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Abstract
We rederive the conformal anomaly for spin-1

2 fermions by a genuine Feynman 
graph calculation, which has not been available so far. Although our calculation 
merely confirms a result that has been known for a long time, the derivation 
is new, and thus furnishes a method to investigate more complicated cases 
(in particular concerning the significance of the quantum trace of the stress 
tensor in non-conformal theories) where there remain several outstanding and 
unresolved issues.

Keywords: gravitational anomaly, Weyl anomaly, conformal symmetry

1. Introduction

Conformal anomalies have been studied for a long time, see [1–12] for original references and 
[13–18] for reviews and further references. In four dimensions the gravitational part of the 
conformal anomaly takes the form

A = a E4 + b�R + c CµνρσCµνρσ (1)

where Cµνρσ is the Weyl tensor and E4 the Euler invariant. Unlike the first and last term the 
middle contribution can in principle be removed by a local counterterm (∼R2), but we will 
keep it here for later purposes. These three terms are the only local expressions which satisfy 
the Wess–Zumino consistency condition, while an R2 contribution would require a non-local 
completion of the anomaly for the consistency condition to be obeyed (see e.g. [19] and references 
therein).
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In this paper we give a new derivation of the coefficients a, b, c for spin-1
2 (Majorana) 

 fermions, by directly calculating

A = gµν〈Tµν〉 (2)

up to second order in the metric fluctuations, thus extending the O(h) calculation of Capper 
and Duff [1]. We note that the b and c coefficients were originally determined from the two-
point correlator of stress tensors in [1] because the two-point function is renormalised by the 
same counterterm as the 3-point function [3], but this calculation does not yield the a coeffi-
cient. In this paper, by going to O(h2), we find all coefficients ‘in one go’; there is thus no need 
to distinguish between type A and B anomalies [9], as both appear on an equal footing. Of 
course, the coefficients of the spin-1

2 conformal anomaly have been known for a long time and 
have been determined by various different methods, via one-loop divergences and heat kernel 
expansions [4, 5, 13–15, 17], conformal higher spins [12], path integral methods [20, 21], or 
by QFT in curved spacetime methods [22, 23]. The trace anomaly appears in the TTT correla-
tor in CFT; the general structure of this correlator has been studied in [24–27]—moreover, in 
[24] the 3-point function of stress tensors for free fields is calculated in x-space. Curiously, 
however, to the best of our knowledge, this computation has never been done à la Capper–
Duff up to O(h2). In fact, a derivation closest in spirit to the present one is in recent work by 
Bonora et al [28, 29], where, however, only the simpler parity odd contribution (related to 
the Pontryagin invariant) was considered. Our rederivation is, in principle, a straightforward 
calculation, very much like the standard textbook derivation of the axial anomaly via triangle 
graphs, though far more cumbersome in practice. Notably, and in contrast to several other 
derivations, it does not rely on kinematic choices, such as special gauges for the external 
graviton hµν, nor special values for external momenta, nor on-shell conditions. It thus also 
provides a toolkit for a similar ‘textbook calculation’ of the (again known) s = 0, 1 anomalies 
that still remains to be done in this way.

To be sure, we basically regard the present derivation as just a ‘warm-up’ exercise for 
investigating the conformal anomaly in non-conformal theories, in particular for s = 3

2 (that 
is, Poincaré supergravity) where there remain several open issues. These concern for instance 
the occurrence (or not) of R2 and/or non-local contributions to the anomaly; a full clarification 
of non-local terms will probably require the full machinery of scalar n-point integrals that 
we review and further develop in section 4 of this paper. The dependence of the a and c coef-
ficients on the choice of gauge for the external gravity fluctuations that has been observed for 
s � 3

2 [6, 8, 12, 30, 31] is a very strange feature, as it would seem to indicate a breakdown of 
general covariance—whereas a proper definition of the conformal anomaly should result in a 
gauge invariant answer also for non-conformal theories (this question is relevant for the pos-
sible cancellation of the c coefficients for N � 5 Poincaré supergravities [32]). Another open 
issue is to see precisely why the result for spin-3

2 comes out to be negative (this is the only field 
that contributes with a negative c coefficient, and is thus indispensable for any cancellation), a 
feature that is probably related to the absence of a gauge invariant stress tensor and a positive 
definite Hilbert space of states for spin-3

2. Understanding these issues will hopefully lead to an 
understanding of whether and what type of non-local terms have to be added to the effective 
action, with potential cosmological implications as in, for example, [33].

The organisation of this paper is as follows: in section 2.1, we give the Weyl transformation 
of the curvature, Ricci tensor and scalar and review the Weyl transformation properties of the 
actions for scalar, Dirac, Maxwell and gravitino fields. In section 3, we consider the action 
for a massless Majorana field and the expectation value of the stress tensor for such a theory. 
We present the Feynman rules and calculate the expectation value at first order, section 3.1, 
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and calculate the �R anomaly. We then consider the expectation value of the stress tensor at 
second order, section 3.2, and show that it is also conserved. We review and develop methods 
for calculating scalar 3-point loop integrals in section 4, which are then used to find the trace 
anomaly at second order in the metric perturbation in section 5. We provide a list of the expan-
sion of some relevant quantities under metric perturbations, appendix A; give the result of 
scalar 2-point integrals, appendix B and list some useful gamma matrix and integral identites 
in appendix C. We also relegate some technical calculations to appendices D and E.

A final word on our conventions. Lest our multiple use of Greek indices may raise confu-
sion let us state once and for all the convention that we will follow throughout this paper: 
contractions with the full metric gµν are always fully covariant, whereas the flat metric ηµν is 
to be used for all contractions involving the metric fluctuations hµν or any quantities appearing 
inside Feynman diagrams. For instance, when writing out a contraction like gµνTµν  in terms 
of the metric fluctuations hµν the result will be an infinite series in terms of the latter where 
now all contractions are w.r.t. the Minkowski metric ηµν. Where appropriate we will also use 
flat (Lorentz) indices a, b, ... in the fully covariant context, whereas the distinction between flat 
and curved indices becomes void in terms of the fluctuation expansion.

2. Preliminaries

In this section we summarize some general results concerning Weyl transformations so as to 
make our presentation self-contained, and for reference in future work. We use mostly positive 
metric signature and positive curvature conventions, namely the conventions of [34].

2.1. Weyl transformations

We collect a list of the transformations of some tensors under a Weyl transformation

gµν −→ Ω2 gµν = e2σ gµν , (3)

where all quantities depend on x. The curvature tensor in d-dimensions

Rµνρσ = Cµνρσ +
2

d − 2
gµ[ρ Rσ]ν − 2

d − 2
gν[ρ Rσ]µ − 2

(d − 1)(d − 2)
gµ[ρgσ]νR,

 (4)
and its contractions transform as follows:

Rµ
νρσ −→Rµ

νρσ − 2 δµ[ρ ∇σ]∇νσ + 2 gµα gν[ρ ∇σ]∇ασ + 2 δµ[ρ ∂σ]σ ∂νσ

− 2 gµα gν[ρ ∂σ]σ ∂ασ − 2 δµ[ρ gσ]ν gαβ ∂ασ ∂βσ.
 (5)

Rµν −→ Rµν − (d − 2)∇µ∇νσ + (d − 2) ∂µσ ∂νσ − gµν �σ − (d − 2) gµν gρσ ∂ρσ ∂σσ,
 (6)

R −→ Ω−2
[
R − 2(d − 1)�σ − (d − 1)(d − 2) gµν ∂µσ ∂νσ

]
. (7)

The covariant derivative also transforms under a Weyl transformation. In particular, the 
Christoffel symbol transforms as

Γρ
µν −→ Γρ

µν + 2 δρ(µ ∂ν)σ − gρσgµν ∂σσ, (8)
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while the spin connection transforms as

ωµ
ab −→ ωµ

ab + 2eµ[aeνb]gνρ∂ρσ. (9)

2.2. Weyl invariant actions for spins s � 1

Given the transformation property of the quadratic operator

√
−g

(
−�+

d − 2
4(d − 1)

R
)

−→ Ωd−2√−g
(
−�+

d − 2
4(d − 1)

R
)
− d − 2

2
Ωd−2√−g�σ

− (d − 2) Ωd−2√−g gµν
(

d − 2
4

∂µσ∂νσ + ∂µσ∂ν

)

 (10)

this operator is Weyl covariant if it acts on a scalar φ of conformal weight − d−2
2 ,

φ −→ Ω− d−2
2 φ. (11)

Furthermore, it is then clear that

√
−gφ

(
−�+

d − 2
4(d − 1)

R
)
φ (12)

is Weyl invariant.
For a spinor χ of conformal weight − d−1

2 ,

χ −→ Ω− d−1
2 χ, (13)

the Dirac Lagrangian

χγµDµχ ≡ χγµ

(
∂µ +

1
4
ωµ abγ

ab
)
χ, (14)

is already Weyl-invariant by itself without any modification, and for any d. This can be seen 
using the transformation of the spin connection, (9), and noting that

γµγ
µν = (d − 1)γν . (15)

In four dimensions, the invariance of the Yang–Mills action is anyhow clear because of the 
invariance of the factor 

√
−ggµρgνσ multiplying Tr(FµνFρσ) under Weyl transformations 

(where the vector field Aµ is assigned Weyl weight zero). In arbitrary dimensions the Yang–
Mills action is not, however, Weyl-invariant.

