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ABSTRACT

Background: The optimization of metabolic rates (as linear objective functions) represents the methodical core of
flux-balance analysis techniques which have become a standard tool for the study of genome-scale metabolic
models. Besides (growth and synthesis) rates, metabolic yields are key parameters for the characterization of
biochemical transformation processes, especially in the context of biotechnological applications. However,
yields are ratios of rates, and hence the optimization of yields (as nonlinear objective functions) under arbitrary
linear constraints is not possible with current flux-balance analysis techniques. Despite the fundamental im-
portance of yields in constraint-based modeling, a comprehensive mathematical framework for yield optimi-
zation is still missing.

Results: We present a mathematical theory that allows one to systematically compute and analyze yield-
optimal solutions of metabolic models under arbitrary linear constraints. In particular, we formulate yield opti-

mization as a linear-fractional program. For practical computations, we transform the linear-fractional yield
optimization problem to a (higher-dimensional) linear problem. Its solutions determine the solutions of the
original problem and can be used to predict yield-optimal flux distributions in genome-scale metabolic models.
For the theoretical analysis, we consider the linear-fractional problem directly. Most importantly, we show that
the yield-optimal solution set (like the rate-optimal solution set) is determined by (yield-optimal) elementary
flux vectors of the underlying metabolic model. However, yield- and rate-optimal solutions may differ from each
other, and hence optimal (biomass or product) yields are not necessarily obtained at solutions with optimal
(growth or synthesis) rates. Moreover, we discuss phase planes/production envelopes and yield spaces, in
particular, we prove that yield spaces are convex and provide algorithms for their computation. We illustrate our
findings by a small example and demonstrate their relevance for metabolic engineering with realistic models of
E. coli.

Conclusions: We develop a comprehensive mathematical framework for yield optimization in metabolic
models. Our theory is particularly useful for the study and rational modification of cell factories designed under
given yield and/or rate requirements.

1. Introduction efficiency of (bio)chemical conversions. In particular, it is the amount
of product or biomass formed per amount of substrate consumed. In

Productivity and yield are crucial characteristics of biotechnological contrast, productivity measures the speed of product formation, i.e., the
production processes based on microbial cell factories (Nielsen and amount of product or biomass formed per unit of time. Thereby, one is
Keasling, 2016; Sanford et al., 2016). Yield is a relative measure of the mainly concerned with productivity quantified by specific production

Abbreviations: ATP, adenosine triphosphate; ECC2, EColiCore2; EFM, elementary flux mode; EFV, elementary flux vector; FBA, flux-balance analysis; gDW, gram dry weight; glc,
glucose; GSMM, genome-scale metabolic model; LFP, linear-fractional program; LP, linear program; MCS, minimal cut set; PE, production envelope; PP, phase plane; YS, yield space
* Corresponding author at: Department of Biotechnology, University of Natural Resources and Life Sciences, Vienna, Austria.
E-mail addresses: klamt@mpi-magdeburg.mpg.de (S. Klamt), st.mueller@univie.ac.at (S. Miiller), georg.regensburger@jku.at (G. Regensburger),
juergen.zanghellini@boku.ac.at (J. Zanghellini).
1 All authors contributed equally.

https://doi.org/10.1016/j.ymben.2018.02.001

Received 4 November 2017; Received in revised form 22 January 2018; Accepted 3 February 2018

Available online 07 February 2018

1096-7176/ © 2018 The Authors. Published by Elsevier Inc. on behalf of International Metabolic Engineering Society. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/BY/4.0/).


http://www.sciencedirect.com/science/journal/10967176
https://www.elsevier.com/locate/meteng
https://doi.org/10.1016/j.ymben.2018.02.001
https://doi.org/10.1016/j.ymben.2018.02.001
mailto:klamt@mpi-magdeburg.mpg.de
mailto:st.mueller@univie.ac.at
mailto:georg.regensburger@jku.at
mailto:juergen.zanghellini@boku.ac.at
https://doi.org/10.1016/j.ymben.2018.02.001
http://crossmark.crossref.org/dialog/?doi=10.1016/j.ymben.2018.02.001&domain=pdf

S. Klamt et al.

rate (e.g, mmol product per gram dry weight and hour) or specific
growth rate (with unit per hour).

Yield and productivity are not independent of each other. Moreover,
in the case of biomass as the (natural) product, trade-offs between
(growth) yield and (growth) rate are believed to shape the evolutionary
trajectories of microorganism (Goel et al., 2012). For instance, higher
growth yields allow an organism to produce more progenies for the
same amount of nutrients, while higher growth rates support faster
proliferation, but are often accompanied by reduced biomass yields.
The latter growth strategy may be better suited under nutrient excess in
order to overgrow any competitors, while the former provides a fitness
advantage under nutrient scarcity (Schuster et al., 2008). Another ex-
ample where the difference between growth yield and growth rate
maximization has been discussed intensely in the literature is in the
context of respiration vs. fermentation (Schuster et al., 2015, 2011;
Simeonidis et al., 2010).

Optimal yields and rates and their trade-offs are frequently studied
with the help of mathematical models. Here, evolutionary pressure is
often modeled in terms of some kind of optimality. Constraint-based
modeling represents one approach to investigate optimality principles
based on the underlying metabolic network structure (Bordbar et al.,
2014). Flux-balance analysis (FBA) is a particularly prominent con-
straint-based modeling approach that predicts steady-state flux dis-
tributions in genome-scale metabolic models (GSMMs) by assuming an
objective function that the cell aims to optimize (Orth et al., 2010;
Varma and Palsson, 1994; Fell and Small, 1986; Watson, 1984).
Mathematically, FBA is formulated as a linear program (LP) maximizing
a single reaction rate or a linear combination of rates. Typically max-
imizing growth rate is used as a proxy for evolutionary pressure that
improves fitness. Other objective functions have been proposed as well
(Schuetz et al., 2012, 2007; Gianchandani et al., 2008). In this work, we
neither address whether (microbial) cells perform optimally at all nor
do we claim what rates or yields could be true biological objectives.
Instead, we provide computational means to identify yield-optimal flux
distributions for any constraint-based metabolic model.

In its mathematical formulation, FBA clearly maximizes rates,
however, it has also been used for maximizing yield. In some applica-
tions, limiting substrate uptake rates r; are fixed to experimentally
measured values. Since biomass yield Y®/S is the ratio of growth rate u
and uptake rate r;, maximizing yield is then equivalent to maximizing
growth rate (Teusink and Smid, 2006). In other cases, only steady-state
and irreversibility constraints are known. Then the optimization of rates
via FBA leads to infinite values, and only the optimization of product
(or biomass) yields Y*/S = rp/rs is meaningful. In a normalization step,
the substrate uptake is fixed, e.g 5 = 1, and the (normalized) product
formation rate rp is maximized via FBA (Schuster et al., 2008, 2000). For
medium-scale networks, this case can also be addressed in the frame-
work of elementary flux mode (EFM) analysis (Schuster and Hilgetag,
1994; Schuster et al., 1999, 2000; Zanghellini et al., 2013).

For unknown substrate uptake rate and in the presence of other
constraints (e.g., lower or upper flux bounds), the situation is different,
and the methods described above cannot be used. Here, the nonlinear
yield Y?/S = p/rs has to be maximized explicitly since the substrate
uptake rate at the maximum product yield is not known. In particular,
rate optimization (1 — max) and yield optimization (rp/rs — max) may
then lead to different solutions.

Although (maximal) yields are of central interest in metabolic
modeling and engineering, a comprehensive mathematical framework
for yield analysis and optimization in the context of constraint-based
modeling is still missing. In the present work, we study yield optimi-
zation under arbitrary linear constraints as a linear-fractional program
(LFP), as opposed to rate optimization in FBA which is studied as an LP.
For practical computations, we use that a linear-fractional yield opti-
mization problem can be transformed to an equivalent, but higher-di-
mensional linear problem (which cannot be interpreted as an FBA
problem in a straightforward way). By solving this LP and transforming
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the solutions back to the LFP, we can compute yield-optimal flux dis-
tributions in GSMMs.

In our theoretical analysis, we furthermore show that yield-optimal
solution sets (like rate-optimal solution sets) can be characterized in
terms of EFMs and elementary flux vectors (EFVs) (Klamt et al., 2017).
Throughout our study, we emphasize similarities and differences of rate
and yield optimization, in particular, in the context of metabolic en-
gineering. We discuss the concepts of phase planes (PPs) and yield
spaces (YSs) as important tools for computer-aided strain design and, as
another theoretical result, we prove the convexity of YSs.

2. Rate and yield optimization
2.1. Basic terminology and examples

A metabolic network is represented by its stoichiometric matrix
N € R™" containing the net stoichiometric coefficients of m internal
metabolites in n reactions. The vector r € R" denotes a flux distribution
(flux vector) through the network, and its components r with
i € {1, ...,n} are the respective reaction rates or fluxes.

Flux-balance analysis (FBA) identifies particular flux distributions
through a metabolic network by optimizing a linear objective function
c’r subject to steady-state (2a), capacity and irreversibility (2b), as well
as possible additional linear constraints (2¢), e.g., for resource alloca-
tion (Mori et al., 2016):

max c'r (€]
subject to

Nr=0, (2a)
rl < r < b, (2b)
Gr < h. (20)

The constraints (2b) include irreversibility constraints, where r}b = 0 for
irreversible reactions i € I;.. The additional constraints in (2c) are ex-
pressed by a set of g linear inequalities represented by a matrix
G € R?7" and a vector h € RY. The objective function together with the
linear constraints form a linear program (LP), which can be solved with
standard LP solvers.

A related, but mathematically different type of optimization is the
identification of yield-optimal flux vectors. A yield is the ratio of two
fluxes or, more generally, the ratio of linear combinations of fluxes,

cTr

Y(r)= i

3
Usually, the numerator contains a sum of (weighted) product fluxes,
whereas the denominator contains a sum of (weighted) substrate up-
take fluxes and is assumed to be positive. Thereby, the directions of
substrate uptake reactions are fixed, and the corresponding signs of
fluxes and coefficients match. That is, for uptake reaction i, either r; > 0
andd; >0orr<0andd; <0.
Yield optimization poses the following problem:

4

subject to the same constraints (2a)—(2c) as for FBA and the additional
assumption d’r > 0. Since the objective function is a fraction of two
linear functions, this kind of optimization problem is called a linear-
fractional program (LFP) (Boyd and Vandenberghe, 2004; Frenk and
Schaible, 2005; Maranas and Zomorrodi, 2016). We note that, in a
general LFP, the objective function has the form (c’r + p)/(d"r + ¢). In
the case of yield optimization, we have p = g = 0 which simplifies the
mathematical treatment.

