability
Gramian and the solution of a certain type of quadratic Lyapunov equation.

Theorem 4.2:
Consider the QB system (4.14) with a stable matrix A. If the reachability Gramian P
of the system de�ned as in (4.18) exists, then the Gramian P satis�es the generalized
quadratic Lyapunov equation, given by

AP + PAT +H(P ⊗ P )HT +
m∑

k=1

NkPN
T
k +BBT = 0. (4.19)

♦

Proof. We begin by considering the �rst term in the summation (4.18). This is,

P1 =

∫ ∞

0

P̄1P̄
T
1 dt1 =

∫ ∞

0

eAt1BBT eA
T t1dt1.

As shown, e.g., in [7], P1 satis�es the following Lyapunov equation (provided A is
stable):

AP1 + P1A
T +BBT = 0. (4.20)
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Next, we consider the second term in the summation (4.18):

P2 =

∫ ∞

0

∫ ∞

0

P̄2P̄
T
2 dt1dt2

=

∞∫

0

∞∫

0

eAt2
[
N1, . . . , Nm

] (
Im ⊗

(
eAt1BBT eA

T t1
)) [

N1, . . . Nm

]T
eA

T t2dt1dt2

=
m∑

k=1

∫ ∞

0

eAt2Nk

(∫ ∞

0

eAt1BBT eA
T t1dt1

)
NT
k e

AT t2dt1dt2

=
m∑

k=1

∫ ∞

0

eAt2NkP1N
T
k e

AT t2dt2.

Again using the integral representation of the solution to Lyapunov equations [7], we
see that P2 is the solution of the following Lyapunov equation:

AP2 + P2A
T +

m∑

k=1

NkP1N
T
k = 0. (4.21)

Finally, we consider the ith term, for i ≥ 3, which is

Pi =

∫ ∞

0

· · ·
∫ ∞

0

P̄iP̄
T
i dt1 · · · dti

=

∞∫

0

eAti


H



∞∫

0

F
(
P̄1(t1)

)
dt1 ⊗

∞∫

0

· · ·
∞∫

0

F
(
P̄i−2(t2, . . . , ti−1)

)
dt2 · · · dti−1

+ · · ·+
∞∫

0

· · ·
∞∫

0

F
(
P̄i−2(t1, . . . , ti−2)

)
dt1 · · · dti−2 ⊗

∞∫

0

F
(
P̄1(ti−1)

)
dti−1


 HT

+
m∑

k=1

Nk

(∫ ∞

0

· · ·
∫ ∞

0

F
(
P̄i−1(t1, . . . , ti−1)

))
NT
k

]
eA

T tidti,

where we use the shorthand F(A) := AAT . Thus, we have

Pi =

∫ ∞

0

eAti
[
H(P1 ⊗ Pi−2 + · · ·+ Pi−2 ⊗ P1)HT +

m∑

k=1

NkPi−1N
T
k

]
eA

T tidti.

Similar to P1 and P2, we can show that Pi satis�es the following Lyapunov equation,
given in terms of the preceding Pk, for k ∈ {1, . . . , i− 1}:

APi + PiA
T +H(P1 ⊗ Pi−2 + · · ·+ Pi−2 ⊗ P1)HT +

m∑

k=1

NkPi−1N
T
k = 0. (4.22)
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To the end, adding (4.20), (4.21) and (4.22) yields

A

∞∑

i=1

Pi +
∞∑

i=1

Pi A
T +H

( ∞∑

i=1

Pi ⊗
∞∑

i=1

Pi

)
HT +

m∑

k=1

Nk

( ∞∑

i=1

Pi

)
NT
k +BBT = 0.

This implies that P =
∑∞

i=1 Pi solves the generalized quadratic Lyapunov equation
given by (4.19).

4.3.2. Dual system and observability Gramian for QB system
We �rst derive the dual system for the QB system; the dual system plays an important
role in determining the observability Gramian for the QB system (4.14). We aim at
determining the observability Gramian in a similar fashion as done for the reachability
Gramian in the preceding subsection. From linear and bilinear systems, we know that
the observability Gramian of the dual system is the same as the reachability Gramian;
here, we also consider the same analogy. If we compare the system (4.14) with the
general nonlinear system as shown in (2.25), it turns out that for the system (4.14)

A(x, u, t) = A+H(x⊗ I) +
m∑

k=1

Nkuk, B(x, u, t) = B and C(x, u, t) = C.

Using Lemma 2.22, we can write down the state-space realization of the nonlinear
Hilbert adjoint operator of the QB system as follows:

ẋ(t) = Ax(t) +H(x(t)⊗ x(t)) +
m∑

k=1

Nkx(t)uk(t) +Bu(t), x(0) = 0, (4.23a)

ż(t) = −AT z(t)− (x(t)T ⊗ I)HT z(t)−
m∑

k=1

NT
k z(t)uk(t)− CTud(t), z(∞) = 0,

(4.23b)

yd(t) = BT z(t), (4.23c)

where z(t) ∈ Rn, ud(t) ∈ R and yd(t) ∈ R can be interpreted as the dual state, dual
input and dual output vectors of the system at time t, respectively. Next, we attempt to
utilize the knowledge for the tensor multiplications and matricization (see Section 2.4)
to simplify the term (x(t)T ⊗ I)HT z(t) in the system (4.23) and to write it in the form
of x(t)⊗ z(t).
Note that the matrix H ∈ Rn×n2

in the system denotes a Hessian, which can be seen
as an unfolding of a 3-dimensional tensor H ∈ Rn×n×n. Here, we choose the tensor
H ∈ Rn×n×n such that its mode-1 matricization is the same as the Hessian H, i.e.,



67 4.3. Algebraic Gramians for QB Systems and Model Reduction

H = H(1). Next, let us consider a tensor T ∈ R1×n×1, whose mode-1 matricization T(1)

is given by
T(1) = z(t)TH(x(t)⊗ I) = z(t)TH(1)(x(t)⊗ I).

We then observe that the mode-1 matricization of the tensor T is a transpose of the

mode-2 matricization, i.e., T(1) =
(
T(2)
)T
, leading to

T(1) =
(
T(2)
)T

= (x(t)⊗ z(t))T (H(2))T .

Therefore, we can rewrite the system (4.23) as:

ẋ(t) = Ax(t) +H(x(t)⊗ x(t)) +
m∑

k=1

Nkx(t)uk(t) +Bu(t), x(0) = 0, (4.24a)

ż(t) = −AT z(t)−H(2) (x(t)⊗ z(t))−
m∑

k=1

NT
k uk(t)z(t)− CTud(t), z(∞) = 0,

(4.24b)

yd(t) = BT z(t). (4.24c)

In the meantime, we like to point out that there are two possibilities to de�ne A(x, u, t)
in the case of the QB system (4.1). One is A(x, u, t) = A + H(x ⊗ I) +

∑m
k=1Nkuk,

which we have used in the above discussion; however, there is another possibility to
de�ne A(x, u, t) as Ã(x, u, t) = A + H(I ⊗ x) +

∑m
k=1Nkuk, leading to a nonlinear

Hilbert adjoint operator whose state-space realization is given by:

ẋ(t) = Ax(t) +H(x(t)⊗ x(t)) +
m∑

k=1

Nkx(t)uk(t) +Bu(t), x(0) = 0, (4.25a)

ż(t) = −AT z(t)−H(3)(x(t)⊗ z(t))−
m∑

k=1

NT
k uk(t)z(t)− CTud(t), z(∞) = 0,

(4.25b)

yd(t) = BT z(t). (4.25c)

It can be noticed that the realizations (4.24) and (4.25) are the same, except the
appearance of H(2) in (4.24) instead of H(3) in (4.25). Nonetheless, if one assumes that
the Hessian H is symmetric, i.e., H(u⊗ v) = H(v ⊗ u) for u, v ∈ Rn, then the mode-2
and mode-3 matricizations coincide, i.e., H(2) = H(3). We have discussed in Subsection
4.2.2 that, without loss of generality, we can assume that the Hessian H is symmetric.
Now, we turn our attention towards determining the observability Gramian for the

QB system by utilizing the state-space realization of the Hilbert adjoint operator (dual
system). For this, we follow the same steps as used for determining the reachability
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Gramian. Using the dual system (4.24), one can write the dual state z(t) of the dual
system at time t as follows:

z(t) =

∫ t

∞
e−A

T (t−σ1)CTud(σ1)dσ1 +
m∑

k=1

∫ t

∞
e−A

T (t−σ1)NT
k z(σ1)uk(σ1)dσ1,

+

∫ t

∞
e−A

T (t−σ1)H(2) (x(σ1)⊗ z(σ1)) dσ1,

which after an appropriate change of variable leads to

z(t) =

∫ 0

∞
eA

T σ1CTu(d)(t+ σ1)dσ1 +
m∑

k=1

∫ 0

∞
eA

T σ1NT
k z(t+ σ1)uk(t+ σ1)dσ1

+

∫ 0

∞
eA

T σ1H(2)
(
x(t+ σ1)⊗ z(t+ σ1)

)
dσ1.

(4.26)

Eq. (4.25a) gives the expression for x(t+ σ1). This is

x(t+ σ1) =

∫ t+σ1

0

eAσ2Bu(t+ σ1 − σ2)dσ2 +
m∑

k=1

∫ t+σ1

0

(
eAσ2Nkx(t+ σ1 − σ2)

× uk(t+ σ1 − σ2)
)
dσ2 +

t+σ1∫

0

eAσ2H(x(t+ σ1 − σ2)⊗ x(t+ σ1 − σ2))dσ2.

We substitute for x(t+ σ1) using the above equation, and z(t+ σ1) using (4.26), which
gives rise to the following expression:

z(t) =

∫ 0

∞
eA

T σ1CTud(t+ σ1)dσ1 +
m∑

k=1

∫ 0

∞

∫ 0

∞
eA

T σ1NT
k

× eAT σ2CTud(t+ σ1 + σ2)uk(t+ σ1)dσ1dσ2 +

∫ 0

∞

∫ t+σ1

0

∫ 0

∞
eA

T σ1

×H(2)
(
eAσ2B ⊗ eAT σ3CT

)
u(t+ σ1 − σ2)ud(t+ σ1 + σ3)dσ1dσ2dσ3 + · · · .

(4.27)
By repeatedly substituting for the state x and the dual state z, we derive the Volterra
series for the dual system, although the notation becomes much more complicated.
Carefully inspecting the kernels of the Volterra series of the dual system, we de�ne the
observability mapping Q̄, similar to the reachability mapping, as follows:

Q̄ = [Q̄1, Q̄2, Q̄3, . . .], (4.28)
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in which

Q̄1(t1) = eA
T t1CT ,

Q̄2(t1, t2) = eA
T t2
[
NT

1 , . . . , N
T
m

] (
Im ⊗ Q̄1(t1)

)
,

...
...

Q̄i(t1, . . . , ti) = eA
T ti
[
H(2)

[
P̄1(t1)⊗ Q̄i−2(t2, . . . , ti−1), . . . , P̄i−2(t1, . . . , ti−2)⊗ Q̄1(ti−1)

]
,

[
NT

1 , . . . , N
T
m

] (
Im ⊗ Q̄i−1(t1, . . . , ti−1)

) ]
, ∀ i ≥ 3.

where P̄i(t1, . . . , ti) are de�ned in (4.17). Based on the above observability mapping,
we de�ne the observability Gramian Q of the QB system as

Q =
∞∑

i=1

Qi with Qi =

∫ ∞

0

· · ·
∫ ∞

0

Q̄iQ̄
T
i dt1 · · · dti. (4.29)

Analogous to the reachability Gramian, we next show a relation between the observ-
ability Gramian and the solution of a generalized quadratic Lyapunov equation.

Theorem 4.3:
Consider the QB system (4.14) with a stable matrix A, and let Q, de�ned in (4.29),
be the observability Gramian of the system and assume it exists. Then, the Gramian
Q satis�es the following Lyapunov equation:

ATQ+QA+ H(2)(P ⊗Q)(H(2))T +
m∑

k=1

NT
k QNk + CTC = 0, (4.30)

where P is the reachability Gramian of the system, i.e., the solution of the generalized
quadratic Lyapunov equation (4.19). ♦

Proof. The proof of the above theorem is analogous to the proof of Theorem 4.2;
therefore, for the brevity, we skip it.

Remark 4.4:
As one would expect, the Gramians for QB systems reduce to the Gramians for
bilinear systems (see, e.g., [26] or Chapter 3 of this thesis ) if the quadratic term is
zero, i.e., H = 0. ♦

Furthermore, it will also be interesting to look at a truncated versions of the Gramians
of the QB system based on the leading kernels of the Volterra series. We call a truncated
version of the Gramians truncated Gramians of QB systems. For this, let us consider
approximate reachability and observability mappings as follows:

P̃T =
[
P̃1, P̃2, P̃3

]
, Q̃T =

[
Q̃1, Q̃2, Q̃3

]
,
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where

P̃1(t1) = eAt1B, Q̃1(t1) = eA
T t1CT ,

P̃2(t1, t2) = eAt2
[
N1, . . . , Nm

] (
Im ⊗ P̃1(t1)

)
,

Q̃2(t1, t2) = eA
T t2
[
NT

1 , . . . , N
T
m

] (
Im ⊗ Q̃1(t1)

)
,

P̃3(t1, t2, t3) = eAt3H(P̃1(t1)⊗ P̃1(t2)), Q̃3(t1, t2, t3) = eA
T t3H(2)(P̃1(t1)⊗ Q̃1(t2)).

Then, one can de�ne the truncated reachability and observability Gramians in a similar
fashion as the Gramians of the system:

PT =
3∑

i=1

P̂i, where P̂i =

∫ ∞

0

P̃i(t1, . . . , ti)P̃
T
i (t1, . . . , ti)dt1 · · · dti, (4.31a)

QT =
3∑

i=1

Q̂i, where Q̂i =

∫ ∞

0

Q̃i(t1, . . . , ti)Q̃
T
i (t1, . . . , ti)dt1 · · · dti, (4.31b)

respectively. Similar to the Gramians P and Q, in the following we derive the relation
between these truncated Gramians and the solutions of the Lyapunov equations.

Corollary 4.5:
Let PT and QT be the truncated Gramians of the QB system as de�ned in (4.31),
and assume that the matrix A in the QB system (4.1) is stable. Then, PT and QT

satisfy the following Lyapunov equations:

APT + PTA
T +H(P̂1 ⊗ P̂1)HT +

m∑

k=1

NkP̂1N
T
k +BBT = 0, and (4.32a)

ATQT +QTA+ H(2)(P̂1 ⊗ Q̂1)(H(2))T +
m∑

k=1

NT
k Q̂1Nk + CTC = 0, (4.32b)

respectively, where P1 and Q1 are solutions to the following Lyapunov equations:

AP̂1 + P̂1A
T +BBT = 0, and (4.33)

AT Q̂1 + Q̂1A+ CTC = 0, respectively. (4.34)

♦

Proof. We begin by showing the relation between the truncated reachability Gramian
PT and the solutions of Lyapunov equation. First, note that the �rst two terms of the
reachability Gramian P (4.31a) and the truncated reachability Gramian PT (4.18) are
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the same, i.e., P̂1 = P1 and P̂2 = P2. Hence, P̂1 and P̂2 are the unique solutions of the
following Lyapunov equations for a stable matrix A:

AP̂1 + P̂1A
T +BBT = 0, and (4.35a)

AP̂2 + P̂2A
T +

m∑

k=1

NkP̂1N
T
k = 0. (4.35b)

Now, we consider the third term in the summation (4.31a). This is

P3 =

∫ ∞

0

∫ ∞

0

∫ ∞

0

P̃3(t1, t2, t3)P̃ T
3 (t1, t2, t3)dt1dt2dt3

=

∫ ∞

0

∫ ∞

0

∫ ∞

0

eAt3H(P̃1(t1)P̃ T (t1)⊗ P̃1(t2)P̃ T (t2))HT eA
T t3dt1dt2dt3

=

∫ ∞

0

eAt3H

((∫ ∞

0

P̃1(t1)P̃ T (t1)dt1

)
⊗
(∫ ∞

0

P̃1(t2)P̃ T (t2)dt2

))
HT eA

T t3dt3

=

∫ ∞

0

eAt3H
(
P̂1 ⊗ P̂1

)
HT eA

T t3dt3.

Furthermore, we use the relation between the above integral representation and the
solution of Lyapunov equation to show that P̂3 solves:

AP̂3 + P̂3A
T +H(P̂1 ⊗ P̂1)HT = 0. (4.36)

Summing (4.35a), (4.35b) and (4.36) yields

APT + PTA
T +H(P̂1 ⊗ P̂1) +

m∑

k=1

NkP̂1Nk +BBT = 0. (4.37)

Analogously, we can show that QT solves (4.32b). This concludes the proof.

We will investigate the advantages of these truncated Gramians in the model reduc-
tion framework in the later part of this chapter in detail. Since our primary aim of
introducing the Gramians and its truncated version is to use them in the balancing-
type model reduction framework, it is important to investigate connections between
the proposed Gramians and energy functionals, namely, controllability and observabil-
ity energy functionals. Also, we show how the de�niteness of the Gramians are related
to reachability and observability of the QB systems. We start by establishing the condi-
tions under which the Gramians approximate the energy functionals of the QB system,
in certain quadratic forms.
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4.3.3. Comparison of energy functionals with Gramians
By using Theorem 2.20, we obtain the following nonlinear partial di�erential equation,
whose solution gives the controllability energy functional for the QB system:

∂Ec
∂x

(Ax+H(x⊗ x)) + (Ax+H(x⊗ x))T
∂Ec
∂x

T

+
∂Ec
∂x

([
N1, . . . , Nm

]
(Im ⊗ x) +B

) ([
N1, . . . , Nm

]
(Im ⊗ x) +B

)T ∂Ec
∂x

T

= 0,

(4.38)
with Ec(0) = 0. For nonlinear systems, the energy functionals are rather complicated
nonlinear functions. Thus, we aim at providing some bounds between the certain
quadratic form of the proposed Gramians for QB systems and energy functionals. For
the controllability energy functional, we extend the reasoning given in Theorem 3.12
for bilinear systems.

Theorem 4.6:
Consider a controllable QB system (4.14) with a stable matrix A. Let P > 0 be its
reachability Gramian, which exists and is the unique de�nite solution of the quadratic
Lyapunov equation (4.19), and Ec(x) denote the controllability energy functional of
the QB system, solving (4.38). Then, there exists a neighborhood W of 0 such that

Ec(x) ≥ 1

2
xTP−1x, where x ∈ W (0). ♦

Proof. Consider a state x0 and let a control input u = u0 : (−∞, 0] → Rm, which
minimizes the input energy in the de�nition of Eo(x0) and steers the system from 0 to
x0. Now, we consider the time-varying homogeneous nonlinear di�erential equation

φ̇ =

(
A+H(φ⊗ I) +

m∑

k=1

Nkuk(t)

)
φ =: Auφ(t), (4.39)

and its fundamental solution Φu(t, τ). The system (4.39) can thus be interpreted as a
time-varying system. The reachability Gramian of the time-varying control system [120,
128] ẋ = Aux(t) +Bu(t) is given by

Pu =

∫ 0

−∞
Φ(0, τ)BBTΦ(0, τ)Tdτ.

The input u also steers the time-varying system from 0 to x0. Moreover, the minimum
input energy required to steer the time-varying system is equal to xT0 P

#
u x0, where P

#
u

denotes the Moore-Penrose pseudo inverse of Pu. Thus, we have

‖u‖2
L2
≥ 1

2
xT0 P

#
u x0.
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An alternative way to determine Pu can be given by

Pu =

∫ ∞

0

Φ̃(t, 0)TBBT Φ̃(t, 0)dt,

where Φ̃ is the fundamental solution of the following di�erential equation

˙̃
Φ =

(
AT + H(2)(x(−t)⊗ I) +

m∑

k=1

NT
k uk(−t)

)
Φ̃ with Φ(t, t) = I, (4.40)

and x(t) is the solution of

ẋ(t) = Ax(t) +H(x⊗ x) +
m∑

k=1

Nkx(t)uk(t) +Bu(t).

Then, we de�ne η(t), satisfying η(t) = Φ̃(t, 0)x0. Since it is assumed that the QB
system is reachable, the state x0 can be reached by using a �nite input energy, i.e.,
‖u‖L2 <∞. Hence, the input u(t) is a square-integrable function over t ∈ (−∞, 0] and
so is x(t). This implies that lim

t→∞
η(t)→ 0, provided A is stable. Thus, we have

xT0 Px0 = −
∫ ∞

0

d

dt

(
η(t)TPη(t)

)
dt

= −
∫ ∞

0

η(t)T

((
A+H(x(−t)⊗ I) +

m∑

k=1

Nkuk(−t)
)
P

+P

(
AT + H(2)(x(−t)⊗ I) +

m∑

k=1

NT
k uk(−t)

))
η(t)dt

= −
∫ ∞

0

η(t)T

(
AP + PAT +H(P ⊗ P )HT +

m∑

k=1

NkPN
T
k

)
η(t)

+

(
H(P ⊗ P )−H(x(−t)⊗ I)P − PH(2)(x(−t)⊗ I)

+
m∑

k=1

(
NkPNk − PNT

k uk(−t)−NT
k Puk(−t)

)
)
η(t)dt.

Now, we have

−
∫ ∞

0

η(t)T

(
AP + PAT +H(P ⊗ P )HT +

m∑

k=1

NkPN
T
k

)
η(t)

=

∫ ∞

0

η(t)TBBTη(t) = xT0 Pux0.
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Hence, if

∫ ∞

0

η(t)T
(
H(P ⊗ P )HT −H(x(−t)⊗ I)P − PH(2)(x(−t)⊗ I)

+
m∑

k=1

(
NkPNk − PNT

k uk(−t)−NT
k Puk(−t)

))
η(t)dt ≥ 0,

(4.41)

then xT0 Px0 ≥ xT0 Pux0. Further, if x0 lies in the neighborhood of the origin, i.e.,
x0 ∈ W (0), then a small input u is su�cient to steer the system from 0 to x0 and
x(t) ∈ W (0) for t ∈ (−∞, 0], which ensures that the relation (4.41) holds for all
x0 ∈ W (0). Therefore, we have xT0 P

−1x0 ≤ xT0 P
−1
u x0 if x0 ∈ W (0).

Similarly, we next show an upper bound for the observability energy functional for
the QB system in terms of the observability Gramian (in the quadratic form).

Theorem 4.7:
Consider a QB system (4.14) with B ≡ 0 and an initial condition x0, and let Eo be the
observability energy functional. Let P > 0 and Q ≥ 0 be solutions to the generalized
Lyapunov equations (4.19) and (4.30), respectively. Then, for small inputs, there

exists a neighborhood W̃ of the origin such that

Eo(x0) ≤ 1

2
xTQx, where x ∈ W̃ (0). ♦

Proof. Using the observability energy functional de�nition (see De�nition 2.21), we
have

Eo(x0) = max
u∈B(α,β)

x(0)=x0,x(∞)=0

1

2

∫ ∞

0

Ẽo(x0, u)dt, (4.42)

where B(α,β)
def
= {u ∈ Lm2 [0,∞), ‖u‖L2 ≤ α, ‖u‖L∞ ≤ β} and Ẽo(x0, u) := ‖y(t)‖2.

Thus, we have

Ẽo(x0, u) = ‖y(t)‖2 = ‖Cx(t)‖2 = x(t)TCTCx(t).

Substituting for CTC from (4.30), we obtain

Ẽo(x0, u) = −2x(t)TQAx(t)− x(t)TH(2)(P ⊗Q)
(
H(2)

)T
x(t)−

m∑

k=1

x(t)TNT
k QNkx(t).
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Next, we substitute for Ax from (4.14) (with B = 0) to have

Ẽo(x0, u) = −2x(t)TQẋ(t) + 2x(t)TQHx(t)⊗ x(t) + 2
m∑

k=1

x(t)TQNkx(t)uk(t)

− x(t)TH(2) (P ⊗Q)
(
H(2)

)T
x(t)−

m∑

k=1

x(t)TNT
k QNkx(t)

= − d

dt

(
x(t)TQx(t)

)
+ x(t)T

(
QH(I ⊗ x(t)) + (I ⊗ x(t)T )HTQ

+
m∑

k=1

(QNk +NT
k Q)uk(t)−H(2)(P ⊗Q)

(
H(2)

)T −
m∑

k=1

NT
k QNk

)
x(t).

This gives

Eo(x0) = max
u∈B(α,β)

x(0)=x0,x(∞)=0

1

2

∫ ∞

0

Ẽo(x0, u)dt

=
1

2
xT0Qx0 + max

u∈B(α,β)

x(0)=x0,x(∞)=0

1

2

∫ ∞

0

x(t)T

(
RH(x, u) +

m∑

k=1

RNk(x, u)

)
x(t)dt,

where

RH(x, u) := QH(I ⊗ x) + (I ⊗ x)HTQ−H(2)(P ⊗Q)
(
H2
)T
,

RNk(x, u) :=
(
QNkuk +NT

k Quk −NT
k QNk

)
.

First, note that if for a vector v, vTNT
k QNkv = 0, then QNkv = 0. Therefore, there

exist inputs u for which ‖u‖L∞ is small, ensuring RNk(x, u) is a negative semidef-

inite. Similarly, if for a vector w, wTH(2)(P ⊗ Q)
(
H2
)T
w = 0 and P > 0, then

(I ⊗ Q)
(
H2
)T
w = 0. Using tensor-matrix product properties (2.31), it can be shown

that QH(w⊗I) = QH(I⊗w) = 0, when H is a symmetric structure. Now, we consider
an initial condition x0 lies in the small neighborhood of the origin and u ∈ B(α,β), en-
suring that the resulting trajectory x(t) for all time t is such that RH(x, u) is a negative
semide�nite. Finally, we get

Eo(x0)− 1

2
xT0Qx0 ≤ 0,

for x0 lies in the neighborhood of the origin and for the inputs u, which have small
L2-norm as well as L∞ norm. This concludes the proof.
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Until this point, we have proven that in the neighborhood of the origin, the energy
functionals of the QB system can be approximated by the Gramians in the quadratic
form. However, one can also prove similar bounds for the energy functionals using the
truncated Gramians for QB systems (de�ned in Corollary 4.5). We summarize this in
the following corollary.

Corollary 4.8:
Consider the system (4.14), having a stable matrix A, to be locally reachable and
observable. Let Ec(x) and Eo(x) be controllability and observability energy function-
als of the system, respectively, and the truncated Gramians PT > 0 and QT > 0 be
solutions to the Lyapunov equations as shown in Corollary 4.5. Furthermore, assume
that at least one of matrices H or Nk is of full rank. Then,

(i) there exists a neighborhood WT of the origin such that

Ec(x) ≥ 1

2
xTP−1

T x, where x ∈ WT(0).

(ii) Moreover, there also exists a neighborhood W̃T of the origin, where

Eo(x) ≤ 1

2
xTQTx, where x ∈ W̃T(0). ♦

In what follows, we illustrate the above bounds using Gramians and truncated Grami-
ans by considering a scalar dynamical system, where A,H,N,B,C are scalars, and are
denoted by a, h, n, b, c, respectively.

Example 4.3:
Consider a scalar system (a, h, n, b, c), where a < 0 (stability) and nonzero h, b, c.
For simplicity, we take n = 0 so that we can easily obtain analytic expressions for
the controllability and observability energy functionals, denoted by Ec(x) and Eo(x),
respectively. Assume that the system is reachable on R. Then, Ec(x) and Eo(x)
can be determined via solving partial di�erential equations (2.23) and (2.24) (with
g(x) = 0), respectively. These are:

Ec(x) = −
(
ax2 + 2

3
hx3
) 1

b2
, Eo(x) = − c

2

2h

(
x− a

h
log

(
a+ hx

a

))
.

The quadratic approximations of these energy functionals by using the Gramians,
are:

Êc(x) =
x2

2P
with P = −a+

√
a2 − h2b2

h2
,

Êo(x) =
Qx2

2
with Q = − c2

2a+ h2P
,
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(a) Comparison of the controllability energy

functional and its approximations.
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(b) Comparison of the observability energy
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Figure 4.1.: Comparison of exact energy functionals of a QB system with approximated
energy functionals via the Gramians and truncated Gramians.

and the approximations in terms of the truncated Gramians are:

Ê(T)

c (x) =
x2

2PT

with PT = −h
2b4 + 4a2b2

8a3
,

Ê(T)

o (x) =
QTx

2

2
with QT = −h

2b2c2 + 4a2c2

8a3
.

In order to compare these functionals, we set a = −2, b = c = 2 and h = 1 and plot
the resulting energy functionals in Figure 4.1.
Clearly, Figure 4.1 illustrates the lower and upper bounds for the controllability and

observability energy functionals, respectively, at least locally. Moreover, we observe
that the bounds for the energy functionals, given in terms of truncated Gramians
are closer to the actual energy functionals of the system in the small neighborhood
of the origin. ♦
So far, we have shown the bounds for the energy functionals in terms of the Gramians

of the QB system. In order to prove those bounds, it is assumed that P is a positive
de�nite. However, this assumption might not be ful�lled for many QB systems, es-
pecially arising from semi-discretization of PDEs. Therefore, our next objective is to
provide another interpretation of the proposed Gramians, that is, the connection of
Gramians with reachability and observability of the system. For the observability en-
ergy functional, we consider the output y of the following homogeneous QB system:

ẋ(t) = Ax+Hx(t)⊗ x(t) +
m∑

k=1

Nkx(t)uk(t),

y(t) = Cx(t), x(0) = x0,

(4.43)

as considered for bilinear systems in [26, 73]. However, it might also be possible to
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consider an inhomogeneous system by setting the control input u completely zero,
as shown in [114]. We �rst investigate how the proposed Gramians are related to
reachability and observability of the QB systems, analogues to derivation for bilinear
systems in [26].

Theorem 4.9:
(a) Consider the QB system (4.14), and assume the reachability Gramian P to

be the solution of (4.19). If the system is steered from 0 to x0, where x0 6∈
range (P ), then Ec(x0) =∞ for all input functions u.

(b) Furthermore, consider the homogeneous QB system (4.43) and assume P > 0
and Q to be the reachability and observability Gramians of the QB system,
which are solutions of (4.19) and (4.30), respectively. If the initial state satis�es
x0 ∈ ker (Q), then Eo(x0) = 0. ♦

Proof. (a) By assumption, P satis�es

AP + PAT +H(P ⊗ P )HT +
m∑

k=1

NkPN
T
k +BBT = 0. (4.44)

Next, we consider a vector v ∈ ker (P ) and multiply the above equation from the
left and right with vT and v, respectively, to obtain

0 = vTAPv + vTPATv + vTH(P ⊗ P )HTv +
m∑

k=1

vTNkPN
T
k v + vTBBTv

= vTH(P ⊗ P )HTv +
m∑

k=1

vTNkPN
T
k v + vTBBTv.

This implies BTv = 0, PNT
k v = 0 and (P ⊗ P )HTv = 0. From (4.44), we thus

obtain PATv = 0. Now, we consider an arbitrary state vector x(t), which is the
solution of (4.14) at time t for any given input function u. If x(t) ∈ range (P ) for
some t, then we have

ẋ(t)Tv = x(t)TATv + (x(t)⊗ x(t))T HTv +
m∑

k=1

uk(t)x(t)TNT
k v + u(t)BTv = 0.

The above relation indicates that ẋ(t) ⊥ v if v ∈ ker (P ) and x(t) ∈ range (P ).
It shows that range (P ) is invariant under the dynamics of the system. Since the
initial condition 0 lies in range (P ), x(t) ∈ range (P ) for all t ≥ 0. This reveals
that if the �nal state x0 6∈ range (P ), then it cannot be reached from 0; hence,
Ec(x0) =∞.
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(b) Following the above discussion, we can show that (I ⊗ Q)
(
H(2)

)T
ker (Q) = 0,

QNk ker (Q) = 0, QA ker (Q) = 0, and C ker (Q) = 0. Let x(t) denote the solution
of the homogeneous system at time t. If x(t) ∈ ker (Q) and a vector ṽ ∈ range (Q),
then we have

ṽT ẋ(t) = ṽAx(t)︸ ︷︷ ︸
=0

+ṽTH(x(t)⊗ x(t))) +
m∑

k=1

ṽTNkx(t)uk(t)︸ ︷︷ ︸
=0

= x(t)TH(2)(x(t)⊗ ṽ) = x(t)TH(2)(I ⊗ ṽ)︸ ︷︷ ︸
=0

x(t) = 0.

This implies that if x(t) ∈ ker (Q), then ẋ(t) ∈ ker (Q). Therefore, if the initial
condition x0 ∈ ker (Q), then x(t) ∈ ker (Q) for all t ≥ 0, resulting in y(t) =
C x(t)︸︷︷︸
∈ker(Q)

= 0; hence, Eo(x0) = 0.

The above theorem suggests that the state components, belonging to ker (P ) or
ker (Q), do not play a major role as far as the system dynamics are concerned. This
shows that the states, which belong to ker (P ), are uncontrollable, and similarly, the
states, lying in ker (Q) are unobservable once the uncontrollable states are removed.
Furthermore, we have shown in Theorems 4.6 and 4.7 the lower and upper bounds
for the controllability and observability energy functions in the quadratic form of the
Gramians P and Q of QB systems (at least in the neighborhood of the origin). This
coincides with the concept of balanced truncation model reduction which aims at elim-
inating weakly controllable and weakly observable state components. Such states are
corresponding to zero or small singular values of P and Q. In order to �nd these states
simultaneously, we utilize the balancing tools similar to the linear case; see, e.g., [6, 7].
For this, one needs to determine the Cholesky factors of the Gramians as P =: STS
and Q =: RTR, and compute the SVD of SRT =: UΣV T , resulting in a transformation

matrix T = STUΣ−
1
2 . Using the matrix T , we obtain an equivalent QB system

˙̃x(t) = Ãx̃(t) + H̃x̃(t)⊗ x̃(t) +
m∑

k=1

Ñkx̃(t)uk(t) + B̃u(t),

y(t) = C̃x̃(t), x̃(0) = 0,

(4.45)

where Ã = T−1AT , H̃ = T−1H(T ⊗ T ), Ñk = T−1NkT , B̃ = T−1B, C̃ = CT . Then,

the above transformed system (4.45) is a balanced system, as the Gramians P̃ and Q̃

of the system (4.45) are equal and diagonal, i.e., P̃ = Q̃ = diag(σ1, σ2, . . . , σn). The
attractiveness of the balanced system is that it allows us to �nd state components
corresponding to small singular values of both P̃ and Q̃. If σn̂ > σn̂+1, for some n̂ ∈ N,
then it is easy to see that states related to {σn̂+1, . . . , σn} are not only hard to control
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but also hard to observe; hence, they can be eliminated. In order to determine a

reduced-order system of order n̂, we partition T =
[
T1 T2

]
and T−1 =

[
ST1 ST2

]T
,

where T1, S
T
1 ∈ Rn×n̂, and de�ne the reduced-order system's realization as follows:

Â = S1AT1, Ĥ = S1H(T1 ⊗ T1), N̂k = S1NkT1, B̂ = S1B, Ĉ = CT1, (4.46)

which is generally a locally good approximate of the original system, though it is not
a straightforward task to estimate the error occurring due to the truncation singular
values unlike in the case of linear systems.
Up to now, we have proposed the Gramians for the QB systems and have showed

their relations to energy functionals of the system which allows us to determine the
reduced-order systems. Next, we discuss computational issues which one might face
while utilizing the proposed Gramians in the MOR framework.

4.3.4. Computational issues
One of the major concerns in applying balanced truncation MOR is that it requires the
solutions of two Lyapunov equations (4.19) and (4.30). These equations are quadratic
in nature, which are not trivial to solve, and they appear to be computationally expen-
sive. So far, it is not clear how to solve these generalized quadratic Lyapunov equation
e�ciently; however, under some assumptions, a �x point iteration scheme can be em-
ployed, which is based on the theory of convergent splitting presented in [52, 116]. This
has been studied for solving generalized Lyapunov equation for bilinear systems in [51],
wherein the proposed stationary method is as follows:

L(Xi) = N(Xi−1)−BBT , i = 1, 2, . . . , (4.47)

with L(X) = AX + XAT and N(Xi) = −∑m
k=1NkXiN

T
k . To perform this stationary

iteration, we require the solution of a conventional Lyapunov equation at each iteration.
Assuming σ(A) ⊂ C− and spectral radius of L−1N < 1, the iteration (4.47) linearly
converges to a positive semide�nite solution X of the generalized Lyapunov equation
for bilinear systems, which is

AX +XAT +
m∑

k=1

NkXN
T
k +BBT = 0.

Later on, the e�ciency of this iterative method was improved in [118] by utilizing tools
for inexact solution of Ax = b. The main idea was to determine a low-rank factor of
N(Xi−1)−BBT by truncating the columns, corresponding to small singular values and
to increase the accuracy of the low-rank solution of the linear Lyapunov equation (4.47)
with each iteration. In total, this results in an e�cient method to determine a low-
rank solution of the generalized Lyapunov equation for bilinear systems with the desired
tolerance. For detailed insights, we refer to [118].
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One can utilize the same tools to determine the solutions of generalized quadratic-
type Lyapunov equations. We begin with the inexact form equation, which on conver-
gence gives the reachability Gramian, this is,

L(Xi) = Π(Xi−1)−BBT , i = 1, 2, . . . (4.48)

where L(X) = AX + XAT and Π(X) = −H(X ⊗ X)HT −∑m
k=1NkXN

T
k . Similar

to the bilinear case, if σ(A) ⊂ C− and the spectral radius of L−1Π < 1, then the
iteration (4.48) converges to a positive semide�nite solution of the generalized quadratic
Lyapunov equation. Next, we determine a low-rank approximation of Π(X) = −H(X⊗
X)HT −∑m

k=1NkXN
T
k . For this, let us assume a low-rank product X := FDF T ,

where F ∈ Rn×k and a QR decomposition of F := QFRF . We then perform an
eigenvalue decomposition of the relatively small matrix RFDR

T
F := UΣUT , where Σ =

diag (σ1, . . . , σk) with σj ≥ σj+1. Assuming there exists a scalar β such that

√
σ2
β+1 + · · ·+ σ2

k ≤ τ
√
σ2

1 + · · ·+ σ2
k,

where τ is a given tolerance, this gives us a low-rank approximation of X as:

X ≈ F̃ D̃F̃ T ,

where F̃ = QF Ũ and D̃ = diag (σ1, . . . , σβ). Following the short-hand notation, we

denote Z̃ = Tτ (Z), which gives the low-rank approximation of ZZT with the tolerance

τ , i.e., ZZT ≈ Z̃Z̃T . Considering a low-rank factor of Xk−1 ≈ Zk−1Z
T
k−1, the right-hand

side of (4.48)

Π(Xk−1)−BBT ≈ −[H(Zk−1 ⊗ Zk−1), [N1, . . . , Nm]Zk−1, B]

× [H(Zk−1 ⊗ Zk−1), [N1, . . . , Nm]Zk−1, B]T

can be replaced with its truncated version Tτ (Π(Xk−1)−BBT ) =: −FkFTk with the de-
sired tolerance. This indicates that we now need to solve the following linear Lyapunov
equation at each step:

AXk +XkA = −FkFTk , (4.49)

which can be solved very e�ciently by using any of the recently developed low-rank
solvers for Lyapunov equations; see, e.g., [36, 121].

Remark 4.10:
At step 7 of Algorithm 4.2, one can check the accuracy of solutions by measuring

the relative changes in the solutions, i.e.,
‖Pk − Pk−1‖
‖Pk‖

and
‖Qk −Qk−1‖
‖Qk‖

. When

these relative changes are smaller than a tolerance level, e.g., the square root of
the machine precision, then one can stop the iterations to have su�ciently accurate
solutions of the quadratic Lyapunov equations. ♦
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Algorithm 4.2: Iterative scheme to determine Gramians for QB systems.

Input: System matrices A,H,N1, . . . , Nm, B, C and tolerance τ .
Output: Low-rank factors of the Gramians: Zk (P ≈ ZkZ

T
k ) and

Xk (Q ≈ XkX
T
k )

1 Solve approximately AM +MAT +BBT = 0 for P1 ≈ Z1Z
T
1 .

2 Solve approximately ATG+GA+ CTC = 0 for Q1 ≈ X1X
T
1 .

3 for k = 2, 3, . . . do
4 Determine low-rank factors:

Bk = Tτ ([H(Zk−1 ⊗ Zk−1), N1Zk−1, . . . , NmZk−1, B]),

Ck = Tτ ([H
(2)(Zk−1 ⊗Xk−1), NT

1 Xk−1, . . . , N
T
mXk−1, C

T ]).
5 Solve approximately AM +MAT + BkBTk = 0 for Pk ≈ ZkZ

T
k .

6 Solve approximately ATG+GA+ CkCT
k = 0 for Qk ≈ XkX

T
k .

7 if solutions are su�ciently accurate then
8 stop

Algorithm 4.3: An e�cient way to perform Kronecker product.

Input: H, Z.
Output: Hz := H(Zi ⊗ Zi)

1 Determine Y ∈ Rnz×n×n such that Y(2) = ZT
i H

(2).

2 Determine K ∈ Rn×nz×nz such that K(3) = ZT
i Y

(3).