For completeness and later applications let us also display the action of a Weyl transforma-
tion on the Rarita–Schwinger action, which is not invariant. It transforms as

εµνρσψµγ5γν∇ρψσ −→ Ω−4εµνρσψµγ5γν∇ρψσ − 2igµρ∂ρσψ[µγ
νψν],

 (16)
where

ψµ −→ Ω−1/2ψµ. (17)

Hence we see that Weyl invariance is already broken at the classical level. Indeed, it is known 
that for spin-3

2 one needs an action cubic in derivatives for conformal invariance [7].
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3. Majorana fermions

In this paper we will consider only spin-1
2 fermions as they appear to provide the simplest con-

text in which to perform the analysis up to O(h2). Accordingly, we start with the Dirac action 
for a Majorana fermion2:

S =
i
2

∫
eχγµDµχ = S(0) + S(1) + S(2) + . . . , (18)

where Dµ is the covariant derivative with spin-connection ω and S(k) is the action at order k in 
the metric fluctuation hµν, from

gµν(x) = ηµν + hµν(x). (19)

Using the expansions in appendix A, we find that, up to second order in h,

S(0) =
i
4

∫
χ
←→
/∂ χ,

S(1) = − i
8

∫ (
hµν χγµ

←→
∂ν χ− hχ

←→
/∂ χ

)
,

S(2) =
i

32

∫ (
3 hµρhρν χγµ

←→
∂ν χ− 2 hhµν χγµ

←→
∂ν χ− 2 hµνhµν χ

←→
/∂ χ

+ h2χ
←→
/∂ χ+ hσµ∂νhρσ χγµνρχ

)
,

 

(20)

where h ≡ ηµνhµν , 
←→
∂µ =

−→
∂µ −

←−
∂µ, and where the left action of the differential operator is 

only on the fermion χ. Also, we use lower case Latin letters for tangent space indices, we use 
Greek indices for tensors after perturbatively expanding the metric. In both cases the position 
of indices is raised/lowered with the Minkowski metric. Moreover, the fermionic stress tensor 
admits a similar expansion3,

Tµν =
2
e

gµρgνσ
δS
δgρσ

= −1
e

eµa
δS
δea

ν
= − i

4

(
χγ(µ

←→
Dν)χ− gµνχ

←→
/D χ

)
= T(0)

µν + T(1)
µν + . . . ,

 (21)
where to first order in h,

T(0)
µν = − i

4

(
χγ(µ

←→
∂ν)χ− ηµν χ

←→
/∂ χ

)
 (22)

T(1)
µν = − i

8

(
hρ(µ χγρ←→∂ν)χ+ ηµνhρσ χγρ

←→
∂σχ− 2 hµν χ

←→
/∂ χ− ∂ρhσ(µ χγν)ρσχ

)
.

 

(23)

In the Majorana representation χγµχ = 0, hence terms containing such contractions do not 
contribute. However, even for Dirac fermions for which χ̄γµχ �= 0 terms with such contrac-
tions cancel in the final result, and the expansion is, up to an overall factor of 2, given by 

2 Up to an overall factor of 12 this action is the same for Dirac and Majorana fermions. The action for a massless 
Majorana fermion is also classically the same as the action for a Weyl fermion up to a total derivative term. There 
are recent claims that they are different at the quantum level and that there is, in particular, an odd parity anomaly 
for Weyl fermions [28, 29]. We will not address this claim here, but we just note that there is no issue for Majorana 
fermions as (18) is real.
3 The symmetrisation of the stress–energy tensor comes from the variation of the spin connection in a second-order 
formalism.

H Godazgar and H Nicolai Class. Quantum Grav. 35 (2018) 105013
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the very same expression (20). Hence the anomaly for a Dirac fermion is twice the one for a 
Majorana fermion. From the Lagrangian density above it is then straightforward to read off 
the Feynman rules with up to two external graviton lines. The relevant expressions are given 
in figure 14.

We are interested in the expectation value of the stress tensor at first and second order in 
the metric perturbation,

〈Tµν(x)〉 =
〈

Tµν(x)ei(S(1)+S(2)+··· )
〉

0
,

=
〈(

T(0)
µν (x) + T(1)

µν (x) + . . .
)(

1 + iS(1) +

(
iS(2) − 1

2
S(1)S(1)

)
+ . . .

)〉
0
,

= i
〈

T(0)
µν (x)S

(1)
〉

0
+ i

〈
T(1)
µν (x)S

(1)
〉

0
+ i

〈
T(0)
µν (x)S

(2)
〉

0

− 1
2

〈
T(0)
µν (x)S

(1)S(1)
〉

0
+ . . . .

 
(24)

where 〈· · · 〉0 denotes the free expectation value (to be evaluated in the spin-1
2 Fock space). 

Note that at zeroth order, 〈T(0)
µν (x)〉0, we only have tadpole diagrams, which vanish in dimen-

sional regularisation. Furthermore, there is no 〈T(1)
µν (x)〉0 contribution at first order in h, since 

these also contribute only tadpole diagrams.

i

i

i

i i

i

i

Figure 1. Feynman rules for graviton-fermion interactions; the crossed vertex comes 
from the expansion of Tµν to O(h).

4 Since we are working with Lorentzian signature it should be understood that we are using the usual iε prescription 
for the propagator, although we do not write this out explicitly.
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3.1. Expectation value of the stress tensor at O(h)

In this section we briefly summarise the old O(h) result of [1]. At first order, from equation (24) 
the expectation value of the stress tensor is

〈
Tµν(x)

〉
|O(h) = i

〈
T(0)
µν (x)S

(1)
〉

0
=

∫
ddy

∫
ddp
(2π)d e−ip·(x−y)Tµνρσ( p)hρσ(y),

 

(25)

which defines the two-point function Tµνρσ( p) in momentum space. Using the Feynman rules 
we have

Tµνρσ( p) =
i

16

∫
ddk
(2π)d tr

(
/k
k2 (2k − p)(µγν)

/k − /p
(k − p)2 (2k − p)(ργσ)

)
, (26)

where we have neglected all terms proportional to ηµν and ηρσ, since, using the identity

/k(2/k − /p)(/k − /p)
k2(k − p)2 =

(/k − /p)
(k − p)2 +

/k
k2 , (27)

these terms reduce to tadpole integrals which vanish. Note also the simple identities

Tµνρσ( p) = Tµνρσ(−p) , Tµνρσ( p) = Tρσµν( p). (28)

As shown in appendix D, equation (D.1), the explicit symmetrisation of the µν  indices in the 
integral (26) is not required, as the antisymmetric part vanishes, a fact that we will exploit to 
simplify some of the subsequent calculations.

The conservation of the stress tensor

∇µ
〈
Tµν

〉
= 0 (29)

and the tracelessness
〈
gµνTµν

〉
= 0 (30)

at order h, translate to the following Ward identities

pµTµνρσ = 0, (31)

η(d)µνTµνρσ = 0, (32)

where it is important that the trace is taken in d dimensions (indicated in the notation by 
 putting the trace inside the brackets in (30) and superscript (d) on the η). In order to verify the 
conservation Ward identity, we note that

pµ(2k − p)µ = k2 − (k − p)2. (33)

Hence pµTµνρσ reduces to a tadpole integral which vanishes. Similarly, the d dimensional 
trace reduces to a tadpole integral upon using identity (27). This is in accord with the fact that 
the Dirac Lagrangian density is classically Weyl invariant in all dimensions with a d-dependent 
scaling of the fermions.

H Godazgar and H Nicolai Class. Quantum Grav. 35 (2018) 105013
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Evaluating the 2-point function integral, (26), using the integral identities (B.1)–(B.4), we 
obtain

−i
1

(2
√
π)d · 2d/2I( p)

32(d2 − 1)

[
(d − 2) pµpνpρpσ − 2 (d − 1) p2 p(µην)(ρpσ) + p2 (ηµνpρpσ + ηρσpµpν)

+( p2)2 ((d − 1)ηµ(ρησ)ν − ηµνηρσ
) ]

.

 (34)
where the extra factor of 1/(2

√
π)d in front is due to our normalisation of the integral I( p) in 

(B.5). It is now straightforward to verify that the contraction of the above expression with pµ 
vanishes, confirming that the Ward identity for general covariance is satisfied. Furthermore, 
we can verify again that the contraction of the µν  indices in d dimensions is also zero.

However, contracting the µν  indices in four dimensions we obtain

η(4) ρσTρσµν =
p2

60(4π)2

(
pµpν − ηµνp2) , (35)

from which we find the �R anomaly at O(h), to wit,

gµν〈Tµν〉
∣∣
O(h) =

1
60(4π)2 �R

∣∣
O(h) (36)

where we now put the gµν outside the bracket to indicate that the trace is to be taken in four 
dimensions, after regularisation and renormalisation. We again stress that the �R anomaly 
is scheme-dependent in the sense that its coefficient can be changed by adding a local coun-
terterm. However, within dimensional regularisation, we choose to calculate this coefficient 
without adding any counterterms to the action.

We stress that this O(h) calculation can not give the a and c coefficients as these require at 
least O(h2). However, with an extra assumption on the counterterm it is possible to derive the 
c coefficient at least by indirect arguments [3]. This can be seen as follows: introducing the 
counterterm ε−1∆W , where ∆W ≡

∫
ddx

√
−gC2 and C is the 4-dimensional Weyl tensor, and 

functionally differentiating, we get

2e−1gµν
δ

δgµν
∆W = (d − 4)

(
C2 +

2
3
�R

)
 (37)

which shows that

b =
2
3

c , (38)

a relation which we shall later verify explicitly at O(h2). By contrast, there is no such indirect 
and labor saving argument for the coefficient a.