In the following, we will use the example network in Fig. 1 to il-
lustrate rate- and yield-optimal flux distributions in three different
scenarios. With reaction R1 as S(ubstrate) uptake, we are particularly
interested in the synthesis of B(iomass or a biomass component) via

max Y (r)
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Fig. 1. Example network with six (internal) metabolites (A, B, C, P, Q, S), ten irreversible
reactions (R1-R10), and one reversible reaction (R11), where the open arrow indicates
the backward direction. Every (incoming or outgoing) edge of a node represents a stoi-
chiometric coefficient of one. Thus, reaction R6 uses two molecules of S and produces one
C and one P.

reaction R4. Thereby, P and Q (with excretion reactions R3 and R2)
represent two byproducts. In each of the following three scenarios, we
are interested in the maximal biomass synthesis rate r, and the maximal
biomass yield Y®/S = r,/r. The main characteristics of these scenarios
are summarized in Fig. 2(a).

Scenario S1. First, we only consider the steady-state and irreversi-
bility constraints. Clearly, maximization of the biomass synthesis rate r,
is then meaningless since the resulting LP is unbounded, leading to an
infinite rate ry. In contrast, the optimal B(iomass) yield is one, irre-
spective of the amount of substrate taken up. See Fig. 2(a) and (b).

Scenario S2. Next, we use the (standard) condition of Scenario S1
and restrict the substrate uptake rate by 1 < 10. Now, the maximum
rate for biomass synthesis is ten, whereas the maximum biomass yield is
still one. In this case, the maximum biomass rate is just given by the
substrate uptake rate multiplied by the maximum biomass yield. Note
that for 1 infinitely many solutions exist that result in yield-optimality
(0 < n <£10), whereas only one solution results in rate-optimality
(n = 10). See Fig. 2(a) and (b).

Scenario S3. Finally, we also set a capacity constraint for reaction
R5: r; < 5. Apparently, the maximum rate for biomass synthesis is now
7.5, whereas the maximum biomass yield is still one. However, the
maximum yield can only be reached for substrate uptake rates , < 5,
whereas the maximum rate occurs at = 10. As a consequence, the
rate-optimal solution is not yield-optimal. See Figs. 2(a)-(c).

Remark. Note that, in some special cases, the maximum yield is
reached only for infinitely large fluxes (one says “it is not attained”). If
we take scenario S1 and add a nonzero lower bound for reaction R2, e.g.
r, > 1, then the maximum B(iomass) yield of one is approached for very
large substrate uptake flux r; (but will never be attained).

Numerous LPs, given by Eq. (1) subject to the constraints (2a)-(2c),
have been solved in the context of FBA to find rate-optimal solutions,
e.g., growth-rate-optimal phenotypes or flux distributions with optimal
product synthesis rates. Optimal yields are obviously also of high in-
terest in the context of metabolic engineering. However, surprisingly,
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with only one exception (Burgard et al., 2004) (in the context of flux
coupling analysis, see Section 2.3), we are not aware of a single con-
straint-based modeling study that solved the LFP given by (4) subject to
(2a)-(2c) to optimize yield in a metabolic network. Instead, yield-op-
timal solutions have often been identified either via elementary flux
modes (EFMs) (applicable only in smaller networks, see below) or by
fixing the substrate uptake rate and then maximizing product synthesis
rate via a standard LP (Schuster et al., 2008; Teusink and Smid, 2006).
However, these methods cannot be used in the general case of arbitrary
constraints. For example, fixing the substrate uptake rate in scenario S3
to its maximum value 1, = 10 and then maximizing the biomass synth-
esis rate will deliver a flux vector that is not biomass-yield optimal for
scenario S3.

In the following, we give a mathematical definition of yield opti-
mization problems in the context of constraint-based modeling and
discuss important properties of the resulting LFPs. Further, we show
how they can be written as LPs, which allows the use of efficient al-
gorithms even for genome-scale metabolic models (GSMMs). In a sub-
sequent section, we characterize rate- as well as yield-optimal solution
sets in terms of rates and yields of (optimal) generators of the flux
polyhedron.

2.2. Mathematical treatment
We define rate optimization (as an LP) and yield optimization (as an

LFP). Most importantly, we rewrite yield optimization as an LP.
The constraints (2a)—(2c) define the flux polyhedron

P={xeR"|Ax < b}, ()
where
N 0
- N 0
A=| T |, b=|rv |,
—1 _ b
G h (6)

and I € R™" is the identity matrix. As standard in convex optimization,
we use the variable x € R” for the (flux) vector r € R".

2.2.1. Definitions
Given a vector ¢ € R", we define the linear objective function
I: R" > R,

I(x) =c"x 7)
and study rate optimization as the LP
ma 100 ®

Given ¢, d € R", we define the yield Y: D — R as the rational
function

cTx
Y(x) = ==
0= gy ©
on the set
D= {xeR"|d'x > 0}. 10)

That is, we require a positive denominator. We study yield optimization
as the LFP

max¥(x) an
with
R=PNnD={xeP|d'x> 0} (12)

We note that, given rate- and yield-optimal solutions, x*" and x*Y,
respectively, the inequalities ¢’x* > ¢"x* > 0 and Y (x*) > Y (x*) > 0
imply d"x** > d"x*. In biological terms, the substrate uptake in yield-
optimal states is never larger than the substrate uptake in rate-optimal
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Scenarios ry rq/r; | Flux dist. | Input flux
prl B I S
S2: Nr=0,7,>0,i€ L, 1 <10 ryi‘idog; lr? } EE; (r)l :r}oS 0
S3:Nr=0,r;20,i €y, 1y 10,75 <5 fyfi:dOE;t 7rl5 0.175 8 " <=r}03 X

Fig. 2. Rate- and yield-optimal flux distributions for scenarios S1-S3 of the example network in Fig. 1. Panel (a) lists the main characteristics of the three scenarios together with the
respective rate- and yield-optimal flux distributions (depending on the input flux r;). The contributing reactions are illustrated as blue lines in panels (b) and (c). Full lines indicate fluxes

depending only on r;, while dashed lines indicate fluxes depending also on ry;.

states.

2.2.2. Yield optimization as an LP
In general, an LFP is equivalent to an LP (Boyd and Vandenberghe,
2004; Frenk and Schaible, 2005; Maranas and Zomorrodi, 2016). Let

P={x|Ax<b} be a polyhedron (with recession cone
{x € R"| Ax < 0}). The above LFP
c’x
max ——
XEP> de
with
P ={xe€P|dx> 0}
is equivalent to the LP
max cx’
', t)eP’ 13)
with the auxiliary polyhedron
P ={(,t)|Ax' <tb, d™x' =1, t > 0} a4

in the following sense: The LFP is feasible if and only if the LP is fea-
sible, and both optimization problems have the same optimal value. In
detail, if x € R is feasible in the LFP, then (x', t) € P’ with
X 1
X'=— and t=—>0
d"x dTx

is feasible in the LP with the same objective value.

Conversely, if (x’, t) € P’ with ¢t > 0 is feasible in the LP, then

X = XT €ER
is feasible in the LFP with the same objective value.

Finally, if t = 0, then (x, 0) € P’ corresponds to an element of the
recession cone of P since Ax’ <0 (and d'x’ = 1). In those cases, the
objective value of the LFP approaches the objective value of the LP in
the limit: for arbitrary, but fixed x, € R, we have

fxo+ x'|1>20 CR
and

T + Ax) _ T
dooo dT(xg + AX)  dTx!

=cTx'.

If the LP has an optimal solution (x*, 0), two cases can occur. If there
exists another optimal solution (¥, f) with > 0, then the optimal yield
is attained at the corresponding element of R.. Otherwise, the optimal
yield is reached only in the limit (as already illustrated in the remark in
Section 2.1). In practice, one is interested in optimal yields attained at
finite fluxes and one can proceed as follows. If the LP solver returns an
optimal solution (x*, 0), one first determines the feasible range of t, by
maximizing t in the auxiliary polyhedron (14). Then one chooses a
feasible f > 0 close to zero (but numerically unproblematic) and de-
termines an optimal solution (¥, f) of (13). If ¢'X = c’x*, then the op-
timal yield is attained at finite fluxes.
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We note that the equivalence of the LP and the LFP also implies that
the LP is unbounded if and only if the original LFP is unbounded. Such
cases arise, for example, if alternative substrates can be used to syn-
thesize the product, but are not accounted for in the denominator of the
yield function (9).

2.3. Flux coupling analysis

Flux coupling analysis is a method to detect functionally related
reactions (Burgard et al., 2004; Maranas and Zomorrodi, 2016). The
fluxes r; and r; of any two reactions i and j can be either fully, partially,
directionally, or not at all coupled. These features can be detected by
maximizing and minimizing the flux ratio r/r; over the set of feasible
flux vectors. If max (r/r;) = min (/r;), then the two fluxes are fully
coupled, i.e., one flux is a multiple of the other. If both ratios are not
equal, but nonzero and finite, then the reactions are partially coupled.
This means that, if any of the two fluxes is nonzero, then the other one
is nonzero, too. Finally, if the activity of one reaction implies the ac-
tivity of the other but not vice versa, then the reactions are directionally
coupled. This is the case when one of the ratios is finite and the other is
zero. For example, in the network in Fig. 1, the fluxes r; and r; are fully
coupled, whereas r; and 1 are directionally coupled, and no pair of
reactions is partially coupled.

Maximizing and minimizing a flux ratio is a special case of opti-
mizing a rational function as in (4). In fact, Burgard et al. (2004) used
an LFP for flux coupling analysis, but they did not extend their work to
the analysis of yields.

3. Rate-optimal and yield-optimal solution sets
3.1. Basic terminology and examples

In this section we show how optimal rates and yields and the cor-
responding rate- and yield-optimal solution sets can be analyzed by
means of generating vectors.

If the constraints (2a)-(2c) for the objective functions (1) and (4)
contain only the steady-state and irreversibility constraints, then the set
of feasible flux vectors forms a polyhedral cone, the flux cone. A well-
known and particularly useful generating set of the flux cone is given by
the set of elementary flux modes (EFMs), which are non-decomposable
(support-minimal) flux vectors (Schuster and Hilgetag, 1994; Schuster
et al., 1999, 2000; Zanghellini et al., 2013). Every feasible steady-state
flux distribution is a conical (nonnegative linear) combination of EFMs,
and it is well-known that EFMs can be used to identify yield-optimal
pathways. (For examples, see below.)

Rate maximization on the (unbounded) flux cone usually yields an
unbounded maximum and is thus meaningless. Therefore, FBA usually
involves constraints in (2b)-(2c) that go beyond steady state and irre-
versibility (e.g., maximal substrate uptake rates or resource allocation
constraints). This usually bounds the feasible solutions, or at least the
value of the objective function, see scenarios S2 and S3 in Fig. 2(a). The
resulting flux polyhedron cannot be analyzed with EFMs, but with the
more general approach of elementary flux vectors (EFVs) (Urbanczik,
2007; Klamt et al., 2017; Miiller and Regensburger, 2016). EFVs are a
particularly useful generating set of a flux polyhedron and generalize
EFMs, since EFVs and EFMs coincide in the case of a flux cone. Only
recently it has been realized that EFVs can indeed be used to char-
acterize rate- and yield-optimal solution sets (of linear programs (LPs)
and linear-fractional programs (LFPs), respectively (Klamt et al.,
2017)).