3 Then, Hz = K(1).

Remark 4.11:
In Algorithm 4.2, we propose to determine the low-rank solutions of the Lyapunov
equation at each intermediate step with the same tolerance. However, one can also
consider to increase the tolerance adaptively for computing the low-rank solution of
the Lyapunov equation with each iteration which probably can speed up even more,
see [118] for the generalized Lyapunov equations for bilinear systems. ♦

In order to employ Algorithm 4.2, the right-hand side of the conventional Lyapunov
equation (see step 3) requires the computation of H(Zi ⊗ Zi) =: Γ at each step, which
is also computationally and memory-wise expensive. If Zi ∈ Rn×nz , then the direct
multiplication of Zi⊗Zi would have complexity of O(n2 ·n2

z), leading to an unmanage-
able task for large-scale systems, even on modern computer architectures. However, it
is shown in [25] that Γ can be determined e�ciently by making use of the tensor mul-
tiplication properties, which are reported in Section 2.4. In Algorithm 4.3, we provide
the procedure to compute Γ e�ciently. This way, we can avoid determining the full
matrix Zi ⊗ Zi. Analogously, we can also compute the term H(2)(Zi ⊗Xi). Note that
Algorithm 4.3 does not rely on any particular structure of the Hessian H. However,
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a QB system resulting from semi-discretization of PDEs usually leads to a Hessian,
which has a special structure related to that particular PDE and the choice of the
discretization method.
Therefore, we propose another e�cient way to compute H(Zi ⊗ Zi) that utilizes a

particular the sparsity structure of the Hessian, arising from the governing PDEs or
ODEs. Generally, the term H(x⊗ x) in the QB system (4.1) can be written as

H(x⊗ x) =

p∑

j=1

(A(j)x) ◦ (B(j)x),

where ◦ denotes the Hadamard product, and A(j) and B(j) are sparse matrices, depend-
ing on the nonlinear operators in the underlying PDE and the discretization scheme,
and p is generally a very small integer; for example, it is equal to 1 in case of Burgers'
equations. Furthermore, using the ith rows of A(j) and B(j), we can construct the ith
row of the Hessian:

H(i, :) =

p∑

j=1

A(j)(i, :)⊗B(j)(i, :),

where H(i, :), A(j)(i, :) and B(j)(i, :) represent the ith rows of the matrices H, A(j)

and B(j), respectively. This clearly shows that there is a particular Kronecker product
structure of the Hessian H, which can be used in order to determine H(Zi ⊗ Zi).
Example 4.4:
Here, we consider the Chafee-Infante equation, which is discretized over the spatial
domain via a �nite di�erence scheme. The MOR problem for this example will
be considered in Section 4.4.2, where one can also �nd the governing equations and
boundary conditions. For this particular example, the Hessian (after having rewritten
the system into the QB form) is given by

H(i, :) = −1

2
eni ⊗ enk+i −

1

2
enk+i ⊗ eni , i ∈ {1, . . . , k},

H(i, :) = −2(eni ⊗ eni ) + eni−k ⊗
[
X(i−k, :) 0

]
+
[
X(i−k, :) 0

]
⊗ eni−k,

i ∈ {k+1, . . . , n},

where k is the number of grid points, n = 2k, and H(i, :) is the ith row vector of the
matrix H; X(i, :) also denotes the ith row vector of the matrix X ∈ Rk×k de�ned as

X =




0 1

1 0
. . .

. . . . . . 1
1 0


 . (4.50)

♦
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Algorithm 4.4: Chafee-Infante equation: an illustration of computing Kronecker
product, utilizing Hessian structure of PDEs.

Input: Zi ∈ R2k×nz , X ∈ Rk×k (as de�ned in (4.50)).
Output: Hz := H(Zi ⊗ Zi)

1 Compute Zx := XZi(1 : k, :).
2 for i = 1 : k do

3 Hz(i, :) = −1

2
Zi(i, :)⊗ Zi(k + i, :)− 1

2
Z)i(i, :)⊗ Zi(k + i, :),

4 Hz(k + i, :) = −2 (Zi(i, :)⊗ Zi(i, :)) + Zi(i, :)⊗ Zx(i, :) + Zx(i, :)⊗ Z(i, :).

The Kronecker product representation of each row of the matrix H allows us to
compute the rows of Hv := H(V ⊗ V ) by selecting only the required rows of V .
This way, we can determine Hv e�ciently in large-scale, sparse settings, and then
multiply withW T to obtain the desired reduced Hessian. We describe this procedure
i in Algorithm 4.4 that shows how one can determine the reduced Hessian for the
Chafee-Infante example.

Furthermore, computation of a reduced Hessian Ĥ := W TH(V ⊗ V ), where V and
W are the projection matrices, involves the Kronecker products. In this case as well,
one should avoid the explicit computation of V ⊗ V . To determine Ĥ, one can make
use of either Algorithm 4.3 or can exploit the structure of the Hessian as illustrated by
the Chafee-Infante equation. We �rst outline the steps in Algorithm 4.5 which utilizes
the properties of tensor products.
If one makes use of the Kronecker product structure of the Hessian H, then one

�rst needs to determine Hv = H(V ⊗ V ), followed by simply multiplication of W T ,

yielding Ĥ = W THv. In order to show the e�ectiveness of the proposed methodology
that uses the special Kronecker product structure of the Hessian H, we compute Ĥ =
W TH(V ⊗ V ) for di�erent orders of original and reduced-order systems and show
the required CPU-time to compute it in Figure 4.2. The simulations were performed
on a board with 4 Intel® Xeon® E7-8837 CPUs with a 2.67-GHz clock speed using

Algorithm 4.5: Computation of the Hessian of the reduced QB system [25].

Input: H, V ∈ Rn×n̂,W ∈ Rn×n̂.
Output: Ĥ := W TH(V ⊗ V )

1 Determine Y ∈ Rn̂×n×n, such that Y(1) = W TH.

2 Determine Z ∈ Rn̂×n̂×n, such that Z(2) = V TY(2).

3 Determine X ∈ Rn̂×n̂×n̂, such that X(3) = V TZ(3).

4 Then, the reduced Hessian is Ĥ = X(1).
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Utilizing Kronecker product structure Using Algorithm 4.5
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Figure 4.2.: The left �gure shows the computational time for Ĥ := W TH(V ⊗ V ) by
varying the number of grid points in the spatial domain by �xing the order
of the reduced-order system to n̂ = 20. In the right �gure, we show the
computational time for di�erent orders of the reduced-order system using
a �x number of grid points, k = 1000.

MATLAB 8.0.0.783 (R2012b).
Figure 4.2 illustrates that the computational cost for constructing the reduced Hes-

sian by using the proposed method, which exploits the Kronecker product structure
of the Hessian H, grows much slower than the cost in Algorithm 4.5. Therefore, we
conclude here that it is worth exploiting the Kronecker product structure of the Hessian
of the system for an e�cient computation of Ĥ in large-scale settings.
Next, we discuss the existence of the solutions of quadratic type generalized Lyapunov

equations. As noted in Algorithm 4.2, one can determine the solution of these Lyapunov
equations using �xed point iterations. In the following, we discuss su�cient conditions
under which these iterations converge to �nite solutions.

Theorem 4.12:
Consider a QB system as de�ned in (4.14) and let P and Q be its reachability and
observability Gramians, respectively, and assume they exist and solve (4.19) and
(4.30), respectively. Assume that the Gramians P and Q are determined using �xed
point iterations as shown in Algorithm 4.2. Then, the Gramian P converges to a
positive semide�nite solution if

(i) A is stable, i.e., there exist 0 < α ≤ −max(λi(A)) and β > 0 such that
‖eAt‖ ≤ βe−αt.

(ii)
β2ΓN

2α
< 1, where ΓN :=

∑m
k=1 ‖Nk‖2.

(iii) 1 > D2 − β2ΓH
α

β2ΓB
α

> 0, where D := 1 − β2ΓN
2α

, where ΓB := ‖BBT‖,
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ΓH := ‖H‖2.

and ‖P‖ is bounded by

‖P‖ ≤ 2α

β2ΓH

(
D−

√
D2 − 4

β2ΓH
2α

β2ΓB
2α

)
=: P∞. (4.51)

Furthermore, the Gramian Q also converges to a positive semide�nite solution if in
addition to the above conditions (i)�(iii), the following condition satis�es

β2

2α

(
ΓN + Γ̃HP∞

)
< 1,

where Γ̃H := ‖H(2)‖2. Moreover, ‖Q‖ is bounded by

‖Q‖ ≤ β2

2α
ΓC

(
1− β2

2α

(
ΓN + Γ̃HP∞

))−1

,

where ΓC := ‖CTC‖. ♦

Proof. Let us �rst consider the equation corresponding to P1:

AP1 + AP1 +BBT = 0.

Alternatively, if A is stable, we can write P1 in the integral form as

P1 =

∫ ∞

0

eAtBBT eA
T tdt,

implying

‖P1‖ ≤ β2‖BBT‖
∫ ∞

0

e−2αtdt =
β2ΓB

2α
,

where ΓB := ‖BBT‖. Next, we look at the equation corresponding to Pk, ∀k ≥ 2,
which is given in terms of Pk−1:

APk + PkA
T +H(Pk−1 ⊗ Pk−1)HT +

m∑

k=1

NkPk−1Nk +BBT = 0.

We can also write Pk in the integral form, provided A is stable:

Pk =

∫ ∞

0

eAt

(
H(Pk−1 ⊗ Pk−1)HT +

m∑

k=1

NkPk−1Nk +BBT

)
eA

T tdt

≤ β2
(
ΓH‖Pk−1‖2 + ΓN‖Pk−1‖+ ΓB

) ∫ ∞

0

e−2αtdt

≤ β2 (ΓH‖Pk−1‖2 + ΓN‖Pk−1‖+ ΓB)

2α
,
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where ΓH := ‖H‖2 and ΓN :=
∑m

k=1 ‖Nk‖2. If we consider an upper bound for the
norm of Pk−1 in order to provide an upper bound for Pk and apply Lemma A.1, then
we know that limk→∞ ‖Pk‖ is bounded if

1 > D2 − 4
β2ΓH

2α

β2ΓB
2α

> 0, where D := 1− β2ΓN
2α

and
β2ΓN

2α
< 1.

Moreover, a bound for limk→∞ ‖Pk‖ can be given by

lim
k→∞
‖Pk‖ ≤

2α

β2ΓH

(
D−

√
D2 − 4

β2ΓH
2α

β2ΓB
2α

)
=: P∞.

Now, we consider the equation corresponding to Q1:

ATQ1 + ATQ1 + CTC = 0,

which can be rewritten as:

Q1 =

∫ ∞

0

eA
T tCTCeAtdt

if A is stable. This implies

‖Q1‖ ≤ β2ΓC

∫ ∞

0

e−2αtdt = β2 ΓC
2α
,

where Γc := ‖CTC‖. Next, we look at the equation corresponding to Qk, that is,

ATQk +QkA+ H(2)(Pk−1 ⊗Qk−1)
(
H(2)

)T
+

m∑

k=1

NT
k Qk−1Nk + CTC = 0.

This yields

‖Qk‖ ≤
β2

2α

((
ΓN + Γ̃H‖Pk−1‖

)
Qk−1 + ΓC

)
,

where Γ̃H := ‖H(2)‖. Since ‖Pk−1‖ ≤ P∞ for all k ≥ 1, we further have

‖Qk‖ ≤
β2

2α

((
ΓN + Γ̃HP∞

)
‖Qk−1‖+ ΓC

)
.

A su�cient condition under which the above recurrence formula in ‖Qk‖ converges is:
β2

2α

(
ΓN + Γ̃HP∞

)
< 1,

and limk→∞ ‖Qk‖ is then bounded by

lim
k→∞
‖Qk‖ ≤

β2

2α
ΓC

(
1− β2

2α

(
ΓN + Γ̃HP∞

))−1

.

This concludes the proof.
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Algorithm 4.6: Balanced truncation for QB systems (truncated version).

Input: System matrices A,H,Nk, B, C, and n̂.
Output: The reduced-order system's matrices Â, Ĥ, N̂k, B̂, Ĉ.

1 Determine low-rank approximations of the truncated Gramians PT ≈ RRT and
QT ≈ SST .

2 Compute SVD of STR:

STR = UΣV =
[
U1 U2

]
diag (Σ1,Σ2)

[
V1 V2

]T
,

where Σ1 contains the n̂ largest singular values of STR.
3 Construct the projection matrices V and W:

V = SU1Σ
−1

2
1 and W = RV1Σ

−1
2

1 .
4 Determine the reduced-order system's realization:

Â = WTAV, Ĥ = WTH(V⊗ V), N̂k = WTNkV, B̂ = WTB, Ĉ = CV.

4.3.5. Advantages of truncated Gramians in the model reduction
context

As noted in Section 4.3.3, the quadratic forms of both actual Gramians and its truncated
versions (truncated Gramians) impose bounds for the energy functionals of QB systems,
at least in the neighborhood of the origin, and we also provide the interpretation of
reachability and observability of the system in terms of Gramians. We have seen in the
previous subsection that determining Gramians P and Q is very challenging task for
large-scale settings. Moreover, the convergence of Algorithm 4.2 highly depends on the
spectral radius condition L−1Π, which should be less than 1. This condition might not
be satis�ed for large H and Nk; thus, Algorithm 4.2 may not convergence. On the other
hand, in order to compute the truncated Gramians, there is no such convergence issue.
Furthermore, it can also be observed that the bounds for energy functionals using the
truncated Gramains can be much better (in the neighborhood of the origin), see, for
example Figure 4.1.
This motivates us to use the truncated Gramians to determine the reduced-order

models, and we present the square-root balanced truncation for QB systems based on
these truncated Gramians in Algorithm 4.6. Furthermore, we will see in Section 4.4
as well that these truncated Gramians also yield very good qualitative reduced-order
systems for QB systems.

4.3.6. Stability of the reduced-order systems
We now discuss the stability of the reduced-order systems, obtained by using Algo-
rithm 4.6. For this, we consider only the autonomous part of the QB system as follows:
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ẋ(t) = Ax(t) +H(x(t)⊗ x(t)), (4.52)

where xeq = 0 is a stable equilibrium. In the following, we discuss the Lyapunov
stability of xeq. For this, we �rst note the de�nition of the latter stability.

Proposition 4.13:
Consider a QB system with u ≡ 0 (4.52). If there exists a Lyapunov function
F : Rn → R such that

F(x) > 0 and
d

dt
F(x) < 0, ∀x ∈ B0,r\{0},

where B0,r is a ball of radius r centered around 0, then xeq = 0 is a locally asymp-
totically stable. ♦

However, many other notions of the stability of nonlinear systems are available in the
literature, for instance based on a certain dissipation inequality [38], which might be
di�cult to apply in the large-scale setting. In this thesis, we stick to the notion of the
Lyapunov-based stability for the reduced-order systems.

Theorem 4.14:
Consider the QB system (4.14) with a stable matrix A. Let PT and QT be its trun-
cated reachability and observability Gramians, de�ned in Corollary 4.5, respectively.
If the reduced-order system is determined as shown in Algorithm 4.6, then for a
Lyapunov function F(x̂) = x̂TΣ1x̂, we have

F(x̂) > 0,
d

dt
(F(x̂)) < 0 ∀ x̂ ∈ B0,r\{0},

where r =
σmin(VTGV)

2‖Σ1‖‖Ĥ‖
and G = H(2)(P1⊗Q1)

(
H(2)

)T
+
∑m

k=1N
T
k Q1Nk +CTC with

P1 and Q1 being the solutions of (4.33) and (4.34), respectively. ♦

Proof. First, we establish the relation between V, W, QT and Σ1. For this, we consider

WΣ1 = RV1Σ
1
2
1 = RV1

[
Σ1 0

]T
UTU1Σ

−1
2

1 = RV ΣUTU1Σ
−1

2
1

= RRTSTU1Σ
−1

2
1 = QTV.

Keeping in mind the above relation, we get

ÂTΣ1 + Σ1Â+ VTGV = VTATWΣ1 + Σ1W
TAV + VTGV

= VTATQTV + VTQTAV + VTGV = VT (ATQT +QTA+ G)V = 0.
(4.53)

Since G is a positive semide�nite matrix and V has full column rank, VTGV is also
positive semide�nite. This implies that η(Â) ≤ 0, where η(·) denotes the spectral
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abscissa of a matrix. Coming back to the Lyapunov function F(x̂) = x̂TΣ1x̂, which
is always greater than 0 for all x̂ 6= 0 due to Σ1 being a positive de�nite matrix, we
compute the derivative of the Lyapunov function as

d

dt
F(x̂) = ˙̂x

T
Σ1x̂+ x̂TΣ1

˙̂x

= x̂T ÂTΣ1x̂+ (x̂T ⊗ x̂T )ĤTΣ1x̂+ x̂TΣ1Âx̂+ x̂TΣ1Ĥ(x̂⊗ x̂)

= x̂T (ÂTΣ1 + Σ1Â)x̂+ (x̂T ⊗ x̂T )ĤTΣ1x̂+ x̂TΣ1Ĥ(x̂⊗ x̂).

Substituting ÂTΣ1 + Σ1Â = −VTGV from (4.53) in the above equation yields

d

dt
F(x̂) = −x̂TVTGVx̂+ 2x̂TΣ1Ĥ(x̂⊗ x̂). (4.54)

As

x̂TVTGVx̂ ≥ σmin(VTGV)‖x̂‖2,

implying

− x̂TVTGVx ≤ −σmin(VTGV)‖x̂‖2,

inserting the above inequality in (4.54) leads to

d
dt
F(x̂) ≤ −σmin(VTGV)‖x̂‖2 + 2‖x̂‖3‖Σ1‖‖Ĥ‖.

For locally asymptotic stability of the reduced-order system, we require

d
dt
F(x̂) ≤ −σmin(VTGV)‖x̂‖2 + 2‖x̂‖3‖Σ1‖‖Ĥ‖ < 0,

which gives rise to the following bound on ‖x̂‖:

‖x̂‖ < σmin(VT GV)

2‖Σ1‖‖Ĥ‖
.

This concludes the proof.

4.4. Numerical Experiments
In this section, we consider MOR of several QB control systems and evaluate the e�-
ciency of the proposed balanced truncation (BT) technique (Algorithm 4.6). For this,
we need to solve a number of conventional Lyapunov equations. In our numerical exper-
iments, we determine low-rank factors of these Lyapunov equations by using the ADI
method as proposed in [32]. We compare the proposed methodology with the existing
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Figure 4.3.: Nonlinear RC ladder diagram.

moment-matching techniques for QB systems, namely one-sided moment-matching [78]
and its recent extension to two-sided moment-matching [25]. These moment-matching
methods aim at approximating the underlying generalized transfer functions of the
system. Moreover, we need interpolation points to apply the moment-matching meth-
ods; thus, we choose l linear H2-optimal interpolation points, determined by applying
IRKA [79] to the corresponding linear part. This leads to a reduced QB system of order
n̂ = 2l. All the simulations were done on on a board with 4 Intel® Xeon® E7-8837
CPUs with a 2.67-GHz clock speed using MATLAB 8.0.0.783 (R2012b).

4.4.1. Nonlinear RC ladder
The �rst example, we discuss, is a nonlinear RC ladder as shown in Section 4.4.1. It is
a well-known example and is used as one of the benchmark problems in the community
of nonlinear model reduction; see, e.g., [11, 40, 78, 98, 106]. The ladder consists of

nonlinear resistors g and capacitors C̃. Let vi(t) and u(t) denote the voltage between
the ith node and the ground and the input signal to the independent current source,
respectively. Applying the Kircho�'s law at each node leads to the following set of
equations:

C̃v̇1(t) + g(v1(t)) + g(v1(t)− v2(t)) = u(t), (4.55a)

C̃v̇k(t) + g(vk(t)− vk−1(t)) = g(vk−1(t)− vk(t)), k = 2, . . . , N−1 (4.55b)

C̃v̇N(t) = g(vN−1(t)− vN(t)). (4.55c)

Furthermore, the current-voltage relation of the resistor g is given as g(v) = e40v−v−1,

and for simplicity, we set all capacitors C̃ = 1, leading to a nonlinear control system as

v̇(t) = f(v(t)) +Bu(t),

y(t) = Cv(t),
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σ

Figure 4.4.: RC ladder: decay of the normalized singular values based the truncated
Gramians, and the dotted lines show the normalized singular value for
n̂ = 10 and the order of the reduced-order system corresponding to the
normalized singular value 1e−15.

where

v(t) =




v1(t)
v(t)2
...

vk(t)
...

vN(t)



, f(v(t)) =




−g(v1)− g(v1 − v2)
g(v1 − v2)− g(v2 − v3)

...
g(vk−1 − vk)− g(vk − vk+1)

...
g(vN−1 − vN)



, B = CT =




1
0
...
0


 .

As shown in [78], introducing some appropriate new variables allows us to write the
system dynamics in the QB form. For this example, if one de�nes new state variables
as x1(t) = v1(t) and xi(t) = vi(t) − vi+1(t) and de�ne new state variables z1 = e40v1−1

and zi = e40xi , the system (4.55) can be written in the QB form of dimension 2N . A
more detailed discussion can be found in [78].
We consider 500 capacitors in the ladder, resulting in a QB system of order n = 1000.

For this particular example, the matrix A is a semi-stable matrix, i.e., 0 ⊂ σ(A). As
a result, the truncated Gramians of the system may not exist; therefore, we replace
the matrix A by As := A−0.05In, where In is the identity matrix, to determine these
Gramians. Note that we project the original system with the matrix A to compute a
reduced-order system but the projection matrices are computed using the Gramians
obtained via the shifted matrix As. In Figure 4.4, we show the decay of the singular
values, determined by the truncated Gramians (with the shifted A). We then compute
the reduced-order system of order n̂ = 10 by using balanced truncation. Also, we de-
termine �veH2-optimal linear interpolation points and compute reduced-order systems
of order n̂ = 10 via one-sided and two-sided projection methods.
To compare the quality of these approximations, we simulate these systems for the

input signals u(1)(t) = 5 (sin(2π/10) + 1) and u(2)(t) = 10 (t2 exp(−t/5)). Figure 4.5
presents the transient responses and relative errors of the output for these input signals,
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(a) Comparison of the original and reduced systems for u(1)(t) = 5 (sin(2π/10) + 1).
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Figure 4.5.: RC ladder: comparison of reduced-order systems obtained by BT and
moment-matching methods for two arbitrary control inputs.

which shows that balanced truncation outperforms the one-sided interpolatory method;
on the other hand, we see that balanced truncation is competitive to the two-sided
interpolatory projection for this example for both considered inputs.

4.4.2. One-dimensional Chafee-Infante equation
As a second example, we consider the one-dimensional Chafee-Infante (Allen-Cahn)
equation. This nonlinear system has been widely studied in the literature; see, e.g., [45,
82], and its model reduction related problem was recently considered in [25]. The
governing equation, subject to initial conditions and boundary control, have a cubic
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Figure 4.6.: Chafee-Infante equation: decay of the normalized singular values based the
truncated Gramians, and dotted line shows the normalized singular value
for n̂ = 20 and the order of the reduced-order system corresponding to the
normalized singular value 1e−15.

nonlinearity:

v̇ + v3 = vxx + v, (0, L)× (0, T ), v(0, ·) = u(t), (0, T ), (4.56)

vx(L, ·) = 0, (0, T ), v(x, 0) = 0, (0, L).

Here, we make use of a �nite di�erence scheme and consider k grid points in the spatial
domain, leading to a semi-discretized nonlinear ODE. However, the system (4.56) with
the cubic nonlinearity can be rewritten in the QB form by de�ning new variables wi = v2

i

with derivate ẇi = 2viv̇i. We observe the response at the right boundary at x = L.
We use the number of grid points k = 500, which results in a QB system of dimension
n = 2 · 500 = 1000 and set the length L = 1. In Figure 4.6, we show the decay of the
normalized singular values based on the truncated Gramians of the system.
We determine reduced-order systems of order n̂ = 20 by using balanced truncation,

and one-sided and two-sided interpolatory methods. To compare the quality of these
reduced-order systems, we observe the outputs of the original and reduced-order sys-
tems for two arbitrary control inputs u(t) = 5t exp(−t) and u(t) = 30(sin(πt) + 1) in
Figure 4.7.
Figure 5.2 shows that the reduced-order systems obtained via balanced truncation

and one-sided and two-sided interpolatory projection methods are almost of the same
quality for input u(1). But for the input u(2), the reduced-order system obtained via
the one-sided interpolatory projection method completely fails to capture the dynamics
of the system, while balanced truncation and two-sided interpolatory projection can
reproduce the system dynamics with a slight advantage over the two-sided projection
regarding accuracy.
However, it is worthwhile to mention that as we increase the order of the reduced-

order system, the two-sided interpolatory projection method tends to produce unstable
reduced-order systems. On the other hand, the accuracies of the reduced-order systems
obtained by balanced truncation and one-sided moment-matching increase with the
order of the reduced-order systems.
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(a) Comparison of the original and the reduced-order systems for u(1)(t) = 5 t exp(−t) .
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(b) Comparison of the original and the reduced-order systems for u(2)(t) = 30 (sin(πt) + 1).

Figure 4.7.: Chafee-Infante equation: comparison of the reduced-order systems ob-
tained via balanced truncation and moment-matching methods for the in-
puts u(1)(t) = 5 (t exp(−t)) and u(2)(t) = 30 (sin(πt) + 1).

4.4.3. The FitzHugh-Nagumo (F-N) system
Lastly, we consider the F-N system, a simpli�ed neuron model of the Hodgkin-Huxley
model, describing activation and deactivation dynamics of a spiking neuron. This model
has been considered in the framework of POD-based [47] and moment-matching model
reduction techniques [23]. The dynamics of the system are governed by the following
nonlinear coupled di�erential equations:

εvt(x, t) = ε2vxx(x, t) + f(v(x, t))− w(x, t) + q,

wt(x, t) = hv(x, t)− γw(x, t) + q
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Figure 4.8.: FitzHugh-Nagumo system: decay of the normalized singular values based
the truncated Gramians of the system, and the dotted lines show the nor-
malized singular value for n̂ = 20 and the order of the reduced-order system
corresponding to the normalized singular value 1e−15.

with the nonlinear function f(v(x, t)) = v(v− 0.1)(1− v) and the initial and boundary
conditions:

v(x, 0) = 0, w(x, 0) = 0, x ∈ [0, L]

vx(0, t) = i0(t), vx(1, t) = 0, t ≥ 0,

where ε = 0.015, h = 0.5, γ = 2, q = 0.05. We set the length L = 0.2. The stimulus
i0 acts as an actuator, taking the values i0(t) = 5 · 104t3 exp(−15t), and the variables v
and w denote the voltage and recovery voltage, respectively. We also assume the same
outputs of interest as considered in [23], which are v(0, t) and w(0, t). These outputs
describe nothing but the limit cyclic at the left boundary. Using a �nite di�erence
discretization scheme, one can obtain a system with two inputs and two outputs of
dimension 2k with cubic nonlinearities, where k is the number of degrees of freedom.
Similar to the previous example, the F-H system can also be transformed into a QB
system of dimension n = 3k by introducing a new state variable zi = v2

i . We set
k = 500, resulting in a QB system of order n = 1500. Figure 4.8 shows the decay of
the singular values based on the truncated Gramians for the QB system.
Next, we determine reduced-order systems of order n̂ = 20 by using balanced trun-

cation. In order to apply one-sided moment-matching, we take four linear H2-optimal
points to construct the projection matrix, and then take �rst the most 20 dominant
modes to construct a reduced-order system of order 20. Moreover, theoretically, two-
sided projection method [25] applies only to SISO QB system, and this particular
example is a multi-input multi-output (MIMO) QB system. However, for sake of com-
parison, we blindly apply two-sided projection using block Krylov system as done in the
case of one-sided projection. We observe that the reduced-order systems, obtained via
the moment-matching methods with linear H2-optimal interpolations, both one-sided
and two-sided, fail to capture the dynamics and limit cycles. We made several attempts
to adjust the order of the reduced-order systems; but we were unable to determine a
stable reduced-order system via these methods with linear H2-optimal points which
could replicate the dynamics. Contrary to these methods, the balanced truncation
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Figure 4.9.: FitzHugh-Nagumo system: comparison of the response at the left boundary
and the limit cycle behavior of the original system and the reduced-order
(balanced truncation) system. The reduced-order systems determined by
moment-matching methods were unable to produce these limit cycles.

replicates the dynamics of the system faithfully as can be seen in Figure 4.9a. As the
dynamics of the system produces limit cycles for each spatial variable x, we, therefore,
plot the solutions v and w over the spatial domain x, which is also captured by the
reduced-order system very well.
Note that the reduced-order system reported in [23] was obtained using higher-order

moments in a trial-and-error fashion but cannot be reproduced by an automated algo-
rithm.

4.5. Conclusions and Outlook
In this chapter, we have investigated balanced truncation model reduction for the QB
control systems by extending the ideas for bilinear control systems. We have pro-
posed the Gramians, namely reachability and observability Gramians, for QB systems
based on the kernels of their underlying Volterra series. Additionally, we have also
introduced a truncated version of the Gramians. We have further compared the con-
trollability and observability energy functionals of QB system with certain quadratic
forms of the proposed Gramians for the system and have investigated the connection
between the Gramians and reachability/observability of the QB system. Also, we have
discussed the advantages of the truncated version of Gramians in the MOR frame-
work and studied the Lyapunov stability of the reduced-order systems, obtained via
the square-root balanced truncation. By means of various semi-discretized nonlinear
PDEs, we have demonstrated the e�ciency the proposed balanced methods for QB
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systems and compared it with the existing moment-matching techniques.
As a future work, it would be important to investigate low-rank solvers for quadratic

Lyapunov equations which solve the Gramians, and use them in the model reduction.
Furthermore, it is important to study the error between the original and reduced-order
systems, occurring due to the truncation, which allows us to bound an error in the
outputs of the original and reduced-order systems. In various applications, the transient
response for a limited time is of much interest; therefore, an extension of time-limited
balanced truncation from linear systems, see, e.g., [33] to quadratic-bilinear systems
will be very useful. And an extension to quadratic-bilinear descriptor systems will be
promising, especially due to applications in �ow problems (Navier-Stokes equations).
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5.1. Introduction
In the previous chapter, we have extended balanced truncation model reduction from
linear/bilinear systems to quadratic-bilinear (QB) systems. We have discussed how to
determine the states which are less important for the system dynamics; hence, remov-
ing such states leads to reduced-order systems. However, in order to apply balanced
truncation to QB systems using the truncated Gramians, we require the solutions of
four conventional Lyapunov equations, which could be computationally cumbersome in
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large-scale settings, though there have been many advancements in recent times related
to computing the low-rank solutions of the Lyapunov equations, see, e.g., [36, 121].
Another popular input-independent MOR approach for linear and bilinear systems is

based on computing models that satisfy optimality conditions for the best approxima-
tion in the H2 system norm. Therefore, in this chapter, we study the H2-optimal ap-
proximation problem for QB systems. As noted in the previous chapter, interpolation-
based ideas from linear or bilinear systems have been extended to QB systems, see,
e.g., [13, 25, 76]. However, an important question which still remains is how to choose
these interpolation points, which leads to optimal reduced-order systems in a system
norm. we show how to choose the model reduction bases in a two-sided projection
framework for QB systems so that the reduced-order system approximately minimizes
the cost encoding the approximation error in the H2-norm. The structure of the chap-
ter is as follows. In Section 5.2, we �rst de�ne the H2-norm of the QB system (4.1)
based on the kernels of its Volterra series (input/output mapping), and also derive
an expression for a truncated H2-norm for QB systems. Subsequently, based on the
truncated H2-norm of the error system, we derive �rst-order necessary conditions for
optimal model reduction of QB systems. We then propose an iterative algorithm to
construct reduced models that approximately satisfy the newly derived optimality con-
ditions. In Section 5.3, we illustrate the e�ciency of the proposed method for various
semi-discretized nonlinear PDEs and compare it with existing methods such as balanced
truncation (proposed in the previous chapter) as well as the one-sided and two-sided
interpolatory methods for QB systems [25, 78]. We conclude the paper with a short
summary and potential future directions in Section 5.4.

5.2. H2-Norm for QB Systems and Optimality
Conditions

In this section, we �rst de�ne the H2-norm for the QB systems (4.1) and its truncated
version. Then, based on the truncated H2 measure, we derive �rst-order necessary con-
ditions for optimal model reduction. These optimality conditions will naturally lead
to a numerical algorithm to construct quasi-optimal reduced models for QB systems
that are independent of training data. The proposed model reduction framework ex-
tends the optimal H2 methodology from linear [79] and bilinear systems [21, 59] to QB
nonlinear systems.

5.2.1. H2-norm of QB systems
In order to de�ne H2-norm for QB systems and its truncated version, we �rst require
the input/output representation for QB systems. In other words, we aim at obtaining
the solution of QB systems with the help of Volterra series. We have derived the
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Volterra series for QB systems in Subsection 4.3.1 while deriving reachability Gramians
by aiming at directly writing an expression for the state x(t) in the convolution form.
However, we here utilize another approach to derive the same Volterra series for QB
system by using the variational analysis [111, Section 3.4]. Since the QB system comes
falls under the class of linear-analytic systems, for a scalar α, we can write the solution
x(t) for an input αu(t) as

x(t) =
∞∑

s=1

αsxs(t),

where xs(t) ∈ Rn. Thus, we obtain
( ∞∑

s=1

αsẋs(t)

)
= A(

∞∑

s=1

αsxs(t)) +H

(( ∞∑

s=1

αsxs(t)

)
⊗
( ∞∑

s=1

αsxs(t)

))

+
m∑

k=1

αNk

∞∑

s=1

αsxs(t)uk(t) + αBu(t).

(5.1)

Since the expression (5.1) holds for arbitrary α, the coe�cients of αi, i = {1, 2, . . .} can
be equated in both sides of (5.1), leading to

ẋ1(t) = Ax1(t) +Bu(t),

ẋ2(t) = Ax2(t) +H (x1(t)⊗ x1(t)) +
m∑

k=1

Nkx1uk(t),

ẋs(t) = Axs(t) +
∑

i,j≥1
i+j=s

H (xi(t)⊗ xj(t)) +
m∑

k=1

Nkxs−1(t)u(t), s ≥ 3.

(5.2)

Then, let α = 1 so that x(t) =
∑∞

s=1 xs(t), where xs(t) solves the coupled linear
di�erential equation (5.2). The equation for x1(t) corresponds to a linear system, thus
allowing us to write the expression for x1(t) as a convolution:

x1(t) =

∫ t

0

eAt1Bu(t− t1)dt1. (5.3a)

Using the expression for x1(t), we can obtain an explicit expression for x2(t):

x2(t) =

t∫

0

t−t3∫

0

t−t3∫

0

eAt3H
(
eAt2B ⊗ eAt1B

)
u(t− t2 − t3)⊗ u(t− t1 − t3)dt1dt2dt3

+
m∑

k=1

t∫

0

t−t2∫

0

eAt2Nke
At1Bu(t− t1 − t2)uk(t− t2)dt1dt2.
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Similarly, one can write down explicit expressions for xs(t), s ≥ 3, as well, but the
notation and expression become tedious, and we skip them for brevity. Then, we
can write the output y(t) of the QB system as y(t) =

∑∞
s=1Cxs(t), leading to the

input/output relation of the QB system (4.1)

y(t) =

t∫

0

CeAt1Bu(t− t1)dt1+

t∫

0

t−t3∫

0

t−t3∫

0

eAt3H
(
eAt2B ⊗ eAt1B

)
u(t− t2 − t3)⊗ u(t− t1 − t3)dt1dt2dt3+

t∫

0

t−t2∫

0

eAt2
[
N1, . . . , Nm

] (
Im ⊗ eAt1B

)
(u(t− t2)⊗ u(t− t1 − t2)) dt1dt2 + · · · .

(5.5)
Examining the structure of (5.5) reveals that the kernels fi(t1, . . . , ti) of (5.5) are given
by the recurrence formula

fi(t1, . . . , ti) = Cgi(t1, . . . , ti), (5.6)

where

g1(t1) = eAt1B,

g2(t1, t2) = eAt2
[
N1, . . . , Nm

] (
Im ⊗ eAt1B

)
,

gi(t1, . . . , ti) = eAti [H [g1(t1)⊗ gi−2(t2, . . . , ti−1), . . . , gi−2(t1, . . . , ti−2)⊗ g1(ti−1)] ,[
N1, . . . , Nm

]
(Im ⊗ gi−1)

]
, i ≥ 3.

(5.7)
As shown in [133], the H2-norm of a bilinear system can be de�ned in terms of a series
of kernels, corresponding to its input/output mapping. Inspired by this de�nition, next
we introduce the H2-norm of a QB system based on these kernels.

De�nition 5.1:
Consider the QB system (4.1) with its Volterra kernels, de�ned in (5.6). Then, we
de�ne the H2-norm of the QB system by

‖ΣQB‖H2 :=

√√√√tr

( ∞∑

i=1

∫ ∞

0

· · ·
∫ ∞

0

fi(t1, . . . , ti)fTi (t1, . . . , ti)dt1 . . . dti

)
. (5.8)

♦

Fortunately, we can �nd an alternative way to compute the norm in a numerically
e�cient way using matrix equations. We know from the cases of linear and bilinear
systems that the H2-norms of these systems can be computed in terms of the certain
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system Gramians. We next show that this is also the case for QB systems. The
algebraic Gramians for QB systems were studied in the previous chapter. So, in the
following, we extend such relations between the H2-norm, see De�nition 5.1, and the
systems Gramians to QB systems.

Lemma 5.2:
Consider a QB system with a stable matrix A, and let P and Q, respectively, be
the controllability and observability Gramians of the system, which are the unique
positive semide�nite solutions of the following quadratic-type Lyapunov equations:

AP + PAT +H(P ⊗ P )HT +
m∑

k=1

NkPN
T
k +BBT = 0, and (5.9)

ATQ+QA+ H(2)(P ⊗Q)
(
H(2)

)T
+

m∑

k=1

NT
k QNk + CTC = 0. (5.10)

Assuming the H2-norm of the QB system exists, i.e., the series in (5.8) converges,
then the H2-norm of the QB system can be computed as

‖ΣQB‖H2 :=
√

tr (CPCT ) =
√

tr (BTQB). (5.11)

♦

Proof. We begin with the de�nition of the H2-norm of a QB system, that is,

‖ΣQB‖H2 =

√√√√tr

( ∞∑

i=1

∫ ∞

0

· · ·
∫ ∞

0

fi(t1, . . . , ti)fTi (t1, . . . , ti)dt1 . . . dti

)

=

√√√√tr

(
C

( ∞∑

i=1

∫ ∞

0

· · ·
∫ ∞

0

gi(t1, . . . , ti)gTi (t1, . . . , ti)dt1 . . . dti

)
CT

)
,

where fi(t1, . . . , ti) and gi(t1, . . . , ti) are de�ned in (5.6) and(5.7), respectively. It is
shown in [28] that

( ∞∑

i=1

∫ ∞

0

· · ·
∫ ∞

0

gi(t1, . . . , ti)g
T
i (t1, . . . , ti)dt1 . . . dti

)
= P, (5.12)

where P solves (5.9) if the series in (5.12) converges. Thus,

‖ΣQB‖H2 =
√

tr (CPCT ).

Next, we prove that tr
(
CPCT

)
= tr

(
BTQB

)
, where Q solves (5.10). Making use of

the Kronecker product properties (2.29), we can write tr
(
CPCT

)
as

tr
(
CPCT

)
= ITp (C ⊗ C) vec (P ) .
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Vectorizing both sides of (5.9) yields

(
A⊗ In + In ⊗ A+

m∑

k=1

Nk ⊗Nk

)
vec (P ) + (H ⊗H) vec (P ⊗ P ) + (B ⊗B)Im = 0.

(5.13)
Using Lemma 2.29 in the above equation and performing some simple manipulations
yields an expression for vec (P ) as

vec (P ) = G−1(B ⊗B)Im =: Pv,

where

G = −
(
A⊗ In + In ⊗ A+

m∑

k=1

Nk ⊗Nk + (H ⊗H)T(n,n)(In2 ⊗ vec (P ))

)
.

Thus,

tr
(
CPCT

)
= ITp (C ⊗ C)G−1(B ⊗B)Im = ITm(BT ⊗BT )G−T (CT ⊗ CT )Ip. (5.14)

Now, let Qv = G−T (CT ⊗ CT )ITp . As a result, we obtain

(CT ⊗ CT )ITp = vec
(
CTC

)
= GTQv

= −
(
AT ⊗ In + In ⊗ AT +

m∑

k=1

NT
k ⊗NT

k

)
Qv

+
(
(H ⊗H)T(n,n) (In2 ⊗ Pv)

)T
Qv.

Next, we consider a matrix Q̃ such that vec
(
Q̃
)

= Qv, which further simpli�es the

above equation as

vec
(
CTC

)
= − vec

(
AT Q̃+ Q̃A+

m∑

k=1

NT
k Q̃Nk

)
−
(
(H ⊗H)T(n,n)(In2 ⊗ Pv)

)T
Qv.

(5.15)

Now, we focus on the transpose of the second part of (5.15), that is,

QT
v (H ⊗H)T(n,n) (In2 ⊗ vec (P ))

= QT
v (H ⊗H)T(n,n)

[
en

2

1 ⊗ vec (P ) , . . . , en
2

n2 ⊗ vec (P )
]

= QT
v (H ⊗H)

[
vec (Ψ1 ⊗ P ) , . . . , vec (Ψn2 ⊗ P )

]
=: Ξ, (using Lemma 2.29)
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where Ψi ∈ Rn×n is such that en
2

i = vec (Ψi). Using (2.29) and Lemma 2.28, we further
analyze the above equation:

Ξ = vec
(
Q̃
)T [

vec
(
H (Ψ1 ⊗ P )HT

)
, . . . , vec

(
H (Ψn2 ⊗ P )HT

)]

= vec
(
Q̃
)T [

vec
(
H (P ⊗Ψ1)HT

)
, . . . , vec

(
H (P ⊗Ψn2)HT

)]

=
[

vec (Ψ1)T vec
(
H(2)

(
P ⊗ Q̃

)
(H(2))T

)
, . . . ,

vec (Ψn2)T vec
(
H(2)

(
P ⊗ Q̃

)
(H(2))T

) ]

=
[(
en

2

1

)T
vec
(
H(2)

(
P ⊗ Q̃

)
(H(2))T

)
, . . . ,

(
en

2

n2

)T
vec
(
H(2)

(
P ⊗ Q̃

)
(H(2))T

)]

=
(

vec
(
H(2)

(
P ⊗ Q̃

)
(H(2))T

))T
.