3.2. Expectation value of the stress tensor at O(h2)

The evaluation of the expectation value of the stress tensor to second order in the metric 
 fluctuations is far more involved than at first order because there are many more contributions. 
In particular we must now consider the 3-point functions which are given by Feynman dia-
grams labelled (a) and (b) in figure 25. These diagrams, as well as a new diagram labelled (c) 

5 The labelling in the Feynman diagrams should be seen as mnemonics for writing down the integrals that contribute 
to the expectation value of the stress tensor. The object that is calculated is x-dependent and the momenta p and q 
are integrated over.

H Godazgar and H Nicolai Class. Quantum Grav. 35 (2018) 105013
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in figure 2, contribute to the the expectation value of the stress tensor at second order in the 
metric perturbation,

〈Tµν(x)〉|O(h2) =

∫
ddy ddz

∫
ddp
(2π)d

ddq
(2π)d e−ip·(x−y)−iq·(z−y)hρσ(y)

(
T(1)
µνρσαβ( p, q) hαβ(z)

+ T(2)
µνρσαβ( p, q) hαβ(z) + T(3)

µνρσαβ( p) hαβ(x)

)
.

 
(39)

Here T(1)
µνρσαβ, T(2)

µνρσαβ and T(3)
µνρσαβ are the 3-point diagrams corresponding to 

〈T(0)
µν (x)S(1)S(1)〉0, 〈T(0)

µν (x)S(2)〉0 and 〈T(1)
µν (x)S(1)〉0 in equation (24), respectively. Using the 

Feynman rules given in figure 1, the Feynman diagrams labelled (a) in figure 2 give

T(1)
µνρσαβ( p, q) =

i
128

∫
ddk
(2π)d tr

{
/k
k2

[
(2k − p)(µγν) − ηµν(2/k − /p)

] /k − /p
(k − p)2

×
([

(2k − p + q)(ργσ) − ηρσ(2/k − /p + /q)
] /k + /q
(k + q)2

×
[
(2k + q)(αγβ) − ηαβ(2/k + /q)

]

+
[
(2k − 2p − q)(αγβ) − ηαβ(2/k − 2/p − /q)

] /k − /p − /q
(k − p − q)2

×
[
(2k − p − q)(ργσ) − ηρσ(2/k − /p − /q)

])}
.

 (40)
Letting k → −k + p in the second term and using the gamma matrix identity (C.2), we can 
show that the second term is identical to the first term, viz the contribution from the two 

Figure 2. Feynman diagrams for 3-point function of stress tensor insertions. The 

diagrams at the top, labelled (a), contribute to T(1)
µνρσαβ; diagram (b) and (c) contribute 

to T(2)
µνρσαβ and T(3)

µνρσαβ, respectively.
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diagrams labelled (a) is identical. Furthermore the terms involving ηαβ or ηρσ, can be written 
as two-point function integrals, defined in equation (26), using identities analogous to (27). 
Terms with more than one η reduce to tadpole integrals, which vanish, or integrals of the form

∫
ddk
(2π)d tr

(
/k
k2 (2/k − /p + /q)

/k − /p
(k − p)2 (2k − p)(ργσ)

)
, (41)

which using identity (27) reduces to
∫

ddk
(2π)d tr

(
/k
k2 /q

/k − /p
(k − p)2 (2k − p)(ργσ)

)
= 0 (42)

by identity (C.5). Hence, we can rewrite T(1) as

T(1)
µνρσαβ( p, q) =

1
64

Tµνρσαβ( p, q)− 1
4
ηµν [Tρσαβ( p + q) + Tρσαβ(q)]

− 1
4
ηρσ [Tµναβ( p) + Tµναβ(q)]−

1
4
ηαβ [Tµνρσ( p + q) + Tµνρσ( p)] ,

 (43)
where we define

Tµνρσαβ ≡ i
∫

ddk
(2π)d tr

{
/k
k2 (2k − p)(µγν)

/k − /p
(k − p)2 (2k − p + q)(ργσ)

/k + /q
(k + q)2 (2k + q)(αγβ)

}

 (44)
that is, the original expression but without the trace terms.

Moreover, the Feynman diagrams labelled (b) and (c), respectively, give

T(2)
µνρσαβ( p, q) = − i

128

∫
ddk
(2π)d tr

{
/k
k2 (2k − p)(µγν)

/k − /p
(k − p)2

×
(

3
(
η(ρ|(α(2k − p)β)γ|σ) + η(α|(ρ(2k − p)σ)γ|β)

)

− 2
(
ηρσ(2k − p)(αγβ) + ηαβ(2k − p)(ργσ)

)

+
1
2
(2q + p)τ

(
γτα(ρησ)β + γτβ(ρησ)α

))}
,

 

(45)

T(3)
µνρσαβ( p) =

i
32

∫
ddk
(2π)d tr

{
/k − /p

(k − p)2 (2k − p)(ργσ)
/k
k2

×
[
(2k − p)(µην)(αγβ) + ηµν(2k − p)(αγβ) +

1
2

pτ
(
γτα(µην)β + γτβ(µην)α

)]}
,

 (46)
where, as in the two-point function evaluation, we have used the fact that some terms lead to 
tadpole integrals which vanish. It is also straightforward to show that the terms proportional to 
γταβ in both T(2) and T(3) vanish. Therefore, we can express both contributions solely in terms 
of the two-point function integral, (26),

T(2)
µνρσαβ( p) = −3

4
η(α|(ρTσ)|β)µν( p) +

1
4
ηρσTµναβ( p) +

1
4
ηαβTµνρσ( p),

 (47)
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T(3)
µνρσαβ( p) =

1
2
η(α|(µTν)|β)ρσ( p) +

1
2
ηµνTρσαβ( p). (48)

3.3. Conservation

The conservation of the expectation value of the stress tensor can be expressed as follows:

∇µ〈Tµν〉 = gµρ
(
∂ρ〈Tµν〉 − Γσ

ρµ〈Tσν〉 − Γσ
ρν〈Tµσ〉

)
= 0.

 
(49)

Using the expansion of the metric and Christoffel symbol components in appendix A, at sec-
ond order in the metric perturbation the above identity reduces to

∂µ〈Tµν〉|O(h2) − hµρ∂ρ〈Tµν〉|O(h)

− 1
2
(2∂µhµρ − ∂ρh)〈Tρν〉|O(h) −

1
2
∂νhµρ〈Tµρ〉|O(h) = 0,

 
(50)

where 〈Tµν〉|O(h) and 〈Tµν〉|O(h2) are defined in equations  (25) and (39), respectively. 
Equation (49) is fully covariant. However, in equation (50), and for the rest of the section, the 
indices are raised and lowered with the flat metric.

We first consider

∂µ〈Tµν〉(x)
∣∣
O(h2)

=

∫
ddy ddz

∫
ddp
(2π)d

ddq
(2π)d e−ip·(x−y)−iq·(z−y)hρσ(y)

×

{
(−ipµ)

(
T(1)
µνρσαβ( p, q) hαβ(z) + T(2)

µνρσαβ( p, q) hαβ(z)

+ T(3)
µνρσαβ( p) hαβ(x)

)
+ T(3)

µνρσαβ( p) ∂µhαβ(x)

}
.

 (51)

Using equation (43) and the conservation Ward identity at first order in h, (31),

pµ T(1)
µνρσαβ( p, q) =

1
64

pµ Tµνρσαβ − 1
4

pν [Tρσαβ( p + q) + Tρσαβ(q)]

− 1
4

pµ [ηρσTµναβ(q) + ηαβTµνρσ( p + q)] .
 

(52)

Furthermore, using equations (47) and (48),

pµ T(2)
µνρσαβ( p) = 0, (53)

pµ T(3)
µνρσαβ( p) =

1
4

p(α Tβ)νρσ( p) +
1
2

pν Tρσαβ( p). (54)

We have expressed all the terms in terms of the two-point function integral except the first 
term on the rhs of equation (52), which we would like to also rewrite in terms of two-point 
function integral,

H Godazgar and H Nicolai Class. Quantum Grav. 35 (2018) 105013



12

pµ Tµνρσαβ

=
i
2

∫
ddk
(2π)d tr

{(
/kγν + (2k − p)ν

) /k − /p
(k − p)2 (2k − p + q)(ργσ)

/k + /q
(k + q)2 (2k + q)(αγβ)

}

− i
2

∫
ddk
(2π)d tr

{
/k
k2

(
γν(/k − /p) + (2k − p)ν

)
(2k − p + q)(ργσ)

/k + /q
(k + q)2 (2k + q)(αγβ)

}
,

 (55)

where we have used (33) and /p = /k − (/k − /p) to cancel a propagator factor. We redefine 
k → −k + p in the first term and k → −k in the second term, whereupon we obtain

pµ Tµνρσαβ =
1
2

(
T̃νρσαβ( p, q)− T̃ναβρσ(−p, p + q)

)
, (56)

where

T̃νρσαβ( p, q) ≡ i
∫

ddk
(2π)d tr

{
/k
k2

(
γν(/k + /p) + (2k + p)ν

)
(2k + p − q)(ργσ)

/k − /q
(k − q)2 (2k − q)(αγβ)

}

 (57)
and we have used the identity (C.2). In appendix E, we simplify this integral and derive equa-
tion (E.5). Using this result, we arrive at

pµ Tµνρσαβ = 8
[
3 p(ρ Tσ)ναβ(q) + 2 ( p + q)ν Tρσαβ(q)− pτ ην(ρ Tσ)ταβ(q)

+ 3 p(α Tβ)νρσ( p + q)− 2 qν Tρσαβ( p + q)− pτ ην(α Tβ)τρσ( p + q)
]
.