For the three scenarios S1-S3 of the example network in Fig. 1, the
corresponding EFMs and EFVs are listed in Table 1. Here, we illustrate
how they can be used to characterize the sets of rate- and yield-optimal
flux vectors.

Scenario S1. The standard condition involves only the steady-state
and irreversibility constraints of the network. These constraints form
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the flux cone which is generated by the six EFMs listed in Table 1. Note
that the first five EFMs represent pathways from S(ubstrate) to products
(B, P, Q), whereas EFM6 is an internal cycle involving the reactions R7,
R10, and R11. (Such a cycle is thermodynamically infeasible, but we
keep it for illustrating the concept.) Except for the cycle, all EFMs have
a well-defined B(iomass) yield Y®/S = r,/n, and the maximum yield of
YB/S = 1 is reached by EFM4 and EFMS5. As will be detailed below, the
set of yield-optimal flux distributions is given by all possible conical
sums of EFM4, EFM5 (having maximum yield) and the cycle EFM6
(with undefined yield). Thereby, EFM4 and/or EFM5 must contribute to
the sum. All these flux distributions, indicated in Fig. 2(b), have max-
imum yield. Again, note that rate-optimal fluxes are unbounded in flux
cones.

Scenario S2. The substrate uptake flux is constrained by an upper
bound, and the set of feasible solutions changes from a flux cone to a
flux polyhedron. Since EFMs are not defined for general (flux) poly-
hedra, we determine the EFVs. Indeed, the flux polyhedron is generated
by seven EFVs (Table 1). Six of them correspond to the EFMs of S1:
EFV7-EFV11 correspond to EFM1-EFM5 but are now scaled to the
maximal substrate uptake rate, whereas EFV22 is identical to the cycle
EFM6 and remains unscaled. Finally, EFV23 is the zero vector (which is
always an EFV if it is contained in the flux polyhedron). Now we can
characterize solutions with maximum biomass production rate and
maximum biomass yield, respectively. Similarly to scenario S1, the
yield-optimal solution set is given by all possible convex sums of EFV10
and EFV11 (with a maximum yield of Y®/S = 1), and the zero vector
EFV23 plus some nonnegative multiple of the cycle EFV22. Although
EFV22 and EFV23 have undefined yield, they do not affect the overall
(maximum) yield as long as at least one EFV with maximum yield
(EFV10 and/or EFV11) contributes to the sum. These flux distributions
are again illustrated in Fig. 2(b). In contrast, the set of rate-optimal flux
vectors (with a maximum rate of r, = 10) is given by all convex sums of
(only) EFV10 and EFV11 plus some nonnegative multiple of the cycle
EFV22.

Scenario S3. Finally, with the additional flux bound s < 5, we find
that the B(iomass) yield-optimal solutions are now described by EFV18
and EFV19, which correspond to EFV10 and EFV11 in scenario S2, but
are now scaled to the additional flux bound. The yield-optimal solution
set is given by all convex sums of EFV18 and EFV19 (having maximum
yield Y?S = 1) and the zero vector EFV23 plus some nonnegative
multiple of the cycle EFV22 (again, with some minimum contribution of
EFV18 and/or EFV19). In contrast, the set of rate-optimal solutions
(with a maximum rate of r, = 7.5) is given by all convex sums of the
(newly arising) EFV16 and EFV17 plus some nonnegative multiple of
the cycle EFV22, see Fig. 2(c).

3.2. Rate-optimal solution sets

Recently, a general guideline has been given how to use EFVs (or
EFMs in the special case of flux cones) to describe rate- and yield-op-
timal solution sets (Klamt et al., 2017). For the case of yield optimi-
zation, a detailed mathematical treatment will be given in Sections 3.3
and 3.4. Before that, we summarize the results for the simpler case of
rate optimization,
max c’x.

X€EP

By Minkowski's Theorem, the flux polyhedron P = {x € R" | Ax < b}
is the sum of a polytope (a bounded polyhedron) and a finitely gener-
ated cone, the recession cone {x € R" | Ax < 0}. The linear objective c¢x
is bounded on P if and only if it vanishes on the recession cone. In this
case, we call the LP bounded.

Most importantly, if the LP is bounded, then every optimal solution
is a convex sum of optimal generators of the polytope plus a conical
sum of generators of the recession cone — and vice versa. Hence, the
optimal solution set is a (sub)polyhedron. It is the sum of the optimal
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Table 1

List of generators (EFMs and EFVs) for scenarios S1 to S6 in the example network in Fig. 1. Scenarios are characterized by an increasing number of constraints (indicated by

Metabolic Engineering 47 (2018) 153-169

k)

Membership of generators in different scenarios is indicated by “+”. Generators are characterized by their B(iomass) yield Y®/S and P(roduct) yield Y?/S. Some generators are not

bounded (indicated in the column “Bounded”), and normalized rates are then listed.

Constraints
in scenarios
® * * * * * Nr=0
* * * * * x| 120, € Ly
* * * * * r <10
% rs <5
* * * rs =0
* * I3 = 0
* re >3
Generators Scenarios Bounded Rates Yields
EFM EFV | S1 S2 S3 S4 S5 S6 Rl R2 R3 R4 R5 R6 R7 R8 R9 RIO RII | YBS yPsS
1 + no 1 1 0 0 0 0 0 1 0 0 0 0 0
2 + no 1 0 1 0 0 0 0 0 1 0 0 0 1
3 + no 1 0 05 05 0 05 0 0 0 05 0 0.5 0.5
4 + no 1 0 0 1 1 0 1 0 0 1 0 1 0
5 + no 1 0 0 1 1 0 0 0 0 0 1 1 0
6 + no 0 0 0 0 0 0 1 0 0 1 -1 U U
7 + o+ o+ yes 10 10 0 0 0 0 0 10 0 0 0 0 0
8 + + + + yes 10 0 10 0 0 0 0 0 10 0 0 0 1
9 + + + + + yes 10 0 5 5 0 5 0 0 0 5 0 0.5 0.5
10 + yes 10 0 0 10 10 0 10 0 0 10 0 1 0
11 + yes 10 0 0 10 10 0o 0 0 ©0 0 10 1 0
12 + yes 10 0 5 5 5 0 5 0 5 5 0 0.5 0.5
13 + yes 10 0 5 5 5 0 0 0 5 0 5 0.5 0.5
14 + yes 10 5 0 5 5 0 5 5 0 5 0 0.5 0
15 + yes 10 5 0 5 5 0o 0 5 0 0 51 05 0
16 + yes 10 0 25 175 5 25 5 0 0 175 0075 025
17 + yes 10 0 25 175 5 25 0 0 0 25 51075 025
18 + yes 5 0 0 5 5 0 5 0 0 5 0 1 0
19 + yes 5 0 0 5 5 o 0 0 O 0 5 1 0
20 + yes 6 0 3 3 0 3 0 0 0 3 0 0.5 0.5
21 + yes 10 0 7 3 0 3 0 0 4 3 0 0.3 0.7
22 + + + 4+ o+ no 0 0 0 0 0 0 1 0 0 1 -1 U U
23 + + + + yes 0 0 0 0 0 0 0 0 0 0 0 U U
(sub)polytope and the recession cone. Clearly,
Any set of generators (of P) can be used to characterize the rate- P.—RUPL
optimal solution set, for example, the set of minimal generators (as used S
in (Kelk et al., 2012)) or the set of EFVs. In fact, EFVs have several where

valuable properties for characterizing (optimal) solution sets (Klamt
et al., 2017), and we suggest to use EFVs as in the scenarios S2 and S3
above.

3.3. Mathematical properties of yield optimization

In order to characterize optimal solution sets of the yield optimi-
zation problem, we require a number of auxiliary results. For detailed
statements and proofs, see the Appendix.

Property 1. In the definition of the yield Y, the numerator c'x and the
denominator d"x do not contain constant terms and hence
Y (Ax) = Y (x) (15)
for x € D and A > 0. That is, Y is constant on the ray {Ax | 1 > 0}.

Property 2. The yield Y is not a linear function, not even convex (or
concave). Still, for x,y € D and 1 € [0, 1], the yield of the convex
combination

z=0Q-Dx+ Ay

is given by the convex combination of yields

Y(@) =1 -2)Yx) + YY)

with a unique A’ € [0, 1]. See Proposition 1 in the Appendix.
Property 3. The domain R. is contained in the polyhedron

P, ={xeP|d'x> 0} (16)

P ={xeP|d'x =0} a7

In fact, P> is the smallest polyhedron containing P..

Again, by Minkowski's Theorem, the polyhedron Ps is the sum of a
polytope and a finitely generated cone (the recession cone of Ps).
Explicitly, letvi € Ps (i € I) and w/ € rec(Ps) (j € J) be generators of the
polytope and the recession cone, respectively (I and J are finite index
sets of these generators). Then, every x € P> (in particular, every
X € R) can be written as

x=Zocivi+ Zﬁjuj

iel jer (18)

with o, §; > 0 and Yic; @ = 1. Again, any set of generators (of P,) can
be used and we suggest to deploy the set of EFVs (Urbanczik and
Wagner, 2005; Urbanczik, 2007; Klamt et al., 2017; Miiller and
Regensburger, 2016).

In our main result below, we characterize optimal solutions of the
yield optimization problem in terms of generators (EFVs) of P.

Property 4. A vector x € B (with d"x = 0) may have unbounded yield (if
cx # 0) or undefined yield (if ¢"x = 0). That is,

B = P.j0 U By,

where
P = xePB|cx#0},
Pyo = {xe P |cx =0} 19)
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The definition of the yield directly implies the following two results:

On the one hand, if there is a vector in P> with unbounded yield
(that is, a vector in B, ), then Y is unbounded on R.. See Lemma 1 in the
Appendix.

On the other hand, the addition of a vector in P, with undefined
yield (that is, a vector in Pyo) to a vector in R. does not change the yield.
See Lemma 2 in the Appendix.

As a consequence, if Y is bounded on R, then generators of P
cannot have unbounded yield, but may have undefined yield.

Property 5. Most importantly, if Y is bounded, then the yield of a vector in
P, is a convex sum of the yields of generators of P> with defined yield. See
Lemma 3 in the Appendix. The corresponding index sets are given by

Id
]d

{iel|vieR},

ieJ|ueRrl (20)

3.4. Yield-optimal solution sets

Now we are in a position to characterize optimal solutions of the
yield optimization problem in terms of generators of Ps.

First, we note that the maximum yield need not be attained, that is,
the maximum is only approached in the limit (as already illustrated in
the remark in Section 2.1). The following theorem determines when
this is the case.