Substituting this relation into (5.15) yields

vec
(
CTC

)
= − vec

(
AT Q̃+ Q̃A+

m∑

k=1

NT
k Q̃Nk + H(2)

(
P ⊗ Q̃

)
(H(2))T

)
,

which shows that Q̃ solves (5.10) as well. Since it is assumed that Eq. Eq. (5.10) has

a unique solution, we get Q̃ = Q. Replacing G−T (CT ⊗CT )ITp by vec (Q) in (5.14) and
using (2.29) results in

tr
(
CPCT

)
= ITm(BT ⊗BT ) vec (Q) = tr

(
BTQB

)
.

This concludes the proof.

It can be seen that if H is zero, the expression (5.11) boils down to the H2-norm of
bilinear systems, and if all Nk are also set to zero then it provides us the H2-norm of
stable linear systems as one would expect.

Remark 5.3:
In Lemma 5.2, we have assumed that the solutions of (5.9) and (5.10) exist, and that
they are unique and positive semide�nite. Equivalently, the series appearing in the
de�nition of the H2-norm is �nite (see De�nition 5.1); hence, the H2-norm exists.
Naturally, the stability of the matrix A is necessary for the existence of Gramians,
and a detailed study of the solutions of (5.9) and (5.10) has been carried out in the
previous chapter. However, as for bilinear systems, these Gramians may not have
the desired properties such as uniqueness and positive semi-de�niteness when ‖Nk‖
and ‖H‖ are large.
Nonetheless, from a MOR point of view, a solution of these problems can be

obtained via rescaling of the system as has been done in the bilinear case [48]. For
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this, we need to rescale the input variable u(t) as well as the state vector x(t). More
precisely, we can replace x(t) and u(t) by x(t) =: γx̃(t) and u(t) =: γũ(t) in (4.1).
This leads to

γ ˙̃x(t) = γAx̃(t) + γ2H (x̃(t)⊗ x̃(t)) + γ2

m∑

k=1

Nkx̃(t)ũk(t) + γBũ(t),

y(t) = γCx̃(t), x̃(0) = 0.

(5.16)

For γ 6= 0, we get a scaled system as follows:

˙̃x(t) = Ax̃(t) + (γH) (x̃(t)⊗ x̃(t)) +
m∑

k=1

(γNk)x̃(t)ũk(t) +Bũ(t),

ỹ(t) = Cx̃(t), x̃(0) = 0,

(5.17)

where ỹ(t) = y(t)/γ. Comparing the systems (4.1) and (5.17) shows that the in-
put/output mappings di�er by the scaling factor γ. Hence, we can use (5.17) as
an auxiliary system during the MOR process; more precisely, to compute the model
reduction basis. However, note that the reduced-order system is constructed by ap-
plying Petrov-Galerkin projection applied to the original, unscaled matrices in (4.1)
. ♦
Our primary aim is to determine a reduced-order system that minimizes the H2-

norm of the error system. From the derived H2-norm expression for the QB system,
it is clear that the true H2-norm has a complicated structure as de�ned in (5.8) and
does not lend itself well to deriving necessary conditions for optimality. Therefore, to
simplify the problem, we focus only on the three leading terms of the series (5.5). The
main reason for considering the �rst three terms is that it is the minimum number of
terms containing contributions from all the system matrices (A,H,Nk, B, C); in other
words, linear, bilinear and quadratic terms are already contained in these �rst three
terms. Our approach is also inspired by [59], where a truncated H2 norm is de�ned for
bilinear systems and used to construct high-�delity reduced-order models minimizing
corresponding error measures. Therefore, based on these three leading terms, we de�ne
a truncated H2-norm for QB systems, denoted by ‖ΣQB‖H(T)

2
. Precisely, the truncated

norm can be de�ned as follows:

‖ΣQB‖H(T)
2

:=

√√√√tr

(
3∑

i=1

∫ ∞

0

· · ·
∫ ∞

0

f̃i(t1, . . . , ti)
(
f̃i(t1, . . . , ti)

)T
dt1 · · · dti

)
, (5.18)

where
f̃i(t1, . . . , ti) = Cg̃i(t1, . . . , ti), i ∈ {1, 2, 3}, (5.19)

and
g̃1(t1) = eAt1B, g̃2(t1, t2) = eAt2

[
N1, . . . , Nm

] (
Im ⊗ eAt1B

)
,

g̃3(t1, t2, t3) = eAt3H(eAt2B ⊗ eAt1B
)
.
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Analogous to the H2-norm of the QB system, a truncated H2-norm of QB systems
can be determined by truncated controllability and observability Gramians associated
with the QB system, denoted by PT and QT, respectively, see Corollary 4.5. If the
matrix A is stable, these truncated Gramians (in the integral form) exist, and are the
unique and positive semide�nite solutions of the following Lyapunov equations

APT + PTA
T +

m∑

k=1

NkPlN
T
k +H(Pl ⊗ Pl)HT +BBT = 0, (5.20a)

ATQT +QTA+
m∑

k=1

NT
k QlNk + H(2)(Pl ⊗Ql)

(
H(2)

)T
+ CTC = 0, (5.20b)

whereH(2) is the mode-2 matricization of the QB Hessian, and Pl and Ql are the unique
solutions of the following Lyapunov equations:

APl + PlA
T +BBT = 0, (5.21a)

ATQl +QlA+ CTC = 0. (5.21b)

In what follows, we show the connection between the truncated H2-norm and the
de�ned truncated Gramians for QB systems.

Lemma 5.4:
Let ΣQB be the QB system (4.1) with a stable A matrix. Then the truncated H2-
norm based on the �rst three terms of the Volterra series is given by

‖ΣQB‖H(T)
2

=
√

tr (CPTCT ) =
√

tr (BTQTB),

where PT and QT are truncated controllability and observability Gramians of the
system, satisfying (5.20). ♦

Proof. First, we note that (5.20) and (5.21) are standard Lyapunov equations. As A is
assumed to be stable, these equations have unique solutions [14]. Next, let Ri be

Ri =

∫ ∞

0

· · ·
∫ ∞

0

f̃i(t1, . . . , ti)
(
f̃i(t1, . . . , ti)

)T
dt1 · · · dti,

where f̃i(t1, . . . , ti) are as de�ned in (5.19). Thus, ‖ΣQB‖2

H
(T)
2

= tr
(
C
(∑3

i=1 Ri

)
CT
)
.

It is shown in Corollary 4.5 that
∑3

i=1 Ri = PT solves the Lyapunov equation (5.20a).
Hence,

‖Σ‖2

H
(T)
2

= tr
(
CPTC

T
)
.

Next, we show that tr
(
CPTC

T
)

= tr
(
BTQTB

)
. For this, we use the trace prop-

erty (2.29b) to obtain:

tr
(
CPTC

T
)

= (Ip)
T (C ⊗ C) vec (PT) and tr

(
BTQTB

)
= (vec (QT))T (B ⊗B)Im.
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Applying vec (·) to both sides of (5.20) results in

vec (PT) = L−1

(
(B ⊗B) Im +

m∑

k=1

(Nk ⊗Nk)L
−1 (B ⊗B) Im

+ vec
(
H (Pl ⊗ Pl)HT

)
)
, and

vec (QT) = L−T
(

(C ⊗ C)T Ip +
m∑

k=1

(Nk ⊗Nk)
TL−T (C ⊗ C)T Ip

+ vec
(
H(2)(Pl ⊗Ql)

(
H(2)

)T)
)
,

where L = −(A⊗ In + In ⊗ A), and Pl and Ql solve (5.21). Thus,

tr
(
BTQTB

)
=

(
(Ip)

T (C ⊗ C) + (Ip)
T (C ⊗ C)L−1

m∑

k=1

(Nk ⊗Nk)

+
(

vec
(
H(2)(Pl ⊗Ql)

(
H(2)

)T))T)
L−1(B ⊗B)Im.

(5.22)

Since Pl and Ql are the unique solutions of (5.21a) and (5.21b), this gives vec (Pl) =
L−1(B ⊗B)Im and vec (Ql) = L−T (C ⊗ C)T Ip. This implies that

(
vec
(
H(2)(Pl ⊗Ql)

(
H(2)

)T))T
vec (Pl)

= vec (Pl)
T vec

(
H(2)(Pl ⊗Ql)

(
H(2)

)T)

= vec (Ql)
T vec

(
H(Pl ⊗ Pl)HT

)
(using Lemma 2.27)

= (Ip)
T (C ⊗ C)L−1 vec

(
H(Pl ⊗ Pl)HT

)
.

Substituting the above relation in (5.22) yields

tr
(
BTQTB

)
= (Ip)

T (C ⊗ C)L−1
(

(B ⊗B)Im +
m∑

k=1

(Nk ⊗Nk)L
−1(B ⊗B)Im

+ vec
(
H(Pl ⊗ Pl)HT

) )

= (Ip)
T (C ⊗ C) vec (PT) = tr

(
CPTC

T
)
.

This concludes the proof.
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Remark 5.5:
One can consider the �rst M terms of the corresponding Volterra series and, based
on these M kernels, another truncated H2-norm can be de�ned. However, this sig-
ni�cantly increases the complexity of the problem. In this paper, we stick to the
truncated H2-norm for the QB system that depends on the �rst three terms of the
input/output mapping. We intend to construct reduced-order systems (4.2) such
that this truncated H2-norm of the error system is minimized. Another motivation
for the derived truncated H2-norm for QB systems is that for bilinear systems, the
authors in [59] showed that the H2-optimal model reduction based on a truncated
H2-norm (with only two terms of the Volterra series of a bilinear system) also mimics
the accuracy of the true H2-optimal approximation very closely. ♦

5.2.2. Optimality conditions based on the truncated H2-norm
We now derive necessary conditions for optimal model reduction based on the truncated
H2-norm of the error system. First, we de�ne the QB error system. For the full QB
model ΣQB in (4.1) and the reduced QB model Σ̂QB in (4.2), we can write the error
system as

[
ẋ(t)
˙̂x(t)

]
=

[
A 0

0 Â

]

︸ ︷︷ ︸
Ae

[
x(t)
x̂(t)

]

︸ ︷︷ ︸
xe(t)

+

[
H (x(t)⊗ x(t))

Ĥ (x̂(t)⊗ x̂(t))

]
+

m∑

k=1

[
Nk 0

0 N̂k

]

︸ ︷︷ ︸
Ne
k

[
x(t)
x̂(t)

]
uk(t)+

[
B

B̂

]

︸︷︷︸
Be

u(t),

ye(t) = y(t)− ŷ(t) =
[
C −Ĉ

]

︸ ︷︷ ︸
Ce

[
xT (t) x̂T (t)

]T
, xe(0) = 0.

(5.23)
It can be seen that the error system (5.23) is not in the conventional QB form due to the
absence of the quadratic term xe(t)⊗xe(t). However, we can rewrite the system (5.23)
into a regular QB form by using an appropriate Hessian of the error system (5.23) as
follows:

Σe :=




ẋe(t) = Aexe(t) +He (xe(t)⊗ xe(t)) +

m∑

k=1

N e
kx

e(t)uk(t) +Beu(t),

ye(t) = Cexe(t), xe(0) = 0,

(5.24)

where He =

[
HF

ĤF̂

]
with F =

[
In 0

]
⊗
[
In 0

]
and F̂ =

[
0 In̂

]
⊗
[
0 In̂

]
. Next, we

consider the truncated H2-norm, as de�ned in Lemma 5.4, for the error system (5.24).
For the existence of this norm for the system (5.24), it is necessary to assume that the

matrix Ae is stable, i.e., the matrices A and Â are stable. Further, we assume that
the matrix Â is diagonalizable. Then, by performing basic algebraic manipulations and
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making use of Lemma 2.29, we obtain the expression for the error functional E based
on the truncated H2-norm of the error system (5.24) as shown next.

Corollary 5.6:
Let ΣQB be the original system, having a stable matrix A, and let Σ̂QB be the

reduced-order system, having a stable and diagonalizable matrix Â. Then,

E2 := ‖Σe‖2

H
(T)
2

= (Ip)
T (Ce ⊗ Ce)(−Ae ⊗ In+n̂ − In+n̂ ⊗ Ae)−1

(
(Be ⊗Be)Im

+
m∑

k=1

(N e
k ⊗N e

k) vec (P e
l ) + vec

(
He(P e

l ⊗ P e
l ) (He)T

))
, (5.25)

where P e
l solves

AeP e
l + P e

l (Ae)T +Be(Be)T = 0.

Furthermore, let Â = R̂Λ̂R̂−1 be the spectral decomposition of Â, and de�ne B̃ =
R̂−1B̂, C̃ = ĈR̂, Ñk = R̂−1N̂kR̂ and H̃ = R̂−1Ĥ(R̂ ⊗ R̂). Then, the error can be
rewritten as

E2 = (Ip)
T
(
C̃e ⊗ C̃e

)(
−Ãe ⊗ In+n̂ − In+n̂ ⊗ Ãe

)−1 ((
B̃e ⊗ B̃e

)
Im

+
m∑

k=1

(
Ñ e
k ⊗ Ñ e

k

)
Pl +

(
H̃e ⊗ H̃e

)
T(n+n̂,n+n̂)(Pl ⊗ Pl)

)
,

(5.26)

where

Ãe =

[
A 0
0 Λ

]
, Ñ e

k =

[
Nk 0

0 Ñk

]
, H̃e =

[
HF

H̃F̂

]
, B̃e =

[
B

B̃

]
, C̃e =

[
CT

−C̃T

]T
,

Pl =

[
P

(1)
l

P
(2)
l

]
=



(
−A⊗ In+n̂ − In ⊗ Ãe

)−1 (
B ⊗ B̃e

)
Im(

−Λ⊗ In+n̂ − In̂ ⊗ Ãe
)−1 (

B̃ ⊗ B̃e
)
Im


 , and (5.27)

T(n+n̂,n+n̂) = In+n̂ ⊗
[
In+n̂ ⊗ en+n̂

1 , . . . , In+n̂ ⊗ en+n̂
n+n̂

]
⊗ In+n̂.

♦
The above spectral decomposition for Â is computationally useful in simplifying the

expressions as we will see later. It reduces the number of optimization variables by
r(r−1) since Λ becomes a diagonal matrix without changing the value of the cost func-
tion (this is a state-space transformation of the reduced model, which does not change
the input-output mapping). Even though it limits the reduced-order systems to those

only having diagonalizable Â, as observed in the linear [79] and bilinear cases [21, 59], it
is extremely rare in practice that the optimal H2 models will have a non-diagonalizable
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Â; therefore, this diagonalizability assumption does not incur any restriction from a
practical perspective.
Our aim is to choose the optimization variables Λ, B̃, C̃, Ñk and H̃ such that the
‖Σ − Σ̂‖

H
(T)
2
, i.e., equivalently the error expression (5.26), is minimized. Before we

proceed further, we introduce a particular permutation matrix

Mpqr =

[
Ip ⊗

[
Iq
0

]
Ip ⊗

[
0
In̂

]]
, (5.28)

which will prove helpful in simplifying the expressions related to the Kronecker product
of block matrices. For example, consider matrices A ∈ Rp×p, B ∈ Rq×q and C ∈ Rn̂×n̂.
Then, the following relation holds:

MT
pqr

(
A⊗

[
B 0
0 C

])
Mpqr =

[
A⊗B 0

0 A⊗ C

]
.

Similar block structures can be found in the error expression E in Corollary 5.6, which
can be simpli�ed analogously. Moreover, due to the presence of many Kronecker prod-
ucts, it will be convenient to derive necessary conditions for optimality in the Kronecker
product formulation itself. Furthermore, these conditions can be easily translated into
a theoretically equivalent framework of Sylvester equations, which are more concise,
are more easily interpretable, and, more importantly, automatically lead to an e�ective
numerical algorithm for model reduction. To this end, let Vi ∈ Rn×n̂ and Wi ∈ Rn×n̂,
i ∈ {1, 2}, be the solutions of the following standard Sylvester equations:

V1(−Λ)− AV1 = BB̃T , (5.29a)

W1(−Λ)− ATW1 = CT C̃, (5.29b)

V2(−Λ)− AV2 =
m∑

k=1

NkV1Ñ
T
k +H(V1 ⊗ V1)H̃T , and, (5.29c)

W2(−Λ)− ATW2 =
m∑

k=1

NT
k W1Ñk + 2 ·H(2)(V1 ⊗W1)(H̃(2))T , (5.29d)

where Λ, Ñk, B̃ and C̃ are as de�ned in Corollary 5.6. Furthermore, we de�ne trial and
test basis matrices V ∈ Rn×n̂ and W ∈ Rn×n̂ as

V = V1 + V2 and W = W1 +W2. (5.30)

We also de�ne V̂ ∈ Rn̂×n̂ and Ŵ ∈ Rn̂×n̂ (which will appear in the optimality conditions
as we see later) as follows:

V̂ = V̂1 + V̂2 and Ŵ = Ŵ1 + Ŵ2, (5.31)
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where V̂i ∈ Rn̂×n̂, Ŵi ∈ Rn̂×n̂, i ∈ {1, 2} are the solutions of the set of equations
in (5.29) but with the original system's state-space matrices being replaced with the

reduced-order system ones; for example, A with Â and B with B̂, etc. Next, we
present �rst order necessary conditions for optimality, which aim at minimizing the error
expression (5.26). The following theorem extends the truncated H2 optimal conditions
from the bilinear case to the much more general quadratic-bilinear nonlinearities.

Theorem 5.7:
Let ΣQB and Σ̂QB be the original and reduced-order systems as de�ned in (4.1)

and (4.2), respectively. Let Λ̂ = R̂−1ÂR̂ be the spectral decomposition of Â, and

de�ne H̃ = R̂−1Ĥ(R̂⊗R̂), Ñk = R̂−1N̂kR̂, C̃ = ĈR, B̃ = R̂−1B̂. If Σ̂QB is a reduced-
order system that minimizes the truncatedH2-norm of the error system (5.24) subject

to Â being diagonalizable, then Σ̂QB satis�es the following conditions:

tr
(
CV en̂i

(
epj
)T)

= tr
(
ĈV̂ en̂i

(
epj
)T)

,

i ∈ {1, . . . , n̂}, j ∈ {1, . . . , p}, (5.32a)

tr
(
BTWen̂i

(
emj
)T)

= tr
(
B̂T Ŵen̂i

(
emj
)T)

,

i ∈ {1, . . . , n̂}, j ∈ {1, . . . ,m}, (5.32b)

(W1(:, i))TNkV1(:, j) = (Ŵ1(:, i))T N̂kV̂1(:, j),

i, j ∈ {1, . . . , n̂}, k ∈ {1, . . . ,m}, (5.32c)

(W1(:, i))TH(V1(:, j)⊗ V1(:, l)) = (Ŵ1(:, i))T Ĥ(V̂1(:, j)⊗ V̂1(:, l)),

i, j, l ∈ {1, . . . , n̂}, (5.32d)

(W1(:, i))TV (:, i) + (W2(:, i))T V1(:, i) = (Ŵ1(:, i))T V̂ (:, i) +
(
Ŵ2(:, i)

)T
V̂1(:, i),

i ∈ {1, . . . , n̂}. (5.32e)

♦

Proof. We start with deriving the optimality conditions by taking the derivative of the
error functional E (5.26) with respect to C̃. By using Lemma B.1, we obtain

∂E2

∂C̃ij
= 2(Ip)

T
([

0 − epi (en̂j )T
]
⊗ C̃e

)(
−Ãe ⊗ In+n̂ − In+n̂ ⊗ Ãe

)−1

((
B̃e ⊗ B̃e

)
Im +

m∑

k=1

(
Ñ e
k ⊗ Ñ e

k

)
Pl +

(
H̃e ⊗ H̃e

)
T(n+n̂,n+n̂)(Pl ⊗ Pl)

)
,
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where Pl is de�ned in (5.27). Simplifying this expression, we get

∂E2

∂C̃ij
= 2(Ip)

T
(
−epi (en̂j )T ⊗ C̃e

)(
−Λ⊗ In+n̂ − In̂ ⊗ Ãe

)−1 ((
B̃ ⊗ B̃e

)
Im

+
m∑

k=1

(
Ñk ⊗ Ñ e

k

)
P

(2)
l +

(
H̃F̂ ⊗ H̃e

)
T(n+n̂,n+n̂)(Pl ⊗ Pl)

)
,

= 2(Ip)
T
(
−epi (en̂j )T ⊗ C̃e

) (
Mn̂nn̂ (−JΛ − JA)MT

n̂nn̂

)−1
((

B̃ ⊗ B̃e
)
Im

+
m∑

k=1

(
Ñk ⊗ Ñ e

k

)
P

(2)
l +

(
H̃F̂ ⊗ H̃e

)
T(n+n̂,n+n̂)(Pl ⊗ Pl)

)
, (5.33)

where

JΛ =

[
Λ⊗ In 0

0 Λ⊗ In̂

]
, JA =

[
In̂ ⊗ A 0

0 In̂ ⊗ Λ

]
, and

P
(2)
l is the lower block row of Pl as shown in (5.27). Furthermore, since Mn̂nn̂ is a

permutation matrix, this implies Mn̂nn̂M
T
n̂nn̂ = I. Using this relation in (5.33), we

obtain

∂E2

∂C̃ij
= 2(Ip)

T
(
−epi (en̂j )T ⊗

[
C −C̃

])
Mn̂nn̂ (−JΛ − JA)−1

(
MT

n̂nn̂

(
B̃ ⊗ B̃e

)
Im

+MT
n̂nn̂

m∑

k=1

(
Ñk ⊗ Ñ e

k

)
P

(2)
1 +MT

n̂nn̂

(
H̃F̂ ⊗ H̃e

)
T(n+n̂,n+n̂)(Pl ⊗ Pl)

)

= 2(Ip)
T
([
−epi (en̂j )T ⊗ C eie

T
j ⊗ C̃

])
(−JΛ − JA)−1

([
B̃ ⊗B
B̃ ⊗ B̃

]
Im

+
m∑

k=1

[
Ñk ⊗Nk 0

0 Ñk ⊗ Ñk

]
MT

n̂nn̂P
(2)
1

+



(
H̃F̂ ⊗HF

)
T(n+n̂,n+n̂)(M ⊗M)(MT ⊗MT )(Pl ⊗ Pl)(

H̃F̂ ⊗ H̃F̂
)
T(n+n̂,n+n̂)(M ⊗M)(MT ⊗MT )(Pl ⊗ Pl)




 , (5.34)

where M is the permutation matrix de�ned in (B.1). The multiplication of MT and
Pl yields

MTPl =

[
Mnnn̂P

(1)
l

Mn̂nn̂P
(2)
1

]
=
[
pT1 pT2 pT3 pT4

]T
=: P̃l,
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where

p1 = (−A⊗ In − In ⊗ A)−1 (B ⊗B) Im, p2 = (−A⊗ In̂ − In ⊗ Λ)−1
(
B ⊗ B̃

)
Im,

p3 = (−Λ⊗ In − In̂ ⊗ A)−1
(
B̃ ⊗B

)
Im, p4 = (−Λ⊗ In̂ − In̂ ⊗ Λ)−1

(
B̃ ⊗ B̃

)
Im.

(5.35)
Moreover, note that p3 = vec (V1), where V1 solves (5.29a). Applying the result of
Lemma B.2 in (5.34) yields

∂E2

∂C̃ij
= 2(Ip)

T
(
epi (e

n̂
j )T ⊗ C

)
(−Λ⊗ In − In̂ ⊗ A)−1

(
(B̃ ⊗B)Im +

m∑

k=1

(Ñk ⊗Nk)p3

+ (H̃ ⊗H)T(n,n̂)(p3 ⊗ p3)
)
− 2(Ip)

T
(
epi (e

n̂
j )T ⊗ C̃

)(
−Λ⊗ In − In̂ ⊗ Ã

)−1

×
(

(B̃ ⊗ B̃)Im +
m∑

k=1

(Ñk ⊗ Ñk)p4 + (H̃ ⊗ H̃)T(n̂,n̂)(p4 ⊗ p4)
)

= 2(Ip)
T
(
epi (e

n̂
j )T ⊗ C

)
(−Λ⊗ In − In̂ ⊗ A)−1

(
(B̃ ⊗B)Im +

m∑

k=1

(Ñk ⊗Nk)p3

+ (H̃ ⊗H)T(n,n̂)(p3 ⊗ p3)
)
− 2(Ip)

T
(
epi (e

n̂
j )T ⊗ Ĉ

)(
−Λ⊗ In − In̂ ⊗ Â

)−1

×
(

(B̃ ⊗ B̂)Im +
m∑

k=1

(Ñk ⊗ N̂k)p̂4 + (H̃ ⊗ Ĥ)T(n̂,n̂)(p̂4 ⊗ p̂4)
)
, (5.36)

where p̂4 =
(
−Λ⊗ In̂ − In̂ ⊗ Â

)−1 (
B̃ ⊗ B̂

)
Im = vec

(
V̂1

)
, where V̂1 is as de�ned in

(5.31). Setting (5.36) equal to zero results in a necessary condition with respect to C̃
as follows:

(Ip)
T
(
epi (e

n̂
j )T ⊗ C

)
(−Λ⊗ In − In̂ ⊗ A)−1

(
(B̃ ⊗B)Im +

m∑

k=1

(Ñk ⊗Nk)p3

+ (H̃ ⊗H)T(n,n̂)(p3 ⊗ p3)
)

= (Ip)
T
(
epi (e

n̂
j )T ⊗ Ĉ

)(
−Λ⊗ In − In̂ ⊗ Â

)−1

×
(

(B̃ ⊗ B̂)Im +
m∑

k=1

(Ñk ⊗ N̂k)p̂4 + (H̃ ⊗ Ĥ)T(n̂,n̂)(p̂4 ⊗ p̂4)
)
.

(5.37)

Now, we �rst manipulate the left-hand side of (5.37). Using Lemma 2.29 and (2.29),
we get

(Ip)
T
(
epi (e

n̂
j )T ⊗ C

)
(−Λ⊗ In − In̂ ⊗ A)−1

(
(B̃ ⊗B)Im +

m∑

k=1

(Ñk ⊗Nk)p3
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+ (H̃ ⊗H)T(n,n̂)(p3 ⊗ p3)
)

= (Ip)
T
(
epi (e

n̂
j )T ⊗ C

)
(−Λ⊗ In − In̂ ⊗ A)−1

(
vec
(
BB̃T

)
+

m∑

k=1

vec
(
NkV1Ñ

T
k

)

+ (H̃ ⊗H) vec (V1 ⊗ V1)
)

= (Ip)
T
(
epi (e

n̂
j )T ⊗ C

)
(−Λ⊗ In − In̂ ⊗ A)−1

(
vec

(
BB̃T +

m∑

k=1

NkV1Ñ
T
k

)

+ vec
(
H(V1 ⊗ V1)H̃T

))

= (Ip)
T
(
epi (e

n̂
j )T ⊗ C

)
(vec (V1) + vec (V2)) = tr

(
C(V1 + V2)en̂j (epi )

T
)

= tr
(
CV en̂j (epi )

T
)
,

where V2 solves (5.29c) and V = V1 + V2. Using the similar steps, we can show that

the righthand side of (5.37) is equal to tr
(
ĈV̂ en̂j (epi )

T
)
, where V̂ is de�ned in (5.31).

Therefore, Eq. (5.37) is the same as (5.32a).

Necessary conditions with respect to Λ

By utilizing Lemma B.1, we aim at deriving the necessary condition with respect to
the ith diagonal entry of Λ. We di�erentiate E with respect to λi to obtain

∂E2

∂λi
= 2(Ip)

T
(
C̃e ⊗ C̃e

)
L−1
e EL−1

e

((
B̃e ⊗ B̃e

)
Im +

m∑

k=1

(
Ñ e
k ⊗ Ñ e

k

)
Pl (5.38)

+
(
H̃e ⊗ H̃e

)
T(n+n̂,n+n̂)(Pl ⊗ Pl)

)
+ (Ip)

T
(
C̃e ⊗ C̃e

)
L−1
e (5.39)

×
(

2
m∑

k=1

(
Ñ e
k ⊗ Ñ e

k

)
L−1
e EPl + 4

(
H̃e ⊗ H̃e

)
T(n+n̂,n+n̂)

((
L−1
e EPl

)
⊗ Pl

)
)
,

(5.40)

where

Le = −
(
Ãe ⊗ In+n̂ + In+n̂ ⊗ Ãe

)
and E =

[
0 0
0 en̂i (en̂i )T

]
⊗ In+n̂.
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Performing some algebraic calculations gives rise to the following expression:

∂E2

∂λi
= 2(Ip)

T
(
−C̃ ⊗ C̃e

)
Z−1
e Ξn+rZ

−1
e

((
B̃ ⊗ B̃e

)
Im +

m∑

k=1

(
Ñk ⊗ Ñ e

k

)
P

(2)
1

+
(
H̃F̂ ⊗ H̃e

)
T(n+n̂,n+n̂)(Pl ⊗ Pl)

)
+ 2(Ip)

T
(
−C̃ ⊗ C̃e

)
Z−1
e

×
( m∑

k=1

(
Ñk ⊗ Ñ e

k

)
Z−1
e Ξn+rP

(2)
1 + 2

(
H̃F̂ ⊗ H̃e

)
T(n+n̂,n+n̂)(L

−1
e EPl ⊗ Pl)

)
,

where Ze := − (Λ⊗ In+n̂ + In̂ ⊗ Ae) and Ξm := (en̂i (en̂i )T ⊗ Im). Next, we utilize
Lemma B.2 and use the permutation matrix M (as done while deriving the necessary

conditions with respect to C̃) to obtain

∂E2

∂λi

= 2(Ip)
TS
(

(B̃ ⊗B)Im +
∑m

k=1
(Ñk ⊗Nk)p3 + (H̃ ⊗H)T(n,n̂)(p3 ⊗ p3)

)

− 2(Ip)
T S̃
(

(B̃ ⊗ B̃)Im +
∑m

k=1
(Ñk ⊗ Ñk)p4 + (H̃ ⊗ H̃)T(n̂,n̂)(p4 ⊗ p4)

)

+ 2(Ip)
T
(
C̃ ⊗ C

)
L−1

(∑m

k=1
(Ñk ⊗Nk)L

−1Ξnp3 + 2(H̃ ⊗H)T(n,n̂)(L
−1Ξn(p3 ⊗ p3))

)

− 2(Ip)
T
(
C̃ ⊗ C̃

)
L̃−1

(∑m

k=1
(Ñk ⊗ Ñk)L̃

−1Ξn̂p4 + 2(H̃ ⊗ H̃)T(n̂,n̂)(L̃
−1Ξn̂(p4 ⊗ p4))

)

= 2(Ip)
TS
(

(B̃ ⊗B)Im +
∑m

k=1
(Ñk ⊗Nk)p3 + (H̃ ⊗H)T(n,n̂)(p3 ⊗ p3)

)

− 2(Ip)
T Ŝ
(

(B̃ ⊗ B̂)Im +
∑m

k=1
(Ñk ⊗ N̂k)p̂4 + (H̃ ⊗ Ĥ)T(n̂,n̂)(p̂4 ⊗ p̂4)

)

+ 2(Ip)
T
(
C̃ ⊗ C

)
L−1

(∑m

k=1
(Ñk ⊗Nk)L

−1Ξnp3 + 2(H̃ ⊗H)T(n,n̂)(L
−1Ξn(p3 ⊗ p3))

)

− 2(Ip)
T
(
C̃ ⊗ Ĉ

)
L̂−1

(∑m

k=1
(Ñk ⊗ N̂k)L̂

−1Ξn̂p̂4 + 2(H̃ ⊗ Ĥ)T(n̂,n̂)(L̂
−1Ξn̂(p̂4 ⊗ p̂4)

)
,

where p3 and p4 are the same as de�ned in (5.35), and

S :=
(
C̃ ⊗ C

)
L−1(en̂i (en̂i )T ⊗ In)L−1, S̃ :=

(
C̃ ⊗ C̃

)
L̃−1(en̂i (en̂i )T ⊗ In̂)L̃−1,

Ŝ :=
(
C̃ ⊗ Ĉ

)
L̂−1(en̂i (en̂i )T ⊗ In̂)L̂−1, L := − (Λ⊗ In + In̂ ⊗A) ,

L̃ := − (Λ⊗ In̂ + In̂ ⊗ Λ) , L̂ := −
(

Λ⊗ In̂ + In̂ ⊗ Â
)
.
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By using the properties derived in Lemma 2.27, we can simplify the above equation:

∂E2

∂λi
= 2(Ip)

TS
(

(B̃ ⊗B)Im +
∑m

k=1
(Ñk ⊗Nk)p3 + (H̃ ⊗H)T(n,n̂)(p3 ⊗ p3)

)

− 2(Ip)
T Ŝ
(

(B̃ ⊗ B̂)Im +
∑m

k=1
(Ñk ⊗ N̂k)p4 + (H̃ ⊗ Ĥ)T(n̂,n̂)(p̂4 ⊗ p̂4)

)

+ 2(Im)T
(
B̃ ⊗B

)
L−TΞnL

−T
( m∑

k=1

(Ñk ⊗Nk)
T q3 + 2(H̃(2) ⊗H(2))T(n,n̂)(p3 ⊗ q3)

)

− 2(Im)T
(
B̃ ⊗ B̂

)
L̂−TΞn̂L̂

−T
( m∑

k=1

(Ñk ⊗ N̂k)
T q̂4 + 2(H̃(2) ⊗ Ĥ(2))T(n̂,n̂)(p̂4 ⊗ q̂4)

)
,

where

q3 = (−Λ⊗ In − In̂ ⊗A)−T
(
C̃ ⊗ C

)
Ip and q̂4 = (−Λ⊗ In̂ − In̂ ⊗Ar)−T

(
C̃ ⊗ Ĉ

)
Ip.

Once again, we determine an interpolation-based necessary condition with respect to
Λi by setting the last equation equal to zero:

(Ip)
TS
(

(B̃ ⊗B)Im +

m∑

k=1

(Ñk ⊗Nk)p3 + (H̃ ⊗H)T(n,n̂)(p3 ⊗ p3)
)

+ (Im)T
(
B̃ ⊗B

)
L−TΞnL

−T
( m∑

k=1

(Ñk ⊗Nk)
T q3 + 2(H̃(2) ⊗H(2))T(n,n̂)(p3 ⊗ q3)

)

= (Ip)
T Ŝ
(

(B̃ ⊗ B̂)Im +

m∑

k=1

(Ñk ⊗ N̂k)p4 + (H̃ ⊗ Ĥ)T(n̂,n̂)(p̂4 ⊗ p̂4)
)
,

+ (Im)T
(
B̃ ⊗ B̂

)
L̂−TΞn̂L̂

−T
( m∑

k=1

(Ñk ⊗ N̂k)
T q̂4 + 2(H̃(2) ⊗ Ĥ(2))T(n̂,n̂)(p̂4 ⊗ q̂4)

)
.

(5.41)

Now, we �rst simplify the left-hand side of the above equation using Lemma 2.29 and
(2.29). We �rst focus of the �rst part of the left-hand side of (5.41). This yields

(Ip)
TS
(

(B̃ ⊗B)Im +
m∑

k=1

(Ñk ⊗Nk)p3 + (H̃ ⊗H)T(n,n̂)(p3 ⊗ p3)
)

= (Ip)
T
(
C̃ ⊗ C

)
L−1(en̂i (en̂i )T ⊗ In)

× L−1
(

(B̃ ⊗B)Im +
m∑

k=1

(Ñk ⊗Nk)p3 + (H̃ ⊗H)T(n,n̂)(p3 ⊗ p3)
)

= (Ip)
T
(
C̃ ⊗ C

)
L−1

︸ ︷︷ ︸
(vec(W1))T

(en̂i (en̂i )T ⊗ In) vec (V ) = tr
(
V en̂i (en̂i )TW T

1

)

= (V1(:, i))T W (:, i) = (W1(:, i))T V (:, i),
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where W1 solves (5.29b). Analogously, we can show that

(Im)T
(
B̃ ⊗B

)
L−TΞnL

−T
( m∑

k=1

(Ñk ⊗Nk)
T q3 + 2(H̃(2) ⊗H(2))T(n,n̂)(p3 ⊗ q3)

)

= (W (:, i))T V1(:, i).
(5.42)

Thus, the left-hand side of (5.41) is equal to (W (:, i))T V1(:, i) + (W1(:, i))T V (:, i).
Using similar steps, we can also show that the right-hand side of (5.41) is equal to(
Ŵ (:, i)

)T
V̂1(:, i)+

(
Ŵ1(:, i)

)T
V̂ (:, i). Thus, we obtain the optimality conditions with

respect to Λ given in (5.32e).

The necessary conditions with respect to B̃, Ñ and H̃ can also be determined in a
similar manner as for C̃ and λi. For brevity of the paper, we skip detailed derivations;
however, we state the �nal optimality conditions. A necessary condition for optimality
with respect to the (i, j) entry of Ñk is

(Ip)
T
(
C̃ ⊗ C

)
L−1

(
(en̂i (en̂j )T ⊗Nk)p3

)
= (Ip)

T
(
C̃ ⊗ Ĉ

)
L̂−1

(
(en̂i (en̂j )T ⊗ N̂k)p̂4

)
,

which then yields (5.32c) in the Sylvester equation form. A similar optimality condition

with respect to the (i, j) entry of H̃ is given by

(Ip)
T
(
C̃ ⊗ C

)
L−1

(
(en̂i (en̂

2

j )T ⊗H)T(n,n̂)(p3 ⊗ p3)
)

= (Ip)
T
(
C̃ ⊗ Ĉ

)
L̂−1

(
(en̂i (en̂

2

j )T ⊗ Ĥ)T(n̂,n̂)(p̂4 ⊗ p̂4)
)
,

which can be equivalently described as (5.32d). Finally, the necessary condition ap-

pearing with respect to the (i, j) entry of B̃ is

(Im)T
(
en̂i (emj )T ⊗B

)
L−T

(
(C̃ ⊗ C)Ip +

m∑

k=1

(Ñk ⊗Nk)
T q3

+ 2(H̃(2) ⊗H(2))T(n,n̂)(p3 ⊗ q3)
)
,

= (Im)T
(
en̂i (emj )T ⊗ B̂

)
L̂−T

(
(C̃ ⊗ Ĉ)Ip +

m∑

k=1

(Ñk ⊗ N̂k)
T q̂4

+ 2(H̃(2) ⊗ Ĥ(2))T(n̂,n̂)(p̂4 ⊗ q̂4

)
,

which gives rise to (5.32b).
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5.2.3. Truncated quadratic-bilinear iterative rational Krylov
algorithm

The remaining challenge is now to develop a numerically e�cient model reduction algo-
rithm to construct a reduced QB system satisfying the �rst-order optimality conditions
in Theorem 5.7. However, as in the linear [79] and bilinear [21, 59] cases, since the opti-

mality conditions involve the matrices V,W, V̂ , Ŵ , which depend on the reduced-order
system matrices we are trying to construct, it is not a straightforward task to determine
a reduced-order system directly that satis�es all the necessary conditions for optimal-
ity, i.e., (5.32a)�(5.32e). We propose Algorithm 5.1, which upon convergence leads to
reduced-order systems that approximately satisfy the �rst-order necessary conditions
for optimality given in Theorem 5.7. Throughout the paper, we denote the algorithm
by truncated QB-IRKA, or TQB-IRKA.

Remark 5.8:
Ideally, upon convergence implies that the reduced-order quantities Â, Ĥ, N̂k, B̂,

Ĉ in Algorithm 5.1 stagnate. In a numerical implementation, one can check the
stagnation based on the change of eigenvalues of the reduced matrix Â and terminate
the algorithm once the relative change in the eigenvalues of Â is of the order of the
machine precision. However, in all of our numerical experiments, we run TQB-IRKA
until the relative change in the eigenvalues of Â is less than 10−5. We observe that
the quality of reduced-order systems does not change signi�cantly thereafter, as in
the cases of IRKA, B-IRKA, and TB-IRKA.

Our next goal is to show how the reduced-order system resulting from TQB-IRKA
upon convergence relates to �rst-order optimality conditions (5.32). As a �rst step, we
provide explicit expressions showing how far away the resulting reduced-order system is
from satisfying the optimality conditions. Later, based on these expressions, we discuss
how far the reduced-order systems, obtained from TQB-IRKA for weakly nonlinear QB
systems, satisfy the optimality condition with small perturbations. We also illustrate
using our numerical examples in Section 5.3 that in practice, the reduced-order system
seemingly often satis�es the optimality conditions quite accurately.

Theorem 5.9:
Let ΣQB be a QB system (4.1) and let Σ̂QB be the reduced-order QB system (4.2),
computed by TQB-IRKA upon convergence. Let Vi,Wi, for i ∈ {1, 2}, be the matri-
ces that solve (5.29), and let V andW be the matrices de�ning the projection used for

model order reduction, as de�ned in (5.30). Similarly, let V̂i, Ŵi, for i ∈ {1, 2}, be the
matrices that solve (5.29), where the original system's state-space matrices are being

replaced with their reduced-order counterparts. Moreover, let V̂ and Ŵ be the ma-
trices de�ned in (5.31). Assume that σ(Â)∩σ(−ΠA) = ∅ and σ(Â)∩σ(−ΠTAT ) = ∅,
where Π = V (W TV )−1W T and σ(·) denotes the eigenvalue spectrum of a matrix.
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Algorithm 5.1: TQB-IRKA for QB systems.