 (58)

Hence, from equation (52),

pµ T(1)
µνρσαβ( p, q) =

1
8

[
3 p(α Tβ)νρσ( p + q)− 2 ( p + q)ν Tρσαβ( p + q)− 2 pµηαβTµνρσ( p + q)

− pτ ην(α Tβ)τρσ( p + q) + 3 p(ρ Tσ)ναβ(q) + 2 qν Tρσαβ(q)

− 2 pµηρσTµναβ(q)− pτ ην(ρ Tσ)ταβ(q)
]
.

 (59)
Integrating the above equation over p and letting p → p − q,
∫

ddp
(2π)d e−ip·(x−y)pµ T(1)

µνρσαβ( p, q) =
1
8

∫
ddp
(2π)d e−i( p−q)·(x−y) [3 ( p − q)(α Tβ)νρσ( p)

− 2 pν Tρσαβ( p) + 2 qµηαβTµνρσ( p) + qτ ην(α Tβ)τρσ( p)

+ 3 ( p − q)(ρ Tσ)ναβ(q) + 2 qν Tρσαβ(q)

− 2 pµ ηρσTµναβ(q)− pτ ην(ρ Tσ)ταβ(q)
]

.
 (60)

Therefore, using also equations  (53) and (54) and (48) and reparametrising the integration 
variables,
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∂µ〈Tµν〉(x)|O(h2) =

∫
ddy ddz

∫
ddp
(2π)d

ddq
(2π)d e−ip·(x−y)−iq·(z−x)hρσ(y)

×

{
− i

8
hαβ(z)

[
(5 p − 3 q)α Tβνρσ( p) + 2 pν Tρσαβ( p)

+ 2 qµηαβTµνρσ( p) + qτ ηνα Tβτρσ( p) + 3 ( p − q)ρ Tσναβ(q)

+ 2 qν Tρσαβ(q)− 2 pµηρσTµναβ(q)− pτ ηνρ Tσταβ(q)
]

+
1
4

[
Tρσνα( p)∂βhαβ(z) + Tρσµαηβν( p)∂µhαβ(z)

+ 2 Tρσαβ( p)∂νhαβ(z)
]}

.

 (61)
The terms in the integrand that are proportional to two-point function integrals with arguments 
q can be replaced by terms proportional to those with arguments p6. Whereupon,

∂µ〈Tµν〉
∣∣
O(h2)

= −1
4

∫
ddy ddz

∫
ddp
(2π)d

ddq
(2π)d e−ip·(x−y)−iq·(z−x)hρσ(y)

×
(

i hαβ(z)
[
(4 p − 3 q)α Tβνρσ( p) + 2 qµηαβTµνρσ( p) + qτ ηνα Tβτρσ( p)

]

− Tρσνα( p)∂βhαβ(z)− ηαβTρσµα( p)∂µhβν(z)− 2 Tρσαβ( p)∂νhαβ(z)
])

.
 (62)

Integrating by parts over the y and z integrals,

∂µ〈Tµν〉|O(h2) =

∫
ddy ddz

∫
ddp
(2π)d

ddq
(2π)d e−ip·(x−y)−iq·(z−x)hρσ(y)

{
−i pαTβνρσ( p)hαβ(z)

+ ∂αhαβ(z)Tβνρσ( p)− 1
2
∂µh(z)Tµνρσ( p) +

1
2
∂νhαβ(z)Tρσαβ( p)

}
,

= hαβ∂α〈Tβν〉|O(h) + ∂αhαβ〈Tβν〉|O(h) −
1
2
∂µh〈Tµν〉|O(h) +

1
2
∂νhαβ(z)〈Tαβ〉|O(h),

 (63)

where in the last line we have integrated over q and z, which sets z  =  x, and used definition 
(25). We have, therefore, verified equation (50) and hence

∇µ〈Tµν〉 = 0 (64)

up to and including second order in the metric perturbation.

4. Scalar 3-point loop integrals

We have seen in the preceding chapters that the evaluation of the expectation value of the stress 
tensor to second order in the metric fluctuations requires the computation of certain 3-point 

6 More precisely, the relabelling of the integration variables implies that the integrand must be invariant under 
p ↔ −q  and (ρσ) ↔ (αβ).
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Feynman loop integrals (and correspondingly the evaluation of (n + 1)-point loop integrals if 
one expands to n-th order in the metric fluctuations). Such integrals have been much investi-
gated in the literature, see e.g. [35, 36] for recent reviews and references. Nevertheless, and 
also with regard to possible future applications, we here collect some formulae needed for our 
computation that to the best of our knowledge have not been given in fully explicit form in 
the literature, although the general procedure for their derivation is of course known, see in 
particular [37–39].

The relevant integrals are of the form

Jµ1...µM (d | p, q) =
∫

ddk
πd/2

kµ1 · · · kµM

k2(k − p)2(k + q)2 ,
 (65)

or more generally

Jµ1...µM (d; m1, m2, m3 | p, q) ≡
∫

ddk
πd/2

kµ1 · · · kµM

k2m1(k − p)2m2(k + q)2m3
 (66)

with (not necessarily integer) exponents m1, m2, m3
7. For the computation of the conformal 

anomaly we are in particular interested in the pole part of these integrals for d → 4. Note 
that we normalise the loop integrals (65) and (66) with the factor π−d/2, different from the 
normalisation adopted in the rest of this paper. This we do only for convenience in order to 
simplify the subsequent calculations: because

1
(2π)d =

1
(2
√
π)d · 1

πd/2 (67)

we then only need to multiply the final results by (2
√
π)−d to revert to the normalisation con-

ventions used in the rest of this article.
To evaluate the integrals we will follow a method developed by Davydychev [37, 38], 

whereby the above integrals can be reduced to the basic scalar 3-point loop integral

J(d; 1, 1, 1 | p, q) =
∫

ddk
πd/2

1
k2(k − p)2(k + q)2 (68)

which is again a special case of the more general integral

J(d; m1, m2, m3 | p, q) =
∫

ddk
πd/2

1
k2m1(k − p)2m2(k + q)2m3

 (69)

and so-called boundary integrals for which one of the exponents mi vanishes (see appendix B)

I(d; m1, m2 | p) ≡ J(d; m1, m2, 0 | p) =
∫

ddk
πd/2

1
k2m1( p − k)2m2

 (70)

up to explicit factors which are rational functions of the external momenta. The final result 
will be completely explicit because for (70) we have the explicit formula

∫
ddk
πd/2

1
k2m1( p − k)2m2

= i( p2)d/2−m Γ(m − d
2 )Γ(

d
2 − m1)Γ(

d
2 − m2)

Γ(d − m)Γ(m1)Γ(m2)
 (71)

where m ≡ m1 + m2 and the factor of i comes from Wick rotating from Lorentzian space to 
Euclidean signature. A further advantage of our choice is the simple normalisation

7 In the remainder we will usually not write out all arguments displayed on the lhs of (66).
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I( p) ≡ I(d; 1, 1|p) =
i
ε
+ O(1). (72)

As we said, our derivation relies largely on the general formalism developed in [37, 38] but 
we will spell out the formulae given there in more detail for the cases of interest. The final 
result will thus express (65) directly in terms of explicitly known functions, where all the 
UV divergences (needed for the determination of the conformal anomaly) are contained in 
the boundary integrals. The extension of our results to higher n-point scalar loop integrals is 
straightforward, though increasingly tedious for higher values of n.

In the remainder we will assume the external momenta p and q to assume generic values, 
for which p2q2 �= (p · q)2, so as to avoid IR or kinematical singularities—the latter can then be 
easily and explicitly extracted from our final expressions. First we note that, in the Feynman 
parametrisation, the scalar integral (69) is given by

J(d; m1, m2, m3) =
iΓ(m − d

2 )

Γ(m1)Γ(m2)Γ(m3)

∫ 1

0
dξ1dξ2dξ3

ξm1−1
1 ξm2−1

2 ξm3−1
3 δ(1 − ξ1 − ξ2 − ξ3)[

ξ1ξ2p2 + ξ1ξ3q2 + ξ2ξ3( p + q)2
]m−d/2 ,

 (73)
where m ≡ m1 + m2 + m3. Differentiating the lhs of (69) with respect to pµ we find

2 m2

(
Jµ(d; m1, m2 + 1, m3) − pµ J(d; m1, m2 + 1, m3)

)
. (74)

On the other hand, differentiating the rhs of equation (73) gives

−2m2

(
m1 pµJ(d + 2; m1 + 1, m2 + 1, m3) + m3 ( pµ + qµ)J(d + 2; m1, m2 + 1, m3 + 1)

)
.