Theorem 1. Let the yield Y be bounded on the nonempty domain B.. Then
the maximum is not attained if and only if

I{=] and max Y(v) < max Y (u/).
ierd jesd

If the maximum is not attained, let Y* be the supremum. Then Y (x) - Y*
forx=v+ ,6’juf e R withveR,YWw)=Y* and f; — co.

Proof. See the Appendix. o

If the maximum yield is attained, then the following theorem states
that every optimal solution is a convex/conical sum of generators with
maximum or undefined yield — and vice versa. Thereby, at least one
generator with maximum yield contributes to the sum. Hence, the
closure of the optimal solution set is a (sub)polyhedron.

Theorem 2. Let the yield Y be bounded on the domain R and the
maximum Y* be attained. Then x* € R is an optimal solution if and only if

x* = z o v+ Z av + Z Biul + Z B,

ier* iemt JET* jest
where
I* = {iel | YQWM)=Y*,
" = {iel | v' € Ryl
J* = {jeJ | Yw)=Y%,
J¢ = {jeJ | w € Pyl

and af, a;, ﬁjf“, ﬁj > 0 with

Zai*+20{,-=1 and Zai*+ Z/S}T">O.

ier* iem* ier* jer*
Proof. See the Appendix. o

With the theoretical results obtained above, we can characterize the
yield-optimal solution set in terms of generators of P>, in particular, in
terms of EFVs (see Fig. S1). For realistic applications, we assume that
the denominator of the yield function is nonnegative (that is, the flux
polyhedron P coincides with P5) and that the yield is bounded (on the
nonempty domain R.). The set of EFVs of P consists of “bounded” EFVs
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v of the polytope associated to P and “unbounded” EFVs u of the re-
cession cone of P.

Case 1: If the flux polyhedron is the flux cone (given by steady-state
and irreversibility constraints), then no “bounded” EFV v exists, and the
(sub)cone of yield-optimal solutions is the set of conical sums of the
EFVs u (here coinciding with the set of EFMs) with maximum or un-
defined yield. Thereby, at least one EFM with maximum yield con-
tributes to the sum.

Case 2: If the flux polyhedron is a polytope (the recession cone is
empty), then no EFV u exists, and the (sub)polytope of yield-optimal
solutions is the set of convex sums of EFVs v with maximum or un-
defined yield. (Note that the zero vector is an EFV with undefined yield
if it is contained in the flux polyhedron). Again, at least one EFV with
maximum yield contributes to the sum.

Case 3a: If the flux polyhedron is a general polyhedron (generated
by “bounded” and “unbounded” EFVs) and at least one of the EFVs v
has maximum or undefined yield, then the maximum yield is attained,
and the (sub)polyhedron of yield-optimal solutions is the set of convex
sums of EFVs v plus conical sums of EFVs u with maximum or undefined
yield. Again, at least one EFV (u or v) with maximum yield contributes
to the sum.

Case 3b: If the flux polyhedron is a general polyhedron (as in case
3a) and all EFVs v have defined, but not maximum yield, then the
maximum yield is not attained and only approached in the limit, in
particular, for an “infinite” contribution of EFVs u with maximum yield.

In Section 3.1, we already applied our theoretical results to char-
acterize yield-optimal solution sets by EFMs (for the flux cone in sce-
nario S1) and EFVs (for the flux polyhedra in scenarios S2 and S3).

4. Phase planes and yield spaces
4.1. Basic terminology and examples

So far we have analyzed the optimization of a single rate or yield.
Now we study (phenotypic) phase planes (PPs) and yield spaces (YSs)
which have become an important tool in constraint-based modeling for
metabolic networks. A PP is a projection of the flux polyhedron on two
(or three) selected fluxes, that is, on a two-dimensional plane or on a
three-dimensional space. Similarly, a YS is a map from the flux poly-
hedron to two (or three) selected yields. Thereby, we assume that the
denominator d”x in Eq. (3) is identical for all yields, while the nu-
merators c’x differ, i.e., we consider the same substrate(s), but different
products. Note that a YS is not a projection, since yields are nonlinear
functions of the flux vectors, see Eq. (3). PPs and YSs allow to analyze
dependencies between selected fluxes and yields, respectively. This is
particularly useful in the context of metabolic engineering and bio-
technological applications (see Sections 5 and 6). Growth rate and
synthesis rate of a target product are frequently chosen for projection;
in this case, the resulting PP is often called production envelope (PE) or
trade-off plot (Maranas and Zomorrodi, 2016; Machado and Herrgard,
2015). Likewise, biomass yield and product yield are often chosen for
YS analysis.

Again, we use the example network in Fig. 1 to illustrate PPs and
YSs in the three scenarios S1-S3. As before, R1 represents S(ubstrate)
uptake and R4 (B)iomass synthesis. In addition, we now consider the
product P (excreted by R3) with synthesis rate r; and yield Y?'S = ry/n.
The product Q is still considered undesired.

Scenario S1. Since the flux cone is unbounded, the PP is unbounded
as well, see Fig. 3(a). In contrast, the YS is bounded, since biomass and
product synthesis rates are normalized by the substrate uptake rate, see
Fig. 3(b). Both, maximal product yield and maximal biomass yield are
one. The triangle shape of the YS indicates the trade-off between bio-
mass and product yields due to mass conservation: the more product is
formed, the less biomass can be made from the substrate. However,
other shapes of the YS do exist, as will be shown below. Note that every
flux distribution of the example network is mapped to exactly one point
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Scenario S1: Nr=0,r, >0, i € I,.
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Fig. 3. PPs (blue) and YSs (red) for scenarios S1-S3 of the example network in Fig. 1.
Open and solid circles correspond to EFMs and EFVs, respectively (cf. Table 1). Note that
some circles correspond to more than one EFM or EFV.

in the YS. Conversely, every point in the YS corresponds to (possibly
infinitely many) flux vectors exhibiting the respective biomass and
product yields. For example, all flux distributions indicated in Fig. 2(b)
map to the point (1,0) in the YS.

Scenario S2. Limiting the substrate uptake rate by n < 10 also
bounds 1, and r; and hence the PP, see Fig. 3(c). However, the YS re-
mains the same as in scenario S1, see Fig. 3(d). Note that, up to scaling,
the PP and the YS are identical. Still, points (and line segments) of the
PP and the YS are not in one-to-one correspondence. For example, the
point (5,0) in the PP is the projection of all flux distributions having a
biomass synthesis rate r; = 5 and a product formation rate r; = 0. Out of
those, all flux vectors of the form r = (5,0, 0, 5,5,0,4,0,0, 4, 5 — A)T
with 1 > 0 have a substrate uptake rate n = 5 and hence convert all
substrate to biomass. That is, their biomass yield is one, and they are
mapped to the point (1,0) in the YS, see Fig. 4. However, there are other
flux vectors with the same projection (5,0) in the PP: in those solutions,
the substrate is taken up withn, = 5 + § (0 < § < 5) and B is synthesized
with iy = 5 and Q with r, = 8. Therefore, all flux distributions projected
to (5,0) in the PP are mapped to the (closed) line segment between
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YB/S

0.5 1
——

Fig. 4. Relationships between PP (blue) and YS (red) of scenario S2. Cyan lines indicate
the mapping of the point (5,0) from the PP to the YS. Magenta lines indicate the mapping
of the point (0.5,0) from the YS to the PP. Brackets indicate (half-)open and closed in-
tervals, respectively.

(0.5,0) and (1,0) in the YS, see Fig. 4 (full lines). Conversely, flux
vectors mapped to (0.5,0) in the YS are projected on the (half-open) line
segment between (0,0) and (10,0) in the PP, see Fig. 4 (dashed lines).

Note that flux vectors with undefined yield (e.g., the zero vector or
the internal cycle) have no corresponding point in the YS.

Scenario S3. The additional capacity constraint 5 < 5 leads to dif-
ferent shapes of the PP and the YS, see Fig. 3(e) and (f). While the YS
still forms a triangle (with a maximum biomass yield of 1), the PP be-
comes a quadrangle (with the maximal biomass synthesis rate dropping
from 10 to 7.5). The decrease is caused by the limitation of reaction R5
and the resulting use of reactions R6 and R3 (product formation and
excretion). As discussed earlier, rate- and yield-optimal flux distribu-
tions differ in this scenario. In particular, optimal biomass yields occur
at suboptimal biomass synthesis rates, since all yield-optimal solutions
have substrate uptake rate r, = 5 with 0 < 1 < 5. These flux distribu-
tions are projected to the line segment between (0,0) and (0,5) in the
PP. However, note that every point on the x-axis of the PP corresponds
to many flux vectors, including those with suboptimal yield.

In the following we give a precise mathematical formulation of YSs
and PPs and discuss their properties.

4.2. Mathematical treatment

In constraint-based modeling, one often considers two fluxes x; and
x; (that is, two components of the flux vector x € R") and the resulting
PP

{(xi, x)T € R* | x € P},

that is, the projection of the flux polyhedron P on the (x;, x;)-plane. If x;
and x; are bounded on P, then the PP is a polytope.

More generally, one may consider ¢ linear objective functions
ll,...,lg: R" — R,

L(x) = c¢fx, ...l (x) = cfx,
and the resulting objective space
{(L(x), s L, (X)) € R? | x € P}.

(In case ¢ = 2 and I (x) = x;, L(x) = xj, the objective space equals the PP

defined above). If all objectives are bounded on P, then they vanish on

the recession cone of P, and the objective space is a polytope.
Analogously, one may consider ¢ yields Y3,...,Y;: D —» R,

cx
d’x’
having different numerators, but the same denominator. They define

the yield vector
Y(x) = (M), ..., Yo ()T

T
el x
Yix) = de,...,Yg(x) =
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Table 2
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Pseudo codes of sampling algorithms for a two-dimensional PP and a two-dimensional YS. Note that in Algorithm 2 optimization is carried out over the auxiliary polyhedron P’ rather

than the flux polyhedron P. Otherwise, the two algorithms are structurally identical.

Algorithm 1
Sampling the boundary of a two-dimensional PP

Algorithm 2
Sampling the boundary of a two-dimensional YS

Require:
ri1, . two rates
P: flux polyhedron defined by (2)
n: number of sampling points
procedure SampLEBOUNDARYPP(72, P)
rflni“ « min ry over P
™ « max r over P
Arl «— (’,.Ill'lax _ rlll'lln)/n
fori=0tondo
r; e r'lnin +iAr
2« min rp over P with ry = ry;

VA
2.0
TaX «— max rp over P with ry = ry;

X
plot points (ry;, r‘fl@“) and (r1;, ry;")
end for
11: draw (boundary of) convex hull of all points
12: end procedure

D A

_.
=4

Require:

c1, ¢o: numerators of two yields

P’: auxiliary polyhedron defined by (14)

n: number of sampling points

procedure SAMPLEBOUNDARYY S(n2, P’)
Y™ — min cI'x" over P’

Y — max ¢! x’ over P’

AY) & (Y™ = Y")/n

for i =0tondo
Yi; < Y04 i AY,
Y;‘,‘}“ « min ¢} x’" over P’ with ¢l ' = Y
Y max cyx over P’ with ¢l =Yy
plot points (Y, Y;‘;“) and (Y1, Y;‘jx

end for

11: draw (boundary of) convex hull of all points

12: end procedure

2

D AN A e

_.
=4

and the resulting YS
{Y(x) e R‘|x € R}.