Input: The system matrices: A,H,N1, . . . , Nm, B, C.
1 Symmetrize the Hessian H and determine its mode-2 matricization H(2).

2 Make an initial guess for the reduced matrices Â, Ĥ, N̂1, . . . , Nm, B̂, Ĉ with Â
being diagonalizable.

3 while relative change in {λi} > tol convergence do

4 Perform the spectral decomposition of Â and de�ne:

Λ̂ = R̂−1ÂR̂, Ñk = R̂−1N̂kR̂, H̃ = R̂−1Ĥ
(
R̂⊗ R̂

)
, B̃ = R̂−1B̂, C̃ = ĈR̂.

5 Compute mode-2 matricization H̃(2).
6 Solve for V1 and V2:

−V1Λ− AV1 = BB̃T ,

−V2Λ− AV2 = H(V1 ⊗ V1)H̃T +
m∑
k=1

NkV1Ñ
T
k .

7 Solve for W1 and W2:

−W1Λ− ATW1 = CT C̃,

−W2Λ− ATW2 = 2 ·H(2)(V1 ⊗W1)(H̃(2))T +
m∑
k=1

NT
k W1Ñk.

8 Compute V and W :
V := V1 + V2, W := W1 +W2.

9 V = orth (V ), W = orth (W ).
10 Determine the reduced matrices:

Â = (W TV )−1W TAV, Ĥ = (W TV )−1W TH(V ⊗ V ),

N̂k = (W TV )−1W TNkV, B̂ = (W TV )−1W TB, Ĉ = CV .

Output: Â, Ĥ, N̂1, . . . , N̂m, B̂, Ĉ.

Furthermore, assume Πv = V1(W TV1)−1W T and Πw = W1(V TW1)−1V T exist. Then,

the reduced-order system Σ̂QB satis�es the following relations: [a]

tr
(
CV en̂i

(
epj
)T)

= tr
(
ĈV̂ en̂i

(
epj
)T)

+ ε
(i,j)
C ,

i ∈ {1, . . . , n̂}, j ∈ {1, . . . , p}, (5.43a)

tr
(
BTWen̂i

(
emj
)T)

= tr
(
B̂T Ŵen̂i

(
emj
)T)

+ ε
(i,j)
B ,

i ∈ {1, . . . , n̂}, j ∈ {1, . . . ,m}, (5.43b)

(W1(:, i))TNkV1(:, j) = (Ŵ1(:, i))T N̂kV̂1(:, j) + ε
(i,j,k)
N ,

i, j ∈ {1, . . . , n̂}, k ∈ {1, . . . ,m}, (5.43c)
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(W1(:, i))TH(V1(:, j)⊗ V1(:, l)) = (Ŵ1(:, i))T Ĥ(V̂1(:, j)⊗ V̂1(:, l)) + ε
(i,j,l)
H ,

i, j, l ∈ {1, . . . , n̂}, (5.43d)

(W1(:, i))TV (:, i) + (W2(:, i))T V1(:, i) = (Ŵ1(:, i))T V̂ (:, i) +
(
Ŵ2(:, i)

)T
V̂1(:, i) + ε

(i)
λ ,

i ∈ {1, . . . , n̂}. (5.43e)

where

ε
(i,j)
C = − tr

(
CV Γve

n̂
i

(
epj
)T)

,

ε
(i,j)
B = − tr

(
BTW (W TV )−TΓwe

n̂
i

(
emj
)T)

,

ε
(i,j,k)
N = (εw(:, i))T Nk(V1(:, j)− εv(:, j)) + (W1(:, i))T Nk(εv(:, j)),

ε
(i,j,l)
H = (W1(:, i)− εw(:, i))T H(εv(:, j)⊗ (V1(:, l)− εv(:, l)) + V1(:, j)⊗ εv(:, l))

+ (εw(:, i))T H((V (:, j)− εv(:, j))⊗ (V1(:, l)− εv(:, l))), and

ε
(i)
λ = −

(
Ŵ (:, i)

)T
Γv(:, i)− (Γw(: .i))T

(
V̂ (:, i)− Γv(:, i)

)

− (W2(:, i))TV2(:, i) + (Ŵ2(:, i))T V̂2(:, i),

in which εv, εw, Γv and Γw, respectively, solve

εvΛ + ΠAεw = (Π− Πv)(AV1 +BB̃T ), (5.44a)

εwΛ + (AΠ)T εw = (ΠT − Πw)(ATW1 + CT C̃), (5.44b)

ΓvΛ + ÂΓv = −(W TV )−1W T

(
m∑

k=1

NkεvÑ
T
k +H(εv ⊗ (V1 + εv) + V1 ⊗ εv)H̃T

)

(5.44c)

ΓwΛ + ÂTΓw = V T

(
m∑

k=1

NT
k εwÑk + H(2)(εv ⊗ (W1 + εw) + V1 ⊗ εw)

(
H(2)

)T
)
.

(5.44d)

♦

Proof. We begin by establishing a relationship between V1 ∈ Rn×n̂, V̂1 ∈ Rn̂×n̂ and
V ∈ Rn×n̂. For this, consider the Sylvester equation related to V1

−V1Λ− AV1 = BB̃T , (5.45)

and the oblique projector Πv := V1(W TV1)−1W T . Then, we apply the projector Πv to
the Sylvester equation (5.45) from the left to obtain

−V1Λ− ΠvAV1 = ΠvBB̃
T , and

−V1Λ− ΠAV1∗ = (Πv − Π)AV1 + ΠvBB̃
T , (5.46)
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where Π := V (W TV )−1W T . Now, we recall that V̂1 satis�es the Sylvester equation

−V̂1Λ− ÂV̂1 = B̂B̃T .

We next multiply it by V from the left and substitute for Â and B̂ to obtain

−V V̂1Λ− ΠAV V̂1 = ΠBB̃T . (5.47)

Subtracting (5.46) from (5.47) yields

(V1 − V V̂1)Λ + ΠA(V1 − V V̂1) = (Π− Πv)
(
AV1 +BB̃T

)
.

Since it is assumed that σ(Â) ∩ σ(−ΠA) = ∅, this implies that Λ ⊗ In + In̂ ⊗ (ΠA) is
invertible. Therefore, we can write

V1 = V V̂1 + εv, (5.48)

where εv solves the Sylvester equation

εvΛ + ΠvAεv = (Π− Πv)
(
AV1 +BB̃T

)
. (5.49)

Similarly, one can show that

W1 = W (W TV )−T Ŵ1 + εw, (5.50)

where εw solves
εwΛ + ΠTAT εw = (ΠT − Πw)(ATW1 + CT C̃),

in which Πw := W1(V TW )V T . Using (5.48) and (5.50), we obtain

Ŵ1(:, i)T N̂kV̂1(:, j) = Ŵ1(:, i)T (W TV )−1W TNkV V̂1(:, j)

= (W1(:, i)− εw(:, i))T Nk (V1(:, j)− εv(:, j))
= W1(:, i)TNkV1(:, j)− (εw(:, i))T Nk(V1(:, j)− εv(:, j))
− (W1(:, i))T Nk(ε(:, j)),

which is (5.43c) in Theorem 5.7. Similarly, one can prove (5.43d). To prove (5.43a),
we consider the following Sylvester equation for V :

V (−Λ)− AV = BB̃T +
m∑

k=1

NkV1Ñ
T
k +H(V1 ⊗ V1)H̃T . (5.51)

Applying Π to both sides of the above Sylvester equation yields

V
(
In̂(−Λ)− ÂIn̂

)
= V

(
B̂B̃T + Y

)
, (5.52)
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where Y = (W TV )−1W T
(∑m

k=1 NkV1Ñ
T
k +H(V1 ⊗ V1)H̃T

)
. This implies that

In̂(−Λ)− ÂIn̂ = B̂B̃T + Y. (5.53)

Next, we consider the Sylvester equation for V̂ ,

V̂ (−Λ)− ÂV̂ = B̂B̃T +
m∑

k=1

N̂kV̂1Ñ
T
k + Ĥ(V̂1 ⊗ V̂1)H̃T . (5.54)

We then subtract (5.54) and (5.53) to obtain

(In̂ − V̂ )(−Λ)− Â(In̂ − V̂ ) =
m∑

k=1

(W TV )−1W TNk

(
V1 − V V̂1

)
ÑT
k

+ (W TV )−1W TH
(
V1 ⊗ V1 − (V V̂1 ⊗ V V̂1)

)
H̃T .

Substituting V V̂1 from (5.48) gives

(In̂ − V̂ )(−Λ)− Â(In̂ − V̂ ) =
m∑

k=1

(W TV )−1W TNkεvÑ
T
k

+ (W TV )−1W TH (εv ⊗ V1 + V1 ⊗ εv + εv ⊗ εv) H̃T .

Since Λ contains the eigenvalues of Â and Â is stable, Λ and −Â cannot have any
common eigenvalues. Hence, the matrix Λ ⊗ In̂ + In̂ ⊗ Â is invertible. Therefore the
above Sylvester equations for Γ := V̂ − In̂ have a unique solution and can be written
as

ΓvΛ + ÂΓv =
m∑

k=1

(W TV )−1W TNkεvÑ
T
k

+ (W TV )−1W TH (εv ⊗ V1 + V1 ⊗ εv + εv ⊗ εv) H̃T .

To prove (5.43a), we observe that

tr
(
ĈV̂ en̂i

(
epj
)T)

= tr
(
CV (In̂ + Γv)e

n̂
i

(
epj
)T)

= tr
(
CV en̂i

(
epj
)T)

+ tr
(
CV Γve

n̂
i

(
epj
)T)

.

Thus,

tr
(
CV en̂i

(
epj
)T)

= tr
(
ĈV̂ en̂i

(
epj
)T)

+ ε
(i,j)
C .
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Analogously, we can prove that there exists Γw such that Ŵ = (W TV )T + Γw and that
it satis�es

ΓwΛ + ÂTΓw = V T

(
m∑

k=1

NT
k εwÑk + H(2)(εv ⊗ (W1 + εw) + V1 ⊗ εw)

(
H(2)

)T
)
.

To prove (5.43b), we observe that

tr
(
B̂T Ŵen̂i

(
emj
)T)

= tr
(
BTW (W TV )−T ((W TV )T + Γv)e

n̂
i

(
epj
)T)

.

Thus,

tr
(
B̂T Ŵen̂i

(
emj
)T)

= tr
(
BTW T +BTW (W TV )−TΓw)en̂i

(
epj
)T)

.

Since we now know that V̂ = In̂ + Γv and Ŵ = (W TV )T + Γw, we get

V V̂ = V + V Γv and W (W TV )−T Ŵ = W +W (W TV )−TΓw. (5.55)

We make use of (5.55) to prove (5.43e) in the following:

(W1(:, i))TV (:, i) + (W2(:, i))T V1(:, i)

= (W (:, i))TV (:, i)− (W2(:, i))TV2(:, i)

=
(
W (W TV )−T

(
Ŵ (:, i)− Γw(: .i)

))T
V
(
V̂ (:, i)− Γv(:, i)

)

− (W2(:, i))TV2(:, i)

=
(
Ŵ (:, i)− Γw(: .i)

)T (
V̂ (:, i)− Γv(:, i)

)
− (W2(:, i))TV2(:, i)

=
(
Ŵ (:, i)

)T
V̂ (:, i)−

(
Ŵ (:, i)

)T
Γv(:, i)− (Γw(: .i))T

(
V̂ (:, i)− Γv(:, i)

)

− (W2(:, i))TV2(:, i)

= (Ŵ1(:, i))T V̂ (:, i) +
(
Ŵ2(:, i)

)T
V̂1(:, i) + ε

(i)
λ ,

where

ε
(i)
λ = −

(
Ŵ (:, i)

)T
Γv(:, i)− (Γw(: .i))T

(
V̂ (:, i)− Γv(:, i)

)

− (W2(:, i))TV2(:, i) + (Ŵ2(:, i))T V̂2(:, i).

This completes the proof. .

Remark 5.10:
In Theorem 5.9, we have presented measures, e.g., the distance between tr

(
CV eri (e

p
j)
T
)

and tr
(
ĈV̂ eri (e

p
j)
T
)
, denoted by ε

(i,j)
C , with which the reduced-order system via TQB-

IRKA satis�es the optimality conditions (5.32). But Theorem 5.9 in general does
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not provide a guarantee for the smallness of these distances. However, we provide
an intuition for the weakly nonlinear QB systems, i.e., QB systems for which ‖H‖
and ‖Nk‖ are small with respect to ‖B‖ and ‖C‖. Recall that V1 and V2 solve the
Sylvester equations (5.29a) and (5.29c), respectively, and the right-hand side for V2

is quadratic in H and Nk. Therefore, for a weakly nonlinear QB system, ‖V2‖ will
be relatively small compared to ‖V1‖. Hence, V is expected to be close to V1. Thus,
one could anticipate that the projectors Π = V (W TV )W T and Πv = V1(W TV1)W T

will be close to each other. As a result, the right-hand side of the Sylvester equa-
tion (5.44a) will be small, and hence so is εv. In a similar way, one can argue that
εw in (5.44b) will be small. Therefore, it can be shown that in the case of weakly

nonlinear QB systems (4.1), all ε's in (5.43) such as ε
(i,j)
C should be small.

Indeed, the situation in practice proves much better. We observe in our numerical
results (see Section 5.3) that even for strongly nonlinear QB systems, i.e., ‖H‖ and
‖Nk‖ are comparable or even much larger than ‖B‖ and ‖C‖, Algorithm 5.1 still
yields reduced-order systems which satisfy the optimality conditions (5.32) almost
exactly with negligible perturbations. ♦

Remark 5.11:
Algorithm 5.1 can be seen as an extension of the truncated B-IRKA with truncation
index 2 [59, Algo. 2] from bilinear systems to QB systems. In [59], the truncation
index N, which denotes the number of terms in the underlying Volterra series for
bilinear systems, is free, and as N →∞, all the perturbations go to zero. However,
it is shown in [59] that in most cases, a small N, for example 2 or 3, is enough to
satisfy all optimality conditions closely. In our case, a similar convergence will occur
if we let the number of terms in the underlying Volterra series of the QB system
grow; however, this is not numerically feasible since the subsystems in the QB case
become rather complicated after the �rst three terms. Indeed, because of this, [78],
[25] and [4] have considered the interpolation of multivariate transfer functions cor-
responding to only the �rst two subsystems. Moreover, even in the case of balanced
truncation for QB systems [28], it is shown by means of numerical examples that
the truncated Gramians for QB systems based on the �rst three terms of the un-
derlying Volterra series produce quantitatively accurate reduced-order systems. Our
numerical examples show that this is the case here as well. ♦

Remark 5.12:
So far in all of our discussions, we have assumed that the reduced matrix Â is
diagonalizable. This is a reasonable assumption since non-diagonalizable matrices
lie in a set of Lebesgue measure zero. The probability of entering this set by any
numerical algorithm including TQB-IRKA is zero with respect to Lebesgue measure.
Thus, TQB-IRKA can be considered safe in this regard.
Furthermore, throughout the analysis, it has been assumed that the reduced matrix

Â is Hurwitz. However, in case Â is not Hurwitz, then the truncated H2-norm of
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the error system will be unbounded; thus the reduced-order systems indeed cannot
be (locally) optimal. Nonetheless, a mathematical study to ensure the stability from
H2 iterative schemes are still under investigation even for linear systems. However,
a simple �x to this problem is to re�ect the unstable eigenvalues of Â in every step
back to the left-half plane. Also, see [94] for a more involved approach to stabilize a
reduced order system.
Theorem 5.9 assumes that TQB-IRKA has converged. As stated in Remark 5.11,

TQB-IRKA extends IRKA, B-IRKA and TB-IRKA to the kind of QB systems we
consider. Even for the linear case, i.e., for IRKA, convergence cannot be theoretically
guaranteed despite overwhelming numerical evidence that IRKA (and (T)B-IRKA),
in most cases, converge rapidly to a local minimum. Convergence of IRKA can be
guaranteed theoretically only for the symmetric case [58]. Moreover, in [16] and [58],
variants of IRKA with guaranteed global convergence have been introduced; however
due to the success of regular IRKA and its simple implementation, these modi�ca-
tions have not been as widely used. Therefore, guaranteed theoretical convergence
in this iterative setting is an open issue even for the linear and bilinear cases, and
naturally for the QB case as well. ♦

Remark 5.13:
As mentioned above, so far the analysis is based on the assumption that the re-

duced matrix Â is diagonalizable. For a reduced matrix Â with Jordan blocks, one
would need to extend the derivation of the Sylvester-equation based H2 optimality
conditions in [131], where Wilson [131] di�erentiates the H2 error with respect to

the reduced matrix Â as opposed to individual eigenvalues {λi} as we do here. An
interpolation interpretation of the Jordan blocks in the linear case has also been es-
tablished; see [126]. However, since the Jordan blocks in the optimal reduced models
so far have never been observed in practice, extensions of the H2 theory to the bi-
linear case have focused on the diagonalizabilty assumption; thus, we keep the same
assumption here. However, based on how the Sylvester-equation based conditions for
the linear case appear, for QB systems with non-diagonalizable Â, one can reason-
ably expect an algorithm similar to Algorithm 5.1, where the steps 6�7 are replaced
by solving consecutively for V1, V2, W1, W2 in the following Sylvester equations

−V1Â− AV1 = BB̂T ,

−V2Â− AV2 = H(V1 ⊗ V1)ĤT +
m∑

k=1

NkV1N̂
T
k ,

−W1Â
T − ATW1 = CT Ĉ,

−W2Â
T − ATW2 = 2 ·H(2)(V1 ⊗W1)(Ĥ(2))T +

m∑

k=1

NT
k W1N̂k.
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Note that with this formulation, Â enters into the algorithm directly without di-
agonalization. However, due to the reasons listed before, we leave this theoretical
development for future work. ♦

Remark 5.14:
In oder to employ Algorithm 5.1, we need to perform computations such as H(V1 ⊗
V1)H̃T , H(2)(V1⊗W1)

(
H̃(2)

)T
. In Subsection 4.3.4, we have discussed in detail how

these terms can be computed e�ciently in large-scale settings. ♦

5.2.4. Generalized state-space QB systems
Thus far, we have used E = I in front of ẋ(t) in the QB system (4.1). However, it
is also common that the spatial discretization of a nonlinear PDE results in a mass
matrix E 6= I. Thus, in the following, we consider a generalized state-space QB of the
form:

ΣQB :




Eẋ(t) = Ax(t) +H (x(t)⊗ x(t)) +

m∑

k=1

Nkx(t)uk(t) +Bu(t),

y(t) = Cx(t), x(0) = 0,

(5.56)

with dimension as in (4.1), where the matrix E ∈ Rn×n is considered to be non-singular.
In general, we aim at constructing a reduced generalized state-space QB as follows:

ΣQB :




Ê ˙̂x(t) = Âx̂(t) + Ĥ (x̂(t)⊗ x̂(t)) +

m∑

k=1

N̂kx̂(t)uk(t) + B̂u(t),

ŷ(t) = Ĉx̂(t), x̂(0) = 0,

(5.57)

where x̂(t) ∈ Rn̂, u(t) ∈ Rm and ŷ(t) ∈ Rp are the reduced state, input and output of the
reduced-order system at time (t). To simplify the H2-optimal model reduction problem

for the generalized QB systems, we assume that Ê = In̂ and Â is diagonalizable. Under
these assumptions, one can apply the result derived for the mass matrix E = In. One
obvious way is to invert E, but this is inadmissible in a large-scale setting. Moreover,
the resulting matrices may be dense, making the algorithm computationally expensive.
Nevertheless, Algorithm 5.1 can be employed without inverting E. For this, we need
to modify steps 6 and 7 in Algorithm 5.1 as follows:

−EV1Λ− AV1 = BB̃T ,

−EV2Λ− AV2 = H(V1 ⊗ V1)H̃T +
∑m

k=1
NkV1Ñ

T
k ,

−ETW1Λ− ATW1 = CT C̃,

−ETW2Λ− ATW2 = 2 ·H(2)(V1 ⊗W1)(H̃(2))T +
∑m

k=1
NT
k W1Ñk,
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Algorithm 5.2: TQB-IRKA for generalized QB systems.

Input: The system matrices: E,A,H,N1, . . . , Nm, B, C.
1 Symmetrize the Hessian H and determine its mode-2 matricization H(2).

2 Make an initial guess for the reduced matrices Ê, Â, Ĥ, N̂1, . . . , Nm, B̂, Ĉ with Â
being diagonalizable.

3 while relative change in Λ(Â, Ê) > tol convergence do

4 Compute mode-2 matricization H̃(2).
5 Solve for V1 and V2:

−EV1Â− AV1Ê
T = BB̂T ,

−EV2Â− AV2Ê
T = H(V1 ⊗ V1)ĤT +

∑m
k=1 NkV1N̂

T
k .

6 Solve for W1 and W2:

−ETW1Â
T − ATW1Ê = CT Ĉ,,

−ETW2Â
T − ATW2Ê = 2 ·H(2)(V1 ⊗W1)(Ĥ(2))T +

∑m
k=1N

T
k W1N̂k.

7 Compute V and W :
V := V1 + V2, W := W1 +W2.

8 V = orth (V ), W = orth (W ).
9 Determine the reduced matrices:

Ê = W TEV , Â = W TAV, Ĥ = W TH(V ⊗ V ),

N̂k = W TNkV, B̂ = W TB, Ĉ = CV .

Output: Ê, Â, Ĥ, N̂1, . . . , N̂m, B̂, Ĉ.

and replace (W TV )−1 with (W TEV )−1, assuming W TEV is invertible while determin-
ing the reduced-order system matrices in step 9 of Algorithm 5.1. Then, the modi�ed
iterative algorithm with the matrix E also provides a reduced-order system, approxi-
mately satisfying optimality conditions under the considered assumptions. We skip the
rigorous proof for the E 6= I case, but it can be proven along the lines of E = I.
Furthermore, one can aim at deriving the Wilson-type H2-optimality conditions for

the generalized QB system by considering Ê, Â, Ĥ, N̂k and Ĉ as optimization variable
which does not require any assumption on the reduced matrices. Then, one can expect
an algorithm as sketched in Algorithm 5.2, which, upon convergence, yields a reduced-
order system, satisfying the Wilson-type optimality conditions approximately. However,
a detailed theoretical discussion on Wilson-type optimality conditions, we leave as a
potential future work.
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5.3. Numerical Experiments
In this section, we illustrate the behavior of the proposed model reduction method
TQB-IRKA for QB systems by means of several semi-discretized nonlinear PDEs,
and compare it with the existing MOR techniques, such as one-sided and two-sided
subsystem-based interpolatory projection methods [25, 78, 106], balanced truncation
(BT) for QB systems (proposed in the previous chapter), and POD, e.g., see [88, 96]
in terms of the accuracy of the time-domain performance and the truncated H2-norm.
We iterate Algorithm 5.1 until the relative change in the eigenvalues of Â becomes
smaller than a given tolerance, which we set to 10−5. Moreover, we determine the
interpolation points for the one-sided and two-sided interpolatory projection methods
applying IRKA [79] to the corresponding linear part, which appear to be a good set of
interpolation points as shown in [25]. All the simulations were done on a board with 4
Intel® Xeon® E7-8837 CPUs with a 2.67-GHz clock speed using MATLAB 8.0.0.783
(R2012b). Some more details related to the numerical examples are as follows:

1. For all time domain simulations, the original and reduced-order systems are inte-
grated by the routine ode15s in MATLAB with a relative error tolerance of 10−8

and an absolute error tolerance of 10−10.

2. We measure the output at 500 equidistant points within the time interval [0, T ],
where T is de�ned in each numerical example.

3. In order to employ BT, we need to solve four standard Lyapunov equations. For
this, we use mess_lyap.m from M.E.S.S.-1.0.1 [113] which is based on one of the
latest ADI methods proposed in [32].

4. We initialize TQB-IRKA (Algorithm 5.1) by choosing an arbitrary reduced-order

system the rand command in MATLAB, while ensuring Â is Hurwitz and diag-
onalizable.

5. Since POD can be applied to a general nonlinear system, we apply POD to the
original nonlinear system, without transforming it into a QB system as we observe
that this way, POD yields better reduced-order systems.

6. One of the aims of the numerical examples is to determine the residuals in The-
orem 5.9. For this, we �rst de�ne Φe

C ∈ Rr×p, Φe
B ∈ Rr×m, Φe

N ∈ Rr×r×m,

Φe
H ∈ Rr×r×r and Φe

Λ ∈ Rr such that ε
(i,j)
C is the (i, j)th entry of Φe

C , ε
(i,j)
B is the

(i, j)th entry of Φe
B, ε

(i,j,k)
N is the (i, j, k)th entry of Φe

N , ε
(i,j,k)
H is the (i, j, k)th

entry of Φe
H , and ε

(i)
Λ is ith entry of Φe

Λ.

Furthermore, we de�ne ΦC , ΦB, ΦN , ΦH , and ΦΛ to be the terms on the left
hand side of equations (5.43a) � (5.43e) in Theorem 5.9, e.g., the (i, j)th entry of
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ΦC is tr
(
CV eri

(
epj
)T)

. As a result, we de�ne relative perturbation measures as

follows:

EC =
‖Φe

C‖2

‖ΦC‖2

, EB =
‖Φe

B‖2

‖ΦB‖2

, EN =
‖Φe1

N ‖2

‖Φ(1)
N ‖2

, EH =
‖Φe1

H‖2

‖Φ(1)
H ‖2

, EΛ =
‖Φe

Λ‖2

‖ΦΛ‖2

, (5.58)

where Φ
(1)
{N,H} and Φe1

{N,H} are mode-1 matricizations of the tensors Φ{N,H} and

Φe1
{N,H}, respectively.

7. We also address a numerical issue which one might face while employing Algo-
rithm 5.1. In step 8 of Algorithm 5.1, we need to take the sum of the two matrices
V1 and V2. If H and Nk are too large, then the norm of V2 can be much larger
than that of V1. Thus, a direct sum might reduce the e�ect of V1. As a remedy
we propose to use a scaling factor γ for H and Nk, resulting in matrices V1 and V2

such that
‖V2‖
‖V1‖

∈ O (100 − 102). We have already noted in Remark 5.3 that this

scaling just scales the input-output mapping. Once again we emphasize that we
just compute the model reduction basis matrices V and W using the scaled sys-
tem, but we project the original, unscaled system to construct the reduced-order
system.

5.3.1. One dimensional Chafee-Infante equation
As a �rst example, we consider the same Chafee-Infante example as discussed in Sub-
section 4.4.2. Note that the original system is of order n = 1000. We construct
reduced-order systems of order n̂ = 10 using TQB-IRKA, BT, one-sided and two-sided
interpolatory projection methods, and POD. Having initialized TQB-IRKA randomly,
it takes 9 iterations to converge, and for this example, we choose the scaling factor
γ = 10−3. For the POD based approximation, we collect 500 snapshots of the true
solution for the training input u(1)(t) = (1 + sin(πt)) exp(−t/5) and compute the pro-
jection by taking the 10 dominant basis vectors.
In order to compare the quality of these reduced-order systems with respect to the

original system, we �rst simulate them using the same training input used to construct
the POD basis, i.e., u(1)(t) = (1 + sin(πt)) exp(−t/5). We plot the transient responses
and relative output errors for this input in Figure 5.1. As expected, since we are
comparing the reduced models for the same forcing term used for POD, Figure 5.1
shows that the POD approximation outperforms the other methods for the input u(1).
However, the interpolatory methods also provide adequate reduced-order systems for
u(1)(t) even though the reduction is performed without any knowledge of u(1)(t).
To test the robustness of the reduced-order systems, we compare the time-domain

simulations of the reduced-order systems with the original one in Figure 5.2 for a
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Orig. sys. TQB-IRKA BT
One-sided proj. Two-sided proj. POD

0 2 4 6 8 10

0

0.5

1

Time (t)

Transient response

0 2 4 6 8 10
10−12

10−6

100

Time (t)

Relative error

Figure 5.1.: Chafee-Infante: comparison of responses for the boundary control input
u(1)(t) = (1 + sin(πt)) exp(−t/5).

Input TQB-IRKA BT One-sided Two-sided POD

u(1)(t) 6.54 · 10−5 1.40 · 10−2 4.30 · 10−3 3.51 · 10−3 2.87 · 10−8

u(2)(t) 1.63 · 10−3 1.43 · 10−2 4.59 · 10−1 6.65 · 10−3 6.70 · 10−2

Table 5.1.: Chafee-Infante: the mean relative errors of the output.

slightly di�erent input, namely u(2)(t) = 25 (1 + sin(πt)). First, observe that the POD
approximation fails to reproduce the system's dynamics for the input u(2) accurately as
POD is input-dependent. Moreover, the one-sided interpolatory projection method also
performs worse for the input u(2). On the other hand, TQB-IRKA, BT, and the two-
sided interpolatory projection method, all yield very accurate reduced-order systems of
comparable qualities; TQB-IRKA produces marginally better reduced-order systems.
Once again it is important to emphasize that neither u(1)(t) nor u(2)(t) have entered
the model reduction procedure in TQB-IRKA. To give a quantitative comparison of
the reduced-order systems for both inputs, u(1) and u(2), we report the mean relative
errors in Section 5.3.1 as well, which also provides us a similar information.
Furthermore, we study the impact of the scaling factor γ, as discussed in Remark 5.3,

on the performance reduced-order systems obtained via TQB-IRKA. For the same
inputs u(i), i ∈ {1, 2}, we plot the relative errors in the time-domain responses for
di�erent values of the scaling factor in Figure 5.3. For this example, we observe that
for γ = 10−3, TQB-IRKA produces a slightly better reduced-order system in terms
of the accuracy of the time-domain simulations than for all other tested values of γ;
however, all scaling factors γ ∈ {100, 10−1, . . . , 10−4} produce comparable reduced-order
systems. For very small values of γ such as γ = {10−5, 10−6}, TQB-IRKA yields very
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Orig. sys. TQB-IRKA BT
One-sided proj. Two-sided proj. POD

0 2 4 6 8 10

0

2

4

Time (t)

Transient response

0 2 4 6 8 10
10−6

10−3

100

Time (t)

Relative error

Figure 5.2.: Chafee-Infante: comparison of responses for the boundary control input
u(2)(t) = 25(1 + sin(πt)).

EC EB EN EH Eλ
1.35× 10−8 8.85× 10−12 8.84× 10−16 1.77× 10−13 1.44× 10−11

Table 5.2.: Chafee-Infante: perturbations to the optimality conditions.

poor reduced-order systems. This is expected since by choosing a very small scaling
factor, the e�ect of the quadratic and bilinear terms is reduced signi�cantly and the
model reduction basis matrices almost correspond to the linear term only; hence, poor
reduced-order systems result. We have observed that if a scaling factor is chosen such

that
‖V2‖
‖V1‖

≈ O (100�102), then TQB-IRKA not only provides a better reduced-order

system but also converges faster, although we do not have a theoretical justi�cation for
this observation yet. Therefore, as future work, it would be interesting to investigate
the in�uence of the scaling factor on the quality of the obtained reduced-order systems
also from a theoretical point of view.
In Theorem 5.9, we have presented the quantities, denoted by εC , εB, ελ, εN , and εH ,

which measure how far the reduced-order system of TQB-IRKA is from satisfying the
optimality conditions (5.32) upon convergence. These quantities can be computed as
shown in (5.58), and are listed in Table 5.2, showing a very small magnitude pertur-
bations. In Remark 5.10, we have argued that for a weakly nonlinear QB system, we
expect these quantities to be small. However, even for this example with strong non-
linearity, i.e., ‖H‖ and ‖Nk‖ are not small at all, the reduced-order system computed
by TQB-IRKA satis�es the optimality conditions (5.32) very accurately. This result
also strongly supports the discussion of Remark 5.11 that a small truncation index is
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100 10−1 10−2 10−3

10−4 10−5 10−6

0 2 4 6 8 10
10−6

10−3

100

Time (t)

Absolute error

0 2 4 6 8 10
10−7

10−3

101

Time (t)

Absolute error

Figure 5.3.: Absolute error between the original and reduced-order systems (r = 10)
obtained using TQB-IRKA for di�erent scaling factors γ for inputs u(1)

and u(2).

TQB-IRKA BT One-sided proj. Two-sided proj.

5 10 15 20
10−14

10−6

102

Order of reduced system, r

‖Σ
−
Σ̂
‖ H

(
T

)
2

‖Σ
‖ H

(
T

)
2

Figure 5.4.: Chafee-Infante: comparison of the truncated H2-norm of the error sys-
tem, having obtained reduced-order systems of di�erent orders via di�erent
methods.

expected to be enough in many cases.
Furthermore, since TQB-IRKA approximately minimizes the truncated H2-norm of

the error system, i.e., ‖Σ− Σ̂‖
H

(T)
2
, we also compare the truncated H2-norm of the error

system in Figure 5.4, where the reduced models are constructed by various methods
of di�erent orders. As mentioned before, the reduced-order systems obtained via POD
preserve the structure of the original nonlinearities; therefore, the truncated H2-norm
de�nition, given in Lemma 5.4, does not apply.
Figure 5.4 indicates that the reduced-order systems obtained via one-sided interpola-

tory projection perform worst in the truncated H2-norm measure. Moreover, while BT
performs better as compared to TQB-IRKA and the two-sided projection method for
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small reduced orders with respect to the truncated H2-norm, for higher reduced orders,
the two-sided interpolatory method yields the best reduced-order systems. However,
it is important to emphasize that unlike in the case of linear dynamical systems, the
H2-norm and the L∞-norm of the output for nonlinear systems, including QB systems,
are not as strongly connected as in the linear case. This can be seen in Figure 5.4;
for reduced order r = 10, even though BT yields the smallest truncated H2 error, in
the time-domain simulations for inputs u(1) and u(2), it is not the best in terms of the
L∞-norm of the output. Nevertheless, the truncated H2-norm of the error system is
still a robust indicator for the quality of the reduced-order system, because this norm
is de�ned by the kernels, which de�ne the mapping from the input to the output.
Thus, if the kernels are ensured to be close enough, then one can expect an accurate
approximation of the output.

5.3.2. Nonlinear RC ladder
Next, we discuss the same nonlinear RC ladder example as in Subsection 4.4.1. We
set the number of capacitors in the ladder to k = 500, resulting in a QB system of
order n = 1000. Note that the matrix A of the resulting QB system has eigenvalues
at zero; therefore, the truncated H2-norm may not exist. Moreover, BT also cannot
be employed as we need to solve Lyapunov equations that require a stable A matrix.
Thus, we shift the matrix A to As := A− 0.01In to determine the projection matrices
for TQB-IRKA and BT, but we project the original system matrices.
We construct reduced-order systems of order r = 10 using all �ve di�erent methods.

In this example as well, we initialize TQB-IRKA randomly and it converges after 27
iterations. We choose the scaling factor γ = 0.01. In order to compute a reduced-order
system via POD, we �rst obtain 500 snapshots of the true solution for the training
input u(1)(t) = e−t and then use the 10 dominant modes to determine the projection.
We �rst compare the accuracy of these reduced-order systems for the same training

input u(1)(t) = e−t that is also used to compute the POD basis. Figure 5.5 shows the
transient responses and relative errors of the output for the input u(1). As one would
expect, POD outperforms all other methods since the control input u(1) is the same as
the training input for POD. Nonetheless, TQB-IRKA, BT, and two-sided projection
also yield very good reduced-order systems, considering they are obtained without any
prior knowledge of the input.
We also test the reduced-order systems for an input di�erent from the training input,

precisely, u(2)(t) = 2.5 (sin(πt/5) + 1). Figure 5.6 shows the transient responses and
relative errors of the output for the input u(2). We observe that POD does perform
almsot as well as TQB-IRKA, BT and two-sided projection methods even for this input,
and the one-sided projection method completely fails to capture the system dynamics
for the input u(2). This can also be observed from Section 5.3.2, where the mean relative
errors of the outputs are reported.
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Orig. sys. TQB-IRKA BT
One-sided proj. Two-sided proj. POD

0 0.5 1 1.5 2
0

0.5
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·10−2

Time (t)

Transient response

0 0.5 1 1.5 2
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10−1
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Relative output error

Figure 5.5.: An RC circuit: comparison of responses for the input u(1)(t) = e−t.

Orig. sys. TQB-IRKA BT
One-sided proj. Two-sided proj. POD
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Figure 5.6.: RC circuit: comparison of responses for the input u(2) = 2.5 (sin(πt/5) + 1).

Input TQB-IRKA BT One-sided Two-sided POD

u(1)(t) 8.82 · 10−5 3.67 · 10−4 6.50 · 10−2 1.01 · 10−4 7.24 · 10−8

u(2)(t) 1.12 · 10−3 2.15 · 10−3 2.32 · 10−1 7.80 · 10−4 7.8 · 10−3

Table 5.3.: RC circuit: the mean absolute errors of the output.

Further, we compute the quantities as de�ned in (5.58) using the reduced-order
system of order r = 10 obtained upon convergence of TQB-IRKA and list them in
Section 5.3.2. This also indicates that the obtained reduced-order system using TQB-
IRKA satis�es all the optimality conditions (5.32) very accurately even though the
nonlinear part of the system plays a signi�cant role in the system dynamics.
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EC EB EN EH Eλ
3.99× 10−10 4.68× 10−8 3.91× 10−7 3.37× 10−8 3.91× 10−8

Table 5.4.: RC circuit: perturbations to the optimality conditions.

TQB-IRKA BT One-sided proj. Two-sided proj.

10 15 20
10−15

10−8

10−1

Order of reduced system, r
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‖Σ
‖ H

(
T
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2

Figure 5.7.: RC circuit: comparison of the truncated H2-norm of the error system
obtained via di�erent methods of various orders.

Next, we also compare the truncated H2-norm of the error system, i.e., ‖Σ− Σ̂‖
H

(T)
2
,

in Figure 5.7, where the reduced models are constructed by various methods of di�erent
orders. The �gure shows that TQB-IRKA yields the best reduced-order systems with
respect to the truncated H2-norm among the investigated methods.
Note that we apply POD to the original system with exponential nonlinearities;

therefore, we cannot compute the truncated H2-norm de�ned in Lemma 5.4. Hence,
POD is omitted in Figure 5.7.

5.3.3. The FitzHugh-Nagumo (F-N) system
This example considers the F-N system, describing activation and deactivation dynam-
ics of spiking neurons which is also considered in Subsection 4.4.3. Recall the governing
nonlinear coupled PDEs:

εvt(x, t) = ε2vxx(x, t) + f(v(x, t))− w(x, t) + q,

wt(x, t) = hv(x, t)− γw(x, t) + q

with the nonlinear function f(v(x, t)) = v(v − 0.1)(1 − v), and initial and boundary
conditions as follows:

v(x, 0) = 0, w(x, 0) = 0, x ∈ (0, L),

vx(0, t) = i0(t), vx(1, t) = 0, t ≥ 0,
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where ε = 0.015, h = 0.5, γ = 2, q = 0.05, and i0(t) is an actuator, acting as a
control input. We set L = 0.3. The voltage and recovery voltage are denoted by v
and w, respectively. Furthermore, we also consider the same output as considered in
Subsection 4.4.3, which is the limit-cycle at the left boundary, i.e., x = 0. The system
can be considered as having two inputs, namely q and i0(t); it has also two outputs,
which are v(0, t) and w(0, t). This means that the system is a multi-input multi-output
(MIMO) system as opposed to the two previous examples. We discretize the governing
equations using a �nite di�erence scheme. This leads to an ODE system, having cubic
nonlinearity, which can then be transformed into the QB form. We consider k = 300
grid points, resulting in a QB system of order 3k = 900.
We next determine reduced-order systems of order n̂ = 35 using TQB-IRKA, BT,

and POD. We choose the scaling factor γ = 1 in TQB-IRKA and it requires 26 it-
erations to converge. In order to apply POD, we �rst collect 500 snapshots of the
original system for the time interval t ∈ (0, 10] using i0(t) = 50(sin(2πt)− 1) and then
determine the projection based on the 35 dominant modes. The one-sided and two-
sided subsystem-based interpolatory projection methods have major disadvantages in
the MIMO QB case. The one-sided interpolatory projection approach of [78] can be
applied to MIMO QB systems, however the dimension of the subspace V , and thus the
dimension of the reduced model, increases quadratically due to the V ⊗ V term. As
we mentioned in Section 5.1, two-sided interpolatory projection is only applicable to
single-input single output (SISO) QB systems. When the number of inputs and out-
puts are the same, which is the case in this example, one can still employ [25, Algo. 1]
to construct a reduced-order system. This is exactly what we did here. However, it is
important to note that even though the method can be applied numerically, it no longer
ensures the theoretical subsystem interpolation property. Despite these drawbacks, for
completeness of the comparison, we still construct reduced models using both one-sided
and two-sided subsystem-based interpolatory projections.
Since the F-N system has two inputs and two outputs, each interpolation point yields

6 columns of the projection matrices V and W . Thus, in order to apply the two-sided
projection, we use 6 linear H2-optimal points and determine the reduced-order system
of order 35 by taking the 35 dominant vectors. We do the same for the one-sided
interpolatory projection method to compute the reduced-order system.
Next, we compare the quality of the reduced-order systems and plot the transient

responses and the absolute errors of the outputs in Figure 5.8 for the training input
i0(t) = 50(sin(2πt)− 1).
As anticipated, POD provides a very good reduced-order system since the POD ba-

sis is constructed by using the same trajectory. Note that despite not reporting CPU
times for the o�ine phases in this paper, due to the very di�erent levels of the im-
plementations used for the various methods, we would like to mention that in this
example the construction of the POD basis with the fairly sophisticated MATLAB in-
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Figure 5.8.: The FitzHugh-Nagumo system: comparison of the limit-cycle at the left
boundary, x = 0 for i0(t) = 50(sin(2πt)− 1).