 (75)
Equating expressions (74) and (75), we obtain an equation for Jµ(d; m1, m2, m3) in terms of 
scalar integrals [37]. We can further simplify this expression by noting the identity

J(d; {mi}) =
3∑

j=1

mj J(d + 2; {mi + δij}), (76)

which can be proved directly from (73). Using the above identity and equating expressions 
(74) and (75), we obtain [37]

Jµ(d; m1, m2, m3) = m2 pµ J(3)(d + 2; m1, m2 + 1, m3)− m3 qµ J(3)(d + 2; m1, m2, m3 + 1).
 (77)

This method can be inductively implemented, by further differentiating with respect to pµ, 
to find similar identities for Jµ1...µM in terms of scalar integrals, see [38] for the general 
formulae. We list the relevant identities for M up to M  =  6, found using the method outlined 
above

Jµ(d; 1, 1, 1) = pµ J(d + 2; 1, 2, 1)− qµ J(d + 2; 1, 1, 2), (78)

Jµν(d; 1, 1, 1) =
1
2
ηµν J(d + 2; 1, 1, 1) + 2

[
pµpν J(d + 4; 1, 3, 1)

− p(µqν) J(d + 4; 1, 2, 2) + qµqν J(d + 4; 1, 1, 3)
]
,

 

(79)
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Jµνρ(d; 1, 1, 1) =
3
2
η(µν

[
pρ) J(d + 4; 1, 2, 1)− qρ) J(d + 4; 1, 1, 2)

]

+ 6
[

pµpνpρ J(d + 6; 1, 4, 1)− p(µpνqρ) J(d + 6; 1, 3, 2)

+ p(µqνqρ) J(d + 6; 1, 2, 3)− qµqνqρ J(d + 6; 1, 1, 4)
]
,

Jµνρσ(d; 1, 1, 1) =
3
4
η(µνηρσ) J(d + 4; 1, 1, 1) + 6 η(µν

[
pρpσ) J(d + 6; 1, 3, 1)

− pρqσ) J(d + 6; 1, 2, 2) + qρqσ) J(d + 6; 1, 1, 3)
]

+ 24
[

pµpνpρpσ J(d + 8; 1, 5, 1)− p(µpνpρqσ) J(d + 8; 1, 4, 2)

+ p(µpνqρqσ) J(d + 8; 1, 3, 3)− p(µqνqρqσ) J(d + 8; 1, 2, 4)

+ qµqνqρqσ J(d + 8; 1, 1, 5)
]
,

 (80)

Jµνρσα(d; 1, 1, 1) =
15
4
η(µνηρσ

[
pα) J(d + 6; 1, 2, 1)− qα) J(d + 6; 1, 1, 2)

]

+ 30 η(µν
[

pρpσpα) J(d + 8; 1, 4, 1)− pρpσqα) J(d + 8; 1, 3, 2)

+ pρqσqα) J(d + 8; 1, 2, 3)− qρqσqα) J(d + 8; 1, 1, 4)
]

+ 120
[

pµpνpρpσpα J(d + 10; 1, 6, 1)− p(µpνpρpσqα) J(d + 10; 1, 5, 2)

+ p(µpνpρqσqα) J(d + 10; 1, 4, 3)− p(µpνqρqσqα) J(d + 10; 1, 3, 4)

+ p(µqνqρqσqα) J(d + 10; 1, 2, 5)− qµqνqρqσqα J(d + 10; 1, 1, 6)
]
,

 (81)

Jµνρσαβ(d; 1, 1, 1) =
15
8
η(µνηρσηαβ) J(d + 6; 1, 1, 1) +

45
2
η(µνηρσ

[
pαpβ) J(d + 8; 1, 3, 1)

− pαqβ) J(d + 8; 1, 2, 2) + qαqβ) J(d + 8; 1, 1, 3)
]

+ 180 η(µν
[

pρpσpαpβ) J(d + 10; 1, 5, 1)− pρpσpαqβ) J(d + 10; 1, 4, 2)

+ pρpσqαqβ) J(d + 10; 1, 3, 3)− pρqσqαqβ) J(d + 10; 1, 2, 4)

+ qρqσqαqβ) J(d + 10; 1, 1, 5)
]
+ 720

[
pµpνpρpσpαpβ J(d + 12; 1, 7, 1)

− p(µpνpρpσpαqβ) J(d + 12; 1, 6, 2) + p(µpνpρpσqαqβ) J(d + 12; 1, 5, 3)

− p(µpνpρqσqαqβ) J(d + 12; 1, 4, 4) + p(µpνqρqσqαqβ) J(d + 12; 1, 3, 5)

− p(µqνpρqσqαqβ) J(d + 12; 1, 2, 6) + qµqνqρqσqαqβ J(d + 12; 1, 1, 7)
]
,

 (82)
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where the integrals on the lhs are all in d dimensions, whereas the dimension varies on the rhs. 
Here, as elsewhere in this paper, all symmetrisations are with strength one. The scalar integrals 
on the rhs are now of type (69), but they still involve different dimensions D = d , d + 2 , ... 
and different exponents m1, m2, m3. To further simplify the above expressions we exploit the 
basic result [37, 38] that for integer mi all integrals of the form (69) can be expressed in terms 
of J(d; 1, 1, 1) and boundary integrals of the type (70) and (71).

The first part in this reduction procedure is to decrease the values m1, m2, m3 in integer steps 
while leaving the dimension unchanged; this is done by noting that

∫
ddk
πd/2

∂

∂kµ

{
kµ

k2m1(k − p)2m2(k + q)2m3

}
= 0, (83)

which gives a relation between J(D; m1, m2, m3) with 
∑

mi = m and J(D; m1, m2, m3) with ∑
mi = m − 1. Two more relations can be found by changing the numerator in the integrand 

in (83) to kµ − pµ and kµ + qµ. These three equations can be solved [38] to obtain

J(m1, m2, m3 + 1) =
1

2m3( p + q)2q2

((
(2m1 + m2 + m3 − d) ( p + q)2

+ (m1 + 2m2 + m3 − d) q2 − (m1 + m2 + 2m3 − d) p2
)

J(m1, m2, m3)

+ m2 ( p + q)2J(m1 − 1, m2 + 1, m3) + m3 ( p + q)2J(m1 − 1, m2, m3 + 1)

+ m1 q2J(m1 + 1, m2 − 1, m3) + m3 q2J(m1, m2 − 1, m3 + 1)

− m1 p2J(m1 + 1, m2, m3 − 1)− m2 p2J(m1, m2 + 1, m3 − 1)

)
,

 

(84)

J(m1 + 1, m2, m3) =
1

2m1p2q2

((
(m1 + 2m2 + m3 − d) q2 + (m1 + m2 + 2m3 − d) p2

− (2m1 + m2 + m3 − d) ( p + q)2
)

J(m1, m2, m3)

+ m2 p2J(m1, m2 + 1, m3 − 1) + m1 p2J(m1 + 1, m2, m3 − 1)

+ m3 q2J(m1, m2 − 1, m3 + 1) + m1 q2J(m1 + 1, m2 − 1, m3)

− m2 ( p + q)2J(m1 − 1, m2 + 1, m3)

− m3 ( p + q)2J(m1 − 1, m2, m3 + 1)

)
,

 

(85)
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J(m1, m2 + 1, m3) =
1

2m2( p + q)2p2

((
(2m1 + m2 + m3 − d) ( p + q)2

+ (m1 + m2 + 2m3 − d) p2 − (m1 + 2m2 + m3 − d) q2
)

J(m1, m2, m3)

+ m3 ( p + q)2J(m1 − 1, m2, m3 + 1) + m2 ( p + q)2J(m1 − 1, m2 + 1, m3)

+ m1 p2J(m1 + 1, m2, m3 − 1) + m2 p2J(m1, m2 + 1, m3 − 1)

− m1 q2J(m1 + 1, m2 − 1, m3)− m3 q2J(m1, m2 − 1, m3 + 1)

)
.

 (86)
We repeat that the dimension D is the same in all these integrals, whence

J(m1, m2, m3) ≡ J(d; m1, m2, m3)

with the same d in the three equations above.
Having reduced the integrals Jµ1···µM of the form given in equation (65) to a sum of sca-

lar integrals J(D; 1, 1, 1) and boundary integrals, where D = d , d + 2 , · · · , d + 2M we 
next require a further identity which lowers the values of D by relating J(D + 2; 1, 1, 1) to 
J(D; 1, 1, 1) so that finally all integrals can be reduced to J(d; 1, 1, 1), where now d = 4 − 2ε. 
The relevant identity is found by contracting the indices in equation (79), whereupon the lhs 
of (79) reduces to a boundary integral, and we get

J(d; 0, 1, 1) =
d
2

J(d + 2; 1, 1, 1) + 2
[

p2 J(d + 4; 1, 3, 1)

− (p · q) J(d + 4; 1, 2, 2) + q2 J(d + 4; 1, 1, 3)
]
.

 (87)

Then, using the reduction formulae (84)–(86), we express J(d + 4; 1, 3, 1), J(d + 4; 1, 2, 2) 
and J(d + 4; 1, 1, 3) in terms of J(d + 4; 1, 1, 1) and boundary integrals. Substituting, these 
expression in the equation above, and replacing d → d − 2, we obtain

2(d − 2)
(
(p · q)2 − p2q2) J(d + 2; 1, 1, 1)− p2q2( p + q)2J(d; 1, 1, 1)

= (p · q)( p + q)2 J(d; 0, 1, 1)− p2((p · q) + q2)J(d; 1, 1, 0)− q2( p2 + (p · q))J(d; 1, 0, 1),
 (88)

or

J(d + 2; 1, 1, 1 | p, q) =
1

2(d − 2)
1

(p · q)2 − p2q2

[
p2q2( p + q)2J(d; 1, 1, 1 | p, q)+

+ (p · q)( p + q)2 I(d | p + q)− p2((p · q) + q2)I(d | p)− q2( p2 + (p · q))I(d | q)
]

 

(89)

where we have now substituted the boundary integrals from the appendix B. This formula 
seems to be a new result: it allows us to reduce any given integral of type (65) for even d 
to sums involving the convergent integral J(4; 1, 1, 1) and various boundary integrals which 
contain all the UV divergences as d → 4. Using the formula (B.5) from appendix B, the latter 
can be exhibited explicitly:
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J(d + 2; 1, 1, 1) = −2 i
d − 1
d − 2

·
Γ(1 − d

2 )Γ(
d
2 )

2

Γ(d)
+ finite terms. (90)

The factor ( p2q2 − (p · q)2)−1 is cancelled, whence the UV divergence does not depend on 
the external momenta, as expected. Furthermore, formula (89) makes the kinematical singu-
larities completely explicit. We note that the above formulae, (89) and (90) cannot be used for 
d  =  2 because of IR singularities and the factor (d  −  2)−1.