First of all, the YS is a convex set. Indeed, let x, y € R and 4 € [0, 1]. By
Property 2 (or Proposition 1 in the Appendix),

Y@ -Dx+Ay)=010-21)Yx) + 1Y (),

with 1 € [0, 1], since 1’ depends on d (which is identical for all yields),
but not on cy,...,c,, and the map A4 — A’ is bijective.

By Lemma 3 in the Appendix (extended to yield vectors), if all yields
are bounded on R, then the YS is contained in the polytope generated
by the yield vectors of generators of P> (with defined yield). It can be
shown that the closure of the YS equals this polytope. If moreover all
yields are attained on R, as in most realistic applications, then the YS
equals this polytope.

It remains to specify generators of PPs and YSs. Clearly, a PP, that is,
the projection of a flux polyhedron P, is given by all convex combi-
nations of projections of generators of P. Similarly, a YS, that is, the set
of yield vectors on the domain R, is given by all convex combinations
of yield vectors of generators of Ps.

4.3. EFMs and EFVs in phase planes and yield spaces

As just discussed, generators of the flux polyhedron P (or the
polyhedron P>) can be used to generate the PP and the YS. Due to their
special properties, we suggest to use EFVs (or EFMs in the special case
of a flux cone) as generators. The PP then results as the convex hull of
the projected EFVs. The PP can be bounded (if the projected rates are
bounded), see Fig. 3(c) and (e), or unbounded, see Fig. 3(a). The YS
arises as the convex hull of the mapped EFVs (or EFMs) with defined
yield. Yields of interest typically refer to ratios of product(s) excreted vs.
substrates(s) taken up. In realistic applications, the YS is finite even if
fluxes are unbounded, cf. Figs. 3(a) and (b). If a metabolic model is not
formulated properly, the YS may become unbounded.

Since PPs and YSs are convex hulls of projected/mapped EFVs (or
EFMs in flux cones), all vertices of a PP or a YS correspond to EFVs (or
EFMs, respectively), see Fig. 3(a)-(f). In the YS of scenario S1, all EFMs
lie on the boundary of the YS, cf. Fig. 3(b), while EFMs of more complex
and realistic networks may also lie in the interior of the YS. The point
(0,0) represents EFM1, a mode that converts S straight into Q. Again,

note that the cycle EFM6 does not have a corresponding point in the YS
since it has zero substrate uptake (7;) and product synthesis (73, r3) rates
and thus undefined yields.

Generally, flux vectors with undefined yield (with zero numerator
and denominator in the yield function), including the zero flux vector,
cannot be mapped to the YS. The YS becomes unbounded (and thus
indicates either ill-posed models or ill-posed yields) only if one yield in
the YS is infinite due to the existence of flux vectors with product
synthesis (nonzero numerator), but without substrate uptake (zero de-
nominator).

For scenario S2, the EFVs are shown in the PP and the YS in Fig. 3(c)
and (d), respectively. In contrast to S1, the PP is now bounded in r, and
r;. It would be unbounded if one of the rates r;, 1, or r; was used for
projection. While the zero vector (EFV23) and the cycle (EFV22) are not
represented in the YS, they are contained in the PP: in fact, they are
projected to the point (0,0), as EFM7. In the YS, the point (0,0) corre-
sponds only to EFV7 involving reactions R1, R2, and R8.

4.4. Computation of phase planes and yield spaces

As explained above, PPs and YSs can be computed as convex hulls of
projected/mapped EFVs (or EFMs). In genome-scale metabolic models
(GSMMs), however, an enumeration of all these generating vectors is
usually not feasible. Nevertheless, in two or three dimensions, PPs and
YSs of GSMMs can readily be obtained. PPs can either be approximated
by sampling their boundary, using flux variability analysis, or even be
exactly computed, e.g., by the convex hull method (Huynh et al., 1992;
Lassez and Lassez, 1990). A pseudo-code for sampling the boundary of a
PP is given by Algorithm 1 in Table 2.

To the best of our knowledge YSs of GSMMs have never been de-
termined or studied in the literature. In fact, a YS can be computed
similarly to a PP, thereby using the LP equivalent to the linear-frac-
tional program (LFP), in particular, the auxiliary polyhedron P, cf.
Section 2.2. A pseudo-code for sampling the boundary of a YS is given
by Algorithm 2 in Table 2.

A discretization parameter of n = 20 is often sufficient to approx-
imate PPs and YSs of GSMMs, usually requiring less than one minute
computation time.
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Scenario S4: Nr=0,r, >0,i € I, r; <10, r5 = 0.
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Fig. 5. PEs (blue) and YSs (red) for the engineering scenarios S4-S6 of the example
network in Fig. 1. The circles correspond to (possibly multiple) EFVs (cf. Table 1).

4.5. Implementation in CellNetAnalyzer

Our MATLAB® toolbox CellNetAnalyzer (von Kamp et al., 2017;
Klamt et al., 2007) supports the maximization of both linear (rate)
functions (1) and linear-fractional (yield) functions (4) in GSMMs.
Moreover, CellNetAnalyzer allows one to study rate- and yield-optimal
solution sets by means of EFM and EFV analysis if the computation of
these generating vectors is feasible. Finally, CellNetAnalyzer supports
the computation and visualization of PPs and YSs either exactly via
EFVs (or EFMs) or, as a recent extension for GSMMs, approximately via
the sampling algorithms described above.

5. Production envelopes and yield spaces in strain design

Phase plane (PP) and yield space (YS) analysis are valuable tools in
metabolic engineering and (computational) strain design to study the
trade-off between biomass and product synthesis in production organ-
isms. Accordingly, growth rate and product synthesis rate are usually
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chosen to span the PP. In the context of metabolic engineering, PPs are
often called production envelopes (PEs) or trade-off plots (Machado and
Herrgard, 2015; Maranas and Zomorrodi, 2016). In the following two
sections, we will exclusively use the term PEs for PPs. Likewise, biomass
and product yields typically span YSs of microbial cell factories.

Various constraint-based modeling methods have been developed to
predict rational metabolic intervention strategies that improve the
performance of production strains, see Machado and Herrgard (2015),
Maia et al. (2016) for recent reviews. Most of them rely on the concept
of (stoichiometric) coupling of growth with product synthesis (Burgard
et al., 2003; Klamt and Mahadevan, 2015; von Kamp and Klamt, 2017).
Thereby, constraint-based modeling methods are roughly divided into
two groups: biased and unbiased approaches (Lewis et al., 2012;
Machado and Herrgard, 2015; Maia et al., 2016).

5.1. Biased strain design

Biased methods, such as OptKnock (Burgard et al., 2003), OptReg
(Pharkya and Maranas, 2006), OptORF (Kim and Reed, 2010), Ro-
bustKnock (Tepper and Shlomi, 2010), and others, rely on the as-
sumption that wild type cells as well as constructed mutant strains
optimize their metabolism with respect to a fitness function, usually
some kind of growth (rate) optimization. Thus, these methods usually
operate on PEs, which they try to (re)shape, e.g., by gene/reaction
knockouts, such that a sufficiently high product synthesis rate is
achieved at optimal growth. Suboptimal growth states are considered
less relevant. For instance, the (wild type) strain under the constraints
of scenario S3 depicted in Fig. 3(e) already has such a desired shape. At
maximal growth rate r; = 7.5 we can expect a product yield of 0.25 and
a production rate of r; = 2.5. If this performance is sufficient, no in-
tervention will be required. However, if — for whatever reasons — the
strain grows suboptimally with less than the maximal growth rate, then
little or even no product may be synthesized.

Scenario S4. Ideally, the PE of designer strains should contain no
solutions on the x-axis because then net product synthesis for any
nonzero growth rate and thus (strong) growth coupling would be
guaranteed. Fig. 5(a) illustrates such a PE for the example network in
Fig. 1 (with bounded substrate uptake as in scenario S2) where reaction
R5 has been knocked-out. However, flux distributions with low or even
zero yields for P and B still exist [cf. Fig. 5(b)], namely if the substrate is
converted to Q.

5.2. Unbiased strain design

Unbiased strain design algorithms, such as minimal metabolic
functionalities (Trinh et al., 2008), FluxDesign (Melzer et al., 2009), or
minimal cut sets (Klamt and Gilles, 2004; Héadicke and Klamt, 2011;
Jungreuthmayer and Zanghellini, 2012), were originally introduced in
the context of elementary flux mode (EFM) analysis (for flux cones),
restricting their applicability to medium-scale metabolic models
without inhomogeneous constraints (flux bounds etc.). While PE ana-
lysis is meaningless in unbounded flux cones [see Fig. 3(a)], yields of
the respective EFMs are well defined and YS analysis therefore played a
central role for unbiased strain design. We illustrate the use of YSs to
identify metabolic intervention strategies based on constrained minimal
cut sets (MCSs). A constrained MCS is a set of (reaction) knockouts
blocking undesired while maintaining desired phenotypes (Hadicke and
Klamt, 2011).

Scenario S5. In unbiased strain designs, it is often demanded that all
EFMs/elementary flux vectors (EFVs) with low product yield are re-
moved from the network. A prototypical YS of this type is illustrated in
Fig. 5(d). Such a design guarantees a minimum product yield for every
flux vector consuming substrate, in particular, for every flux vector with
nonzero growth rate. A suitable MCS that achieves this design is
knocking out R5 and R8. Note that although the PEs in Fig. 5(a) and (c)
are identical, they represent different states, best illustrated by looking
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(a) Yield Space of ECC2 (no flux bounds)
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(c) Phase plane of ECC2 (with flux bounds)
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Growth rate [1/h]

O
0.06 0.08 0.1 05

Fig. 6. YSs and PE for the production of acetate in E. coli, computed for the metabolic core model EColiCore2. (a) YS for acetate and biomass for the flux cone (i.e., without flux bounds),
computed by mapping the EFMs of the flux cone (shown as blue dots). (b) YS and (c) PE for acetate and biomass for the flux polyhedron with flux bounds for substrate uptake (ricup),

non-growth associated maintenance ATP demand (rATpmaint), and oxygen uptake (rozup). YS (b) and PE (c) were computed by projecting the EFVs of the flux polyhedron (shown as blue

dots). In (b) and (c), colors indicate the location of optimal flux vectors; red: maximal acetate yield; yellow: maximal biomass yield; green: maximal acetate synthesis rate; gray: maximal

growth rate.

at the solutions projected to (0,0). In both cases the zero vector (EFV23;
Table 1) as well as the cycle EFV22 (R7, R10, and R11) are projected to
(0,0). However, in the design of Fig. 5(a) it also includes vectors that
convert all available S to Q (EFV7 in Table 1). Such fluxes are infeasible
in Fig. 5(c). In that way the second design guarantees strong coupling,
i.e., high product yields for every flux distribution in the mutant. In fact,
it was recently shown that such a growth-coupled overproduction is, in
principle, feasible for almost all metabolites in five major host organ-
isms (von Kamp and Klamt, 2017). Hence, the design principle aiming
at strong yield coupling of growth and product synthesis has wide ap-
plicability.