Orig. sys. TQB-IRKA BT POD
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Figure 5.9.: The FitzHugh-Nagumo system: comparison of the limit-cycle at the left
boundary, x = 0 for i0(t) = 5 · 104t3 exp(−15t).

tegrator ode15s takes roughly 1.5 more CPU time than constructing the TQB-IRKA
reduced-order model with our vanilla implementation.
Comparing TQB-IRKA and BT, TQB-IRKA gives a marginally better reduced-order

system as compared to BT for i0(t) = 50(sin(2πt) − 1), but still both are very com-
petitive. In contrast, the one-sided and two-sided interpolatory projection methods
produce unstable reduced-order systems and are therefore omitted from the �gures.
To test the robustness of the obtained reduced-order systems, we choose a di�er-

ent control input i0(t) = 5 · 104t3 exp(−15t), and compare the transient responses in
Figure 5.9. In this �gure, we observe that BT performs the best among all methods
for i0(t) = 5 · 104t3 exp(−15t), and POD and TQB-IRKA produce reduced-order sys-
tems of almost the same quality. One-sided and two-sided projection result in unstable
reduced-order systems for i0(t) = 5 · 104t3 exp(−15t) as well. Furthermore, we also
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Figure 5.10.: The FitzHugh-Nagumo system: limit-cycle behavior of the original and
reduced-order systems in the spatial domain.
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8.76× 10−8 7.35× 10−9 1.78× 10−11 4.27× 10−9 9.14× 10−10

Table 5.5.: The FitzHugh-Nagumo system: perturbations to the optimality conditions.

show the limit-cycles on the full space obtained from the original and reduced-order
systems in Figure 5.10 for i0(t) = 5 · 104t3 exp(−15t), and observe that the reduced-
order systems obtained using POD, TQB-IRKA, and BT, enable us to reproduce the
limit-cycles, which is a typical neuronal dynamics as shown in Figures 5.8 and 5.10
Stressing here again that for particular interpolation points and higher-order mo-

ments, it might be possible to construct reduced-order systems via one-sided and two-
sided interpolatory projection methods, which can reconstruct the limit-cycles as shown
in [23]. But as discussed in [23], stability of the reduced-order systems is highly sensitive
to these speci�c choices and even slight modi�cations may lead to unstable systems.
For the H2 linear optimal interpolation points selection we made here, the one-sided
and two-sided approaches were not able to reproduce the limit-cycles; thus motivating
the usage of TQB-IRKA and BT once again, especially for the MIMO case.
Moreover, we report how far the reduced-order system of order n̂ = 35 due to TQB-

IRKA is from satisfying the optimality conditions (5.32). For this, we compute the
perturbations (5.58) and list them in Section 5.3.3. This clearly indicates that the
reduced-order system almost satis�es all optimality conditions.
Lastly, we measure the truncated H2-norm of the error systems, using the reduced-

order systems obtained via di�erent methods of various orders. We plot the relative
truncated H2-norm of the error systems in Figure 5.11. We observe that TQB-IRKA
produces better reduced-order systems with respect to the truncated H2-norm as com-
pared to BT and one-sided projection. Furthermore, since we require stability of the
matrix Â in the reduced QB system (4.2) to be able to compute the truncatedH2-norm
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Figure 5.11.: The FitzHugh-Nagumo system: comparison of the truncated H2-norm
of the error system, having obtained reduced-order systems of di�erent
orders using various methods.

of the error systems, we could not achieve this in the case of two-sided projection. For
POD, we preserve the cubic nonlinearity in the reduced-order system; hence, the trun-
cated H2-norm de�nition in Lemma 5.4 does not apply. Thus, we cannot compute the
truncated H2-norm of the error system in the cases of the two-sided projection and
POD, thereby these methods are not included in Figure 5.11.

5.4. Conclusions and Outlook
In this paper, we have investigated the optimal model reduction problem for quadratic-
bilinear control systems. We have �rst de�ned the H2-norm for quadratic-bilinear sys-
tems based on the kernels of the underlying Volterra series and introduced a truncated
H2-norm. We have then derived the �rst-order necessary conditions to be satis�ed by
a minimizer of the newly de�ned truncated H2-norm of the error system. These opti-
mality conditions lead to the proposed model reduction algorithm (TQB-IRKA), which
iteratively constructs reduced order models that approximately satisfy the optimality
conditions. We have also discussed the e�cient computation of the reduced Hessian,
utilizing the Kronecker product structure of the Hessian of the QB system. Via sev-
eral numerical examples, we have shown that TQB-IRKA outperforms the one-sided
interpolation method, performs better than the two-sided projection in the majority of
the cases, and is comparable to balanced truncation. Furthermore, unlike POD, since
TQB-IRKA only depends on the state space quantities and not a speci�c choice of
input, it outperforms POD for input functions that were not in the training set. Even
for inputs which are used to train POD, TQB-IRKA still yields satisfactory perfor-
mance, but is not better than POD as expected. Especially for MIMO QB systems,
TQB-IRKA and BT are the preferred methods of choice to construct reduced-orders
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since the current framework of two-sided subspace interpolatory projection method is
only applicable to SISO systems and the extension of the one-sided interpolatory pro-
jection method to MIMO QB systems yields reduced models whose dimension increases
quadratically with the number of inputs. Moreover, our numerical experiments reveal
that in terms of stability, the reduced-order systems via TQB-IRKA and BT are more
robust as compared to the one-sided and two-sided interpolatory projection methods
although we do not have any theoretical justi�cation of this observation yet.
So far, it is not clear how to choose an appropriate order of reduced-order system in

TQB-IRKA unlike in balanced truncation. Therefore, it would be a promising contri-
bution if a priory error estimation can be derived, allowing us to determine a suitable
order of a reduced-order system. Additionally, even though a stable random initial-
ization of TQB-IRKA has performed well in all of our numerical examples, a more
educated but cheaper initial guess, for example via the two-sided interpolatory method
[25], can further improve the convergence of TQB-IRKA and the quality of the obtained
reduced-order systems. Even though we have investigated the e�cient computation of
the reduced Hessian by utilizing the Kronecker product structure of the Hessian of the
QB system, further research in this direction using even more sophisticated tools from
tensor theory would prove signi�cant in accelerating the iteration steps in TQB-IRKA.
Furthermore, it is worthwhile to further investigate the convergence of H2 iterative
schemes such as TQB-IRKA, and the asymptotic stability of the reduced-order systems
upon convergence. A natural extension of TQB-IRKA to quadratic-bilinear descriptor
systems still remains an open problem.
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6.1. Introduction
In this chapter, we turn our attention to model order reduction for descriptor systems.
Precisely, we study interpolation-based model order reduction for bilinear systems sub-
ject to algebraic constraints, which are referred to as bilinear di�erential algebraic
equations (DAEs), or bilinear descriptor systems. In general, a bilinear descriptor
system is of the form

Eẋ(t) = Ax(t) +
m∑

k=1

Nkx(t)uk(t) +Bu(t),

y(t) = Cx(t) +Du(t),

(6.1)

where x(t) ∈ Rn, u(t) ∈ Rm and y(t) ∈ Rp are the state, input, and output vectors at
time t, respectively. The matrices E, A, Nk, k ∈ {1, . . . ,m}, B, C and D are all real
with dimensions determined by those of x(t), u(t) and y(t). The matrix E is considered
to be singular, but it is assumed that the matrix pencil αE − βA is regular, that is,

det(αE − βA) 6= 0, for some (α, β) ∈ C2.

The generalized eigenvalues of the matrix pencil λE−A are de�ned by pairs (αi, βi) ∈
C2\{0, 0} such that det(αiE − βiA) = 0. The pairs corresponding to βi 6= 0 are the
�nite eigenvalues of the matrix pencil, given as λi = αi/βi, and on the other hand,
the pairs corresponding to βi = 0, are called in�nite eigenvalues of the matrix pencil.
Additionally, we assume that the matrix pencil λE−A is c-stable, that is, all the �nite
eigenvalues of the matrix pencil lie in the open left half plane. These assumptions
are made in order to ensure the existence and uniqueness of smooth solutions to the
dynamical system for su�ciently smooth inputs. For more details, we refer to [97].
Moreover, if the matrix pencil λE−A is regular, then there exist nonsingular matrices

X and Y , transforming the pencil into the Weierstrass canonical form [19, 124]:

E = X

[
Inf 0
0 N̄

]
Y, A = X

[
J 0
0 In∞

]
Y,
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where the Jordan matrix J is such that its eigenvalues coincide with the �nite eigen-
values of the matrix pencil, and N̄ is a nilpotent matrix corresponding to the in�nite
eigenvalues. If the index of nilpotent matrix N̄ is ν > 0, then N̄ν = 0 and N̄ν−1 6= 0.
This nilpotency index is often called the (Kronecker) index of the matrix pencil λE−A.
Moreover, nf and n∞ denote the dimensions of de�ating subspaces of λE−A corre-
sponding to the �nite and in�nite eigenvalues. For more details, see, e.g., [97].
When it comes to de�ning an index of a general nonlinear system, there are many

notions of indices for descriptor systems such as the di�erentiation index, the tractability
index, the Kronecker index of nonlinear DAEs, see, e.g., [9, 97, 100]. Determining
these indices of a system especially for nonlinear systems might be very complicated.
Moreover, it is still not clear how these index concepts might help in the model reduction
framework for nonlinear settings. We, however, know from linear cases that the block
structure of matrices E and A can be utilized in the model reduction process. Here, we
also aim at extending these ideas for linear DAEs to bilinear DAEs, where we take an
advantage of the block structure of matrices E and A, or in other words, the weierstrass
canonical form of pencil λE−A, see, e.g., [80, 125]. This way, one can arguably de�ne
the simplest notion of index in the case of bilinear systems, which is based on the index
of the matrix pencil λE−A or the Kronecker index of the matrix pencil. More precisely,
in this thesis, our focus lies on bilinear DAEs that have the matrix pencil λE − A of
index-1 and index-2 and to show how the existing interpolatory techniques for bilinear
ODEs can be extended to such bilinear DAEs.
Coming back to MOR problem for bilinear systems, many model reduction tech-

niques for linear systems have been extended to bilinear systems with E=I or E being
invertible. Gramians-based approaches have been discussed in a great detail in Chap-
ter 3, and interpolation-based model reduction techniques have also been successfully
extended from the linear case to the bilinear case, see, e.g., [12, 40, 106], where interpo-
lation of the leading k subsystems is considered. In [133], the Gramian-based Wilson
conditions for H2-optimality were extended from linear systems [132] to bilinear sys-
tems.
Later, the analog problem of determining an H2-optimal reduced-order system for

bilinear systems was considered in [21], where �rst-order necessary conditions for H2-
optimality are derived by taking derivatives of the H2-norm of the error system with
respect to the entries of the realization of the reduced-order system. Based on these
conditions, the bilinear iterative rational Krylov algorithm (B-IRKA) was proposed
which upon convergence leads to a locallyH2-optimal reduced-order system. Moreover,
recently, a new framework of interpolation for bilinear systems, the so-called multipoint
interpolation, was considered, which interpolates the whole underlying Volterra series
at prede�ned frequency points [59, 60], and therein also, �rst-order necessary conditions
for H2-optimality were also proposed but in terms of the pole-residue formulation. It
is also shown that a reduced-order system, satisfying the H2 optimality conditions in
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the pole-residues form, satis�es also the optimality conditions derived in [21].
However, there are ample challenges when it comes to model reduction of bilinear

descriptor systems with singular E, and it is necessary to study this case due to its
omnipresence in applications [97]. In this chapter, we focus on interpolatory model
reduction techniques for bilinear descriptor systems with singular matrix E. The inter-
polation conditions for bilinear systems with E = I can be readily extended to singular
E by just replacing I by E. However, it is shown in [80] that directly extending the in-
terpolation conditions for linear ODEs to linear DAEs may lead to an unbounded error
in the H2-norm due to the mismatch of the polynomial part of the system. This ob-
servation immediately holds for bilinear descriptor systems as well. As a consequence,
we need to pay a special attention to the polynomial part of the bilinear system along
with interpolation.
Our primary focus lies in extending the existing interpolation methods for bilinear

ODEs such as subsystem interpolation method, see, e.g., [12, 40], the Volterra series
interpolation [61] to bilinear DAEs, having special structures, while paying a special
attention to polynomial part of the bilinear system along with interpolation. Further-
more, we aim to study how to construct H2-optimal reduced-order systems for the
specially structured bilinear DAEs, extending the work done in [21, 61] for bilinear
ODE systems.
The structure of the chapter is as follows. In the subsequent section, we pro-

vide a detailed overview of interpolation-based model reduction techniques for bilin-
ear ODEs. This includes subsystem interpolation [40], Volterra interpolation [61] and
interpolation-based H2-optimal approximation [21, 61]. We then discuss challenges in
extending these techniques to bilinear DAEs. In Section 6.3, we extend the subsystem
interpolation method to a special class of bilinear DAEs, having index-1 matrix pen-
cil λE−A, which, along with interpolation, also focuses on retaining the polynomial
part of the bilinear system. Furthermore, we discuss the Volterra series interpolation
of the same class of bilinear DAEs and investigate their H2-optimal model reduction
problem in the subsequent section. In Section 6.5, we discuss how H2-optimal model
reduction for bilinear ODEs can be employed to another specially structured bilinear
DAEs, having index-2 matrix pencil λE−A. Finally, we conclude the chapter with our
contributions and future research topics.

6.2. Interpolation-Based MOR for Bilinear ODE
Systems

In this section, we brie�y provide an overview of the subsystem interpolation and
Volterra series interpolation for bilinear ODEs and later review �rst-order necessary
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conditions for H2-optimality. We consider a bilinear ODE system of the form

ΣB :




ẋ(t) = Ax(t) +

m∑

k=1

Nkx(t)uk(t) +Bu(t),

y(t) = Cx(t), x(0) = 0,

(6.2)

where the dimensions of A,Nk ∈ Rn×n, B ∈ Rn×m and C ∈ Rp×n. Our goal is to
construct a reduced-order system

Σ̂B :





˙̂x(t) = Âx̂(t) +
m∑

k=1

N̂kx̂(t)uk(t) + B̂u(t),

ŷ(t) = Ĉx̂(t), x̂(0) = 0,

(6.3)

where the dimensions of Â, N̂k ∈ Rn̂×n̂, B̂ ∈ Rn×n̂ and C ∈ Rn̂×n with n̂� n, ensuring
y ≈ ŷ for all admission input functions u ∈ Lm2 [0,∞).
For simplicity, we denote the system (6.2) by ΣB. Moreover, for ease of notation, we

stick to single-input single-output (SISO) bilinear systems while discussing subsystem
interpolation and Volterra series interpolation; however, they are also applicable to bi-
linear multi-input multi-output (MIMO) systems. In the case of SISO bilinear systems,
we denote N1 =: N . Recall from Section 3.2, the output y(t) of a SISO bilinear system
ΣB can be described by a nonlinear mapping of the input u(t):

y(t) =
∞∑

k=1

∫ t

0

∫ t1

0

· · ·
∫ tk−1

0

gk(t1, t2, . . . , tk)u(t− t1 − t2 · · · − tk) · · ·u(t− tk)dt1 · · · dtk,

where gk is the regular Volterra kernel, whose corresponding multi-variate transfer
functions can be given by

Gk(s1, s2, . . . , sk) = C(skI − A)−1N · · · (s2I − A)−1N(s1I − A)−1B.

For more details, we refer to Section 3.2, where we have collected the relevant control
theoretic concepts for bilinear systems. Interpolatory-based model reduction techniques
for bilinear systems have been widely studied in the literature; see, e.g., [12, 40, 61, 106].
In this following, we �rst show how to construct a reduced-order system, whose the
�rst k subsystems interpolate the corresponding original subsystem.

6.2.1. Subsystem interpolation for bilinear ODEs
The idea of interpolation of subsystems of bilinear systems mainly relies on the moments
of the multi-variate transfer functions. Thus, we �rst de�ne the multi-moments for
bilinear systems.
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De�nition 6.1:
Let Gk(s1, . . . , sk) be kth-order multi-variate transfer function of the SISO bilin-
ear system (6.2). Performing the Neumann series expansion of Gk(s1, . . . , sk) for
(s1, . . . , sk) around the expansion points (σ1, . . . , σk) leads to

Gk(s1, . . . , sk) =
∞∑

lk=1

· · ·
∞∑

l1=1

m(l1, . . . , lk)(s1 − σ1)l1−1 · · · (sk − σk)lk−1,

where

m(l1, . . . , lk) = (−1)kCT (A− σkIn)−lkN · · · (A− σ2In)−l2N(A− σ1In)−l1B.

The m(l1, . . . , lk) are called multi-moments of the bilinear system, corresponding to
the kth-order multi-variate transfer function at (σ1, . . . , σk). ♦
The idea of subsystem interpolation is to construct a reduced-order system such that

the multi-moments at a speci�c set of expansion points match with those of the original
system. In this direction, the subsystem interpolation was �rst investigated in [106]
for SISO bilinear systems, and a methodology to construct reduced-order systems was
proposed, matching the multi-moments at in�nity, i.e., σ1 = σ2 = · · · = σk =∞. Then,
the interpolating the multi-moments at zero, i.e., σ1 = σ2 = σk = 0, was considered
in [12]. Finally, the problem of determining a reduced-order system, matching multi-
moments at any given interpolation points σi ∈ C was explored in [40], which is outlined
in the following theorem, and we aim at extending this method to bilinear DAEs later
in Section 6.3.

Theorem 6.2 ([40]):
Consider arbitrary interpolation points σj, µj ∈ C such that sIn−A and sIn̂− Â are
invertible for s = σj, µj, j ∈ {1, . . . , k}. De�ne the projection matrices V and W as
follows:

range
(
V (1)

)
= Kq

(
(σ1I − A)−1, (σ1I − A)−1B

)
,

range
(
V (i)

)
= Kq

(
(σiI − A)−1, (σiI − A)−1NV (i−1)

)
, i ∈ {2, . . . , k},

range
(
W (1)

)
= Kq

(
(µ1I − A)−T , (µ1I − A)−TCT

)
,

range
(
W (i)

)
= Kq

(
(µiI − A)−T , (µiI − A)−TNTW (i−1)

)
, i ∈ {2, . . . , k},

range (V ) =
k⋃

i=1

{
range

(
V (i)

) }
, range (W ) =

k⋃

i=1

{
range

(
W (i)

) }
,

where Kq(A,B) = span (B,AB, . . . ,Aq−1B) denotes the Krylov subspace. Assuming
V and W are of full column rank and reduced matrices are construed as:

Ê = W TEV, Â = W TAV, N̂ = W TNV,

B̂ = W TB, Ĉ = CV,
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then the multi-moments of multi-variate transfer functions of the reduced-order sys-
tem m̂(l1, . . . , li) match those of the corresponding multi-variate transfer functions
of the original system as follows:

m(l1, . . . li) = m̂(l1, . . . , li), for i ∈ {1, . . . , k} and l{1,...,k} ∈ {1, . . . , q}. ♦

Although the interpolation of subsystems have been successfully applied to various
applications to construct reduced-order systems, the main setback of this method is that
the dimension of the reduced-order system can increase rather rapidly. For instance,
if the subspaces V and W are determined by using the �rst k subsystems as shown
in Theorem 6.2, then an interpolating reduced-order system will have the dimension of
order r = q+ q2 + · · ·+ qk. This grows even more rapidly in the case of MIMO systems.
However, in practice, we observe that interpolations of the �rst two subsystems result
in reduced-order systems, which can replicate the important dynamics of the original
bilinear system.
Recently, a novel interpolation problem of the bilinear system was proposed in [59].

This is motivated by the fact that the response of a bilinear system is given by an
in�nite series, the so-called Volterra series of a bilinear system, and it is linked with the
inverse Laplace transform of the kth-order multi-variate transfer function. Therefore,
it would be also interesting to enforce the interpolation of the whole Volterra series,
rather than interpolating each subsystem, separately.

6.2.2. Multi-point Volterra series interpolation for bilinear ODEs
Next, we outline the multi-point interpolation of the Volterra series problem statement
for the bilinear system (6.2). For this, we consider two sets of interpolation points
σj, µj ∈ C, for j ∈ {1, . . . , n̂}, along with matrices U, S ∈ Cn̂×n̂ and de�ne the weighted
Volterra series as

ζj =
∞∑

k=1

n̂∑

l1=1

n̂∑

l2=1

· · ·
n̂∑

lk−1=1

ηl1,...,lk−1,jGk(σl1 , σl2 , . . . , σj) (6.4)

and

ϕj =
∞∑

k=1

n̂∑

l1=1

n̂∑

l2=1

· · ·
n̂∑

lk−1=1

ϑl1,...,lk−1,jGk(µj, µl1 , . . . , µlk−1
), (6.5)

where ηl1,...,lk−1,j and ϑl1,...,lk−1,j are the weights associated to each subsystem in the
Volterra series and are de�ned in terms of the elements of the matrices U and S as
follows:

ηl1,...,lk−1,j = uj,lk−1
ulk−1,lk−2

· · ·ul2,l1 for k ≥ 2 and ηl1 = 1,

ϑl1,...,lk−1,j = sj,lk−1
slk−1,lk−2

· · · sl2,l1 for k ≥ 2 and ϑl1 = 1.
(6.7)
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The goal of the new interpolation framework is to construct a reduced-order system Σ̂B

of dimension n̂ such that the following interpolation conditions are satis�ed for each
j ∈ {1, . . . , n̂}:

ζj =
∞∑

k=1

n̂∑

l1=1

n̂∑

l2=1

· · ·
n̂∑

lk−1=1

ηl1,...,lk−1,jĜk(σl1 , σl2 , . . . , σj) (6.8)

and

ϕj =
∞∑

k=1

n̂∑

l1=1

n̂∑

l2=1

· · ·
n̂∑

lk−1=1

ϑl1,...,lk−1,jĜk(µj, µl1 , . . . , µlk−1
), (6.9)

where Ĝk(µl1 , . . . , µk) is the kth-order multi-variate transfer function associated with
the reduced-order system. Similar to the linear case, the reduced-order system matrices
are constructed via projection matrices V and W , assuming W TV being invertible, as
follows:

Â = (W TV )−1W TAV, N̂ = (W TV )−1W TNV,

B̂ = (W TV )−1W TB, Ĉ = CV.
(6.10)

Then, the problem of identifying these projection matrices is considered in [59], which
provides us a reduced-order system such that the interpolation conditions (6.8) and (6.9)
are satis�ed. The following theorem suggests the choice of such projection matrices.

Theorem 6.3 ([59]):
Consider a SISO bilinear system ΣB of dimension n and the interpolation points σj,
µj ∈ C, j ∈ {1, . . . , n̂}, along with matrices U, S ∈ Cn̂×n̂. Let the projection matrices
V and W be the solutions of the following Sylvester equations

V Ω− AV −NV UT = B1Tn̂ (6.11)

and

WΞ− ATW −NTWST = CT
1
T
n̂ , (6.12)

where Ω = diag (σ1, . . . , σn̂), Ξ = diag (µ1, . . . , µn̂), and 1
T
n̂ is the vector of ones

in Rn̂. Furthermore, assume that W TV ∈ Rn̂×n̂ is invertible and a reduced-order
system Σ̂B of order n̂ is computed using the projection matrices V and W as shown
in (6.10), then the interpolation conditions (6.8) and (6.9) are ful�lled. ♦

6.2.3. H2-optimal model reduction for bilinear ODEs
Here, we present a construction of an H2-optimal reduced-order system for bilinear
ODEs. There exist mainly two approaches in the literature for it. One approach is
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to extend the structured-orthogonality conditions for linear systems [79] to bilinear
systems. In [79], it is shown for linear systems that a particular type of conditions
for Hilbert-space orthogonality is equivalent to all other derived �rst-order necessary
conditions for linear systems in the literature. These structure-orthogonality conditions
for bilinear systems are studied in [60]. However, therein, it is concluded that in general,
it is not possible to construct a reduced-order system, satisfying such orthogonality
conditions. This is because we require an in�nite dimensional bilinear realization,
which can satisfy such orthogonality conditions. This is undesirable, especially when
we are aiming at constructing low-order models.
Another approach is a conventional one, which �rst involves deriving the error expres-

sion, that is, theH2-norm of the error system and then derive the optimality conditions
which minimize the error expression. Initially, this problem was considered in [133],
where �rst-order necessary conditions for optimality were derived which minimize the
desired error expression. However, it was not an easy task to construct a reduced-order
system from these derived optimality conditions. Later on, the analog problem was
considered in [21], where it is shown how to write the H2-norm of the error using Kro-
necker product properties, leading to computable necessary conditions for optimality.
In the following theorem, we �rst note down the H2-norm of the error system.

Theorem 6.4 ([21]):
Let ΣB and Σ̂B be the original system (6.2) and a reduced-order system (6.3), re-
spectively. Then, the H2-norm of the error system can be given by

‖ΣB − Σ̂B‖H2

= ITp

([
C −C̃

]
⊗
[
C −Ĉ

])
×

(
−
[
A 0
0 Λ

]
⊗
[
In 0
0 In̂

]
−
[
In 0
0 In̂

]
⊗
[
A 0

0 Â

]
−

m∑

k=1

[
Nk 0

0 Ñk

]
⊗
[
Nk 0

0 N̂k

])−1

×
([
B

B̃

]
⊗
[
B

B̂

])
Im

(6.13)

where RΛR−1 is the spectral decomposition of Â, and B̃, C̃ and Ñk are de�ned as
R−1B̂, CR and R−1N̂kR, respectively. ♦
Having had the error expression (6.13), the next goal is to determine a reduced-order

system of order n̂ that solves

min
Σ̂B of order n̂

‖ΣB − Σ̂B‖H2 . (6.14)

To solve the above minimization problem, one can consider Λ, B̃, C̃ and Ñk as op-
timization parameters. Then, �rst-order necessary conditions for an H2-optimal ap-
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proximation can be derived by di�erentiating the error expressions with respect to the
optimization parameters, which we summarize in the following theorem.

Theorem 6.5 ([21]):
Let ΣB and Σ̂B be the original and reduced-order systems. Furthermore, let RΛR−1

is the spectral decomposition of Â, and B̃, C̃ and Ñk are de�ned as R−1B̂, CR and
R−1N̂kR, respectively. Then, if Σ̂B is a locally H2-optimal approximation of ΣB,
then the following conditions need to be satis�ed:

ITp
(
eie

T
j ⊗ C

)
X
(
B̃ ⊗B

)
Im = ITp

(
eie

T
j ⊗ Ĉ

)
X̂
(
B̃ ⊗ B̂

)
Im,

ITp

(
C̃ ⊗ C

)
X
(
eje

T
i ⊗B

)
Im = ITp

(
C̃ ⊗ Ĉ

)
X̂
(
eje

T
i ⊗ B̂

)
Im,

ITp

(
C̃ ⊗ C

)
X
(
eie

T
i ⊗ In

)
X
(
B̃ ⊗B

)
Im =

ITp

(
C̃ ⊗ Ĉ

)
X̂
(
eie

T
i ⊗ In̂

)
X̂
(
B̃ ⊗ B̂

)
Im,

ITp

(
C̃ ⊗ C

)
X
(
eie

T
i ⊗Nk

)
X
(
B̃ ⊗B

)
Im =

ITp

(
C̃ ⊗ Ĉ

)
X̂
(
eie

T
i ⊗ N̂k

)
X̂
(
B̃ ⊗ B̂

)
Im

in which

X :=

(
−Λ⊗ In − In̂ ⊗ A−

m∑

k=1

Ñk ⊗Nk

)−1

,

X̂ :=

(
−Λ⊗ In̂ − In̂ ⊗ Â−

m∑

k=1

Ñk ⊗ N̂k

)−1

. ♦

Like the H2-optimality conditions for linear systems [79], in the bilinear setting
as well, the optimality conditions involve the parameter of the reduced-order systems
which are not available beforehand. However, Benner and Breiten in [21] have proposed
an iterative scheme for bilinear systems which upon convergence leads to reduced-
order systems, satisfying the optimality conditions in Theorem 6.5. We outline steps
in Algorithm 6.1 to construct reduced-order systems using �x-point iterations, which
extends the Iterative Rational Krylov Algorithm (IRKA) for linear systems [79] to
bilinear systems.
Another way to formulate the H2-optimal problem is by using the pole-residue for-

mulation. The H2-norm of a SISO bilinear system in terms of the pole-residue form is
given by a weighted sum over all possible combinations of point evaluations at the mir-
ror image of eigenvalues of the matrix A (the poles of the system) and then is summed
over all multi-variate transfer functions, for details, see Proposition 3.9. Utilizing this,
one can obtain theH2-norm of the error system, which has two parts: one part contains
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Algorithm 6.1: Bilinear iterative rational Krylov algorithm (B-IRKA) [21].

Input: The system matrices: A, Nk, B, C.
1 Make an initial guess of Λ, B̃, Ñk and C̃.
2 while relative change in {λi} > tol convergence do
3 Solve for V and W :

4 V (−Λ) + AV +
∑m

k=1NkV Ñ
T
k +BB̃T = 0,

5 W (−Λ) + ATW +
∑m

k=1N
T
k WÑk + CT C̃ = 0.

6 Perform:
7 V = orth (V ) and W = orth (V ).
8 Compute the reduced matrices:

9 Â = (W TV )−1W TAV , N̂k = (W TV )−1W TNkV ,

10 B̂ = (W TV )−1W TB, Ĉ = CV .

11 Determine the spectral decomposition of Â =: RΛR−1.

12 De�ne B̃, C̃ and Ñk are de�ned as R−1B̂, CR and R−1N̂kR, respectively.

Output: Â, N̂k, B̂, Ĉ.

a weighted sum of the di�erence of the multi-variate transfer functions of the original
and reduced-order systems, computed at the mirror image of the pole of the original
system across the imaginary axis, and the second part also has the similar structure
but computed at the mirror image of the poles of the reduced-order system across the
imaginary axis. Analogous to the linear case [7], the aim is to eliminate the error in
the H2-norm of the error system, due to the mismatch at the reduced-order system
singularities. This leads to the following �rst-order necessary conditions for optimality
in the pole-residue formulation for a SISO bilinear system:

∞∑

k=1

n̂∑

l1=1

· · ·
n̂∑

lk=1

φ̂l1,...,lk

(
Gk(−λ̂l1 , . . . ,−λ̂lk)− Ĝk(−λ̂l1 , . . . ,−λ̂lk)

)
= 0 (6.15)

and

∞∑

k=1

n̂∑

l1=1

· · ·
n̂∑

lk=1

φ̂l1,...,lk

(
k∑

j=1

∂

∂sj
Gk(−λ̂l1 , . . . ,−λ̂lk)

)

=
∞∑

k=1

n̂∑

l1=1

· · ·
n̂∑

lk=1

φ̂l1,...,llk

(
k∑

j=1

∂

∂sj
Ĝk(−λ̂l1 , . . . ,−λ̂lk)

)
,

(6.16)

where the λ̂i's are the zeros of det(sIn̂ − Â), and φ̂l1,...,lk are the residues of the kth-

order multi-variate transfer functions Ĝk(s1, s2, . . . , sk) computed at (s1, . . . , sk) =
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(−λ̂l1 , . . . ,−λ̂lk), as de�ned in (3.16); the operator ∂
∂sj
Gk(−λ̂l1 , . . . ,−λ̂lk) denotes the

partial derivative of Gk(s1, . . . , sk) with respect to sj, evaluated at (s1, . . . , sk) =

(−λ̂l1 , . . . ,−λ̂lk).
The connection between the H2-optimality conditions in the pole-residue formula-

tions and the multi-point Volterra series interpolation was established in [59]. That is,
the H2-optimality conditions are equivalent to the multi-point Volterra interpolation if
the interpolation points Ω and Ξ in (6.11)�(6.12) are chosen to be the mirror images
of the poles of the reduced-order system across the imaginary axis, i.e., Ω = Ξ = −Λ,
respectively, where Λ = R−1ÂR; the matrices U and S are given by the bilinear term N̂
as U = R−1N̂R and S = RT N̂TR−T , and the vector 1n̂ in (6.11) and (6.12) is replaced

with R−1B̂ and ĈR, respectively. For details, we refer to [59, 60].
These optimality conditions in the pole-residue formulation play an important role

while studying an H2-optimal model reduction problem for bilinear DAEs. This is
because we do not have a nice expression for the error system, e.g., in a Kronecker
product form, for bilinear descriptor systems, in contrast to the case of bilinear ODEs.
Therefore, it is not so easy to derive the optimality conditions for bilinear DAEs with
respect to the realization of the reduced-order system as done in [21]. However, since
the pole-residue formulation requires information of the transfer function of a bilinear
system which can be easily determined in the case of descriptor systems as well, it will
be relatively easier to proceed further in the direction of the pole-residue formulation
for bilinear DAEs.

Remark 6.6:
The subsystem interpolation and the multi-point interpolation of the underlying
Volterra series as discussed in Subsystems 6.2.1�6.2.2, respectively can be extended
to bilinear DAEs straightforwardly by replacing In with E while computing the
projection matrices V and W . This yields a reduced-order system which satis�es the
interpolation conditions. However, directly extending the interpolation conditions to
descriptor systems without any modi�cations may lead to poor reduced-order systems
with theH2-norm error blowing up, occurring due to the unmatched polynomial part
of the system. This statement is based on the analysis in [80] for linear DAEs. ♦

Motivated by the work done in [80] for linear DAEs, we pay a special attention to
the polynomial part of the bilinear descriptor system in the upcoming sections of this
chapter along with interpolation.

6.3. Subsystem Interpolation for Index-1 Bilinear
Descriptor Systems

In this section, we extend the subsystem based interpolatory model order reduction
technique of SISO bilinear DAEs, having a special structure in the semi-explicit form
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as follows:

E11ẋ1(t) + E12ẋ2(t) = A11x1(t) + A12x2(t) +N11x1(t)u(t) +N12x2(t)u(t) +B1u(t),
(6.17a)

0 = A21x1(t) + A22x2(t) +N21x1(t)u(t) +N22x2(t)u(t) +B2u(t),
(6.17b)

y(t) = C1x1(t) + C2x2(t), (6.17c)

where x1(t) ∈ Rn1 and x2(t) ∈ Rn2 , and all other matrices are of appropriate sizes.
Furthermore, it is assumed that A22 is invertible as is E11−E12A

−1
22 A21. Thus, the

system (6.17) has an index-1 structure in case Nij = 0, {i, j} ∈ {1, 2}. Moreover,
we assume that the initial condition of the system (6.17) is consistent. For simplicity
of notion, we consider SISO bilinear DAEs (6.17), but all results can be extended to
MIMO bilinear DAEs.
The multi-variate transfer functions for bilinear DAEs can be determined by the

exponential growth approach analogous to bilinear ODEs [111]. The structure of the
multi-variate transfer function corresponding to the kth subsystem of (6.17) in the
regular form is given by

Hk(s1, . . . , sk) = C(skE − A)−1N(sk−1E − A)−1N · · ·N(s1E − A)−1B, (6.18)

where

E =

[
E11 E12

0 0

]
, A =

[
A11 A12

A21 A22

]
, N =

[
N11 N12

N21 N22

]
, B =

[
B1

B2

]
, C =

[
C1 C2

]
.

As mentioned at the end of the previous section, the subsystem of the leading kth
subsystems of the bilinear DAEs can be achieved by using the subspaces V and W as
shown in Theorem 6.2 by just replacing In with E. However, the direct extension to
bilinear DAEs may lead to unbounded error inH2-norm, which is due to the unmatched
polynomial part of the system. Hence, we need to take care of the polynomial part of
the bilinear system as well, together with interpolation, which is our main focus.

6.3.1. Polynomial part of bilinear DAEs, having index-1 matrix
pencil

As a �rst step, we aim at determining the polynomial of the kth-order transfer func-
tion (6.18) explicitly. The next lemma shows that each subsystem of the system (6.17)
has a constant polynomial part.

Lemma 6.7:
Let Hk(s1, . . . , sk) =: Hk(Sk) be the multi-variate transfer functions of the bilin-
ear DAEs, which are de�ned as in (6.18). Assume that the matrices A22 and
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E11−E12A
−1
22 A21 in (6.17) are both nonsingular. Then, the polynomial part of Hk(Sk)

is constant and is given by

Dk = C(MN)k−1MB, (6.19)

where M is as de�ned as

M = lim
s→∞

(sE − A)−1 =

[
0 E−1

A E12A
−1
22

0 −A−1
22

(
I + A21E

−1
A E12A

−1
22

)
]

(6.20)

with EA = E11 −E12A
−1
22 A21 and s := 2πıf is the Laplace variable in which f is the

frequency and ı is the imaginary unit. ♦

Proof. Let F (Sk) := F (s1, . . . , sk) be the multi-variable function

F (Sk) = (skE − A)−1N(sk−1E − A)−1N · · ·N(s1E − A)−1B, (6.21)

then the polynomial part of Hk(Sk) is given by

Dk = C lim
Sk→∞

F (Sk). (6.22)

Note that for k = 1, Eq. (6.21) yields

lim
S1→∞

F (s1) = lim
s1→∞

(s1E − A)−1B.

Then, using (6.20), we obtain

lim
S1→∞

F (s1) = lim
s1→∞

(s1E − A)−1B = MB. (6.23)

It is easy to see from (6.22) that (6.19) holds for k = 1 (analog to the linear case [80]).
Now, for k = j ≥ 1, assume that

lim
Sj→∞

F (Sj) = (MN)j−1MB. (6.24)

Then, we need to show that the above equation holds for k = j + 1 as well. First, note
that

F (Sj+1) = (sj+1E − A)−1NF (Sj).

Taking the limit Sj+1 →∞, we have

lim
Sj+1→∞

F (Sj+1) = lim
sj+1→∞

(sj+1E − A)−1N lim
Sj→∞

F (Sj)

= lim
sj+1→∞

(sj+1E − A)−1N(MN)j−1MB,
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where the last equation follows from (6.24). Now, we de�ne BMN := N(MN)j−1MB
and use (6.20) to obtain

lim
Sj+1→∞

F (Sj+1) = lim
sj+1→∞

(sj+1E − A)−1BMN = MBMN = (MN)jMB.

Hence, we obtain

Dk = C lim
Sj+1→∞

F (Sj+1) = C(MN)kMB,

thus, concluding the proof.

6.3.2. Subsystem interpolation while retaining the polynomial
part

Since we now have the polynomial part of each subsystem, the next goal is to construct
a reduced-order system that retains the polynomial part of each subsystem associated
with the original bilinear system, in addition to the interpolation of subsystems. As a
�rst step, we assume the structure of the kth-order multi-variate transfer function of a
reduced bilinear system as follows:

Ĥ(s1, . . . , sk) = Ĉ(skÊ − Â)−1N̂(sk−1Ê − Â)−1N̂ · · · N̂(s1Ê − Â)−1B̂ +Dk, (6.25)

where Ê, Â, N̂ ∈ Rn̂×n̂, B̂, ĈT ∈ Rn̂ with n̂� n. Moreover, the matrix Ê is assumed
to be nonsingular, and Dk is the polynomial part of the kth subsystem of the original
bilinear system. A major advantage of considering the structure of the kth-order trans-
fer function of the reduced-order system as in (6.25) is that the reduced bilinear system
ensures the matching of polynomial parts of the subsystems corresponding to those
of the original bilinear system. Now, we need to develop conditions which guarantee
the interpolation between kth-order multi-variate transfer functions of the original and
reduced-order systems as well. For this, in the next theorem, we show how to construct
reduced-order matrices Ê, Â, etc., ensuring the desired goal.

Theorem 6.8:
Consider arbitrary interpolation points σj, µj ∈ C such that sE −A and sÊ − Â are
invertible for s = σj, µj, j ∈ {1, . . . , k}. De�ne the projection matrices V and W as
follows:

range
(
V (1)

)
= Kq

(
(σ1E − A)−1, (σ1E − A)−1B

)
,

range
(
V (i)

)
= Kq

(
(σiE − A)−1, (σiE − A)−1NV (i−1)

)
, i ∈ {2, . . . , k},

range
(
W (1)

)
= Kq

(
(µ1E − A)−T , (µ1E − A)−TCT

)
,

range
(
W (i)

)
= Kq

(
(µiE − A)−T , (µiE − A)−TNTW (i−1)

)
, i ∈ {2, . . . , k},

range (V ) =
k⋃

i=1

range
(
V (i)

)
, range (W ) =

k⋃

i=1

range
(
W (i)

)
.
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Moreover, de�ne the intermediate matrices as follows:

Ẽ = E, Ã = A+ LA, Ñ = N − LN ,
B̃ = B − LB, C̃ = C − LC ,

where LA, LN , LB, LC are solutions to the following equations:

W TLB =
[
D1(eq1)T , D2(eq

2

1 )T , . . . , Dk(e
qk

1 )T
]T
, (6.26a)

LCV =
[
D1(eq1)T , D2(eq

2

1 )T , . . . , Dk(e
qk

1 )T
]
, (6.26b)

LAV =
[
LB(eq1)T , LN

[
V (1)(Iq ⊗ (eq1)T ), . . . , V (k−1)(Iqk−1 ⊗ (eq1)T ))

]]
, (6.26c)

W TLA =
[
LTC(eq1)T , LTN [W (1)(Iq ⊗ (eq1)T ), . . . ,W (k−1)(Iqk−1 ⊗ (eq1)T )]

]T
, (6.26d)

in which Dk is the polynomial part of the kth-order multi-variate transfer function
of the original system, and el1 is the �rst column of the identity matrix of size l × l.
Then, the projection of the intermediate system results in a reduced-order system:

Ê = W T ẼV, Â = W T ÃV, N̂ = W T ÑV,

B̂ = W T B̃, Ĉ = C̃V

that satis�es

Hk(Sk) = Ĥk(Sk) + O ((s1 − µ1)q · · · (sk − µk)q(s1 − σ1)q · · · (sk − σk)q) . ♦

Proof. Consider the �rst subsystem at s1 = σ1:

H1(σ1)− Ĥ1(σ1) = C
(

(σ1E − A)−1B − V (σ1Ê − Â)−1B̂
)

+ LCV (σ1Ê − Â)−1B̂ −D1. (6.27)

Since V (σ1Ê − Â)−1B̂ = V (σ1Ê − Â)−1W T (B − LB) and from (6.26c),

LA(σ1E − A)−1B = LB,

we obtain

V (σ1Ê − Â)−1B̂ = V (σ1Ê − Â)−1W T ((σ1E − A)− LA) (σ1E − A)−1B.