Using equations (84)–(86) and (89), the integrals Jµ1···µM can thus be reduced to boundary 
integrals and J(d, 1, 1, 1). Since J(4, 1, 1, 1) is finite, the 1/ε poles in Jµ1···µM can easily be 
found by expanding d = 4 − 2ε and using the result for the poles of the boundary integral, 
(B.5). The 1/ε expansion of Jµ1···µM up to M  =  6 is:

Jµ(d | p, q) = O(1), (91)

Jµν(d | p, q) =
i

4ε
ηµν + O(1), (92)

Jµνρ(d | p, q) =
i

4ε
η(µν

(
pρ) − qρ)

)
+ O(1), (93)

Jµνρσ(d | p, q) = − i
32ε

(
p2 + q2 + ( p + q)2) η(µνηρσ) + i

4ε
η(µν

(
pρpσ) − pρqσ) + qρqσ)

)
+ O(1),

 (94)

Jµνρσα(d | p, q) = − i
32ε

η(µνηρσ
[(

2p2 + q2 + 2( p + q)2) pα) −
(

p2 + 2q2 + 2( p + q)2) qα)
]

+
i

4ε
η(µν

(
pρpσpα) − pρpσqα) + pρqσqα) − qρqσqα)

)
+ O(1),

 (95)

Jµνρσαβ(d | p, q) =
i

192ε

[(
p2 + q2 + ( p + q)2)2 − ( p + q)2( p2 + q2)− p2q2

]
η(µνηρσηαβ)

− i
32ε

η(µνηρσ
[(

3p2 + q2 + 3( p + q)2) pαpβ) − 2
(

p2 + q2 + 2( p + q)2) pαqβ)

+
(

p2 + 3q2 + 3( p + q)2) qαqβ)
]
+

i
4ε

η(µν
(

pρpσpαpβ) − pρpσpαqβ)

+ pρpσqαqβ) − pρqσqαqβ) + qρqσqαqβ)

)
+ O(1).

 (96)

These coefficients and polynomials in the external momenta are what we need for the evalua-
tion of the conformal anomaly.

If one is just interested in the divergent parts, this result can also be arrived at without 
invoking the full machinery of n-point loop integrals and in a much simpler way as follows: 
first of all, one notes that the divergence must be polynomial in the external momenta p and q. 
Secondly the resulting polynomial must be symmetric under interchange of p and  −q. Thirdly, 
by shifting the integration variable as k → −k + p one obtains a relation constraining the 
polynomials by replacing the external momenta ( p, q) by ( p,−p − q). When applying this 
trick to the above integrals, one first notes that the integrals J and Jµ are convergent, whence 
the first divergence arises in Jµν; the latter divergence is proportional to ηµν and can thus 
be extracted by contracting with ηµν, thereby cancelling one propagator and reducing the 

H Godazgar and H Nicolai Class. Quantum Grav. 35 (2018) 105013



20

determination of the pole term to that of a 2-point integral. Likewise the divergence in Jµνρ 
can only appear in the term linear in the external momenta, which by symmetry must appear 
in the combination ( p − q)µ; again the result can be read off from the corresponding 2-point 
integral after contraction, and so on for the integrals with more momenta in the numerator.

It is easy to see that this procedure can also be applied inductively to n-point integrals for 
n  >  3 by successively reducing them to (n − 1)-loop integrals, etc In other words, the deter-
mination of the pole parts at any order in hµν does not require the actual evaluation of n-point 
integrals. However, this shortcut may no longer be available for classically non-conformal 
theories where there could arise extra non-local contributions.

5. The conformal anomaly at O(h2)

The anomaly is given by the trace of 〈Tµν(x)〉 after regularisation. If we calculate the trace 
before finding the regularised expression, the trace vanishes by the Ward identities as the 
Dirac action is scale-invariant in all dimensions. At second order in the external graviton, the 
anomaly is given by

gµν〈Tµν(x)〉
∣∣
O(h2)

= ηµν〈Tµν〉|O(h2) − hµν(x)〈Tµν〉|O(h)

=

∫
ddy ddz

∫
ddp
(2π)d

ddq
(2π)d e−ip·(x−y)−iq·(z−y)hρσ(y)

×

{
ηµν

(
T(1)
µνρσαβ( p, q) hαβ(z) + T(2)

µνρσαβ( p) hαβ(z) + T(3)
µνρσαβ( p) hαβ(x)

)

− Tµνρσ( p)hµν(x)

}
.

 

(97)

Using equations (43), (47) and (48), and rewriting
∫

ddy
∫

ddp
(2π)d e−ip·(x−y)hµν(x)hρσ(y)Tµνρσ( p)

=

∫
ddy ddz

∫
ddp
(2π)d

ddq
(2π)d e−ip·(x−y)−iq·(z−y)hρσ(y)hµν(z)Tµνρσ( p + q),

gµν〈Tµν(x)〉 =
1
4
ηµν

∫
ddy ddz

∫
ddp
(2π)d

ddq
(2π)d e−ip·(x−y)−iq·(z−y)hρσ(y)hαβ(z)

×

(
1

16
Tµνρσαβ + ηµν Tρσαβ( p + q)− ηµν Tρσαβ(q)− ηρσ Tµναβ(q)

− ηαβTµνρσ( p + q)− 3 ηαρ Tµνσβ( p)− 2 ηαµ Tνβρσ( p + q)

)
.

By redefining the integration variables p and q, we can write the above expression in a more 
symmetric way,
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gµν〈Tµν(x)〉 =
1
4
ηµν

∫
ddy ddz

∫
ddp
(2π)d

ddq
(2π)d e−ip·(x−y)−iq·(x−z)hρσ(y)hαβ(z)

×

(
1

16
T̂µνρσαβ − ηαµ Tρσνβ( p)− ηρµ Tνσαβ(q)

− 2 ηαβTµνρσ( p)− 3 ηαρ Tµνσβ( p + q)

)
,

 (98)
where we have exploited the symmetry under p ↔ q and ρσ ↔ αβ, to simplify the integrand 
and where T̂µνρσαβ is the expression by letting p → p + q and q → −q , viz

T̂µνρσαβ ≡ i
∫

ddk
(2π)d tr

{
/k
k2 (2k + q)(αγβ)

/k + /q
(k + q)2 (2k − p + q)(µγν)

/k − /p
(k − p)2 (2k − p)(ργσ)

}
.

 (99)

The trace of the expectation in d-dimensions should be zero as the Dirac action is Weyl-
invariant in all dimensions. The anomaly appears because the expectation value of the regu-
larised 4-dimensional stress tensor is evaluated in d = 4 − 2ε dimensions, which gives rise to 
a non-zero 4-dimensional trace. As a consistency check we show that the d-dimensional trace 
of the expression of the rhs of equation (98) vanishes.

First consider,

η(d)µν T̂µνρσαβ = i
∫

ddk
(2π)d tr

{
/k
k2 (2k − p)(ργσ)

(/k − /p)
(k − p)2 (2k + q)(αγβ)

+
/k
k2 (2k + p)(ργσ)

(/k − /q)
(k − q)2 (2k − q)(αγβ)

}
,

= 16
(
Tρσαβ( p) + Tρσαβ(q)

)
,

 (100)
where we have used an identity similar to identity (27) and reparametrised the variable of inte-
gration k in the first equality, and equation (C.5) and the definition of the two-point function 
integral, (26), in the second equality. Therefore, substituting into equation (98) and using the 
Weyl-invariance of the 2-point function in d-dimensions, (32),

〈
gµνTµν(x)

〉∣∣
d−dim = 0. (101)

Therefore, from equation (98), the anomaly at second order in h is given by

A(x)
∣∣
O(h2)

=
1
4

∫
ddy ddz

∫
ddp
(2π)d

ddq
(2π)d e−ip·(x−y)−iq·(z−y)hρσ(y)hαβ(z)

×

(
1

16
η(4)µν T̂µνρσαβ − Tρσαβ( p)− Tρσαβ(q)

− 2 ηαβ η(4)µν Tµνρσ( p)− 3 ηρα η(4)µνTµνσβ( p + q)

)
,

 (102)
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where η(4)µν T̂µναβρσ is the 4-dimensional trace of the regularised 3-point function in momen-
tum space.

The 4-dimensional trace of the regularised 2-point function integral is already known and 
given in equation (35). Therefore, it remains to consider the terms on the second line of the 
rhs of equation (102). We write,

1
16

T̂µνρσαβ − ηαµ Tρσνβ( p)− ηρµ Tνσαβ(q) =
Aµνρσαβ( p, q)

2ε
+ Bµνρσαβ( p, q) +O(ε).

 (103)
The terms on the lhs are regularised integrals in d-dimensions and we denote the pole terms 
in the expression by Aµνρσαβ  and the finite terms by Bµνρσαβ . We are interested in the  
4-dimensional trace of the expression on the lhs , which gives the terms on the second line of 
the rhs of equation (102). Namely, we are interested in

η(4)µνBµνρσαβ =
1

16
η(4)µν T̂µνρσαβ − Tρσαβ( p)− Tρσαβ(q). (104)

Note that the 4-dimensional trace of Aµνρσαβ  necessarily vanishes, since the anomaly is 
finite.

The tensor Aµνρσαβ  is local in the momenta p and q and can be found using equations (91)–
(96). Meanwhile, the tensor Bµνρσαβ  is given by the terms labelled O(1) in equations (91)–
(96) and is in general non-local in the momenta. The 4-dimensional trace of Bµνρσαβ  can 
nevertheless be found from Aµνρσαβ  by taking a trace in D dimensions, where D is arbitrary 
(but remember that the 2-point and 3-point functions above are computed in d-dimensions, so 
D is just an auxiliary variable here).