The computational difficulties associated with MCS analysis (i.e.,
the restriction to flux cones without inhomogeneous constraints and to
medium-scale metabolic models) were resolved in recent years. First of
all, by generalizing EFMs to EFVs (Klamt et al., 2017), MCSs can now be
computed from the set of EFVs of general flux polyhedra with the same
established algorithms developed for the computation of MCSs from
EFMs of flux cones (Jungreuthmayer et al., 2013; Hadicke and Klamt,
2011). Furthermore, by transforming a metabolic network to its so-
called dual network, a preceding computation of EFMs or EFVs is not
needed anymore, and it is now possible to directly compute the smallest
MCSs subject to arbitrary linear constraints even in genome-scale net-
works (von Kamp and Klamt, 2014). Thus, current MCS methods allow
to specify both yield and rate constraints in order to obtain the favored
shape of the PE and YS of the desired strains. Due to its generality, the
method of MCSs can also be employed to find biased intervention
strategies as in scenario S4 [Fig. 5(a) and (b)].

Although strong growth coupling can often be achieved in the YS,
neither biased nor unbiased strain design methods can be used to find
knockout strategies that guarantee high synthesis rates of the target
product. In fact, if the zero flux vector is part of the wild-type solution
set, it cannot be removed by just knocking out reactions since deleting
reactions cannot enforce a minimum substrate uptake (and thus not a
nonzero production rate). However, a highly desirable PE as in Fig. 5(e)
would be possible if we were able to upregulate certain fluxes, for ex-
ample, by overexpressing the associated enzymes. Mathematically, this
translates to introducing positive lower bounds for the absolute mag-
nitude of these fluxes.

Scenario S6. Enforcing an additional lower bound of 1y > 3 for the
strain of scenario S5 will assure a minimum flux of r; > 3 for P(roduct)
formation and thus lead to a PE as in Fig. 5(e).

Computational strain design methods that allow one to predict
targeted upregulation of certain fluxes have already been proposed
(Mahadevan et al., 2015; Jungreuthmayer and Zanghellini, 2012;
Ranganathan et al., 2010; Pharkya and Maranas, 2006). However, ex-
perimental implementation of such strains with guaranteed upregulated
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fluxes is usually much more difficult (if not impossible) than “just”
deleting genes or reactions.

6. Examples of production envelopes and yield spaces in E. coli
and their use for strain design

In the following we use a core and a genome-scale metabolic model
(GSMM) of E. coli to illustrate the value of production envelopes (PEs)
and yield spaces (YSs) in analyzing and designing metabolic networks.

6.1. Acetate production in E. coli

We use EColiCore2 (ECC2) (Hadicke and Klamt, 2017), a recently
published core network of the central metabolism in E. coli, which re-
produces key properties of its genome-scale parent model iJO1366
(Orth et al., 2011).

As an example, we analyze the trade-off between biomass and
acetate production in ECC2 for growth on glucose (glc) (standard sce-
nario). Initially, we consider the biomass-acetate YS for the flux cone,
(without any inhomogeneous constraints). ECC2 is small enough, and
we can compute the 558,647 elementary flux modes (EFMs) of its flux
cone and map their specific biomass and acetate yields onto the YS as
shown in Fig. 6(a). The maximal acetate yield is 2 mmol/(mmol glc)
and the maximal biomass yield is close to 0.1 gDW/(mmol glc). Clearly,
maximal acetate or maximal biomass yields imply zero production of
the other. A PE analysis is not possible as the flux cone is unbounded.

For a more realistic scenario, we introduce a maximal glucose up-
take rate of 10 mmol/gDW/h and a non-growth associated, main-
tenance demand of adenosine triphosphate (ATP) of at least
3.15mmol/gDW/h. In addition to these standard flux bounds, we as-
sume an oxygen-limited culture with a maximal oxygen uptake rate of
5 mmol/gDW/h. With these three bounds, the flux cone turns into a flux
polyhedron, and growth and acetate synthesis rates are now bounded.
The resulting flux polyhedron is characterized by 904,599 elementary
flux vectors (EFVs), and we can now analyze the YS [Fig. 6(b)] as well
as the PE [Fig. 6(c)].

The YS of the flux polyhedron is very similar to that of the flux cone.
However, we notice that the biomass yield (reached by 2 EFVs) gets
slightly reduced to 0.0945 gDW/(mmol glc) due to the non-growth as-
sociated maintenance demand of ATP, which must be produced from
glucose, thus reducing the amount of substrate available for biomass
synthesis. In contrast, the maximum yield of acetate (exhibited by 676
EFVs) remains constant at 2 mmol/(mmol glc) because ATP can be
produced as side product of acetate synthesis.

Comparing YS and PE of the flux polyhedron [Figs. 6(b) and (c)], we
see that their shape is quite different. Growth with maximal rate (2
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Fig. 7. Designing PE and YS for the production of acetate in E. coli, according to design strategy D2. Green dots represent desired EFVs (at least one of which must be kept), red dots
represent target EFVs (all of which must deleted), and blue dots represent neutral EFVs (which do not interfere with the design objective and therefore may or may not be present in the
final design). (a) and (b) specify the desired phenotype, whereas (c) and (d) show the actual structure of the PE and the YS of an exemplary quintuple mutant. In all panels, thin black lines

represent the boundaries of the PEs and YSs.

EFVs) is coupled to the production of some acetate while maximal
acetate synthesis (748 EFVs) is only achievable without growth. Map-
ping the EFVs with maximal yields (biomass: yellow; acetate: red) to the
PE and, in the other direction, the EFVs with optimal rates (growth:
gray; acetate synthesis: green) to the YS reveals non-intuitive re-
lationships. The maximal acetate yield of 2 mmol/(mmol glc) can be
reached for acetate production rates between 0.573 and 10 mmol/
gDW/h. The lower bound describes the minimum amount of acetate to
be produced to reach the maximum acetate yield while simultaneously
forming sufficient amounts of ATP for non-growth associated main-
tenance. The upper bound is a consequence of the limited availability of
oxygen as electron sink. At an acetate production rate of 10 mmol/
gDW/h, the maximum amount of oxygen has been utilized, and higher
acetate production rates require the simultaneous production of fer-
mentation products in order to balance redox, which reduces the
acetate yield by 50%. For this reason, flux vectors with rate-optimal
acetate synthesis (15 mmol/gDW/h, bounded by the maximum sub-
strate uptake rate) have a reduced yield of 1.5 mmol/(mmol glc) and
are thus not yield-optimal.

The situation is similar, but not fully analogous for biomass as
product. There are two biomass-yield-optimal EFVs. They use the
maximum amount of oxygen available, but only a fraction (ie.,
2.605 mmol/gDW/h) of the possible maximum substrate uptake rate.
For larger substrate uptake rates, fermentative pathways with lower
biomass yields would have to be used. In contrast to acetate, there is
exactly one growth rate (0.246 h™1) at which this maximal biomass
yield can be reached. For lower growth rates, the relative proportion of
the substrate to be used for ATP synthesis for non-growth associated
maintenance is larger, thus resulting in lower biomass yields. Finally,
the two EFVs with maximal growth rate (0.530 h™1) are located in
interior of the YS; they are not lying on the boundary, i.e., there are flux
vectors with the same biomass yield and higher acetate yield (but the
respective rates are lower in these flux vectors).

164

6.2. Ethanol production in a E. coli genome-scale model

As mentioned before, the analysis of PEs and YSs is also feasible in
GSMMs, where an enumeration of EFMs and EFVs is usually compu-
tationally impracticable. In the Supplementary material, Text S1, an
example is presented, where we study the trade-off between biomass
and ethanol production in the E. coli GSMM iJO1366 (Orth et al., 2011).
We use CellNetAnalyzer to compute the biomass-ethanol YS and PE (see
Fig. S3) via the approximative algorithms given in Section 4.4. In Text
S1, we also show a scenario where the maximal specific product
synthesis rate can be reached only with maximal product yield and
maximal growth rate only with maximal biomass yield (which was not
the case in the acetate example discussed above).

6.3. Designing E. coli acetate producer strains

If we now aim to design an E. coli strain for acetate production (with
the same core model and flux bounds as used in Fig. 6(b) and (c)) we
may apply (biased and unbiased) strain design strategies which differ in
the specifications of undesired and protected regions in the PE and/or
YS.

Design D1. In the sense of a biased strain design, we may demand a
minimum acetate production rate of 10 mmol/gDW/h if the cell grows
with maximal growth rate. In fact, the PE (Fig. 6(c)) shows that, given
the environmental constraints of low oxygen availability, this is already
fulfilled in the wild type.

Design D2. However, we might fear that the maximum growth rate is
not reached by the strain which could then lead to lower or even zero
production rates of acetate. We could therefore demand a stronger
coupling in the sense that the cell must produce acetate whenever it
grows, hence, we search for interventions enforcing a PE similar as in
Fig. 5(a). To achieve this we draw a line in the PE that starts at (0,0)
and has a certain slope, i.e., a certain ratio (yield) of acetate excretion
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Fig. 8. Designing PE and YS for the production of acetate in E. coli, according to design strategy D3. Green dots represent desired EFVs (at least one of which must be kept), red dots
represent target EFVs (all of which must deleted), and blue dots represent neutral EFVs (which do not interfere with the design objective and therefore may or may not be present in the
final design). (a) and (b) specify the desired phenotype, whereas (c) and (d) show the actual structure of the PE and the YS of an exemplary quintuple mutant. In all panels, thin black lines

represent the boundaries of the PEs and YSs.

vs. growth rate, see Fig. 7(a) and (b). We may chose a slope of 20 mmol
acetate/gDW; the solutions with maximum growth rate are then close
to, but still above this line. We now specify all solutions below this line
as undesired metabolic behaviors (that must be eliminated); further, all
solutions that are above this line and have a minimum growth rate of
0.2h ™! as desired phenotypes (of which at least one must be kept). See
Fig. 7(a) and (b); individual constraints are illustrated in Fig. S2. Based
on this partitioning, we can compute the minimal cut set (MCS),
Fig. 7(c) and (d), and observe that the minimum number of reaction
knockouts is three. However, with these MCS, a low or even zero
acetate yield would still be possible if the cell does not grow, and a low
nonzero acetate yield for small growth rates, see example MCS in
Fig. 7(c) and (d).