Now, introducing an oblique projector Pσ = V (σÊ − Â)−1W T ((σE − A)− LA) and
utilizing Pσz = z for z ∈ range(V ), we thus get

V (σ1Ê − Â)−1B̂ = Pσ1(σ1E − A)−1B = (σ1E − A)−1B. (6.28)
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Using the above relation in (6.27), we obtain

H1(σ1)− Ĥ1(σ1) = LC(σ1E − A)−1B −D1.

From (6.26b), LC(σ1E−A)−1B = D1; thus, H1(σ1) = Ĥ1(σ1). Similarly, one can show

that H1(µ1) = Ĥ1(µ1). Now, we consider the second subsystem, which is:

H2(σ1, σ2)− Ĥ2(σ1, σ2) = C(σ2E − A)−1N(σ1E − A)−1B

− Ĉ(σ2Ê − Â)−1N̂(σ1Ê − Â)−1B̂ −D2

= C
(

(σ2E − A)−1N(σ1E − A)−1B

− V (σ2Ê − Â)−1N̂(σ1Ê − Â)−1B̂
)

+ LCV (σ2Ê − Â)−1N̂(σ1Ê − Â)−1B̂ −D2.

(6.29)

Hence,

V (σ2Ê−Â)−1N̂(σ1Ê−Â)−1B̂︸ ︷︷ ︸
ẑ

=V (σ2Ê−Â)−1W T (N−LN)V (σ1Ê−Â)−1B̂

= V (σ2Ê − Â)−1W T (N − LN)(σ1E − A)−1B,

where the last equation follows from (6.28). Moreover, from (6.26c), it implies that

LA(σ2E − A)−1N(σ1E − A)−1B = LN(σ1E − A)−1B.

Thus,

V ẑ = V (σ2Ê − Â)−1W T ((σ2E − A)− LA)(σ2E − A)−1N(σ1E − A)−1B

= Pσ2(σ2E − A)N(σ2E − A)−1B = (σ2E − A)N(σ1E − A)−1B.

Using the above relation in (6.29), we obtain

H2(σ1, σ2)− Ĥ2(σ1, σ2) = LC(σ2E − A)−1N(σ1E − A)−1B −D2.

Utilizing (6.26b), we have LC(σ2E − A)−1N(σ1E − A)−1B = D2. Thus, H2(σ1, σ2) =

Ĥ2(σ1, σ2). Similarly, we can prove that H(µ1, µ2) = Ĥ(µ1, µ2). Analogously, we can
also deal with higher subsystems and higher derivatives.

6.3.3. Computational issues
In the previous section, we have shown how to construct a reduced-order system whose
subsystems do not only interpolate those of the original systems but also retains their
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polynomial parts. However, the main bottleneck in computing reduced-order systems is
that we require the computation of LA, LN , LB and LC to determine the intermediate
matrices, e.g., Ẽ, Ã, which might be computationally expensive. Therefore, we next
show how to determine a reduced-order system without computing these intermediate
matrices.
Before we proceed further, we discuss the condition for the existence of a simulta-

neous solution of two given linear systems in the following lemma, which helps us in
determining the condition for the existence of the solutions of (6.26a)�(6.26d).

Lemma 6.9:
Consider the matrices Ai,Bi ∈ Rn×m, i ∈ {1, 2} and X ∈ Rn×n, where n ≥ m,
satisfying the following two linear equations:

AT
1X = BT

1 , (6.30a)

XA2 = B2. (6.30b)

If AT
1 B2 = BT

1 A2, then there exists an X that satis�es both (6.30a) and (6.30b), else
it is not possible to determine an X, satisfying both (6.30a) and (6.30b) simultane-
ously. ♦

Proof. We �rst recall an important property of the Kronecker product and vectorization

vec
(
X̃Ỹ Z̃

)
= (Z̃T ⊗ X̃) vec

(
Ỹ
)
.

Using the vec (·) operation on both sides of (6.30a) and (6.30b) leads to

[
In ⊗AT

1

AT
2 ⊗ In

]
Xv =

[
vec
(
BT

1

)

vec (B2)

]
, (6.31)

where Xv := vec (X). Next, we de�ne a matrix

M =



AT

2 ⊗ Im 0
P⊗ Im 0

0 Im ⊗AT
1

0 Im ⊗ Q


,

where P,Q ∈ R(n−m)×n such that the matrix M is invertible. Multiplying M on both
sides of (6.31) yields




AT
2 ⊗AT

1

P⊗AT
1

AT
2 ⊗AT

1

AT
2 ⊗ Q




︸ ︷︷ ︸
A

Xv =




(AT
2 ⊗ Im) vec

(
BT

1

)

(P⊗ Im) vec
(
BT

1

)

(Im ⊗ AT1 ) vec (B2)
(Im ⊗ Q) vec (B2)


 =




vec
(
BT

1 A2

)

(P⊗ Im) vec
(
BT

1

)

vec
(
AT

1 B2

)

(Im ⊗ Q) vec (B2)




︸ ︷︷ ︸
B

(6.32)
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Now, by using the Kronecker-Capelli theorem [119], the linear system (6.32) has a
solution if and only if:

rankA = rank[A,B]. (6.33)

Clearly, the �rst and third row blocks of the matrix A are the same. Therefore, P and
Q can be chosen such that the rank of the matrix A is equal to m(2n −m) which is
equal to the number of rows, having removed the third row block of the matrix A. In
order to have the same rank for the matrix [A,B], the �rst and the third row blocks of
the matrix B should also be the same. This leads to the following condition:

BT
1 A2 = AT

1 B2. (6.34)

One can verify that if the above condition (6.34) is ful�lled, then rank[A,B] is also
equal to m(2n −m). This means that the system (6.32) has a solution if m ≤ n. On
the other hand, if the condition (6.34) is not satis�ed, then rank[A,B] is also equal to
m(2n−m) + 1, implying that the system (6.32) does not have any solution. Hence, it
is not possible to determine an X that satis�es both (6.30a) and (6.30b).

Coming back to the computational issues related to the solutions of (6.26a)�(6.26d),
�rst note that LB and LC are independent of other unknowns, e.g., LA and LN ; there-
fore, they can be easily computed. However, the main issue lies in the computation of
LA and LN . These matrices require the simultaneous solution of (6.26c) and (6.26d)
for given LB and LC . Next, using Lemma 6.9, we derive a necessary and su�cient
condition, called the compatibility condition to ensure the existence of the simultane-
ous solution. This follows by equating the right-hand sides of (6.26c) and (6.26d) after
pre-multiplying by W T and post-multiplying by V , respectively:

W T
[
LB(eq1)T , LN

[
V (1)(Iq ⊗ (eq1)T ), . . . , V (k−1)(Iqk−1 ⊗ (eq1)T ))

]]

=
[
LTC(eq1)T , LTN

[
W (1)(Iq ⊗ (eq1)T ), . . . ,W (k−1)(Iqk−1 ⊗ (eq1)T )

]]T
V.

(6.35)

The following theorem suggests a choice of LN , guaranteeing that the above compati-
bility condition is satis�ed.

Theorem 6.10:
Let the projection matrices V and W be de�ned as in Theorem 6.8 and assume
LB and LC ful�ll the conditions (6.26a) and (6.26b), respectively. Moreover, let
LN ∈ Rn×n satisfy

W TLNV = T



D2 · · · Dk+1
...

. . .
...

Dk+1 · · · D2k


TT , (6.36)

where T =
k−1∑
i=0

(en̂1+qi)⊗
(
eki+1

)T
, and n̂ = q+ · · ·+ qk is the order of the reduced-order

system, and Dj is the polynomial part of the jth subsystem. In other words, LN
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satis�es

(
W (l)

)T
LN
(
V (m)

)T
= eq

l

1 Dm+l+1

(
eq
m

1

)T
, for {l,m} ∈ {1, . . . , k}. (6.37)

Then, the compatibility condition (6.35) is satis�ed. ♦

Proof. Consider the �rst row of the block matrix given in (6.35):

(
W (1)

)T [
LB(eq1)T , LN

[
V (1)(Iq ⊗ (eq1)T ), . . . , V (k−1)(Iqk−1 ⊗ (eq1)T )

]]
= eq1LCV.

To show that the above equation holds, we use (6.26a) and (6.36):
(
W (1)

)T [
LB(eq1)T , LN

[
V (1)(Iq ⊗ (eq1)T ), . . . , V (k−1)(Iqk−1 ⊗ (eq1)T )

]]

= [eq1D1(eq1)T , eq1D2(eq1)T (Iq ⊗ (eq1)T ), . . . , eq1Dk(e
qk−1

1 )T (Iqk−1 ⊗ (eq1)T )]

= eq1[D1(eq1)T , D2(eq1)T ⊗ (eq1)T , . . . , Dk(e
qk−1

1 )T ⊗ (eq1)T ]

= eq1[D1(eq1)T , D2(eq
2

1 )T , . . . , Dk(e
qk

1 )T ]

= eq1LCV,

where the last equality follows from (6.26b). Now, we consider the ith row of the block
matrix in (6.35). That is,

(
W (i)

)T [
LB(eq1)T , LN

[
V (1)(Iq ⊗ (eq1)T ), . . . , V (k−1)(Iqk−1 ⊗ (eq1)T ))

]]

=
[
LTNW

(i−1)(Iqi−1 ⊗ (eq1)T )
]T
V.

To prove the above relation, we again make use of (6.26a) and (6.36). Thus, we obtain

(
W (i)

)T [
LB(eq1)T , LN

[
V (1)(Iq ⊗ (eq1)T ), . . . , V (k−1)(Iqk−1 ⊗ (eq1)T )

]]

=
[
eq
i

1 Di(e
q
1)T , eq

i

1 Di+1(eq1)T (Iq ⊗ (eq1)T ), . . . ,

eq
i

1 Di+k−1(eq
k−1

1 )T (Iqk−1 ⊗ (eq1)T )
]

= (Iqi−1 ⊗ (eq1)T )T eq
i−1

1

[
Di(e

q
1)T , Di+1(eq

2

1 )T , . . . , Di+k−1(eq
k

1 )T
]

=: R.

Using the condition on LN given in (6.36) or in (6.37), we obtain

R = (Iqi−1 ⊗ (eq1)T )T
[
(W (i−1))TLNV

(1), (W (i−1))TLNV
(2), . . . , (W (i−1))TLNV

k
]

= (Iqi−1 ⊗ (eq1)T )T
[
(W (i−1))TLNV

(1), (W i−1)TLNV
(2), . . . , (W (i−1))TLNV

(k)
]

=
[
LTNW

(i−1)(Iqi−1 ⊗ (eq1)T )T
]T
V.

This means that each row of the block matrix corresponding to the left and right-hand
sides of the compatibility condition given in (6.35) are equal. Therefore, if LN is chosen
to satisfy the assumption (6.36), then it is ensured that (6.35) holds.
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Algorithm 6.2: Subsystem interpolation MOR for bilinear DAEs, having index-
1 matrix pencil λE−A.
Input: E, A, N , B, C, [σ1, · · · , σk], [µ1, · · · , µk], q.
Output: Ê, Â, N̂ , B̂, Ĉ.

1 Construct V and W according to Theorem 6.8.
2 Compute the polynomial part of the kth-order subsystem:

Dk = C(MN)k−1MB.
3 Identify the expression of W TLB, LCV , W TLAV and W TLNV as:

W TLB =
[
D1(eq1)T , D2(eq

2

1 )T , . . . , Dk(e
qk

1 )T
]T

=: RB,

W TLB =
[
D1(eq1)T , D2(eq

2

1 )T , . . . , Dk(e
qk

1 )T
]

=: RC ,

W TLNV = T



D2 · · · Dk+1
...

. . .
...

Dk+1 · · · D2k


TT =: RN ,

where T =
k−1∑
i=0

en̂1+qi ⊗
(
eki+1

)T
, n̂ =

∑k
i=1 q

i, and

W TLAV =
[
RB(eq1)T , RN(:, 1 : q)(Iq ⊗ (eq1)T ), . . . ,

RN(:, q + · · ·+ qk−1 + (1 : qk))(Iqk−1 ⊗ (eq1)T )
]

=: RA.
4 Compute the reduced model as:

Ê = W TEV , Â = W TAV +RA, N̂ = W TNV −RN ,

B̂ = W TB −RB, Ĉ = CV −RC .

Remark 6.11:
It is interesting to see that to compute a reduced-order system, we do not need
to compute explicitly the matrices LA, LN , LB and LC . We rather require the
expressions for W TLB, LCV , W

TLAV and W TLNV . One can substitute W TLB
and LCV directly from (6.26a) and (6.26b). The expression of W TLNV can be
easily identi�ed by using (6.36). Similarly, one can obtain the expression of W TLAV
without explicitly computing LA by pre-multiplying (6.26c) by W T and using (6.36)
and (6.26a). ♦

Now, we summarize the complete methodology of computing a reduced-order system
for the system (6.17) in Algorithm 6.2.

Remark 6.12:
As shown in [40], a two-sided projection method might lead to much better approx-
imation, since more multi-moments are matched for higher order subsystems. The
same holds for the proposed modi�ed Krylov subspace technique for the structured
bilinear DAEs as well. To see this, we consider an example similar to the one used
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in [40]. Let us assume the projection subspaces V and W , depending on the �rst two
subsystems are as follows:

span(V ) = span
{
A−1B, . . . , (A−1E)5A−1B,A−1NA−1B,A−1N(A−1E)A−1B

}
,

span(W T ) = span
{
CA−1, . . ., C(A−1E)5A−1, CA−1NA−1, C(A−1E)A−1NA−1

}
.

According to Theorem 6.8, the reduced-order system preserves 12 multi-moments of
the �rst subsystem

C(A−1E)l1A−1B +Dδ(l1) = ĈT (Â−1Ê)l1Â−1B̂ +D1δ(l1),

where l1 = 0, . . . , 11. For the second subsystem, 29 multi-moments are matched

C(A−1E)l2A−1N(A−1E)l1A−1B = ĈT (Â−1Ê)l2Â−1N̂(Â−1Ê)l1Â−1B̂

+D2δ(l1)δ(l2),

where l1, l2 = 0, 1, . . . , 5 or l1 = 6, l2 = 0, 1 and l1 = 0, 1, l2 = 6. For the third
subsystem, 37 multi-moments are matched

C(A−1E)l3A−1N · · ·N(A−1E)l1A−1B

= ĈT (Â−1Ê)l3Â−1N̂ · · · N̂(Â−1Ê)l1Â−1B̂+D3δ(l1)δ(l2)δ(l3),

where l1 = 0, 1, . . . , 5, l2 = 0, l3 = 0, 1 or l1 = 0, 1, l2 = 0, l3 = 2, 3, 4, 5 or l1 =
0, 1, l2 = 1, l3 = 0, 1. For the fourth subsystem, 4 multi-moments are matched

C(A−1E)l4A−1N · · ·N(A−1E)l1A−1B

= Ĉ(Â−1Ê)l4Â−1N̂ · · · N̂(Â−1Ê)l1Â−1B̂ +D4δ(l1)δ(l2)δ(l3)δ(l4),

where l1 = 0, 1, l2 = 0, l3 = 0, l4 = 0, 1. ♦

Remark 6.13:
There are some scenarios, where the polynomial part of higher subsystems of bilinear
DAEs are zero. For instance, if the structures of E and N in (6.17) are either as:

E =

[
E11 E12

0 0

]
, and N =

[
N11 N12

0 0

]
, (6.38)

or as:

E =

[
E11 0
0 0

]
, and N =

[
N11 N12

N21 0

]
, (6.39)

where E11, N11 ∈ Rn1×n1 and E12, N12, N
T
21 ∈ Rn1×n2 , then Dk = 0 for k > 1 and

P = D1 = CMB, where M is de�ned as in (6.20). This can simplify Algorithm 6.2.
For example, in these cases, LN would be zero; thus RN = 0 in Algorithm 6.2, and
RB = en̂1D

T
1 , RC = D1(en̂1 )T and RA = en̂1D1(en̂1 )T , where n̂ = q + · · ·+ qk. ♦
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6.3.4. Time-domain representation of the reduced-order system
Till now, we have shown how to achieve interpolation for the leading k multi-variate
transfer functions of the original and reduced-order systems along with matching their
polynomial parts. However, our interest lies in determining a time-domain bilinear
system, whose kth-order multi-variate transfer function is given by (6.25). Therefore, in
this subsection, we derive the time-domain representation of a reduced bilinear system
whose kth-order multi-variate transfer function is of the form given in (6.25). The
following theorem summarizes our results.

Theorem 6.14:
Given a bilinear system, whose kth order multi-variate transfer function has the form
given in (6.25). Then, the time-domain representation of this bilinear system can be
written as

Ê ˙̂x(t) = Âx̂(t) + N̂ x̂(t)u(t) + B̂u(t),

ŷ(t) = Ĉx̂(t) +
∞∑

k=1

Dku
k(t).

(6.40)

♦

Proof. We begin with the kth-order multi-variate transfer function

Ĥk(s1, . . . , sk) = Ĉ(skÊ − Â)−1N̂(sk−1Ê − Â)−1N̂ · · · N̂(s1Ê − Â)−1B̂ +Dk

= C̃(skIn̂ − Ã)−1Ñ(sk−1In̂ − Ã)−1Ñ · · · Ñ(s1In̂ − Ã)−1B̃ +Dk,
(6.41)

where
Ã = Ê−1Â, Ñ = Ê−1N̂ , B̃ = Ê−1B̂ and C̃ = Ĉ. (6.42)

By utilizing the multi-variate inverse Laplace transform on (6.41), we obtain the regular
Volterra kernel as:

hk(t1, t2, . . . , tk) = C̃eÃtkÑeÃtk−1Ñ · · · ÑeÃt1B̃ +Dkδ(tk)δ(tk−1) · · · δ(t1). (6.43)

As discussed in [111], the output ŷ(t) of a nonlinear system can be described in terms
of the Volterra kernel hk(t1, t2, . . . , tk) and input u(t) as follows:

ŷ(t) =
∞∑

k=1

∫ t1

0

∫ t2

0

· · ·
∫ tk

0

hk(t1, t2, . . . , tk)u(t−
k∑

i=1

ti) · · ·u(t− tk)dtk · · · dt1.

Substituting (6.43) in the above equation, we can write

ŷ(t) = ŷ(1)(t) + ŷ(2)(t),



Chapter 6. Interpolation-Based MOR for Bilinear DAEs 166

where

ŷ(1)(t)=
∞∑

k=1

∫ t1

0

∫ t2

0

· · ·
∫ tk

0

C̃eÃtkÑ · · · ÑeÃt2ÑeÃt1B̃u(t−
k∑

i=1

ti) · · ·u(t− tk)dtk · · · dt1,

ŷ(2)(t)=
∞∑

k=1

∫ t1

0

∫ t2

0

· · ·
∫ tk

0

Dkδ(tk)δ(tk−1) · · · δ(t1)u(t−
k∑

i=1

ti) · · ·u(t− tk)dtk · · · dt1.

The response ŷ(1)(t) is simply the Volterra series representation of a bilinear ODE
system with zero initial condition [111]. This means that corresponding to ŷ(1)(t), we
have

˙̂x(t) = Ãx̂(t) + Ñ x̂(t)u(t) + B̃u(t),

ŷ(1)(t) = C̃x̂(t), x̂(0) = 0.
(6.44)

For ŷ(2)(t), we use the properties of the Dirac delta function [46] which leads to

ŷ(2)(t) =
∞∑

k=1

Dku(t) · · ·u(t) =
∞∑

k=1

Dk (u(t))k .

By combining the responses ŷ(1)(t) and ŷ(2)(t) and substituting the expression for

Ã, Ñ , B̃ and C̃ from (6.42), we obtain a bilinear system as in (6.40), and this proves
the theorem.

Since the output equation in (6.40) contains the sum of an input dependent in�nite
series, we need to compute the summation at each time step. This increases the com-
putational cost, which may destroy the e�ect of the model reduction procedure. In
the following, we discuss some cases, where this in�nite summation can be computed
cheaply.

Case 1: As noted in Remark 6.13, if the matrices E and N in (6.17) have special
structures, then the polynomial part of the �rst subsystem is non-zero and all
others have zero polynomial parts, i.e., Dk = 0 for k ≥ 2 and D1 6= 0. Thus,
∞∑
k=1

Dku
k(t) reduces to D1u(t), which is computationally cheap.

Case 2: There are some applications where the input u(t) can be considered constant
or unity (u(t) = α or u(t) = 1). These scenarios may appear, for example in the
parameter varying systems [20]. In such a case

∞∑

k=1

Dku
k(t) = D1α +D2α

2 +D3α
3 · · · .
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Substituting the expression of Dk from Lemma 6.7 in the above equation, we get

∞∑

k=1

Dku
k(t) = (CMB +D)α + C(MN)MBα2 + C(MN)2MBα3 + · · ·

= αC(I + αMN + α2(MN)2 + · · · )MB + αD.

Now, if we assume ‖αMN‖2 < 1, then we have

∞∑

k=1

Dku
k(t) = (C(I − αMN)−1MB +D)α.

Thus, we can identify an expression of the convergent series for constant inputs.

Case 3: In this case, we assume convergence for ‖Dk‖, i.e.,
∞∑

k=j+1

‖Dk‖<τ�1. Then,

for bounded inputs, we can truncate the in�nite summation after the jth term.
That is

∞∑

k=1

Dku
k(t) ≈

j∑

k=1

Dku
k(t).

Thus, we can save the computations associated with
∞∑

k=j+1

Dku
k(t).

6.3.5. Interpolation of multi-input multi-output bilinear DAEs
Thus far, we have concentrated on an interpolation-based model reduction problem for
SISO bilinear DAEs for simplicity of notation. However, it can be extended to MIMO
bilinear systems, but the notation becomes much more di�cult to handle. Therefore,
we consider interpolation of the �rst 2 subsystems only in order to give a glimpse of how
the proposed methodology can be applied to MIMO bilinear DAEs, but nonetheless
one can consider interpolation of the leading �rst k subsystem as well. We consider a
MIMO bilinear system as follows:

E11ẋ1(t) + E12ẋ2(t) = A11x1(t) + A12x2(t) +
m∑

k=1

(
N

(k)
11 x1(t) +N

(k)
12 x2(t)

)
uk(t) +B1u(t),

0 = A21x1(t) + A22x2(t) +
m∑

k=1

(
N

(k)
21 x1(t) +N

(k)
22 x2(t)

)
uk(t) +B2u(t),

y(t) = C1x1(t) + C2x2(t) +Du(t),
(6.45)

where x1(t) ∈ Rn1 , x2(t) ∈ Rn2 , u(t) ∈ Rm and y(t) ∈ Rp are respectively the state,
input, and output vectors. The number p and m denotes the number of outputs and
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inputs, respectively. Moreover, the matrix pencil λE−A is of index-1, and uk(t) denotes
the kth component of u(t). Thus, the leading four subsystems of (6.45) can be given
as follows:

H1(S1) = C(s1E − A)1B,

H2(S2) =
[
H

(1)
2 (S2), . . . , H

(m)
2 (S2)

]
,

H3(S3) =
[
H

(1,1)
3 (S3), . . . , H

(1,m)
3 (S3), H

(2,1)
3 (S3), . . . , H

(m,m)
3 (S3)

]
,

H4(S4) =
[
H

(1,1,1)
4 (S4), . . . , H

(1,1,m)
4 (S4), H

(2,1,1)
4 (S4), . . . , H

(m,m,m)
4 (S4)

]
,

where

E =

[
E11 E12

0 0

]
, A =

[
A11 A12

A21 A22

]
, Nk =

[
N

(k)
11 N

(k)
12

N
(k)
21 N

(k)
22

]
, B =

[
B1

B2

]
, C =

[
C1 C2

]
.

and

H
(l1,...,li−1)
i (Si) = Cφ(si)Nli−1

φ(si−1) · · ·Nl1φ(s1)B (6.46)

with φ(si) := (siE−A)−1. Moreover, we denote the polynomial parts of H
(l1,...,li−1)
i (Si)

by D
(l1,...,li−1)
i , which can be given as follows by using Lemma 6.7:

D1 = CMB +D,

D
(l1,...,li−1)
i = CMNli−1

M · · ·Nl1MB,
(6.47)

where M is the same as de�ned in (6.20). Furthermore, we need to use a more general
nested structure to determine the projection matrices. For this, we assume arbitrary
interpolation points σi, µi ∈ C such that sE−A and sÊ−Â are invertible for s = σi, µi,
and de�ne the projection matrices V and W as follows:

range
(
V (1)

)
= Kα

(
(σ1E − A)−1E, (σ1E − A)−1B

)
,

range
(
V

(2)
k

)
= Kα

(
(σiE − A)−1E, (σiE − A)−1NkV

(1)
)
, k ∈ {1, . . . ,m},

range
(
W (1)

)
= Kβ

(
(µ1E − A)−TET , (µ1E − A)−TCT

)
,

range
(
W

(2)
k

)
= Kα

(
(µiE − A)−TET , (µiE − A)−TNT

k W
(1)
)
, k ∈ {1, . . . ,m},

range (V ) = range
(
V (1)

)
+

m⋃

k=1

{
range

(
V

(2)
k

)}
,

range (W ) = range
(
W (1)

)
+

m⋃

k=1

{
range

(
W

(2)
k

)}
.
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In order to ensure the same number of columns in V and W , we choose α and β such
that mα = pβ, where p and m are the numbers of outputs and inputs, respectively.
Next, we consider LA, LN(k) , LB and LC which are solutions to the following set of
equations:

W TLB =
[
(eα1 )T ⊗D1, (e

α2

1 )T ⊗D(1)
2 , . . . , (eα

2

1 )T ⊗D(m)
2

]T
,

LCV =
[
D1 ⊗ (eβ1 )T , D

(1)
2 ⊗ (eβ

2

1 )T , . . . , D
(m)
2 ⊗ (eβ

2

1 )T
]
,

LAV =
[
LB ⊗ (eα1 )T , LN(1)V (1)(Imα ⊗ (eα1 )T ), . . . , LN(m)V (1)(Imα ⊗ (eα1 )T )

]
,

W TLA =
[
LTC ⊗ (eβ1 )T , LTN(1)W

(1)(Ipβ ⊗ (eα1 )T ), . . . , LTN(m)W
(1)(Ipβ ⊗ (eα)T )]

]T
.

Then, the reduced-order system can be determined as follows:

Ê = W TEV, Â = W T (A+ LA)V, N̂k = W T (Nk − LN(k))V,

B̂ = W T (B − LB), Ĉ = (C − LC)V.

Similar to SISO bilinear systems, the explicit computation of the matrices LA, LN(i) ,
LB and LC can also be avoided in order to determine reduced-order systems, which can
be done analogously as shown for the SISO case.

6.3.6. Numerical experiments
We present numerical results for model reduction of the structured bilinear DAE sys-
tems using di�erent approaches. The reduced-order system can be computed either by
direct implementation of Theorem 6.2, without matching the polynomial part in the
reduced-order system (classical interpolatory technique) or by our proposed methodol-
ogy which achieves the matching of the polynomial part in addition to interpolation.
All the numerical results were simulated in MATLAB Version 8.0.0.783(R2012b) 64-bit
(glnza64) on Intel® Core�2 Quad CPU Q9550 @ 2.83GHz 6 MB cache, 4GB RAM,
openSUSE Linux 12.04.

An artificial example

The bilinear DAE system, that is to be reduced, is generated randomly of order n = 100
and with partitioning n1 = 90, n2 = 10. It is ensured that the matrix pencil λE − A
is of index-1. The polynomial parts of the �rst 4 subsystems of the bilinear system are
D1 = 0.1472, D2 = 5·10−3, D3 = 1.92·10−4, D4 = 7.35·10−6, whereDk is the polynomial
part of the kth subsystem. The interpolation points are selected as σ = µ = [0, 0.5] with
multiplicity q = 1 resulting in a reduced-order system of order n̂ = 4. We truncate the
in�nite summation in Theorem 6.14 after 4 terms since ‖Di‖ decreases exponentially.
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Figure 6.1.: An arti�cial example of index-1 bilinear system: comparison of the original
and reduced-order systems for an input u(t) = e−10t.
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Figure 6.2.: Nonlinear transmission line circuit, having index-1 matrix pencil λE − A.

We compute the reduced-order systems by using the classical interpolation technique
and the proposed methodology, having the same interpolation points and multiplicities.
The time-domain responses of the actual and the reduced bilinear systems, obtained
by using the implicit Euler method, are shown in Figure 6.1a for an exponential input.
The relative errors associated with the two approaches are shown in Figure 6.1b.
Certainly, the reduced-order system obtained from the direct implementation shows

completely di�erent dynamics whereas the proposed methodology captures the dynam-
ics of the original system well.

Nonlinear RC circuit

As a second example, we consider a nonlinear RC circuit that represents a modi�ed
form of the transmission line circuit proposed in [78]. The circuit includes resistors,
capacitors and diodes as shown in Figure 6.2.
All the resistances and capacities are set to 1, and all the diodes ensure iD = e40vD +

vD − 1, where iD represents the current and vD is the voltage across the diodes. The
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input u(t) is the current source i and the output y(t) represents the average voltage
over all nodes ranging from 1 to n. Using Kirchho�'s current law at each node, we have

v̇1 = −2v1 + v2 + 2− e40v1 − e40(v1−v2) + u(t),

v̇k = −2vk + vk−1 + vk+1 + e40(vk−1−vk) − e40(vk−vk+1), (2 ≤ k ≤ n1 − 1)

v̇n1 = −2vn1 + vn1−1 + vn1+1 − 1 + e40(vn1−1−vn1 ),

0 = 3vk − vk−1 − vk+1, (n1 + 1 ≤ k ≤ n− 1)

0 = −2vn + vn−1 + u(t).

In order to represent the above nonlinear system as a quadratic-bilinear system, we
set v1 to vk,k+1 (vk,k+1 = vk − vk+1), k in{1, . . . , n1 − 1}, and vn1+1 to vn as the
state variables, and perform some changes of variables by de�ning y1 = e40v1 − 1 and
yk = e40(vk−1,k) − 1, 2 ≤ k ≤ n1. Together with the di�erential equations of all yk, one
gets the following set of equations:

v̇1 = −v1 − v1,2 − y1 − y2 + u(t),

v̇1,2 = −v1 − 2v1,2 + v2,3 − y1 − 2y2 + y3 + u(t),

v̇k,k+1 = −2vk,k+1+vk−1,k+vk+1,k+2+yk−2yk+1+yk+2, (2 ≤ k ≤ n1−2)

v̇n1−1,n1 = −2vn1−1,n1 + vn1−2,n1−1 + vn1 − vn1+1 + yn1−1 − 2yn1 ,

0 = 3vk − vk−1 − vk+1, (n1 + 1 ≤ k ≤ n− 1)

0 = −2vn + vn−1 + u(t),

ẏ1 = 40(y1 + 1)(−v1 − v1,2 − y1 − y2 + u(t)),

ẏ2 = 40(y2 + 1)(−v1 − 2v1,2 + v2,3 − y1 − 2y2 + y3 + u(t)),

ẏk = 40(yk + 1)(−2vk−1,k + vk−2,k−1 + vk,k+1 + yk−1 − 2yk + yk+1),

˙yn1 = 40(yn1 + 1)(−2vn1−1,l1 + vn1−2,n1−1 + vn1 − vn1−1 + yn1−1 − 2yn1).

In the above set of equations, we �xed vn1 to v1 −
∑n1

k=2 vk−1,k. This means that the
circuit can be modelled by a quadratic-bilinear descriptor system of order ñ = n1 + n,
having an index-1 matrix pencil associated with the quadratic system of index-1. Next,
we utilize the Carleman bilinearization, ensuring that the resulting bilinearized system
also has an index-1 matrix pencil [70]. The order of the bilinearized DAE system is
N = (n1 + n)(2n1 + 1).
For our experiment, we choose n1 = 10 and n = 30. The bilinearized system is, there-

fore, of order N = 840. The polynomial part of the �rst subsystem of the bilinearized
system is D1 = 0.0333 and higher order subsystems have zero polynomial parts. Using
Theorem 6.2, we compute the projection matrices such that the reduced-order system
guarantees interpolation of the �rst two subsystems at σ = µ = [10, 50, 300]. The
multiplicities of all the interpolation points are set to 1. The reduced-order systems of
the bilinearized system are computed using the classical and the proposed methodology
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Figure 6.3.: A nonlinear RC circuit: comparison of the original, Carleman bilinearized
and the reduced-order systems for an input u(t) = cos(20πt) + 1.

using the same interpolation points and multiplicities, since we do not have speci�c cri-
teria yet to choose these interpolation points and their multiplicities which can ensure
a stable reduced-order system for both the modi�ed and the classical method. For our
result, it is possible to get stable reduced-order systems using this methodology for the
same interpolation points and same multiplicities in the case of one-sided projection,
i.e., W = V .
The time responses of the resulting reduced-order bilinear systems are shown in

Figure 6.3a by utilizing the implicit Euler method, and also the absolute errors (|y −
ŷ|) are shown in Figure 6.3b. Clearly, the proposed interpolatory technique shows a
substantial improvement in the transient response of the system.

6.3.7. Conclusions
In this section, we have studied subsystem interpolation method for bilinear descriptor
systems, having the matrix pencil λE − A of index-1, with a particular attention to
their polynomial parts. An expression that explicitly identi�es the polynomial part of
each subsystem associated with the bilinear system has been derived. This extends the
expression for the polynomial part of linear index-1 DAE systems discussed in [80] to
bilinear systems. Also, we have derived conditions on interpolatory subspaces that not
only guarantee interpolation of the �rst k subsystems but also retain the polynomial
part of the bilinear system. We have also discussed the related computational issues. By
means of a couple of numerical examples, we have shown the e�ciency of the proposed
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model reduction technique.
However, we have observed in the RC circuit example that two-sided interpolation

does not preserve the stability of the reduced-order systems, and it depends on a choice
of interpolation points. Therefore, it would be interesting to study the stability problem
in the future. Furthermore, the quality of the reduced-order system highly depends
on the choice of interpolation points. Thus, the next question arising from here is
how to choose these interpolation points which can yield reduced-order systems that
are optimal in some measure, e.g., H2-measure. We aim at answering some of these
questions in the subsequent section.

6.4. Multipoint Volterra Series Interpolation and
H2-Optimal Model Reduction for Index-1 Bilinear
Descriptor Systems

In the previous section, we have shown how to construct reduced-order systems, in-
terpolating the �rst k multi-variate transfer functions and retaining their polynomial
parts. In this section, we aim at extending the multi-point Volterra series interpolation
(see Subsection 6.2.2 for bilinear ODEs) to SISO bilinear DAEs, having index-1 matrix
pencil λE−A (6.17). Then, based on it, we futher study H2-optimal approximations
of such bilinear DAEs.

6.4.1. Multipoint Volterra series interpolation for bilinear DAEs
We �rst de�ne a multi-point Volterra interpolation problem for bilinear systems. For
this, we consider two sets of interpolation points σj, µj ∈ C, j ∈ {1, 2, . . . , n̂}, along
with matrices U, S ∈ Cn̂×n̂ and de�ne the weighted Volterra series as follows:

νj =
∞∑

k=1

n̂∑

l1=1

· · ·
n̂∑

lk−1=1

ηl1,l2,...,lk−1,jHk(σl1 , σl2 , . . . , σj) (6.48)

and

γj =
∞∑

k=1

n̂∑

l1=1

· · ·
n̂∑

lk−1=1

ϑl1,l2,...,lk−1,jHk(µj, µl1 , . . . , µlk−1
), (6.49)

where Hk(s1, . . . , sk) are the multi-variate transfer function of the original system, and
ηl1,l2,...,lk−1,j and ϑl1,l2,...,lk−1,j are the weights, de�ned in terms of the elements of the
matrix U and S, respectively, as follows:

ηl1,...,lk−1,j = uj,lk−1
ulk−1,lk−2

· · ·ul2,l1 for k ≥ 2 and ηl1 = 1,

ϑl1,...,lk−1,j = sj,lk−1
slk−1,lk−2

· · · sl2,l1 for k ≥ 2 and ϑl1 = 1.
(6.51)
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It is assumed that νj and γj converge for each j ∈ {1, 2, . . . , n̂}. The goal of the
multi-point Volterra series interpolation is to determine a reduced-order system, with its
kth-order multi-variate transfer function being of the form (6.25), so that the following
are satis�ed for each j ∈ {1, 2, . . . , n̂}:

νj =
∞∑

k=1

n̂∑

l1=1

· · ·
n̂∑

lk−1=1

ηl1,l2,...,lk−1,jĤk(σl1 , σl2 , . . . , σj) (6.53)

and

γj =
∞∑

k=1

n̂∑

l1=1

· · ·
n̂∑

lk−1=1

ϑl1,l2,...,lk−1,jĤk(µj, µl1 , . . . , µlk−1
). (6.55)

As a �rst step in this direction, we establish the relation between the weighted Volterra
series and the generalized Sylvester equation for the bilinear DAEs in the following
lemma, similar to the case of bilinear ODEs in [59, Lemma 3.1].

Lemma 6.15:
Consider a SISO bilinear DAE (6.17) and let σj, µj ∈ C, j ∈ {1, 2, . . . , n̂}, be two
sets of interpolation points. Given matrices U, S ∈ Cn̂×n̂, and assume the following
series:

vj =
∞∑

k=1

n̂∑

l1=1

· · ·
n̂∑

lk−1=1

ηl1,l2,...,lk−1,j(σjE − A)−1N · · · (σl2E − A)−1N(σl1E − A)−1B

(6.56)
and

wj =
∞∑

k=1

n̂∑

l1=1

· · ·
n̂∑

lk−1=1

ϑl1,l2,...,lk−1,j(σjE−A)−TNT · · · (σl2E−A)−TNT (σl1E−A)−TCT

converge for each j ∈ {1, 2, . . . , n̂}. Then, the matrices V andW , whose jth columns
are vj and wj, respectively, solve the following generalized Sylvester equations:

EV Ω− AV −NV UT = B1Tn̂ (6.57)

and
ETWΞ− ATW −NTWST = CT

1
T
n̂ , (6.58)

respectively, where Ω = diag(σ1, σ2, . . . , σn̂) and Ξ = diag(µ1, µ2, . . . , µn̂). ♦

Proof. The lemma can be proven by extending the proof [59, Lemma 3.1] for E = I
to E 6= I. For completeness, we provide a complete proof here. Consider V (1) ∈ Rn×n̂,
solving

EV (1)Λ− AV (1) = B1Tn̂ ,
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and let V (k) solve
EV (k)Λ− AV (k) = NV (k−1)UT .

Then, v1,j = (σjE − A)−1B, and vk,j = (σjE − A)−1 fk−1,j, where vk,j is the jth column
of the matrix V (k) and fk−1,j is the jth column of NV (k−1)UT . Next assume that

fk−1,j =
∞∑

k=1

n̂∑

l1=1

· · ·
n̂∑

lk−1=1

ηl1,l2,...,lk−1,jN(σk−1E−A)−1N · · · (σl2E−A)−1N(σl1E−A)−1B,

(6.59)
then we need to show that the above equation also holds for k as well. Assuming the
expression for fk−1,j holds as in (6.59), we obtain

vk,j = (σjE − A)−1 fk−1,j

=
∞∑

k=1

n̂∑

l1=1

· · ·
n̂∑

lk−1=1

ηl1,l2,...,lk−1,jN(σk−1E − A)−1N · · · (σl2E − A)−1N(σl1E − A)−1B.

Thus, it yields

fk,j =
n̂∑

lk=1

uj,lkNvk,lk

=
∞∑

k=1

n̂∑

l1=1

· · ·
n̂∑

lk=1

uj,lkηl1,l2,...,lk−1,jN(σkE − A)−1N · · · (σl2E − A)−1N(σl1E − A)−1B

=
∞∑

k=1

n̂∑

l1=1

· · ·
n̂∑

lk=1

ηl1,l2,...,lk,jN(σkE − A)−1N · · · (σl2E − A)−1N(σl1E − A)−1B.

As we know, vj =
∑∞

k=1 vk,j and it converges by the assumption; hence, V =
∑∞

k=1 V
(k)

which can be now veri�ed that it is the solution of (6.57). Analogously, we can show
that W solves (6.58).

Next, in the following theorem, we discuss the construction of a reduced-order system
with required modi�cations so that (6.53) and (6.55) are satis�ed.