From equation (100), we know that

η(D)µν

(
1
16

T̂µνρσαβ − ηαµ Tρσνβ( p)− ηρµ Tνσαβ(q)
)

= (D − d)
(

Cρσαβ

2ε
+ Dρσαβ +O(ε)

)
,

 (105)

where Cρσαβ and Dρσαβ are tensorial functions of the momenta. Substituting equation (103) 
on the lhs of equation (105) and expanding the rhs in ε, we find

η(D)µνAµνρσαβ = (D − 4)Cρσαβ , (106)

η(D)µνBµνρσαβ = Cρσαβ + (D − 4)Dρσαβ , (107)

at order 1/ε and order 1. Letting D  =  4 in equation (107), and using (104), we find that

Cρσαβ =
1
16

η(4)µν T̂µνρσαβ − Tρσαβ( p)− Tρσαβ(q). (108)

However, Cρσαβ can also be found by taking the D-dimensional trace of Aµνρσαβ , (106).
After a lengthy calculation (that involves collecting several hundred terms!) we determine 

Aµνρσαβ , defined in equation (103), and identify Cρσαβ by taking an arbitrary D-dimensional 
trace, (106). This gives, (108), an expression for the terms on the second line of the rhs of 
equation (102) and, as we have already mentioned, the other terms on the rhs of equation (102) 
are given by equation (35). The final result is
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A|O(h2) = − 1
720 (4π)2

∫
d4y d4z

∫
d4p
(2π)4

d4q
(2π)4 e−ip·(x−y)−iq·(x−z)hρσ(y)hαβ(z)

×

{
(4 ( p · q)2 + p2(12 p · q + 5q2)) ηρσηαβ

− (12 ( p2)2 + 25 ( p · q)2 + 14 p2 (3 p · q + q2)) ηα(ρησ)β

− 8 (3 p2 + 3 p · q + 2 q2) ηρσpαpβ − 2 (3 p · q + 5 q2) ηαβpρpσ

− 4 (3 p2 + 4 p · q + 6 q2)) ηαβp(ρqσ) + 8 (3 p2 + 6 p · q + 4 q2) p(ρησ)(αpβ)

+ 4 (6 p2 + 5 p · q) p(ρησ)(αqβ) + 2 (6 p2 + 13 p · q) q(ρησ)(αpβ)

+ 12 pρpσpαpβ + 12 pρpσp(αqβ) + 5 pρpσqαqβ − 4 p(ρqσ)p(αqβ) − 7 qρqσpαpβ

}
.

 (109)
The expression is, in particular, polynomial in p and q—the dependence on inverse powers 
or logarithms of the external momenta, which are in higher order terms in ε, has dropped out, 
hence the anomaly is local in x-space, as expected.

Note that when comparing with the anomalies the terms quadratic in curvature must all 
have the structure ∂∂h∂∂h, which in Fourier space is equivalent to having two p and two q in 
each term, whereas all other terms with a different distribution of derivatives must originate 
from �R. Therefore, we can use the term proportional to pρpσpαpβ (see equation (A.14)), for 
example, to fix the coefficient of �R ,

A
∣∣
O(h2)

=
1

60(4π)2 �R
∣∣
O(h2)

+ . . . . (110)

Furthermore, from equation (A.11)–(A.13), we note that qρqσpαpβ , p(ρqσ)p(αqβ), pρpσqαqβ  
only appear in Riemann-squared, Ricci-squared and scalar-squared, respectively. Hence terms 
containing these expressions can be used to fix the coefficient of all the terms in the anomaly. 
Altogether we have thus shown that

A|O(h2) =

[
7

720(4π)2 Riem2 +
1

90(4π)2 Ric2 − 1
144(4π)2 R2 +

1
60(4π)2 �R

]

O(h2)

=

[
1

40(4π)2 CµνρσCµνρσ − 11
720(4π)2 E4 +

1
60(4π)2 �R

]

O(h2)

.

 (111)
Note that the coefficient of �R at second order in h matches the coefficient at first order, (36), 
as it must do for consistency. Furthermore, this explicit calculation confirms the relation (38), 
and agrees with the values for a, b, c in the literature.

6. Outlook

In this paper we have given a new and direct derivation of the spin-1
2 anomaly, along the lines 

of the textbook derivation of the axial anomaly. Although at this point the calculation merely 
confirms a known result, our derivation based on standard Feynman diagram techniques has 
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brought out several subtleties, and we expect similar subtleties for a rederivation of the (again 
known) results for s = 0, 1.

However, as we already said in the introduction, the present work should be regarded as 
only preparatory for what we are really after, namely a proper computation of and a better 
understanding of the conformal anomaly in non-conformal theories, where the anomaly can 
be defined by

A := gµν〈Tµν〉 − 〈gµνTµν〉 (112)

and where the second term subtracts the terms due to the classical violation of Weyl invari-
ance. Most significantly we will be interested in the cases s = 3

2 and s  =  2, where there remain 
several issues (dependence of a and c coefficients on gauge choices for external gravitons, 
appearance of R2 contributions for non-conformal theories, etc) that remain open even after 
many years. Future directions are thus:

 • A computation of conformal anomaly for s = 3
2 along the lines of this paper.

 • Understanding the appearance of R2 and possible non-local contributions that may be 
required to satisfy WZ consistency condition.

 • Understanding the dependence of a and c coefficients on the choice of gauge for metric 
fluctuation hµν. Such a gauge dependence should not exist, as the anomaly coefficients 
should be gauge invariant with the (natural) assumption of unbroken general covariance.

 • Understanding the appearance of negative anomaly coefficients for s = 3
2, which is in 

apparent conflict with positivity theorems. However, the latter rely on unitarity (positive 
definite) Hilbert space, and the existence of a gauge invariant stress tensor, whereas both 
these assumptions are violated for s � 3

2.
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Appendix A. Expansions

In this appendix we collect all necessary formulae for the expansion of curvature-squared 
quantities to second order in h:

gµν = ηµν + hµν , gµν = ηµν − hµν + hµρhνσηρσ,
 (A.1)

eµa = δa
µ +

1
2

hµa − 1
8

hµνhνa, eµa = δµa − 1
2

hµa +
3
8

hµνhνa, (A.2)

e = 1 +
1
2

h − 1
4

hµνhµν +
1
8

h2, e−1 = 1 − 1
2

h +
1
4

hµνhµν +
1
8

h2, (A.3)

ωµ ab = ∂[bha]µ +
1
4

hν [b|∂µh|a]ν − 1
2

hν
[b|

(
∂νh|a]µ − ∂a]hµν

)
, (A.4)
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Γµ
ρσ =

1
2
(ηµν − hµν)

(
2 ∂(ρhσ)ν − ∂νhρσ

)
, (A.5)

Riem2 = ∂µ∂νhρσ (∂µ∂νhρσ − 2 ∂µ∂ρhνσ + ∂ρ∂σhµν) , (A.6)

Ric2 =
1
2
∂µ∂

ρhµσ
(
∂ν∂ρhνσ − 2 ∂2hρσ − 2 ∂ρ∂σh + ∂ν∂σhνρ

)

+
1
4
∂2hρσ

(
∂2hρσ + 2 ∂ρ∂σh

)
+

1
4
∂ρ∂σh ∂ρ∂σh,

 

(A.7)

R2 = ∂ρ∂σhρσ ∂
µ∂νhµν − 2 ∂ρ∂σhρσ ∂2h + ∂2h ∂2h, (A.8)

�R = ∂2∂ρ∂σhρσ − ∂2∂2h

+ hρσ
(
2 ∂2∂ρ∂σh − 2 ∂2∂µ∂ρhµσ + ∂2∂2hρσ − ∂ρ∂σ∂

µ∂νhµν
)

+ ∂µhρσ

(
2 ∂µ∂ρ∂σh − 4 ∂µ∂ρ∂νhνσ +

7
2
∂2∂µhρσ − ∂2∂ρhσµ

)

−
(
∂µhµρ − 1

2
∂ρh

)(
2 ∂2∂νhρν − 2 ∂ρ∂2h + ∂ρ∂

ν∂σhνσ

)

+
1
2
∂µ∂νhρσ (3 ∂µ∂νhρσ − 2 ∂µ∂ρhνσ)− 2 ∂ρ∂µhµσ

(
∂ρ∂

νhνσ − ∂ρ∂σh + ∂2hρσ

)

+ ∂2hρσ
(
∂ρ∂σh + ∂2hρσ

)
− 1

2
∂ρ∂σh ∂ρ∂σh,

 (A.9)

Tµν = χγ(µDν)χ

= χγ(µ∂ν)χ+
1
2

hρ(µχγρ∂ν)χ+
1
4
∂σhρ(νχγµ)γρσχ+

1
8

hτ(µ|∂σhρ|ν)χγτγρσχ,
 (A.10)

where on the rhs all indices are lowered and raised with the Minkowski metric and γµ is the 
the flat gamma-matrix.