Design D3. In an unbiased design approach, we therefore demand a
minimum acetate yield of 1.5 mmol/(mmol glc) and again a minimum
growth rate of 0.2 h~ 1. See Fig. 8(a) and (b); individual constraints are
illustrated in Fig. S2. Thus, for separating desired and undesired phe-
notypes, we set a horizontal line in the YS and a vertical line in the PE.
This combination of design constraints leads to MCSs with a minimum
number of seven reaction knockouts, now guaranteeing a high acetate
yield, see Fig. 8(c) and (d). Generally, coupling growth with high pro-
duct yields usually requires more interventions than demanding only
coupling growth and product synthesis rates in the PE.

7. Conclusions

Rates and yields of biomass or/and product synthesis are funda-
mental performance indicators of biotransformation processes. While
flux-balance analysis (FBA) provides an established theoretical tool to
analyze and predict (optimal) metabolic rates (Lewis et al., 2012) and
to design microbial cell factories for optimal (specific) productivity
(Maia et al., 2016), similar methods and a rigorous mathematical fra-
mework were so far missing for the analysis of optimal metabolic yields.

In fact, in the context of FBA, rate and yield optimization were often
considered equivalent and FBA, ie. the maximization of rates, was
frequently used to also compute yield-optimal solutions. In flux cones,
that is, in models where all fluxes are unbounded, setting the substrate
uptake rate to a fixed (non-zero) value and then maximizing the pro-
duct synthesis rate indeed leads to a yield-optimal solution (Schuster
et al.,, 2008; Santos et al., 2011). Equivalent to this FBA-based ap-
proach, elementary flux modes (EFMs) have often been used to identify
metabolic pathways with optimal yields in flux cones (Prauf3e et al.,
2016). However, in general, the situation is more complex. In appli-
cations, constraint-based models typically do contain inhomogeneous
(non-zero) flux bounds (Oberhardt et al., 2009), for example, substrate
(and/or oxygen) uptake rates within a certain (bounded) range, a
minimum ATP maintenance demand rate, etc., which change the solu-
tion set from a flux cone to a flux polyhedron. As we unambiguously
showed (for our example network, scenario S3, and for acetate synth-
esis in E. coli under oxygen-limited conditions), FBA cannot be used for
finding yield-optimal solutions, in general. FBA always identifies rate-
optimal solutions, which sometimes (e.g., when fixing the substrate up-
take rate to a specific value), but not always, coincide with yield-op-
timal solutions.

For the general case, we derived several theoretical results that es-
tablish a framework for yield analysis and yield optimization in con-
straint-based metabolic models:

1. Rather than an ordinary linear program (LP), yield optimization in
metabolic networks requires the solution of a linear-fractional pro-
gram (LFP) for a correct mathematical treatment. Since an LFP can
be converted into an LP, yield optimization can efficiently be per-
formed even for genome-scale metabolic models (GSMMs).

. Production envelopes (PEs) and yield spaces (YSs) are invaluable
tools for the rational design of optimal cell factories in metabolic
engineering, although they have been confused at times. Indeed, PEs
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and YSs sometimes, but not always, have similar shapes although
they carry different information. Moreover, we demonstrated that
also YSs can readily be computed in GSMMs.

3. For characterizing yield-optimal solution sets and yield spaces in
metabolic networks, elementary flux vectors (EFVs) (or EFMs in case
of a flux cone) are extremely useful. It was already known that the
set of rate-optimal solutions is spanned by the rate-optimal EFVs
(Kelk et al., 2012; Klamt et al., 2017). Similarly, we showed that
yield-optimal solutions are convex/conical sums of the yield-op-
timal EFVs and of EFVs that neither take up substrate nor excrete the
product (EFVs with undefined yield). These observations reinforce
the fundamental importance of EFVs (or EFMs) as the “coordinates
of metabolism” in constraint-based modeling (Zanghellini et al.,
2013). Despite the fact that EFMs/EFVs cannot be computed in
GSMMs, it is important to understand how they shape yield-optimal
and rate-optimal solution sets in metabolic networks.

The methods and algorithms developed are available in our
MATLAB toolbox CellNetAnalyzer and add an essential building block

Appendix: Mathematical results and proofs
The yield function

cTx
YY) =X
(€9) a'x
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for constraint-based metabolic modeling and computational strain de-
sign.
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is not linear, not even convex (or concave). Still, it is convex in the following sense:

Proposition 1. Let x, y € D and A € [0, 1]. Then for
z=1—-A)x+AyeD
on the line segment between x and y, the yield amounts to
Y)=0-2)YX) + YY)
with

' Adly

=———¢€|0,1].
(1 -21)dx+adly [0.1]

Moreover, the map A — A’ is bijective. In particular,

A=0 if and only if A =0.

Proof.
cTz
Y(@) = —
@ d’z
_ A =-Dc"x+acly
1 -=2)d™x+ 2d%y
_ @ -ndx x
T @ -=2)dx+A1dTy dTx
s rdly cy
1-1dx+1d%y dTy
= Q1-A)YX) +A1Y(©y)
and
daxr’ d™x dTy

>0
dl (1 = 2A)d™ + 2 dTy)?

o

The definition of the yield directly implies the following two results. On the one hand, if there is a vector in P> with unbounded yield, then Y is

unbounded on R.
Lemma 1. Let x € B, y € P.)y, and 1 € [0, 1). Then for
z=Q1-A)x+AyeRrR

on the half-open line segment between x and y, the yield amounts to
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A

y
1—-Ad%%

Y@ =Y+

In particular,

limY () =+ o .
A-1

Metabolic Engineering 47 (2018) 153-169

On the other hand, the addition of a vector in P> with undefined yield to a vector in R. does not change the yield.

Lemma 2. Let x € B and y € Pyjo. Then,
Y(x+y =YX).

As a consequence, if Y is bounded on R, then generators of P> cannot have unbounded yield, but may have undefined yield.
In fact, if Y is bounded, then the yield of a vector in R. is a convex sum of the yields of generators of P, with defined yield.

Lemma 3. Let x € R be written as in (18), that is,

x=Zoc,-vi+ Zﬁjuj

iel jer
with 3., a; = 1. If Y is bounded on B., then
Y(x) = ), aiY ) + ) BY W)

ierd jesd

with I¢ and J¢ as in (20),

a', B'; 20, and Za'i+ Zﬁ’j=1,

ierd jerd

In particular,
ai=0 if andonly if oa;=0,
B'j=0 if andonly if B =0,

and

Dai>0 if ‘=1L

ierd

Proof. By Lemma 1, if Y is bounded on R, then generators of P> cannot have unbounded yield. By Lemma 2, the addition of vectors with undefined

yield does not change the yield. Hence

Y (x) = Y (x%)

with

x4 = Z vl + Z Bu € R.
ierd jerd

Now, consider

X =ixd= 3 Qa)vi+ Y, (AB)w €D

ierd jerd
with
1

A=————"—F——>0

Dica %+ Zjefdﬁj
and hence
D Aw+ Y AB=1.
ierd jesd

Using Eq. (15),

Y(x%) =Y ),

and using Proposition 1 (inductively),

Y() = ) oY) + ) B,Y (W)
ierd jerd

with

anfyel01], Dai+ Y, B=1,

ierd jesd
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and

a'; =0 ifandonlyif «a;=0,
Bj=0 ifandonlyif g =0.
If I¢ = I, then

z a; = Z a; = 1

ierd iel

and hence

Z a’; > 0.

ierd

o

Proof of Theorem 1. Let x € R be written as in (18), that is,

x=2a,-vi+ Zﬁjuf

iel jer
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with 3., o; = 1. By Lemma 3, the yield of x € . is a convex sum of the yields of generators with defined yield, that is,

Y(x)= D, aiY (o) + D) Y (W)

ierd jerd

with

rx’,-, 5’] S [0, 1] and Z a'i + Z ﬁlj =1.

ierd jerd

If

I9=7 and max Y () < max Y (w)=:Y*,
ierd jesd

then

Z a’; >0 andhence Y(x) < Y*

ierd
forall x € R.
Now, consider
x=v+puweRr
withv € R, and Y (/) = Y* and
X

"= =1-Av+AeD
X 115 ( W u

pu

__B
/1_1+5je[0,1).

Using Eq. (15),
Y(x) =Y (),
and using Proposition 1,

YY) =1 - )Y W) + XYW,

where ' = 1 if and only if 1 = 1. Hence, ﬁj — oo implies A - 1, I’ — 1, and

Yx)=YE) - YW)=Y*%

That is, Y* is the supremum.

Conversely, if I? # I or max;caY (v) > max;c ;Y (w/), then the maximum is attained. o

Proof of Theorem 2. By Lemma 3, the yield of x € R is a convex sum of the yields of generators of P> with defined yield. Since the maximum yield is
attained, generators with defined, but not maximum yield do not contribute to the optimal solution. Hence, every optimal solution is a convex/
conical sum of generators with maximum or undefined yield — and vice versa. Thereby, at least one generator with maximum yield contributes to the

sum. o

Supplementary material

Supplementary data associated with this article can be found in the online version at http://dx.doi.org/10.1016/j.ymben.2018.02.001.

168


http://dx.doi.org//10.1016/j.ymben.2018.02.001

S. Klamt et al.

References

Bordbar, A., Monk, J.M., King, Z.A., Palsson, B.O., 2014. Constraint-based models predict
metabolic and associated cellular functions. Nat. Rev. Genet. 15, 107-120.

Boyd, S., Vandenberghe, L., 2004. Convex Optimization. Cambridge University Press,
Cambridge.

Burgard, A.P., Pharkya, P., Maranas, C.D., 2003. Optknock: a bilevel programming fra-
mework for identifying gene knockout strategies for microbial strain optimization.
Biotechnol. Bioeng. 84, 647-657.

Burgard, A.P., Nikolaev, E.V., Schilling, C.H., Maranas, C.D., 2004. Flux coupling analysis
of genome-scale metabolic network reconstructions. Genome Res. 14, 301-312.

Fell, D.A., Small, J.R., 1986. Fat synthesis in adipose tissue. An examination of stoi-
chiometric constraints. Biochem. J. 238, 781-786.

Frenk, J.B.G., Schaible, S., 2005. Fractional programming. In: Hadjisavvas, Nicolas,
Komlési, Sandor, Schaible, Siegfried (Eds.), Handbook of Generalized Convexity and
Generalized Monotonicity, Volume 76 of Nonconvex Optim. Appl. Springer, New
York,, pp. 335-386.

Gianchandani, E.P., Oberhardt, M.A., Burgard, A.P., Maranas, C.D., Papin, J.A., 2008.
Predicting biological system objectives de novo from internal state measurements.
BMC Bioinforma. 9, 43.

Goel, A., Wortel, M.T., Molenaar, D., Teusink, B., 2012. Metabolic shifts: a fitness per-
spective for microbial cell factories. Biotechnol. Lett. 34, 2147-2160.

Hadicke, O., Klamt, S., 2011. Computing complex metabolic intervention strategies using
constrained minimal cut sets. Metab. Eng. 13, 204-213.