Theorem 6.16:
Consider the SISO bilinear DAE (6.17) of order n. Assume for some n̂ < n that
two sets of interpolation points σj ∈ C and µj ∈ C, j ∈ {1, 2, . . . , n̂} and matrices
U, S ∈ Cn̂×n̂ such that σ(U)∩σ(S) = ∅, where σ(·) denotes the spectrum of a matrix.
Let the matrices V and W be the solutions of (6.57) and (6.58), respectively, and
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LA, LN , LB and LC be the solutions to

LAV + LNV U
T + LB1

T
n̂ = 0, (6.60a)

LTAW + LTNWST + LTc 1
T
n̂ = 0, (6.60b)

W TLB + [α1, α2, . . . , αn̂]T = 0, (6.60c)

LCV + [β1, β2, . . . , βn̂] = 0, (6.60d)

where

αj =
∞∑

k=1

n̂∑

l1=1

· · ·
n̂∑

lk−1=1

ϑl1,l2,...,lk−1,jDk

and

βj =
∞∑

k=1

n̂∑

l1=1

· · ·
n̂∑

lk−1=1

ηl1,l2,...,lk−1,jDk

with Dk being the polynomial part of the kth-order multi-variate transfer function,
see Lemma 6.7. If matrices of a reduced-order system are computed as

Ê = W TEV, Â = W T (A+ LA)V, N̂ = W T (N + LN)V,

B̂ = W T (B + LB), Ĉ = (C + LC)V,
(6.61)

then the interpolation conditions (6.53) and (6.55) are satis�ed for each j ∈ {1, . . . , n̂}.
Furthermore, if Ê is invertible, then the polynomial part of each subsystem is also
matched. ♦

Proof. We begin with the Sylvester equation, determining the projection matrix V

EV Ω− AV −NV UT −B1Tn̂ = 0. (6.62)

Subtracting (6.60a) from (6.62) yields

EV Ω− (A+ LA)V − (N + LN)V UT − (B + LB)1Tn̂ = 0.

Premultiplying the above equation by W T , we obtain

W T
(
EV Ω− (A+ LA)V − (N + LN)V UT − (B + LB)1Tn̂

)
= 0.

This implies
ÊΩ− Â− N̂UT − B̂1Tn̂ = 0.

From the above equation, it follows that Ψ = In̂ solves the following projected Sylvester
equation:

ÊΨΩ− ÂΨ− N̂ΨUT − B̂1Tn̂ = 0.
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The above projected Sylvester equation has a structure similar to the one in Lemma 6.15.
So, using Lemma 6.15, the jth column of Ψ, denoted by ψj, can be given as

ψj =
∞∑

k=1

n̂∑

l1=1

· · ·
n̂∑

lk−1=1

ηl1,l2,...,lk−1,j(σjÊ − Â)−1N̂ · · · (σl2Ê − Â)−1N̂(σl1Ê − Â)−1B̂.

(6.63)

Now, we multiply ψj by Ĉ to obtain

Ĉψj = (C + LC)V ψj = CV ψj + LCV ψj. (6.64)

Since the vector ψj is the jth column of the identity matrix, V ψj gives the jth column
of the matrix V , given in (6.15) and multiplication with C gives

CV ψj =
∞∑

k=1

n̂∑

l1=1

· · ·
n̂∑

lk−1=1

ηl1,l2,...,lk−1,jHk(σl1 , σl2 , . . . , σj) = νj. (6.65)

By (6.60d), we get

LcV ψj = −
∞∑

k=1

n̂∑

l1=1

· · ·
n̂∑

lk−1=1

ηl1,l2,...,lk−1,jDk. (6.66)

Finally, we substitute (6.65), (6.66) and the expression for ψj from (6.63) in (6.64) to
have

νj =
∞∑

k=1

n̂∑

l1=1

· · ·
n̂∑

lk−1=1

ηl1,l2,...,lk−1,jĈ(σjÊ − Â)−1N̂ · · · (σl2Ê − Â)−1

× N̂(σl1Ê − Â)−1B̂ +
∞∑

k=1

n̂∑

l1=1

· · ·
n̂∑

lk−1=1

ηl1,l2,...,lk−1,jDk

=
∞∑

k=1

n̂∑

l1=1

· · ·
n̂∑

lk−1=1

ηl1,l2,...,lk−1,jĤk(σl1 , σl2 , . . . , σj).

Using a similar argument, we can prove

γj =
∞∑

k=1

n̂∑

l1=1

· · ·
n̂∑

lk−1=1

ϑl1,l2,...,lk−1,jĤk(µj, µl1 , . . . , µlk−1
).

Since we have assumed the form of the kth-order multi-variate transfer function of the
reduced-order system as shown in (6.25) and Ê being invertible, this means that the
polynomial parts of each subsystem of the original and reduced-order systems are equal
to Dk. This concludes the proof.
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Remark 6.17:
In Theorem 6.16, it is assumed that the matrices U and S do not have any common
eigenvalue in order to have simultaneous solutions of the set of equations (6.60a)�
(6.60d) for the matrices LA, LN , LB and LC . If the matrices U and S have common
eigenvalues, then this leads to numerical issues which we discuss later in the section.♦

Theorem 6.16 shows how to choose the projection matrices and to obtain a reduced-
order system with the required modi�cations which not only interpolate the underlying
Volterra series but also retain the polynomial part of each subsystem. Meanwhile,
we also like to highlight an important aspect that the reduced-order system matri-
ces obtained from Theorem 6.16 are not obtained via projection of the original system
matrices (6.17). They are rather obtained via projection of another bilinear system (in-
termediate bilinear system) of order n whose kth-order multi-variate transfer function
is given by

H̃(s1, s2, . . . , sk) = C̃(skẼ − Ã)−1Ñ · · · (s2Ẽ − Ã)−1Ñ(s1Ẽ − Ã)−1B̃ +Dk, (6.67)

where
Ẽ = E, Ã = A+ LA, Ñ = N + LN ,

B̃ = B + LB, C̃ = C + LC .
(6.68)

Interestingly, we project the intermediate bilinear system using the projection matri-
ces V and W , depending on the original bilinear system matrices, as opposed to the
intermediate bilinear system matrices. So next, to resolve this discrepancy, we show
the formulation of the reduced-order system, obtained in Theorem 6.16, in a standard
projection framework using the intermediate bilinear system. We reveal that the pro-
jection matrices obtained using the original and intermediate bilinear system matrices
are exactly the same.

Proposition 6.18:
For some n̂ < n, we consider two sets of interpolation points σj, µj ∈ C, j ∈
{1, . . . , n̂}, and matrices U, S ∈ Cn̂×n̂ such that σ(U) ∩ σ(S) = ∅. Let the matrices
V and W be the solutions of (6.57) and (6.58), respectively, and let the projection

matrices Ṽ and W̃ be the solutions to

ẼṼ Ω− ÃṼ − Ñ Ṽ UT = B̃1Tn̂ (6.69)

and
ẼT W̃Ω− ÃW̃ − ÑT W̃ST = C̃T

1
T
n̂ , (6.70)

respectively. Then, Ṽ = V and W̃ = W also solve (6.69) and (6.70), respectively. ♦
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Proof. We begin by proving that the matrix V also satis�es (6.69). Consider

ẼV Ω− ÃV − ÑV UT

= EV Ω− AV − LAV −NV UT − LNV UT

(substituting for Ã and Ñ from (6.68))

= (EV Ω− AV −NV UT )− (LAV + LNV U
T )

From (6.57), EV Ω−AV −NV UT = B1Tn̂ and using the relation between LA, LN and
LB from (6.60a), we get

ẼV Ω− ÃV − ÑV UT = B1Tn̂ + LB1
T
n̂ = B̃1Tn̂ .

An analogous argument can be given for (6.70) as well. This proves the assertion.

Based on this investigation, we propose the following corollary.

Corollary 6.19:
The reduced-order system, determined in Theorem 6.16, coincides with the reduced-
order system obtained from the intermediate bilinear system, whose kth-order multi-
variate transfer function is given in (6.67), via the projection subspaces Ṽ and W̃ in
a standard projection framework. ♦

6.4.2. H2-optimal model reduction for bilinear DAEs, having
index-1 matrix pencil

So far, we have shown how to determine a reduced-order system with appropriate
modi�cations so that the multi-point interpolation of the underlying Volterra series
can be achieved together with retaining the polynomial part of each subsystem. As
the subsystem interpolation method, the quality of the reduced-order system, obtained
via Volterra interpolation is highly dependent on the choice of interpolation points as
well as the matrices U and S. Next, we discuss �rst-order necessary conditions for
H2-optimality of bilinear DAEs (6.17), having index-1 matrix pencil λE−A. First-
order necessary conditions, in terms of the pole-residues of the multi-variate transfer
functions, for bilinear ODEs were derived in [59] by minimizing the error in theH2-norm
of the error system. Here, we also consider the analog �rst-order necessary conditions
for optimality for bilinear DAEs which are as follows:

∞∑

k=1

n̂∑

l1=1

· · ·
n̂∑

lk=1

φ̂l1,l2,...,lkHk(−λ̂l1 , . . . ,−λ̂lk)

=
∞∑

k=1

n̂∑

l1=1

· · ·
n̂∑

lk=1

φ̂l1,l2,...,lkĤk(−λ̂l1 , . . . ,−λ̂lk)
(6.71)
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and
∞∑

k=1

n̂∑

l1=1

· · ·
n̂∑

lk=1

φ̂l1,...,lk

(
k∑

j=1

∂

∂sj
Hk(−λ̂l1 , . . . ,−λ̂lk)

)

=
∞∑

k=1

n̂∑

l1=1

· · ·
n̂∑

lk=1

φ̂l1,...,lk

(
k∑

j=1

∂

∂sj
Ĥk(−λ̂l1 , . . . ,−λ̂lk)

)
,

(6.72)

where φ̂l1,...,lk and λ̂li are the residues and poles, respectively, of the transfer functions

Ĥk(s1, s2, . . . , sk). In this regard, we �rst establish the connection between the multi-
point interpolation of the Volterra series interpolation conditions and the pole-residues
of the kth-order multi-variate transfer function of the reduced-order system.

Lemma 6.20:
Let Hk(s1, s2, . . . , sk) and Ĥk(s1, s2, . . . , sk) be the kth-order multi-variate transfer
functions of the original and reduced-order systems as shown in (6.18) and in (6.25),

respectively. Decompose Y ÂZ = Ω = diag(λ̂1, λ̂2, . . . , λ̂n̂) and Y ÊZ = In̂, where

{λ̂1, λ̂2, . . . , λ̂n̂} are the eigenvalues of the matrix pencil λÊ − Â and the columns
of Z = [z1, z2, . . . , zn̂] and Y = [y1, y2, . . . , yn̂] are the right and left eigenvectors,
respectively.
Moreover, de�ne B = Y B̂, N = Y N̂Z and C = ĈZ, and let φ̂l1,...,lk be the

residues corresponding to the kth-order multi-variate transfer function Ĥk(s1, . . . , sk).
Assume that the projection matrices V and W solve

EV (−Ω)− AV −NVNT = BBT , (6.73)

ETW (−Ω)− ATW −NTWN = CTC, (6.74)

respectively. Then,

C (CV )T =
∞∑

k=1

n̂∑

l1=1

· · ·
n̂∑

lk=1

φ̂l1,...,lkHk(−λ̂l1 , . . . ,−λ̂lk). ♦

Proof. We begin by comparing (6.73) and (6.57) which readily shows that these two
equations are equivalent after setting

U = N, 1n̂ = B and σj = −λ̂j, j ∈ {1, 2, . . . , n̂}.

By applying Lemma 6.15, we can write the jth column of V , vj, as

vj =
∞∑

k=2

n̂∑

l1=1

· · ·
n̂∑

lk−1=1

ηl1,...,lk−1,jBl1(λ̂jE − A)−1N · · ·

× (λ̂l2E − A)−1N(λ̂l1E − A)−1B + Bj(λ̂jE − A)−1B,

(6.75)
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where ηl1,...,lk−1,j = N(j, lk−1)N(lk−1, lk−2) · · ·N(l2, l1) for k ≥ 2 by the de�nition of
ηl1,...,lk−1

in (6.7), and Bi is the ith element of B. Multiplying (6.75) by C yields

Cvj =
∞∑

k=2

n̂∑

l1=1

· · ·
n̂∑

lk−1=1

ηl1,...,lk−1,jBl1Hk(−λ̂l1 , . . . ,−λ̂j) + BjH1(−λ̂j).

Hence,

(CV )T =




∞∑
k=2

n̂∑
l1=1

· · ·
n̂∑

lk−1=1

ηl1,...,lk−1,1Bl1Hk(−λ̂l1 , . . . ,−λ̂1) + B1H1(−λ1)

∞∑
k=2

n̂∑
l1=1

· · ·
n̂∑

lk−1=1

ηl1,...,lk−1,2Bl1Hk(−λ̂l1 , . . . ,−λ̂2) + B2H1(−λ2)

...
∞∑
k=2

n̂∑
l1=1

· · ·
n̂∑

lk−1=1

ηl1,...,lk−1,n̂Bl1Hk(−λ̂l1 , . . . ,−λ̂n̂) + Bn̂H1(−λr)




.

Next, we premultiply the above equation by C = [C1,C2, . . . ,Cn̂], where Ci is the ith
element of C. This yields

C(CV )T =
∞∑

k=2

n̂∑

l1=1

· · ·
n̂∑

lk=1

ηl1,...,lk−1,lkClkBl1Hk(−λ̂l1 , . . . ,−λ̂lk) +
n̂∑

lk=1

ClkBlkH1(−λlk).

(6.76)

Now, we recall the expression for the residues φ̂l1,...,lk of the kth-order multi-variate
transfer function of the reduced-order system which are given as:

φ̂lk = ClkBlk ,

φ̂l1,...,lk = Clkηl1,...,lk−1,lkBl1 , for k ≥ 2.

Lastly, we substitute the above relation in (6.76), leading to the desired result.

Our next task is to obtain a reduced-order system that satis�es the necessary con-
ditions for optimality (6.71) and (6.72). The following theorem reveals the choice of a
reduced-order system, ensuring �rst-order necessary conditions for H2-optimality.

Theorem 6.21:
Let Hk(s1, s2, . . . , sk) and Ĥk(s1, s2, . . . , sk) be the kth-order multi-variate transfer
functions of the original and reduced-order bilinear systems, respectively, and assume
the projection matrices V and W are given by (6.73) and (6.74), respectively. Also,
assume that LA, LN , LB and LC satisfy the following set of equations:

LAV + LNVNT + LBB
T = 0, (6.77a)

LTAW + LTNWN + LTc C = 0, (6.77b)

W TLB + [α1, α2, . . . , αn̂]T = 0, (6.77c)

LCV + [β1, β2, . . . , βn̂] = 0, (6.77d)
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where

αj =
∞∑

k=1

n̂∑

l1=1

· · ·
n̂∑

lk−1=1

ϑl1,l2,...,lk−1,jCl1Dk (6.78)

and

βj =
∞∑

k=1

n̂∑

l1=1

· · ·
n̂∑

lk−1=1

ηl1,l2,...,lk−1,jBl1Dk (6.79)

with

ηl1,...,lk−1,j = N(j, lk−1)N(lk−1, lk−2) · · ·N(l2, l1) for k ≥ 2,

ϑl1,...,lk−1,j = N(lk−1, j)N(lk−2, lk−1) · · ·N(l1, l2) for k ≥ 2.

If the reduced-order system matrices are computed as shown in (6.61), then �rst-
order necessary conditions for H2-optimality (6.71) and (6.72) are satis�ed along
with retaining the polynomial part of each subsystem. ♦

Proof. We begin by recalling Lemma 6.15 that provides us the formulation of the jth
column of the identity matrix, ψj, see (6.63),

ψj =
∞∑

k=1

n̂∑

l1=1

· · ·
n̂∑

lk−1=1

ηl1,l2,...,lk−1,jBl1(σjÊ − Â)−1N̂ · · · (σl2Ê − Â)−1N̂(σl1Ê − Â)−1B̂.

Now, we multiply the above equation by Ĉ to get

ĈΨ = (C + LC)V = CV + LCV. (6.80)

Transposing (6.80) and premultiplying by C lead to

C(ĈΨ)T = C(CV )T + C(LCV )T .

Next, we substitute LCV given in (6.77d) and employ (6.79) which on simpli�cation
yields

C(CV )T = C




∞∑
k=1

n̂∑
l1=1

· · ·
n̂∑

lk−1=1

ηl1,...,lk−1,jBl1Ĥk(−λ̂l1 , . . . ,−λ̂1))

∞∑
k=1

n̂∑
l1=1

· · ·
n̂∑

lk−1=1

ηl1,...,lk−1,jBl1Ĥk(−λ̂l1 , . . . ,−λ̂2))

...
∞∑
k=1

n̂∑
l1=1

· · ·
n̂∑

lk−1=1

ηl1,...,lk−1,jBl1Ĥk(−λ̂l1 , . . . ,−λ̂n̂))




.
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Using Lemma 6.20 and simple algebra gives us

∞∑

k=1

n̂∑

l1=1

· · ·
n̂∑

lk−1=1

φ̂l1,...,lk−1,jHk(−λ̂l1 , . . . ,−λ̂lk)

=
∞∑

k=1

n̂∑

l1=1

· · ·
n̂∑

lk−1=1

φ̂l1,...,lk−1,jĤk(−λ̂l1 , . . . ,−λ̂lk).

The second necessary condition (6.72) can be easily obtained in a similar fashion as
shown in [59, Thm. 4.2] by tracing the terms corresponding to W (:, j)TV (:, j), for
j = 1, 2, . . . , n̂.

Clearly, still, the computation of the reduced-order system realization involves the
matrices LA, LN , LB and LC which are not readily available. In what follows, we show
how to compute the reduced-order system without explicitly computing these matrices
and their related computational issues.

Computational issues
Now, we discuss the computational issues related to determining the realization of the
reduced-order system. It is interesting to note that we do not need the matrices LA,
LN , LB and LC explicitly, but we rather require expressions for W TLAV , W

TLNV ,
W TLB and LCV to determine the reduced-order system. The expressions for W TLB
and LCV are given in (6.77c) and (6.77d), respectively, which are

W TLB = −[CTD1 + NTCTD2 + (NT )2CTD3 + · · · ],
LCV = −[D1B

T +D2B
TNT +D3B

T (NT )2 + · · · ].

In order to determine the expressions forW TLAV andW TLNV , we premultiply (6.77a)
and (6.77b) by W T and V T , respectively, and obtain

W TLAV +W TLNVNT +W TLBB
T = 0, (6.81)

V TLTAW + V TLTNWN + V TLTCC = 0. (6.82)

Now, we subtract (6.81) from the transpose of (6.82), leading to the following Sylvester
equation in W TLNV :

NT (W TLNV )− (W TLNV )NT + CTLCV −W TLBB
T = 0. (6.83)

In order to have a unique solution of the above Sylvester equation, the matrix X :=
In̂ ⊗NT −N ⊗ In̂ should be invertible. But, it is easy to see that the matrix contains
zero eigenvalues. It implies that if vec(F) ∈ range(X), where F := CTLCV −W TLBB

T ,
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where vec (·) denotes the vectorization of a matrix by stacking the columns of the
matrix on top of each other, then (6.83) has in�nitely many solutions, otherwise it has
no solution. Practically, it is di�cult to ensure in each iteration of an iterative scheme
such as B-IRKA for all possible bilinear systems that vec(F) ∈ range(X). However, if
one assumes that Dk = 0 for k ≥ 3, then the equation (6.83) boils down to

NT (W TLNV + CTD2B
T )− (W TLNV + CTD2B

T )NT = 0.

This implies W TLNV has in�nite solutions which are as follows:

W TLNV = −CTD2B
T + Y,

where vec(Y) ∈ null(X). For simplicity, we take Y = 0 to avoid some additional
computations. Moreover, if we compute W TLNV , having Y 6= 0, then we seldom
observe the convergence of a �xed point iterative scheme. This probably happens due
to the fact that the computation of Y does not take into account the realization of the
reduced-order system anymore. It rather depends only on the null space of the matrix
X, which might be creating some numerical instability in the iteration process of B-
IRKA. Therefore, we recommend to set Y = 0; thus, W TLNV can be computed easily.
The expression for W TLAV can be simply computed by inserting the expressions for
W TLB and W TLNV in (6.81).

Remark 6.22:
As we have noted above, the Sylvester equation (6.83) either does not have a unique
solution or even has no solution. However, it is possible to determine a solution if
Dk = 0 ∀ k ≥ 3.
In case of Dk 6= 0 for some k ≥ 3, Eq. (6.83), in general, does not have any solution.

This implies that it is not possible to obtain a reduced-order system, satisfying the
necessary conditions for optimality. Nevertheless, here we set W TLNV equal to
−CTD2B

T which often may be a good choice as Dk generally decreases fast. ♦
Now, we sketch the iterative scheme in Algorithm 6.3 based on our theoretical dis-

cussions for the class of bilinear DAEs (6.17).

Remark 6.23:
As noted in Remark 6.13, there exist particular structures of E and N , when higher
order systems with k ≥ 2, all have zero polynomial parts, i.e., Dk = 0 ∀ k ≥ 2. ♦

Remark 6.24:
The expressions for RB and RC require the summation of the in�nite series. However,
Di generally decreases fast; therefore, one can consider only the leading terms which
may approximate the in�nite summation very well. In case Dk does not decay, we
can always choose a factor 0 < γ < 1 that scales N and B when multiplying the
input with ( 1

γ
). The dynamics of the system do not change by doing so. This way,

one can ensure the decay of the Dk's. However, in all applications we consider in the
next section, Dk = 0 ∀ k ≥ 3. ♦
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Algorithm 6.3: B-IRKA for bilinear DAEs, having an index-1 matrix pencil.

Input: E,A,N,B,C.
Output: Ê, Â, N̂ , B̂, Ĉ.

1 Make an initial guess of Ω,B,N and C.
2 while no convergence do
3 Solve for V and W :

EV (−Ω) + AV +NVNT +BBT = 0,
ETW (−Ω) + ATW +NTWN + CTC = 0.

4 Compute the expressions for

W TLB = −
∞∑
k=1

(NT )k−1CTDk =: RB,

LCV = −
∞∑
k=1

DkB
T (NT )k−1 =: RC .

5 Compute the expression for W TLNV =: RN ,
RN = −CTD2B

T .
6 Determine the expression for W TLAV =: RA,

RA = −RNN
T − RBB

T .
7 Compute the reduced-order system matrices:

Ê = W TEV , Â = W TAV + RA, N̂ = W TNV + RN ,

B̂ = W TB + RB, Ĉ = CV + RC .

8 Determine Y and Z such that Y ÂZ = Ω, Y ÊZ = In̂.

9 Compute N = Y N̂Z, B = Y B̂ and C = ĈZ.

Remark 6.25:
For simplicity of notation, we have shown B-IRKA (Algorithm 6.3) for SISO bilinear
DAEs. Nevertheless, it can be applied to MIMO bilinear systems as well. In the
MIMO case, the polynomial part of the kth subsystem, Dk is a matrix of size Dk ∈
Rp×mk , where p and m are the numbers of outputs and inputs, respectively. Let
us consider Dk consisting of mk−1 column blocks of size p × m, and we denote

the
(
p1 +

∑k−1
i=2 m

i−1(pi − 1)
)
th column block of Dk as D

p1,...,pk−1

k ∈ Rp×m, pi ∈
{1, . . . ,m}, which can be written as

D
p1,...,pk−1

k = C(MNpk−1
) · · · (MNp1)MB.

Then, the expressions for RB,RC ,RN i and RA in Algorithm 6.3 can be determined
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as follows:

RB = −
∞∑

k=1

m∑

p1=1

. . .
m∑

pk−1=1

(Npk−1
· · ·Np1)

TCTD
p1,...,pk−1

k ,

RC = −
∞∑

k=1

m∑

p1=1

. . .

m∑

pk−1=1

D
p1,...,pk−1

k BT (Npk−1
· · ·Np1)

T ,

RN i = −CTDi
2B

T ,

RA = −
m∑

i=1

RN iNT
i − RBB

T .

Furthermore, to solve for the projection matrices V and W in the case of MIMO,
we need to replace the NVNT and NTWN terms at step 4 in Algorithm 6.3 with∑m

i=1NiVNT
i and

∑m
i=1N

T
i WNi, respectively. ♦

Thus far, we have presented how to obtain the realization of the reduced-order system
that aim at satisfying �rst-order necessary conditions for H2-optimality together with
retaining the polynomial part of each subsystem, by assuming the structure of the
kth-order transfer function of the reduced-order system as in (6.25). So, the time-
domain bilinear systems, whose kth-order transfer function is given by (6.25), has been
discussed in Subsection 6.3.4.

6.4.3. Numerical experiments
In this section, we illustrate the performance of the proposed B-IRKA (Algorithm 6.3)
for bilinear DAEs using various numerical examples. We also compare it with the
reduced bilinear systems, obtained by using POD-based approximation, the Loewner
method for bilinear systems [69, 92], and by applying IRKA to the corresponding
linear part [80, Algo. 5.2] and then project bilinear terms. The stopping criterion for
Algorithm 6.3 is chosen based on the relative change of the norm of the poles of the
reduced-order system. If the relative change becomes smaller than tol, then we stop the
iteration, where tol is chosen as the square-root of the machine precision. Moreover,
the initialization of the algorithm is done by choosing arbitrary interpolation points
and tangential directions. We also consider a scaling factor for smooth convergence of
B-IRKA as discussed in [21, 59]. In order to employ the Loewner method for bilinear
systems, we take the samples of the transfer functions Hk(s1, . . . , sk) of the bilinear
systems at l chosen logarithmically spaced frequencies ωi ∈ [ωa, ωb]:

[ωl, . . . , ωl], [(ω1, ω1), . . . , (ωl, ωl)],

where  =
√
−1. We obtain a set of left nodes [µi, (µi, µi)] and right nodes [λi, (λi, λi)]

by using an alternative partition for ωi. This leads to Loewner and shifted Loewner
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Figure 6.4.: A nonlinear RC circuit: a comparison of relative errors between the original
and reduced-order systems obtained by using various methods for an input
u(t) = cos(2πt)e−t + 1.

matrices of dimension 2l. See [69, 92] for more detailed insights in the Loewner
method for bilinear systems. All the simulations are carried out in MATLAB version
8.0.0.783(R2012b)64-bit(glnza64) on an Intel® Core�2 Quad CPU Q9550 @2.83GHz
6MB cache, 4GB RAM, openSUSE Linux 12.04.

A nonlinear RC circuit

As a �rst example, we consider the same nonlinear RC circuit example which we have
considered in the previous section. Next, we determine the reduced-order systems by
employing Algorithm 6.3 and linear IRKA by choosing the scaling factor γ = 0.5. We
take l = 50 samples logarithmically between frequencies [1, 2000] (rad/sec) in order
to determine Loewner and shifted Loewner matrices. Furthermore, for POD-based
approximation, we determine 1000 snapshots of the original solution for the input
excitation u(t) = cos(2πt). All the reduced-order systems are of the order r = 5. To
illustrate the accuracy of the reduced-order systems, we determine the time-domain
response for the input u(t) = cos(2πt)e−t+1 and show the relative errors in Figure 6.4.

Evidently, the reduced-order system obtained by using B-IRKA replicates the input-
output behavior of the original system better as compared to the reduced-order system
obtained by using IRKA, Loewner for bilinear systems. Since the projection subspace of
POD corresponds to the training input u(t) = cos(2πt), the POD-based approximation
does not approximate the transient response very well even for the sightly di�erent
input u(t) = cos(2πt)e−t + 1.
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Figure 6.5.: An RLC circuit diagram with variable resistors.

A parametric RLC circuit

Next, we consider an RLC circuit as shown in Figure 6.5 whose �rst node has three
branches, connected to the voltage source V via a constant resistance Rc, to a variable
resistance, and to ground via a capacitor. The last, nth, node of the circuit is grounded
via a capacitor. All other nodes also have three branches; the �rst one is grounded via
a capacitor; the second one is connected to an inductor, and the third one is connected
to a variable resistor as shown in Figure 6.5.
Using the Kirchho�'s voltage law at each node, we obtain the following system of

equations:

Cj
d

dt
vj(t) = ij(t)− ij+1(t), j ∈ {1, 2, . . . , g − 1},

Lj
d

dt
ij+1(t) = −Rjij+1(t) + vj+1(t)− vj(t), j ∈ {1, 2, . . . , g − 1},

Cg
d

dt
vg(t) = ig(t),

0 = v1(t) + i1(t)Rc − V(t).

Here, we set all the capacitors C, inductors L, and the resistance RC equal to 1. We
also assume that the variable resistances vary linearly with the parameter p as follows:

Rj = Rj(1 + p).

Also, we consider Rj = 1 . Combining all these equations and utilizing the parametric
relation of the variable resistance, we obtain the following parametric linear system:

Eẋ(t) = Ax(t) + pA1x(t) +Bu(t),

y(t) = Cx(t),
(6.84)

where x(t) is the state vector containing the voltage at each node and current through
resistances. The input u(t) is the voltage source, and the quantity of interest y(t) is
the current through the voltage source. We set g = 250, leading to a linear parametric
descriptor system of order n = 500 which has the structure of matrices E and A as
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Figure 6.6.: A parametric RLC circuit: comparison of the relative H∞-norm.

mentioned in (6.17). It has been shown in [20] that a special class of linear parametric
systems can be treated as bilinear systems, by rewriting the parameter p as an input
to the system. Therefore, we can write the system (6.84) as a bilinear system with two
inputs ũ(t) = [u(t), p]T as follows:

Eẋ(t) = Ax(t) +
2∑

i=1

Nix(t)ũ(t) + B̃ũ(t),

y(t) = Cx(t),

(6.85)

where N1 = 0, N2 = A1, and B̃ =
[
B, 0

]
. The polynomial part of the �rst subsystem

of the transformed bilinear system (6.85) is equal to 1 and all other subsystems have
zero polynomial parts, i.e., D1 = 0 and Dk = 0, ∀ k ≥ 2. We determine reduced bilinear
systems by using B-IRKA and IRKA. We choose the scaling factor γ = 0.1 for a smooth
convergence of B-IRKA. We take l = 200 samples logarithmically between frequencies
[10−6, 104] (rad/sec) to compute Loewner and shifted Loewner matrices. Furthermore,
for POD-based approximation, we determine 1000 snapshots of the actual solution for
the input excitation as used in the �rst example. We set the order of all reduced bilinear
systems to r = 15.
Next, these computed reduced bilinear systems can be again rewritten as reduced

parametric linear systems. To determine the accuracy of the reduced-order systems, we
compare the H∞-norm of transfer functions of the original and reduced-order systems
by varying the parameter p which is shown in Figure 6.6.
Figure 6.6 clearly shows that the reduced-order system obtained by using B-IRKA

outperforms the ones obtained by using IRKA for a wide range of the parameter. On
the other hand, reduced-order systems obtained by using the Loewner method and
POD fail to capture the dynamics. This may be because of not treating the polynomial
part of the system properly. We also like to mention that the projection matrices
computed by using IRKA capture the dynamics of the original system very well in the
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Figure 6.7.: An arti�cial example: comparison of the relative errors between the original
and reduced-order systems for an input u(t) = e0.1t/10.

vicinity of the parameter p = 0. This is why one can see a drop in the relative error
in Figure 6.6 around the parameter p = 0 for the reduced-order system obtained by
IRKA.

An artificial example

Lastly, we consider a simple arti�cial example of order n = 6, having matricesE,A,B,C
as follows:

E = diag ([1, 1, 1, 1, 0, 0]) , A = diag ([−1,−2,−3,−4, 1, 1]) ,

C = BT = [1, . . . , 1]

and a bilinear N is such that its (i + 1, i) entries are 1, i ∈ {1, . . . , 5} and all other
entries are zeros. The polynomial parts of the �rst two subsystems are D1 = −2,
D2 = 1 and all other subsystems have zero polynomial parts, unlike the previous
two examples where D2 is zero as well. This still ful�lls the requirement to obtain a
reduced-order system, satisfying H2-optimality conditions as stated in Remark 6.22.
Next, we determine reduced-order systems via B-IRKA and IRKA. Here, we choose
the scaling factor to be γ = 0.1. We take the same frequency samples as taken in the
�rst example to compute the reduced-order system via the Loewner method. Also,
for a POD-based approximation, 1000 samples of the true solutions are taken for the
actuation input u(t) = cos(2πt). We set the order of reduced-order systems to r = 2.
In order to observe the accuracy of the reduced-order systems, we perform time-domain
simulations for a new control input u(t) = 0.1e0.1t and plot the relative errors between
the original and reduced-order systems in Figure 6.7.
Figure 6.7 indicates that the polynomial part of system plays a signi�cant role in the

dynamics of the system which is preserved by B-IRKA along with interpolation, unlike
for the other methods. We also observe that as the input is changed to a di�erent input
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than the training one, the POD-based approximation fails to replicate the dynamics
of the system. The �gure indicates that the reduced-order system obtained via the
proposed B-IRKA performs better when compared to the other methods.

6.4.4. Conclusions
In this section, we have extended the multi-point Volterra series interpolation to a
family of bilinear DAEs (6.17) with the polynomial part of its kth order multi-variate
transfer function being constant. We have presented the modi�ed interpolation con-
ditions which not only achieve multi-point interpolation of the underlying Volterra
series but also retain the polynomial part of each subsystem. Based on �rst-order
necessary conditions for H2-optimality, we have proposed an iterative rational Krylov
algorithm, the so-called B-IRKA for such bilinear DAEs, which converges to a locally
H2-optimal reduced-order system if it converges. Using various numerical examples,
we have demonstrated the e�ciency of the proposed methodology and compared it
with reduced-order systems obtained by using IRKA, the Loewner method for bilinear
systems and POD-based approximation.

6.5. H2-Model Reduction for Index-2 Bilinear
Descriptor Systems

In this section, we discuss an interpolatory-based model order reduction technique for
another important structured bilinear DAEs, which are of the form

E11ẋ1(t) = A11x1(t) + A12x2(t) +
m∑

k=1

Nkx1(t)uk(t) +B1u(t),

0 = A21x1(t) +B2u(t),

y(t) = C1x1(t) + C2x2(t) +Du(t),

(6.86)

where x1(t) ∈ Rn1 , x2(t) ∈ Rn2 are the generalized states; y(t) ∈ Rp and u(t) ∈ Rm

are the output and input vectors of the system, respectively, and all the matrices are
of appropriate dimensions. It is assumed that E11 and A21E

−1
11 A12 are invertible. This

implies that the dynamical system (6.86) is a Hessenberg index-2 di�erential algebraic
system [81] in the case of Nk = 0. Generally, these special bilinear systems (6.86) arise
from linearized boundary control Navier-Stokes equations or constraint RLC circuits.
As a motivating example, we consider a constraint transmission circuit as shown in
Figure 6.8.
The above transmission circuit contains nonlinear diodes, g(v) = e40vD+vD−1, where

vD is the voltage di�erence across the nodes. Using Kirchho�'s current law, we can
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Figure 6.8.: A constraint nonlinear transmission line (index-2).

model the dynamics of the circuit as a quadratic-bilinear DAE, having an index-2 ma-
trix pencil λE−A (a detailed modeling is presented later in the numerical subsection).
Nonetheless, such quadratic systems, having an index-2 matrix pencil, can be approxi-
mated as bilinear systems via Carleman bilinearization [71]. The approximated bilinear
systems have a similar structure as (6.86). Later in this section, we present some more
constraint circuit examples which have the same structure as in (6.86). Therefore, there
is a need to develop e�cient model reduction techniques for such bilinear structured
systems.
In Section 6.2, we have collected interpolation-based model reduction techniques of

bilinear ODEs, which can be extended to bilinear DAEs having index-2 matrix pen-
cil λE − A (6.86), including interpolation based H2-optimal model reduction. Our
main goal here is to employ B-IRKA (Algorithm 6.1) for bilinear ODEs to bilinear
DAEs (6.86), resulting in reduced-order systems that are locally H2-optimal. In Sub-
section 6.5.1, we present the transformation of the bilinear DAEs (6.86) into equivalent
ODE systems using projectors. This allows us to employ the version of B-IRKA which
is extended in [42] from the E = I case to the E 6= I case. However, the direct im-
plementation of B-IRKA requires the explicit computation of the projectors which is
highly undesirable. Therefore, we show how to apply B-IRKA without explicit com-
putation of the projectors. In the end, we illustrate the e�ciency of the proposed
methodology by means of numerical examples.

6.5.1. Transformation into bilinear ODEs and model reduction
We begin with the case B2 = 0 in (6.86), i.e.,

E11ẋ1(t) = A11x1(t) + A12x2(t) +
m∑

k=1

Nkx1(t)uk(t) +B1u(t), (6.87a)

0 = A21x1(t), x1(0) = 0, (6.87b)

y(t) = C1x1(t) + C2x2(t) +Du(t), (6.87c)
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where the dimensions of the matrices are the same as in (6.86). As a �rst step, we
transform the bilinear DAE (6.87) into an equivalent bilinear ODE system. The special
structure of bilinear DAE (6.87) allows us to decouple the system into an algebraic and
a di�erential part. In other words, we can obtain an ODE system for x1(t) which does
not involve the variable x2(t) and an algebraic equation which evaluates x2(t) as a
function of x1(t), e.g., see [3, 85, 84]. Using (6.87b), we know that A21

d
dt
x1(t) = 0. If

(6.87a) is multiplied by A21E
−1
11 from the left-side, it yields

0 = A21E
−1
11

(
A11x1(t) + A12x2(t) +

m∑

k=1

Nkx1(t)uk(t) +B1u(t)
)
,

thus implying

x2(t) = −(A21E
−1
11 A12)−1A21E

−1
11

(
A11x1(t) +

m∑

k=1

Nkx1(t)uk(t) +B1u(t)
)
. (6.88)

Substituting the expression for x2(t) from (6.88) in (6.87a) results in

E11ẋ1(t) = ΠA11x1(t) +
m∑

k=1

ΠNkx1(t)uk(t) + ΠB1u(t), x1(0) = 0, (6.89a)

y(t) = Cx1(t) +
m∑

k=1

C
(k)
N x1(t)uk(t) + Du(t), (6.89b)

where

C = C1 − C2(A21E
−1
11 A12)−1A21E

−1
11 A11, C

(k)
N = −C2(A21E

−1
11 A12)−1A21E

−1
11 Nk,

D = D − C2(A21E
−1
11 A12)−1A21E

−1
11 B1

and
Π = I − A12(A21E

−1
11 A12)−1A21E

−1
11 . (6.90)

In what follows, for simplicity, we further assume that A21 = AT12 and E11 is symmetric.
However, A21 6= AT12 and E11 6= ET

11 can be treated in the current bilinear framework
as well by easily extending the arguments used in [80].
Note that Π is the discrete Helmholtz projector that is commonly used to transform

Stokes type DAEs into ODEs [80, 84, 85] and that has the following properties:

Π2 = Π, E11Π = ΠTE11, ker (Π) = range (A12) , and range (Π) = ker
(
AT12E

−1
11

)
.

Using these properties of Π, one can derive that

AT12z = 0 if and only if ΠT z = z. (6.91)
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By construction, a solution x1(t) of (6.87) ful�lls AT12x1(t) = 0; therefore, in (6.89),
we can replace x1(t) with ΠTx1(t) and, using Π = Π2 and E11Π = ΠTE11, we obtain
the following equivalent system

ΠE11ΠT ẋ1(t) = ΠA11ΠTx1(t) +
m∑

k=1

ΠNkΠ
Tx1(t)uk(t) + ΠB1u(t), (6.92a)

y(t) = CΠTx1(t) +
m∑

k=1

C
(k)
N ΠTx1(t)uk(t) + Du(t), x1(0) = 0. (6.92b)

The above dynamical system (6.92) lies in the n1−n2 dimensional null space of Π.
Therefore, as in [85], we can decompose the projector Π as

Π = φ1φ
T
2 , (6.93)

with φ1, φ2 ∈ Rn1×n1−n2 satisfying

φT1 φ2 = I.

This decomposition allows us to write (6.92) in the following form

φT2E11φ2
˙̃x1(t) = φT2A11φ2x̃1(t) +

m∑

k=1

φT2Nkφ2x̃1(t)uk(t) + φT2B1u(t), (6.94a)

y(t) = Cφ2x̃1(t) +
m∑

k=1

C
(k)
N φ2ṽu(t) + Du(t), (6.94b)

where x̃1(t) = φT1 x1(t) and x̃1(0) = 0. Thus, a model reduction problem of the sys-
tem (6.94) is equivalent to a model reduction problem of the system (6.87). However,
the advantage of the system (6.94) is that φT2E11φ2 is nonsingular, allowing us to employ
Algorithm 6.1 if bilinear terms are neglected in the output equation. This leads a lo-
cally H2-optimal reduced-order system upon convergence. Unfortunately, to determine
the system matrices of (6.94), we require the explicit computation of the basis matrix
φ2, which is not readily available. Moreover, it might also appear that the realization of
the system (6.94) becomes dense after multiplication with φ2, making the computation
of the reduced-order systems expensive. To overcome this, in what follows, we show
how to avoid the explicit computation of φ2 in the application of B-IRKA.

Remark 6.26:
In this work, we neglect the nonlinear terms and the control part in the output
equation in (6.94) as far as the computation of the projection matrices is concerned.
We focus on the linear relation between the state vector and the output. Nonetheless,
the bilinear terms in the output equation are projected afterward. ♦
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Algorithm 6.4: B-IRKA for bilinear DAEs, having index-2 matrix pencil (in-
volving projector).

Input: E11, A11, Nk, B1, C, C
(k)
N .

1 Make an initial guess of Ê, Â, N̂k, B̂, Ĉ.
2 while no convergence do

3 Compute nonsingular matrices Y and Z such that Y ÂZ = Λ and Y ÊZ = In̂.

4 De�ne B̃ = B̂TY T , C̃ = ĈZ and Ñk = ZT N̂T
k Y

T .
5 Determine

L = −(In̂ ⊗

φ2)

(
Λ⊗ (φT2 E11φ2) + In̂ ⊗ (φT2 A11φ2) +

m∑
k=1

ÑT
k ⊗ (φT2 Nkφ2)

)−1

(In̂ ⊗ φT2 ).