At second-order in the metric perturbation, the curvature-squared quantities can also be 
written in momentum space as:

Riem2 =

∫
d4y d4z

∫
d4p
(2π)4

d4q
(2π)4 e−ip·(x−y)−iq·(x−z)hρσ(y)hαβ(z)

×

{
( p · q)2ηα(ρησ)β − 2 p · q q(ρησ)(αpβ) + qρqσpαpβ

}
,

 

(A.11)
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Ric2 =

∫
d4y d4z

∫
d4p
(2π)4

d4q
(2π)4 e−ip·(x−y)−iq·(x−z)hρσ(y)hαβ(z)

×

{
1
4
( p · q)2ηρσηαβ +

1
4

p2 q2 ηα(ρησ)β +
1
2

q2 ηρσpαpβ − p · q ηαβp(ρqσ)

− q2 p(ρησ)(αpβ) +
1
2

p · q p(ρησ)(αqβ) +
1
2

p(ρqσ)p(αqβ)

}
,

 

(A.12)

R2 =

∫
d4y d4z

∫
d4p
(2π)4

d4q
(2π)4 e−ip·(x−y)−iq·(x−z)hρσ(y)hαβ(z)

×

{
p2 q2 ηρσηαβ − 2 q2 ηαβpρpσ + pρpσqαqβ

}
,

 

(A.13)

�R =

∫
d4y d4z

∫
d4p
(2π)4

d4q
(2π)4 e−ip·(x−y)−iq·(x−z)hρσ(y)hαβ(z)

×

{
− 1

2
(( p · q)2 + 2 p2 p · q) ηρσηαβ

+
1
2
(2 ( p2)2 + 3 ( p · q)2 + 7 p2 p · q + 2 p2 q2)) ηα(ρησ)β

+ (2 p2 + 2 p · q + q2) ηρσpαpβ +
1
2

p · q ηαβpρpσ

+ ( p2 + 2 p · q + 2 q2) ηαβp(ρqσ) − 2 ( p2 + 2 p · q + q2) p(ρησ)(αpβ)

− 2 ( p2 + p · q) p(ρησ)(αqβ) − ( p2 + p · q) q(ρησ)(αpβ)

− pρpσpαpβ − pρpσp(αqβ)

}
.

 

(A.14)

Appendix B. Boundary integrals

We here present some well-known results for scalar 2-point integrals, see for example [40] 
which are also referred to as boundary integrals,

∫
ddk
πd/2

kµ
k2( p − k)2 =

1
2

pµI( p), (B.1)

∫
ddk
πd/2

kµkν
k2( p − k)2 =

1
4(d − 1)

(
dpµpν − p2ηµν

)
I( p), (B.2)
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∫
ddk
πd/2

kµkνkρ
k2( p − k)2 =

1
8(d − 1)

(
(d + 2) pµpνpρ − 3p2η(µνpρ)

)
I( p), (B.3)

∫
ddk
πd/2

kµkνkρkσ
k2( p − k)2 =

1
16(d2 − 1)

((d + 4)(d + 2) pµpνpρpσ

−6(d + 2) p2η(µνpρpσ) + 3( p2)2η(µνηρσ)
)

I( p),
 (B.4)

where I( p) ≡ I(d | p) ≡ J(d; 1, 1, 0), or more explicitly

I( p) =
∫

ddk
πd/2

1
k2( p − k)2

= −2 i (d − 1)( p2)d/2−2 Γ(1 − d
2 )Γ(

d
2 )

2

Γ(d)
=

i
ε
+ i

(
2 + γ − log

p2

µ2

)
+O(ε),

 (B.5)

where γ is the Euler–Mascheroni constant and μ is the renormalisation scale. Note the overall 
factor of i which is a result of Wick rotating from Lorentzian signature. The normalisation in 
the definition of I( p) (and in (65) and (69)) has thus been chosen in order to eliminate all fac-
tors of πd/2 in the final expression.

Appendix C. Useful formulae and identities

tr (γµγνγργσ) = tr (γµγσγργν) . (C.1)

tr (γµγνγργσγαγβ) = tr (γργνγµγβγαγσ) . (C.2)

tr (γµγνγρ (γσγαγβ + γβγαγσ)) = 2 tr (γµγνγρ (ησαγβ − ησβγα + ηαβγσ)) .
 

(C.3)

tr
(
γµγνγρ

(
γσγαγβ − γβγαγσ

))
= −12 δσαβµνρ tr 1. (C.4)

Making use of the redefinition of the integration variable, letting k → −k + p, and the gamma 
matrix identity (C.1), it can be shown that

∫
ddk
(2π)d tr

[
/k
k2 γα

(/k − /p)
(k − p)2 (2k − p)(ργσ)

]
= 0. (C.5)

Using identity (C.1),

∫
ddk
(2π)d

1
k2(k − p)2 tr

{
(2/k − /p)(2k − p)µγν(2/k − /p)(2k − p)(ργσ)

}
,

= − 64 i Tµνρσ( p) +
∫

ddk
(2π)d

1
k2(k − p)2 tr

{
/p (2k − p)µγν /p(2k − p)(ργσ)

}
.

 (C.6)
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Using identities (C.2) and (C.3),
∫

ddk
(2π)d

1
k2(k − p)2 tr

{
(2/k − /p)(2k − p)(αγβ)(2/k − /p)(2k − p)τγργσγν

}
,

= − 64 i [ηρσTαβτν( p)− ηρνTαβτσ( p) + ησνTαβτρ( p)]

+

∫
ddk
(2π)d

1
k2(k − p)2 tr

{
/p(2k − p)(αγβ)/p(2k − p)τγργσγν

}
,

 (C.7)
where we have also used equation (C.6).

Furthermore, using identities (C.2) and (C.3) and

tr
[
(2/k − /p)γν(2/k − /p)/p

]
= tr

[
/pγν/p/p

]
+ 2(k2 − (k − p)2)tr

[
γν(2/k − /p)

]
− 2(k2 + (k − p)2)tr

[
γν/p

]
,

 (C.8)
we also have the following identity:
∫

ddk
(2π)d

1
k2(k − p)2 tr

{
(2/k − /p)γν(2/k − /p)(2k − p)(αγβ)/p(2k − p)(ργσ)

}
,

= − 64 i
[

p(αTβ)νρσ( p) + p(ρTσ)ναβ( p)
]

+

∫
ddk
(2π)d

1
k2(k − p)2 tr

{
/pγν/p(2k − p)(αγβ)/p(2k − p)(ργσ)

}
.

 

(C.9)

Appendix D. Symmetrisation of the two-point function

We show that in the integral expression for the two-point function, equation (26), the antisym-
metrised part of the integral in indices µν  vanishes,

∫
ddk
(2π)d tr

{
/k(2k − p)[µγν](/k − /p)(2k − p)(ργσ)

k2(k − p)2

}
= 0. (D.1)

Expanding out the trace and rewriting

k · (k − p) =
1
2

k2 +
1
2
(k − p)2 − 1

2
p2,

the integral on the lhs of equation (D.1) becomes

2d/2−1
∫

ddk
(2π)d

1
k2(k − p)2 k[µ

(
ην](σ − 2 pν]k(σ

)
(2k − p)ρ). (D.2)

Using equations (B.1)–(B.3), equation (D.1) is established.

Appendix E. Evaluation of T̃

In this appendix we evaluate T̃νρσαβ( p, q), defined in equation (57),

i
∫

ddk
(2π)d tr

{
/k
k2

(
γν(/k + /p) + (2k + p)ν

)
(2k + p − q)(ργσ)

/k − /q
(k − q)2 (2k − q)(αγβ)

}
.

 (E.1)
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We first note that each factor can be written as a sum of a term proportional to (2k − q) and 
another k-independent term. For example,

kµ =
1
2
(2k − q)µ +

1
2

qµ. (E.2)

Now, again using the trick in appendix D that under a reparametrisation of the integration 
variable k → −k + q we have

1
k2(k − q)2 → 1

k2(k − q)2 , (2k − q) → −(2k − q), (E.3)

we rewrite integral (E.1) in terms of an even number of (2k − q) factors,

i
8

∫
ddk
(2π)d

1
k2(k − q)2 tr

{
(2/k − /q) γν (2/k − /q) (2k − q)(αγβ) (2/k − /q) p(ργσ)

−(2/k − /q) γν (2/k − /q) (2k − q)(αγβ) /q (2k − q)(ργσ)

+(2/k − /q) γν /q (2k − q)(αγβ) (2/k − /q) (2k − q)(ργσ)

+(2/p + /q) γν (2/k − /q) (2k − q)(αγβ) (2/k − /q) (2k − q)(ργσ)

−(2/k − /q) γν /q (2k − q)(αγβ) /q p(ργσ)

−(2/p + /q) γν (2/k − /q) (2k − q)(αγβ) /q p(ργσ)

+(2/p + /q) γν /q (2k − q)(αγβ) (2/k − /q) p(ργσ)

−(2/p + /q) γν /q (2k − q)(αγβ) /q (2k − q)(ργσ)

+2 (2k − q)ν (2/k − /q) (2k − q)(αγβ) (2/k − /q) p(ργσ)

+2 ( p + q)ν (2/k − /q) (2k − q)(αγβ) (2/k − /q) (2k − q)(ργσ)

−2 (2k − q)ν/q (2k − q)(αγβ) /q p(ργσ)

−2 ( p + q)ν /q (2k − q)(αγβ) /q (2k − q)(ργσ)

}
,

 

(E.4)

cancelling some terms using the gamma matrix identity (C.1). Using identity (C.4), we can 
show that the terms on the sixth and seventh line in the expression above cancel. Furthermore, 
we can use identities (C.6), (C.7) and (C.9) to simplify the expressions on the ninth and 
tenth lines; first, third and fourth lines and the second line of above expression, respectively. 
Collecting all the terms we find that

T̃νρσαβ( p, q) = 16
[
3 p(ρ Tσ)ναβ(q) + 2 ( p + q)ν Tρσαβ(q)− pτ ην(ρ Tσ)ταβ(q)

]
.

 (E.5)
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