6 Determine the projection matrices V and W:

vec (V) = L(B̃T ⊗B)Im,

vec (W) = LT (C̃T ⊗ CT )Ip.
7 Compute the reduced-order system matrices:

Ê = WTE11V, Â = WTA11V, N̂k = WTNkV,

B̂ = WTB1, Ĉ = CV, C
(k)
N = Ĉ

(k)
N V.

Output: Êopt = Ê, Âopt = Â, N̂ opt
k = N̂ opt

k , B̂opt = B̂, Ĉopt = Ĉ, Ĉ
(k)opt
N = Ĉ

(k)
N .

6.5.2. Computational issues
We consider the following associated bilinear ODE system to compute the projection
matrices V and W:

φT2E11φ2
˙̃x1(t) = φT2A11φ2x̃1(t) +

m∑

k=1

φT2Nkφ2x̃1(t)uk(t) + φT2B1u(t), (6.95a)

ỹ(t) = Cφ2x̃1(t), x̃1(0) = 0. (6.95b)

In the view of resolving the computational issues, we �rst aim at determining V and
W such that the system matrices E11, A11, Nk, B1,C and CN can be directly reduced
using the projection matrices as shown in Algorithm 6.4 which is a straightforward
application of B-IRKA (Algorithm 6.1) to the system (6.95). However, note that the
Sylvester equations to compute V and W are now written as linear systems using
Kroneker products.
We notice that the projection matrices can be directly applied to the original system

matrices, but in order to compute the projection matrices V and W, we still require
the matrix φ2 explicitly. Therefore, our next goal is to construct the matrices V and
W without resorting to φ2.
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Lemma 6.27:
Let φ2 be the matrix as de�ned in (6.93) and F be a matrix such that (In̂⊗φT2 )F(In̂⊗
φ2) is invertible. De�ne XI

F and XF as follows:

XI
F := (In̂ ⊗ φ2)

(
(In̂ ⊗ φT2 )F(In̂ ⊗ φ2)

)−1

(In̂ ⊗ φT2 ),

XF := (In̂ ⊗ Π)F(In̂ ⊗ ΠT ),
(6.97)

where Π is de�ned in (6.90). Then, the matrices XI
F and XF satisfy the following

relation:
XI

FXF = (XFX
I
F)T = In̂ ⊗ ΠT . ♦

Proof. We begin with

XI
FXF = (In̂ ⊗ φ2)

(
(In̂ ⊗ φT2 )F(In̂ ⊗ φ2)

)−1

(In̂ ⊗ φT2 )(In̂ ⊗ Π)F(In̂ ⊗ ΠT ).

We decompose Π = φ1φ
T
2 and use properties of the Kronecker product to get

XI
FXF = (In̂ ⊗ φ2)

(
(In̂ ⊗ φT2 )F(In̂ ⊗ φ2)

)−1

(In̂ ⊗ φT2 )(In̂ ⊗ φ1)(In̂ ⊗ φT2 )F(In̂ ⊗ ΠT )

= (In̂ ⊗ φ2)
(

(In̂ ⊗ φT2 )F(In̂ ⊗ φ2)
)−1

(In̂ ⊗ φT2 φ1)(In̂ ⊗ φT2 )F(In̂ ⊗ ΠT ).

Since φT2 φ1 = I from (6.93), we obtain

XI
FXF = (In̂ ⊗ φ2)

(
(In̂ ⊗ φT2 )F(In̂ ⊗ φ2)

)−1

(In̂ ⊗ φT2 )F(In̂ ⊗ φ2)(In̂ ⊗ φT1 )

= (In̂ ⊗ φ2)(In̂ ⊗ φT1 ) = In̂ ⊗ ΠT .

A similar argument can be given for the other equality.

Using Lemma 6.27 and properties of the Kronecker product, we observe that the
projection matrices V and W, computed in step 7 of Algorithm 6.4, satisfy:

(In̂ ⊗ Π)F(In̂ ⊗ ΠT ) vec (V) = (In̂ ⊗ Π)(B̃T ⊗B), (6.98a)

(In̂ ⊗ Π)FT (In̂ ⊗ ΠT ) vec (W) = (In̂ ⊗ Π)(C̃T ⊗ C), (6.98b)

where F = −
(

Λ⊗ E11 + In̂ ⊗ A11 +
∑m

k=1 Ñ
T
k ⊗Nk

)
. Note that Π⊗ = In̂ ⊗ Π is also

an oblique projector. It can be veri�ed that (Π⊗)2 = Π⊗, ker (Π⊗) = range (In̂ ⊗ A12),
and range (Π⊗) = ker

(
In̂ ⊗ AT12E

−1
11

)
. Using these properties, it can be shown that

(In̂ ⊗ AT12)Z = 0 if and only if (In̂ ⊗ ΠT )Z = Z. (6.99)

In the following lemma, we show a way of circumventing the explicit computation of Π
to solve (6.98) for vec (V) or vec (W) and reveal the connection between the solutions
of (6.98) and saddle point problems.
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Algorithm 6.5: B-IRKA for bilinear DAEs, having an index-2 matrix pencil.

Input: E11, A11, Nk, B1,C,C
(k)
N .

1 Make an initial choice of Ê, Â, N̂k, B̂, Ĉ.
2 while no convergence do

3 Compute nonsingular matrices Y and Z such that Y ÂZ = Λ and Y ÊZ = In̂.

4 De�ne B̃ = B̂TY T , C̃ = ĈZ and Ñk = ZT N̂T
k Y

T .
5 Determine the projection matrices V and W:[

F In̂ ⊗ A12

In̂ ⊗ AT12 0

] [
vec (V)

Γ

]
=

[
(B̃T ⊗B)Im

0

]
,

[
FT In̂ ⊗ A12

In̂ ⊗ AT12 0

] [
vec (W)

∆

]
=

[
(C̃T ⊗ C)Ip

0

]
,

where F = −(Λ⊗ E11 + In̂ ⊗ A11 +
∑m

k=1 Ñ
T
k ⊗Nk).

6 Perform: V = orth (V ) and W = orth (W ).
Compute the reduced-order system matrices:

Ê = WTE11V, Â = WTA11V, N̂k = WTNkV,

B̂ = WTB1, Ĉ = CV, C
(k)
N = Ĉ

(k)
N V.

Output:
Êopt = Ê, Âopt = Â, N̂ opt

k = N̂k, B̂opt = B̂, Ĉopt = Ĉ, Ĉ
(k)opt
N = Ĉ

(k)
N .

Lemma 6.28:
Consider Z = (In̂⊗ΠT )Z and (In̂⊗Π)F(In̂⊗ΠT )Z = (In̂⊗Π)G. Then, the matrix
Z solves [

F In̂ ⊗ A12

In̂ ⊗ AT12 0

] [
Z
Ξ

]
=

[
G
0

]
. (6.100)

♦

Proof. Since Z = (In̂⊗ΠT )Z, we have (In̂⊗AT12)Z = 0 using the properties of In̂⊗ΠT as
stated in (6.99). This implies that the second block of the equation (6.100) is satis�ed.
Moreover, (In̂ ⊗ Π)FZ − (In̂ ⊗ Π)G = 0 implies that the columns of FZ − G lie in

ker (In̂ ⊗ Π) = range (In̂ ⊗ A12). Therefore, there exists Ξ, satisfying FZ−G = −(In̂⊗
A12)Ξ, which is nothing but the �rst block of the equation (6.100). This concludes the
proof.

Using Lemma 6.28, we thus can determine vec (V) and vec (W) without explicitly
computing Π by solving the corresponding saddle point problems. All these theoretical
analyses give rise to Algorithm 6.5 for model reduction of the system (6.94).

Remark 6.29:
As discussed in [85], the general B2 6= 0 index-2 problems can be brought back to a
problem with B2 = 0 type by decomposing x1(t) as follows:

x1(t) = x0(t) + xu(t), (6.101)
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where xu(t) = −E−1
11 A12(AT12E

−1
11 A12)B2︸ ︷︷ ︸

Υ

u(t) and x0(t) satis�es AT12x0(t) = 0. After

doing the algebraic calculations as done for the case B2 = 0 case, we get

ΠE11ΠT ẋ0(t) = ΠA11ΠTx0(t) +
m∑

k=1

ΠNkΠ
Tx0(t)uk(t) + ΠBũ(t), (6.102a)

ΠTx0(0) = ΠT (x0 − xu(0)), (6.102b)

y(t) = CΠTx0(t) +
m∑

k=1

C
(k)
N ΠTx0(t)uk(t) + Dũ(t)− C2(AT12E

−1
11 A12)−1B2u̇(t),

(6.102c)

where

B = [B1,B
(1)
u , . . . ,B(m)

u ] with B(k)
u = −NiΥ, ũ(t) =

(
[1, u(t)T ]⊗ u(t)T

)T
,

C = C1 − C2(AT12E
−1
11 A12)−1A11, C

(k)
N = −C2(AT12E

−1
11 A12)−1AT12E

−1
11 Nk,

D =
[
D − C1Υ− C2(AT12E

−1
11 A12)−1AT12E

−1
11 B1,

C2(AT12E
−1
11 A12)−1AT12E

−1
11 [B(1)

u , . . . , B(m)
u ]
]
.

Although the system (6.102) has terms associated with u, u·uk which are functions
of eventually u, but we treat them as di�erent inputs of the system as far as a
model reduction problem is concerned. Now, it can be easily seen that determin-
ing reduced-order systems of the system (6.102) is analogous to the system (6.92).
Therefore, Algorithm 6.5 can be readily applied to the system (6.102) to obtain
locally H2-optimal reduced-order systems, having neglected bilinear terms in the
output equation. ♦

Remark 6.30:
So far in the analysis, we have assumed that A12 = AT21 and E11 is symmetric.
However, the similar analysis can be carried out if A12 6= AT21 and E11 6= ET

11. In
such a case, the resulting algorithm would be similar to Algorithm 6.5, and the only
di�erences will occur in steps 6 and 7, determining the projections V and W . These
steps modify as follows in case A12 6= AT21 and E11 6= ET

11:

[
F In̂ ⊗ A12

In̂ ⊗ A21 0

] [
vec (V)

Γ

]
=

[
(B̃T ⊗B)Im

0

]
,

[
FT In̂ ⊗ A21

In̂ ⊗ AT12 0

] [
vec (W)

∆

]
=

[
(C̃T ⊗ C)Ip

0

]
,

where F = −(Λ⊗ E11 + In̂ ⊗ A11 +
∑m

k=1 Ñ
T
k ⊗Nk). ♦
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6.5.3. Numerical experiments
In this subsection, we investigate the e�ciency of the proposed iterative algorithm for
bilinear DAEs, having an index-2 matrix pencil and compare the quality of the deter-
mined reduced-order systems with the ones obtained by using the projection matrices
determined by linear IRKA [80, Algo. 6.2]. The stopping criterion for Algorithm 6.5
is based on the relative change in the eigenvalues of the reduced-order system. If this
change is below the square root of the machine precision, then the iteration is stopped.
We randomly select the initial guess of the reduced-order matrices in Algorithm 6.5 and
also choose a scaling factor γ as suggested in [21] for a smooth convergence of B-IRKA.
All the simulations are done on a board with 4 Intel® Xeon®E7-8837 CPUs with a
2.67-GHz clock speed using MATLAB 8.0.0.783 (R2012b).

A nonlinear RC circuit

Here, we consider a variant of the constraint transmission line circuit as shown in
Figure 6.8 (see the beginning of the section), where it is assumed that the voltages at
the �rst and last nodes are the same. The electrical component, i.e., I-V diode, has
nonlinear characteristics g(vD) = e40vD + vD − 1, where vD is the voltage across the
node. Using Kirchho�'s current law at each node, we get the following set of equations:

v̇1 = −2v1 + v2 + 2− e40v1 − e40(v1−v2) + u(t),

v̇i = −2vi + vi−1 + vi+1 + e40(vi−1−vi) − e40(vi−vi+1), 1 < i < ñ,

v̇ñ = −vñ + vñ−1 − 1 + e40(vñ−1−vñ)

(6.103)

with a constraint
0 = v1 − vñ.

The system of equations (6.103) can be written as a quadratic-bilinear DAE by ap-
propriately introducing the new state variables, as shown in [78] for a nonlinear RC
circuit example and in Subsection 6.3.6. The dynamics of the system, in the state-space
representation, is given as follows:

ẋ(t) = Ax(t) +Gλ+Hx(t)⊗ x(t) +Nx(t)u(t) +Bu(t),

0 = GTx(t),

where x(t) ∈ Rñ and λ are state vectors that contain voltages at each node and an
appropriate Lagrangian multiplier, respectively. We observe the voltage at the �rst
node. Since we have only one constraint in the system dynamics, this allows us to
employ Carleman bilinearization to obtain an approximate bilinearized DAE [71]. We
set ñ = 15, leading to a bilinearized system of order n = 2 · ñ + 4 · ñ2 + 1 = 961. We
apply the H2-optimal model reduction method (Algorithm 6.5) by setting the order of
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Figure 6.9.: A constraint nonlinear RC ladder: comparison of the transient response of
the systems for an input u(t) = (sin(10πt) + 1)/2.
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Figure 6.10.: A constraint RC-circuit diagram.

a reduced-order system to r = 10. We choose the scaling factor γ = 0.01 in order to
achieve convergence of B-IRKA. We also determine a reduced-order system by using
linear IRKA of the same order. In Figure 6.9, we compare the quality of the reduced-
order systems with the original system by computing transient responses for an input
u(t) = (sin(10πt) + 1)/2.
We observe that the reduced-order system obtained by modi�ed B-IRKA captures

the dynamics of the system better as compared to the reduced-order system obtained
by linear IRKA.

Resistance-varying RC circuit

As our second example, we consider the RC circuit as shown in Figure 6.10 in which
the ith node is connected to the (i−1)st and the (i+1)st nodes via resistances, and
connected to the ground via capacitors. Moreover, the �rst node is connected to the
ground via a variable resistance, and the voltage at the �rst node is in�uenced by
the current (the input u1). We also add an extra control u2, controlling the voltage
di�erence between the �rst and last nodes. Now, we apply Kirchho�'s current law at
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each node to obtain the following set of ODEs:

Cv̇1(t) = 1
R

(−v1 + v2) + 1
Rv

(0− v1) + u1(t),

Cv̇i(t) = 1
R

(−2vi + vi−1 + vi+1), (2 ≤ i ≤ n− 1),

Cv̇n(t) = 1
R

(−vn + vn−1)

along with a constraint
0 = v1 − vn − u2(t).

We set all the capacitors (C) and the constant resistance (R) equal to 1, and consider
that the variable resistance Rv varies with respect to the parameter δ as follows:

Rv =
R

1 + δ
.

Combining all these equations together, we obtain the dynamics of the RC circuit which
are described by the following DAE:

ẋ(t) = Ax(t) +GTλ(t) + δNx(t) +B1u1(t), (6.104a)

0 = Gx(t) +B2u2(t), (6.104b)

y(t) = Cx(t), (6.104c)

where x(t) ∈ Rn is the state vector containing the voltage at each node, λ ∈ R is
the Lagrange multiplier, G = [1, 0, . . . , 0,−1] is a constraint matrix, B1 = [1, 0, . . . , 0]
and B2 = 1. The voltage at the second node is the output of interest, thus yielding
C = [0, 1, 0, . . . , 0]. For this example, we �rst transform the system (6.104) into an
equivalent system with B2 = 0, leading to the following system:

˙̃x(t) = Ax̃(t) + δNx̃(t) +GTλ(t) + Bũ(t), (6.105a)

0 = Gx̃(t), (6.105b)

y(t) = Cx̃(t) +Dũ(t), (6.105c)

where B = [B1, AG, NG] and D = [0, CG, 0] in which G = −GT (GGT )−1B2, and
ũ(t) = [u1(t), u2(t), δu2(t)]. Now, the system (6.105) can be seen as a linear parameter-
varying system in the parameter δ. It is shown in [20] that the special class of parametric
systems is closely related to bilinear systems. Therefore, we reformulate the linear
system (6.105) appropriately as a bilinear system with four inputs and one output as
follows:

˙̃x(t) = Ax̃(t) +
4∑

i=1

Nix̃(t)ui(t) +GTλ(t) + Bbũb(t), (6.106a)

0 = Gx̃(t), (6.106b)

y(t) = Cx̃(t) +Dbũb(t), (6.106c)
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where
[
N1, N2, N3, N4

]
=
[
0, 0, 0, N

]
, Bb = [B, 0] and Db = [D, 0] with inputs ũb(t) =

[ũT (t), δ]T . We consider n = 1000, leading to the order of the system (6.106) ñ =
1001. Next, we determine reduced bilinear systems of order r = 15 by employing
Algorithm 6.5 and by using linear IRKA. These reduced bilinear systems again can
be rewritten into reduced linear parametric systems. This allows us to determine the
quality of the reduced-order systems by comparing the relative H∞-norm of the error

system, i.e.,
‖H−Ĥ‖H∞
‖H‖H∞

by varying parameter values δ as shown in Figure 6.11.
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Figure 6.11.: A resistor varying RC circuit: relative H∞ error versus the parameter
δ for the reduced linear parametric systems obtained from B-IRKA and
IRKA.

We observe that the reduced parametric system obtained from B-IRKA captures the
dynamics of the original system for a wide parameter range much better as compared
to the one obtained by using linear IRKA. However, one can see the drop in the relative
H∞ error in Figure 6.11. This is due to an apparent reason that the projection matrices
obtained by employing IRKA capture the dynamics of the system quite accurately for
δ = 0, but fail to capture the dynamics of the system as the parameter δ moves away
from δ = 0. On the contrary, the reduced parametric system obtained from B-IRKA
performs quite well over a wide parameter range.

Parameter dependant RLC circuit

Lastly, we consider an RLC circuit as shown in Figure 6.12. The governing equations
of the RLC circuit can be written as follows:

C d
dt
vj = ij − ij−1, j ∈ {1, . . . , g − 1},

C d
dt
vg = ig,

L d
dt
ij +Rij = vj−1 − vj j ∈ {2, . . . , g},
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where vj and ij are the voltage at the jth node and the current passing through the
(j−1)st inductor, respectively. Also, V (t) is a control voltage source of the system
and i1 is the current passing through this voltage source. Since the voltage source is
connected to the �rst node via ground, this leads to a constraint 0 = v1−V (t). We set
all capacitors and inductors to 1, and consider variable resistances, depending linearly
on the parameter p as follows:

R = 1 + p.

With these relations, we can write the system in the state-space form as:

d

dt
x1(t) = A11x1(t) + A12x2(t) + pNx1(t),

0 = AT12x1(t) +B2u(t),
(6.107)

where x1(t) contains the voltages at each node and the currents passing through each
inductor, and x2(t) contains the current through the voltage source. The voltage at
the last node is observed. We choose g = 500 which results in the order of the system
(6.107) n = 1001. As a �rst step, we convert system (6.107) to an equivalent system
by using an appropriate change of the state variable so that the constraint equation
becomes independent of the input, leading to the following system:

d

dt
x̃1(t) = A11x̃1(t) + Ã12x2(t) + pNx̃1(t) + B̃u(t),

0 = AT12x̃1(t),

y(t) = C1x̃1(t).

Next, we treat the above system as a bilinear system by considering the parameter p
as an input to the system. We determine reduced bilinear systems of order r = 10,
by employing the proposed B-IRKA and IRKA and then convert back to have linear
parametric reduced-order systems. In order to compare the quality of the reduced-order
systems, we plot the relative H∞-norm of the error system in Figure 6.13.

V (t)

i1

C

R
L

i2

C

R
L

i3

C C

R
L

ig

C

v1 v2 v3 vg−1 vg

Figure 6.12.: A variable resistance RLC circuit diagram.
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Figure 6.13.: A parametric varying RLC circuit: relativeH∞ error versus the parameter
p for the reduced linear parametric systems obtained from B-IRKA and
IRKA.

A similar phenomenon, as observed in the previous example can be seen in Fig-
ure 6.13, in particular, a drop in the relative H∞ error for IRKA at p = 0. Nevertheless,
the reduced-order system, obtained by using B-IRKA, outperforms the one obtained
by using IRKA for a wide range of the parameter.

6.5.4. Conclusions
In this section, we have proposed an iterative algorithm for MOR of the structured
bilinear DAEs, having an index-2 matrix pencil. This gives rise to locally H2-optimal
reduced-order systems on convergence, if it converges. For this, we have transformed
the original bilinear DAE into an equivalent bilinear ODE system by means of projec-
tors. This enabled us to employ bilinear iterative rational Krylov algorithm B-IRKA.
Next, in the view of implementation, we have proposed a modi�ed B-IRKA which
does not require the undesirable explicit computation of the spectral projector in order
to compute reduced-order systems. Finally, we have illustrated the e�ciency of the
proposed B-IRKA using various constraint electrical circuit examples, showing that
reduced-order systems, obtained by using modi�ed B-IRKA, replicate the dynamics of
the original system much better as compared to reduced-order systems obtained by
using linear IRKA.

6.6. Outlook
Summarizing, in this chapter, we have studied interpolation-based model reduction
techniques for special structured bilinear DAEs while paying a particular attention
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to their polynomial parts. Precisely, we have investigated subsystem interpolation,
multipoint Volterra series interpolation andH2-optimal model order reduction problem
for bilinear DAEs, having index-1 matrix pencil λE−A. Moreover, we have also studied
H2-optimal model reduction problem for bilinear DAEs, having index-2 matrix pencil.
However, there are still ample open problems to investigate in the future. One follow

up question is to extend index-2 bilinear DAEs methodology to the specially structured
bilinear DAEs, having index-3 matrix pencil λE−A as done for the linear index-3 DAEs
in [1]. These systems certainly appear in modeling of constraint mechanical systems.
Moreover, model reduction for bilinear DAEs, having matrix pencil λE−A of a general
index ν remains an open problem as a further research topic in this area. In addition
to these, an extension of a truncated H2-optimal model reduction problem [59, 60]
for bilinear DAEs would certainly be an attractive problem as well. Balancing-based
model reduction for bilinear descriptor systems would also be a useful contribution to
model reduction for bilinear DAEs.
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7.1. Conclusions
In this thesis, we have investigated model order reduction problems for large-scale non-
linear dynamical control systems. Precisely, we have studied two important classes of
the nonlinear systems: the �rst class of nonlinear systems is bilinear systems which act
a bridge between linear systems and fully nonlinear systems, and the second class is
quadratic-bilinear (QB) systems, which cover a large class of smooth nonlinear systems;
this is due to the fact that a smooth nonlinear a�ne system, involving combinations
of elementary functions like exponential, trigonometric, and polynomial functions, etc.,
can be rewritten in the QB form. In the past decades, results of balanced truncation
and rational interpolation, and their extension were mainly studied for model reduction
of linear systems. In recent years, a lot of attention has been paid to model reduction
for bilinear systems and to extend the existing ideas for linear systems, and a little
attention has been given to QB systems so far. The focus of this thesis thus has been
mainly twofold. First was to study balanced truncation model reduction for bilinear
control systems [26, 73]. We have also extended rational interpolation-based model
reduction for bilinear ODEs, [59, 12, 22, 21, 40] to bilinear systems subject to alge-
braic constraints. These results have been theoretically explained, and e�ciencies of
the resulting numerical algorithms have been illustrated by means of several numer-
ical examples. The second main goal was to study balanced truncation and optimal
interpolation model reduction techniques to QB system. For this, we have extended
the idea of algebraic Gramians for bilinear systems, e.g., [26, 73] to QB systems. We
have further investigated H2-optimal model reduction framework for QB systems by

207
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means of tools from tensor theory. We have provided theoretical background of the
results and their interpretations, and the results have been veri�ed by means of several
numerical simulations.
In Chapter 3, we have investigated widely studied balanced truncation method for

bilinear systems, e.g., see [26, 73]. We have provided concrete conditions under which
the bounds for energy functionals hold that are given in terms of certain quadratic
form of the algebraic Gramians for bilinear systems. Furthermore, we have introduced
a notion of truncated Gramians for bilinear systems and have given energy functional
interpretations of these truncated Gramians. By using a couple of numerical examples,
we have also illustrated the bene�ts of truncated Gramians in the model order reduction
framework.
In Chapter 4, we have extended balancing-type model reduction method for more

general nonlinear systems, namely, QB control systems. For this, we have �rst derived
the input-output mapping, the so-called Volterra series for QB systems, allowing us to
propose algebraic Gramians for the latter systems. We have further provided truncated
Gramians concept for QB systems as well. We have provided connections between con-
trollability/observability energy functionals and algebraic Gramians for QB systems.
Based on these results, we have proposed a balancing square root algorithm to deter-
mine the reduced order systems. Furthermore, we have discussed the computational
issues and have studied the Lyapunov stability of the obtained reduced-order systems.
Finally, we have illustrated balancing-type model reduction by means of various nonlin-
ear semi-discretized PDEs and have shown the out-performance of the proposed method
against the existing interpolation-based techniques [25, 78].
In Chapter 5, we have aimed at extending the ideas of interpolation-basedH2-optimal

model reduction for QB control systems. For this purpose, we have �rst proposed the
H2 measure based on the kernels for the underlying Volterra series of QB systems.
Furthermore, we have provided a truncated H2-norm for QB systems which is simpler,
and an explicit expression of it can be easily given. We then have shown how to gener-
alize the H2 optimality interpolation conditions from [21, 59] to QB systems by means
of some basic tools from tensor theory. This allowed us to proposed an iterative scheme
(TQB-IRKA), upon convergence, constructing reduced-order systems that satisfy the
optimality conditions approximately at modest cost. Lastly, we have illustrated the
e�ciency of the proposed methods by means of several numerical examples and have
shown its superiority to the common reduction method for nonlinear systems, proper
orthogonal decomposition (POD) and interpolation-based methods and its competi-
tiveness with respect to balanced truncation for QB systems.
We stress that the main advantages of both TQB-IRKA and balanced truncation

methods are that these methods are �rsly input-independent unlike POD method and
reduced-order systems due to these methods are constructed in an automatic fashion
as opposed to interpolation-based methods in, e.g., [25, 78].
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In all previous chapters, we have focused on ODE nonlinear systems. In Chapter 6,
we have investigated interpolation-based MOR for bilinear systems which are subject
to algebraic constraints as well. Such systems are referred to as bilinear descriptor
systems, or bilinear DAEs. For model reduction of DAEs, the polynomial part also
plays a crucial role along with interpolation. Thus, we have aimed at extending sub-
system interpolation and multi-point Volterra series interpolation for bilinear DAEs,
having index-1 matrix pencil λE−A and proposed modi�ed interpolation conditions,
allowing us to retain the polynomial of the systems. Furthermore, we have also inves-
tigated the problem of H2-optimal interpolation for bilinear DAEs, having index-1 and
index-2. This allowed us to propose modi�ed versions of the bilinear iterative Krylov
algorithms, leading to locally H2-optimal reduced-order systems upon convergence. We
have illustrated the e�ciency of these proposed methods by means of various numerical
examples.

7.2. Future Research Perspectives
Even though we have discussed several aspects of bilinear and QB systems by extending
the existing concepts for linear/bilinear systems, there are still many open questions
and problems which are worthwhile to investigate in future.
Although we have seen in Chapter 3 that balanced truncation method for bilinear

systems produces faithful reduced-order systems, yet an important problem is how to
quantify the error between the original and reduced-order systems due to the truncation.
Furthermore, an extension of balanced truncation for bilinear systems to descriptor
systems still remains an open problem.
In Chapter 4, we have proposed algebraic Gramians for quadratic-bilinear systems

and have shown their usage in MOR for QB systems. However, the Gramians solve
quadratic Lyapunov equations, which are hard to solve. Therefore, it is very important
to develop e�cient numerical algorithms to determine low-rank factors of these Lya-
punov equations. Moreover, the above open questions for bilinear systems also hold
for quadratic-bilinear systems, such as an error bound. Moreover, there are some ap-
plications where one might be interested in constructing reduced-order systems which
capture the system dynamics between time interval [0, T ], where T < ∞; therefore,
it will be nice to extend time-limited balanced truncation for linear systems, e.g.,[33]
and bilinear systems [117] to quadratic-bilinear systems. Furthermore, as we know that
bilinear systems have a close relation with a particular class of parametric systems, like-
wise it would be interesting to study the application of quadratic-bilinear systems in a
special class of linear parametric system, for example, when the number of parameters
are huge or the system matrices change with respect to the state vectors.
In Chapter 5, we have studied an optimal interpolation-based model reduction tech-

nique for QB systems, and as a result, we have proposed an iterative method (TQB-
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IRKA). However, the main bottleneck in applying the proposed TQB-IRKA for QB
systems is that it requires the computations related to Kronecker products such as
H(V ⊗ V )H̃T , which really slows down the iteration process. Although we have some
approaches to compute these terms e�ciently, it would be useful to come up with a
scheme which allows us to approximate the Hessian as follows:

H ≈
l∑

k=1

Ak ⊗Bk;

where Ak and Bk are matrices of appropriate sizes which would allow us to compute the
desired terms very e�ciently and fast. Furthermore, for a given order of a reduced-order
system, TQB-IRKA upon convergence provides us a reduced-order system, satisfying
the optimal conditions approximately; however, it is hard to quantify the quality of
the obtained reduced-order system. Therefore, it is important to derive some error
estimate, allowing to choose an appropriate order of reduced-order systems. Moreover,
a good initial selection of interpolation points and tangential direction can reduce the
number of iterations taken for the algorithm to converge. In addition to these, in the
H2-optimal framework for QB systems, we have derived �rst-order optimal conditions
by de�ning a truncatedH2-norm based on the leading three terms of the Volterra series;
however, it would be interesting to consider the higher-order terms to de�ne another
truncated H2-norm and then derive the optimal conditions and compare the quality of
the reduced-order systems.
In Chapter 6, we have aimed at extending the interpolation concepts including H2-

optimal interpolation for bilinear ODEs to bilinear DAEs by considering the special
structures of the matrix pencils. However, for a given general bilinear DAEs, this
is yet an open problem. Furthermore, in order to develop interpolation-based model
reduction techniques for bilinear DAEs, we have aimed at utilizing the structure of the
pencil matrix λE − A, rather than using a proper index of a bilinear system such as
di�erentiation index. Therefore, as a future topic, it would be interesting to study index
concepts for bilinear DAEs which can be easily coupled with model reduction problem
for bilinear DAEs. What is more, the truncated H2-optimal interpolation idea would
also be an appealing extension to bilinear DAEs.
Beside these, as we have noted, smooth nonlinear systems, containing mono-variate

functions, can be transformed into QB systems. Such a transformation is exact but
not unique. Therefore, a minimal or optimal transformation of nonlinear systems in
a QB form and automatic generation of the transformed systems would be desirable.
Furthermore, extensions of balancing-based and interpolation-based optimal model re-
duction techniques for QB ODEs to descriptor systems would be important as well,
due to vast applications, e.g., in �ow problems. Last but not least, balancing-type and
interpolation-based model reduction for more general nonlinear systems, having, for
example, rational terms, higher-order polynomial without rewriting them into a QB
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form, would also be a signi�cant contribution to nonlinear model order reduction.
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A. A convergence result
Lemma A.1:
Consider a recurrence formula as follows:

xk+1 = F (xk), ∀ k ≥ 1, (A.1)

where F (x) = ax2 + bx + c and a, b, c are real positive scaler numbers. Moreover,
assume that x1 = c. Then, limk→∞ xk =: x∗ is �nite if

b < 1, and (A.2a)

1 > (b− 1)2 − 4ac > 0. (A.2b)

Furthermore, x∗ is given by the smaller root of the the following quadratic equation:

ax2 + (b− 1)x+ c = 0, i.e.,

x∗ =
−(b− 1)−

√
(b− 1)2 − 4ac

2a
. (A.3)

♦

Proof. First, note that the sequence (A.1) contains only real positive numbers. Thus,
the equilibrium point must also be a real positive number. Furthermore, the equilibrium
points solve the quadratic equation F (x) − x = 0, and we denote these equilibrium
points by x(1) and x(2) with x(1) ≤ x(2). Since a, b and c all are positive, both equilibrium
points either can be positive or negative depending on the value of b. To ensure the
equilibrium points being positive, the minima of F (x) − x must lie in the right half
plane; thus, b− 1 < 0, leading to the condition (A.2a).
Furthermore, we consider the derivative of F (x), that is, F ′(x) := 2ax + b. Since

F ′(x) is an increasing function and F ′(x) ≥ 0 ∀x ∈ [c, x(1)], we have for y ∈ [c, x(1)]:

F ′(y) ≤ F ′(x(1))

≤ 2ax(1) + b = 2a

(
−(b− 1)−

√
(b− 1)2 − 4ac

2a

)
+ b ≤ 1−

√
(b− 1)2 − 4ac.

Assuming 1 > (b − 1)2 − 4ac > 0, we have F ′(y) < 1, ∀y ∈ [c, x(1)]. Thus, by Banach
�x-point theorem, F (x) is a contraction on [c, x(1)], and the �xed point is given by
x(1).



216

B. Important relations of the Kronecker products
In this section, we provide some relations between Kronecker products, which will
simplify necessary conditions for H2-optimality of QB systems.

Lemma B.1 ([21]):
Consider f(x) ∈ Rs×n, A(y) ∈ Rn×n, G ∈ Rn×q with x, y ∈ R and let L(y) be de�ned
as

L(y) = −A(y)⊗ In − In ⊗ A(y).

If the functions f and A are di�erentiable with respect to x and y, respectively, then

∂

∂x

[
(Is)

T (f(x)⊗ f(x))L−1(y)(G⊗G)Iq
]

= 2(Is)
T

((
∂

∂x
f(x)

)
⊗ f(x)

)
L−1(y)(G⊗G)Iq.

Moreover, let X, Y ∈ Rn×n be symmetric matrices. Then,

∂

∂y

[
vec (X)T L−1(y) vec (Y )

]
= 2 · vec (X)T L−1(y)

(
∂

∂y
A(y)⊗ In

)
L−1(y) vec (Y ) .♦

Lemma B.2:
Let F, F̂ be de�ned as follows:

F =
[
In 0

]
⊗
[
In 0

]
and F̂ =

[
0 Ir

]
⊗
[
0 Ir

]
,

and consider a permutation matrix

M =

[
Mnnr 0

0 Mrnr

]
, (B.1)

where Mpqr is de�ned in (5.28). Moreover, let the two column vectors x and y be
partitioned as

x =
[
xT1 xT2 xT3 xT4

]T
and y =

[
yT1 yT2 yT3 yT4

]T
,

where x1, y1 ∈ Rn2
, x{2,3}, y{2,3} ∈ Rnr, and x4, y4 ∈ Rr2 . Then, the following relations

hold:

(F̂ ⊗ F)T(n+r,n+r)(M ⊗M)(x⊗ y) = T(n,r)(x3 ⊗ y3), (B.2)

(F̂ ⊗ F̂)T(n+r,n+r)(M ⊗M)(x⊗ y) = T(r,r)(x4 ⊗ y4), (B.3)

where T(n,m) is also a permutation matrix given by

T(n,m) = Im ⊗
[
Im ⊗ en1 , . . . , Im ⊗ enn

]
⊗ In. ♦
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Proof. Let us begin by considering the following equation:

(F̂ ⊗ F)T(n+r,n+r) =
[
0 Ir ⊗

[
0 Ir

]
⊗ F

]
(In+r ⊗ G) ,

where G =
[
In+r ⊗ en+r

1 , . . . , In+r ⊗ en+r
n+r

]
⊗In+r. Next, we split In+r as In+r =

[
In 0
0 Ir

]
,

leading to

(F̂ ⊗ F)T(n+r,n+r) =
[
0 Ir ⊗

[
0 Ir

]
⊗ F

] [In ⊗ G 0
0 Ir ⊗ G

]

=
[
0
(
Ir ⊗

[
0 Ir

]
⊗ F

) (
Ir ⊗ G

)]

=
[
0 Ir ⊗

( ([
0 Ir

]
⊗ F

)
G
)]
.

(B.4)

Now, we investigate the following equation, which is a part of the above equation:

([
0 Ir

]
⊗ F

)
Gi =: Li,

where Gi is ith block column of the matrix G given by Gi = In+r ⊗ en+r
i ⊗ In+r. This

yields

Li =
([

0 Ir
]
⊗ F

) (
In+r ⊗ en+r

i ⊗ In+r

)

=
([

0 Ir
]
In+r

)
⊗
(
F(en+r

i ⊗ In+r)
)

=
[
0 Ir

]
⊗
(
F(en+r

i ⊗ In+r)
)
.

Assuming that 1 ≤ i ≤ n, we can write Li as

Li =
[
0 Ir

]
⊗
(
F

([
eni
0

]
⊗ In+r

))
=
[
0 Ir

]
⊗
([
In ⊗

[
In 0

]
0
] [eni ⊗ In+r

0

])

=
[
0 Ir

]
⊗
[
eni ⊗

[
In 0

]]
=
[
0 Ir ⊗

(
eni ⊗

[
In 0

])]
.

Subsequently, we assume n+ r ≥ i > n, which leads to

Li =
[
0 Ir

]
⊗
(
F

([
0
eri−n

]
⊗ In+r

))

=
[
0 Ir

]
⊗
([
In ⊗

[
In 0

]
0
] [ 0
eri−n ⊗ In+r

])
= 0.

Thus, ([
0 Ir

]
⊗ F

)
G =

[
L1,L2, . . . ,Ln, 0

]
=: L.

Inserting the above expression in (B.4) yields

(F̂ ⊗ F)T(n+r,n+r) =
[
0 Ir ⊗ L

]
.
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Now, we are ready to investigate the following term:

(F̂ ⊗ F)T(n+r,n+r)(M ⊗M) =
[
0 Ir ⊗ L

] [Mnnr ⊗M 0
0 Mrnr ⊗M

]

=
[
0 Ir ⊗ L

] [Mnnr ⊗M 0
0 Mrnr ⊗M

]

=
[
0 (Ir ⊗ L) (Mrnr ⊗M)

]
.

Further, we consider the second block column of the above relation and substitute for
Mnnr and Mrnr using (5.28) to get

(Ir ⊗ L) (Mrnr ⊗M) = (Ir ⊗ L)

[
Ir ⊗

[
In
0

]
⊗M Ir ⊗

[
0
Ir

]
⊗M

]

=

[
(Ir ⊗ L)

(
Ir ⊗

[
In
0

]
⊗M

)
(Ir ⊗ L)

(
Ir ⊗

[
0
Ir

]
⊗M

)]
.

(B.5)

Our following task is to examine each block column of (B.5). We begin with the �rst
block; this is

(Ir ⊗ L)

(
Ir ⊗

[
In
0

]
⊗M

)
= Ir ⊗

(
L

([
In
0

]
⊗M

))
= Ir ⊗

(
L

[
In ⊗M

0

])

= Ir ⊗
[
L1M, . . . ,LnM

]
.

We next aim to simplify the term LiM , which appears in the above equation:

LiM =
[
0 Ir ⊗

[
enj ⊗

[
In 0

]]] [Mnnr 0
0 Mrnr

]

=
[
0
(
Ir ⊗

[
enj ⊗

[
In 0

]])
Mrnr

]

=

[
0
(
Ir ⊗ enj ⊗

[
In 0

]) [
Ir ⊗

[
In
0

]
Ir ⊗

[
0
Ir

]]]

=
[
0
(
Ir ⊗ enj ⊗ In

)
0
]

:= Xi. (B.6)

The second block column of (B.5) can be studied in a similar fashion, and it can be
shown that

(Ir ⊗ L)

(
Ir ⊗

[
0
Ir

]
⊗M

)
= 0.

Summing up all these expressions, we obtain

(F̂ ⊗ F)T(n+r,n+r)(M ⊗M) =
[
0
(
Ir ⊗

[
X1, . . . ,Xn

])
0
]
,

where Xi is de�ned in (B.6). This gives

(F̂ ⊗ F)T(n+r,n+r)(M ⊗M)(x⊗ y) =
[
0 Ir ⊗

[
X1, . . . ,Xn

]
0
]

(x⊗ y)

=
(
Ir ⊗

[
X1, . . . ,Xn

])
(x3 ⊗ y).

(B.7)
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Next, we de�ne another permutation

Q =



Ir ⊗ In ⊗




In2

0
0
0




︸ ︷︷ ︸
Q1

Ir ⊗ In ⊗




0
Inr
0
0




︸ ︷︷ ︸
Q2

Ir ⊗ In ⊗




0
0
Inr
0




︸ ︷︷ ︸
Q3

Ir ⊗ In ⊗




0
0
0
Ir2




︸ ︷︷ ︸
Q4



,

which allows us to write

(x3 ⊗ y) = Q




x3 ⊗ y1

x3 ⊗ y2

x3 ⊗ y3

x3 ⊗ y4


 .

Substituting this into (B.7) results in

(F̂ ⊗ F)T(n+r,n+r)(M ⊗M)(x⊗ y)

=
(
Ir ⊗

[
X1, . . . ,Xn

]) [
Q1 Q2 Q3 Q4

]



x3 ⊗ y1

x3 ⊗ y2

x3 ⊗ y3

x3 ⊗ y4


 .

Now, it can be easily veri�ed that
(
Ir ⊗

[
X1, . . . ,Xn

]) [
Q1 Q2 Q4

]
= 0. Thus, we

obtain

(F̂ ⊗ F)T(n+r,n+r)(M ⊗M)(x⊗ y) =
(
Ir ⊗

[
X1, . . . ,Xn

])
Q3(x3 ⊗ y3)

=
(
Ir ⊗

[
X1, . . . ,Xn

])

Ir ⊗ In ⊗




0
0
Inr
0





 (x3 ⊗ y3)

=
(
Ir ⊗

[
Ir ⊗ en1 ⊗ In, . . . , Ir ⊗ en1 ⊗ In

])
(x3 ⊗ y3) = T(n,r)(x3 ⊗ y3).

One can prove the relation (B.2) in a similar manner. However, for brevity, we omit it.
This concludes the proof.
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