Hadicke, O., Klamt, S., 2017. EColiCore2: a reference network model of the central me-
tabolism of Escherichia coli and relationships to its genome-scale parent model. Sci.
Rep. 7, 39647.

Huynh, T., Lassez, C., Lassez, J.-L., 1992. Practical issues on the projection of polyhedral
sets. Ann. Math. Artif. Intell. 6, 295-315.

Jungreuthmayer, C., Zanghellini, J., 2012. Designing optimal cell factories: integer pro-
gramming couples elementary mode analysis with regulation, BMC. Syst. Biol. 6, 103.

Jungreuthmayer, C., Nair, G., Klamt, S., Zanghellini, J., 2013. Comparison and im-
provement of algorithms for computing minimal cut sets. BMC Bioinforma. 14, 318.

Kelk, S.M., Olivier, B.G., Stougie, L., Bruggeman, F.J., 2012. Optimal flux spaces of
genome-scale stoichiometric models are determined by a few subnetworks. Sci. Rep.
2, 580.

Kim, J., Reed, J., 2010. OptORF: optimal metabolic and regulatory perturbations for
metabolic engineering of microbial strains. BMC Syst. Biol. 4, 53.

Klamt, S., Gilles, E.D., 2004. Minimal cut sets in biochemical reaction networks.
Bioinformatics 20, 226-234.

Klamt, S., Mahadevan, R., 2015. On the feasibility of growth-coupled product synthesis in
microbial strains. Metab. Eng. 30, 166-178.

Klamt, S., Saez-Rodriguez, J., Gilles, E., 2007. Structural and functional analysis of cel-
lular networks with CellNetAnalyzer. BMC Syst. Biol. 1, 2.

Klamt, S., Regensburger, G., Gerstl, M.P., Jungreuthmayer, C., Schuster, S., Mahadevan,
R., Zanghellini, J., Miiller, S., 2017. From elementary flux modes to elementary flux
vectors: metabolic pathway analysis with arbitrary linear flux constraints. PLOS
Comput. Biol. 13, e1005409.

Lassez, C., Lassez, J.-L., 1990. Quantifier Elimination for Conjunctions of Linear
Constraints via a Convex Hull Algorithm. In: Donald, Bruce Randall, Kapur, Deepak,
Mundy, Joseph L. (Eds.), Symbolic and Numerical Computation for Artificial
Intelligence. Academic Press Limited, Oval Road London NW1, pp. 24-28.

Lewis, N.E., Nagarajan, H., Palsson, B.O., 2012. Constraining the metabolic genotype-
phenotype relationship using a phylogeny of in silico methods. Nat. Rev. Microbiol.
10, 291-305.

Miiller, S., Regensburger, G., 2016. Elementary vectors and conformal sums in polyhedral
geometry and their relevance for metabolic pathway analysis. Front. Genet. 7, 90.

Machado, D., Herrgard, M.J., 2015. Co-evolution of strain design methods based on flux
balance and elementary mode analysis. Metab. Eng. Commun. 2, 85-92.

Mahadevan, R., Kamp, A.v., Klamt, S., 2015. Genome-scale strain designs based on reg-
ulatory minimal cut sets. Bioinformatics 31, 2844-2851. http://dx.doi.org/10.1093/
bioinformatics/btv217.

Maia, P., Rocha, M., Rocha, I., 2016. In silico constraint-based strain optimization
methods: the quest for optimal cell factories. Microbiol. Mol. Biol. Rev. 80, 45-67.

Maranas, C.D., Zomorrodi, A.R., 2016. Optimization Methods in Metabolic Networks, 1
edition. John Wiley & Sons, Hoboken, New Jersey.

Melzer, G., Esfandabadi, M.E., Franco-Lara, E., Wittmann, C., 2009. Flux design: in silico
design of cell factories based on correlation of pathway fluxes to desired properties.
BMC Syst. Biol. 3, 120.

Mori, M., Hwa, T., Martin, O.C., De Martino, A., Marinari, E., 2016. Constrained alloca-
tion flux balance analysis. PLoS Comput. Biol. 12, €1004913.

Nielsen, J., Keasling, J.D., 2016. Engineering cellular metabolism. Cell 164, 1185-1197.

169

Metabolic Engineering 47 (2018) 153-169

Oberhardt, M.A., Palsson, B.@., Papin, J.A., 2009. Applications of genomescale metabolic
reconstructions. Mol. Syst. Biol. 5, 320.

Orth, J.D., Thiele, L., Palsson, B.@., 2010. What is flux balance analysis? Nat. Biotechnol.
28, 245-248.

Orth, J.D., Conrad, T.M., Na, J., Lerman, J.A., Nam, H., Feist, A.M., Palsson, B.O., 2011. A
comprehensive genome-scale reconstruction of Escherichia coli metabolism — 2011.
Mol. Syst. Biol. 7.

Pharkya, P., Maranas, C.D., 2006. An optimization framework for identifying reaction
activation/inhibition or elimination candidates for overproduction in microbial sys-
tems. Metab. Eng. 8, 1-13.

Prauf’e, M.T.E., Schéuble, S., Guthke, R., Schuster, S., 2016. Computing the various
pathways of penicillin synthesis and their molar yields. Biotechnol. Bioeng. 173-181.

Ranganathan, S., Suthers, P.F., Maranas, C.D., 2010. OptForce: an optimization procedure
for identifying all genetic manipulations leading to targeted overproductions. PLoS
Comput. Biol. 6, €1000744.

Sanford, K., Chotani, G., Danielson, N., Zahn, J.A., 2016. Scaling up of renewable che-
micals. Curr. Opin. Biotechnol. 38, 112-122.

Santos, F., Boele, J., Teusink, B., 2011. Chapter twenty-four — a practical guide to genome-
scale metabolic models and their analysis. In: Jameson, D., Verma, M., Westerhoff,
H.V. (Eds.), Methods in Enzymology, Volume 500 of Methods in Systems Biology.
Academic Press, San Diego, CA, USA, pp. 509-532.

Schuetz, R., Kuepfer, L., Sauer, U., 2007. Systematic evaluation of objective functions for
predicting intracellular fluxes in Escherichia coli. Mol. Syst. Biol. 3.

Schuetz, R., Zamboni, N., Zampieri, M., Heinemann, M., Sauer, U., 2012.
Multidimensional optimality of microbial metabolism. Science 336, 601-604.

Schuster, S., Hilgetag, C., 1994. On elementary flux modes in biochemical reaction sys-
tems at steady state. J. Biol. Syst. 2, 165-182.

Schuster, S., Dandekar, T., Fell, D.A., 1999. Detection of elementary flux modes in bio-
chemical networks: a promising tool for pathway analysis and metabolic engineering.
Trends Biotechnol. 17, 53-60.

Schuster, S., Fell, D.A., Dandekar, T., 2000. A general definition of metabolic pathways
useful for systematic organization and analysis of complex metabolic networks. Nat.
Biotech. 18, 326-332.

Schuster, S., Dandekar, T., Mauch, K., Reuss, M., Fell, D., 2000. Recent developments in
metabolic pathway analysis and their potential implications for biotechnology and
medicine. In: Technological and Medical Implications of Metabolic Control Analysis,
NATO Science Series. Springer, Dordrecht, pp. 57-66.

Schuster, S., Pfeiffer, T., Fell, D.A., 2008. Is maximization of molar yield in metabolic
networks favoured by evolution? J. Theor. Biol. 252, 497-504.

Schuster, S., de Figueiredo, L.F., Schroeter, A., Kaleta, C., 2011. Combining metabolic
pathway analysis with evolutionary game theory. Explaining the occurrence of low-
yield pathways by an analytic optimization approach. Biosystems 105, 147-153.

Schuster, S., Boley, D., Mdller, P., Stark, H., Kaleta, C., 2015. Mathematical models for
explaining the Warburg effect: a review focussed on ATP and biomass production.
Biochem. Soc. Trans. 43, 1187-1194.

Simeonidis, E., Murabito, E., Smallbone, K., Westerhoff, H.V., 2010. Why does yeast
ferment? A flux balance analysis study. Biochem. Soc. Trans. 38, 1225.

Tepper, N., Shlomi, T., 2010. Predicting metabolic engineering knockout strategies for
chemical production: accounting for competing pathways. Bioinformatics 26,
536-543.

Teusink, B., Smid, E.J., 2006. Modelling strategies for the industrial exploitation of lactic
acid bacteria. Nat. Rev. Microbiol. 4, 46-56.

Trinh, C.T., Unrean, P., Srienc, F., 2008. Minimal Escherichia coli cell for the most effi-
cient production of ethanol from hexoses and pentoses. Appl. Environ. Microbiol. 74,
3634-3643.

Urbanczik, R., Wagner, C., 2005. Functional stoichiometric analysis of metabolic net-
works. Bioinformatics 21, 4176-4180.

Urbanczik, R., 2007. Enumerating constrained elementary flux vectors of metabolic
networks. IET Syst. Biol. 1, 274-279.

Varma, A., Palsson, B.O., 1994. Metabolic flux balancing: basic concepts, scientific and
practical use. Nat. Biotechnol. 12, 994.

von Kamp, A., Klamt, S., 2014. Enumeration of smallest intervention strategies in
genome-scale metabolic networks. PLoS Comput. Biol. 10, e1003378.

von Kamp, A., Klamt, S., 2017. Growth-coupled overproduction is feasible for almost all
metabolites in five major production organisms. Nat. Commun. 8, 15956.

von Kamp, A., Thiele, S., Hadicke, O., Klamt, S., 2017. Use of CellNetAnalyzer in bio-
technology and metabolic engineering. J. Biotechnol. 261, 221-228.

Watson, M.R., 1984. Metabolic maps for the Apple II. Biochem. Soc. Trans. 12,
1093-1094.

Zanghellini, J., Ruckerbauer, D.E., Hanscho, M., Jungreuthmayer, C., 2013. Elementary
flux modes in a nutshell: properties, calculation and applications. Biotechnol. J. 8,
1009-1016.


http://refhub.elsevier.com/S1096-7176(17)30385-3/sbref1
http://refhub.elsevier.com/S1096-7176(17)30385-3/sbref1
http://refhub.elsevier.com/S1096-7176(17)30385-3/sbref2
http://refhub.elsevier.com/S1096-7176(17)30385-3/sbref2
http://refhub.elsevier.com/S1096-7176(17)30385-3/sbref3
http://refhub.elsevier.com/S1096-7176(17)30385-3/sbref3
http://refhub.elsevier.com/S1096-7176(17)30385-3/sbref3
http://refhub.elsevier.com/S1096-7176(17)30385-3/sbref4
http://refhub.elsevier.com/S1096-7176(17)30385-3/sbref4
http://refhub.elsevier.com/S1096-7176(17)30385-3/sbref5
http://refhub.elsevier.com/S1096-7176(17)30385-3/sbref5
http://refhub.elsevier.com/S1096-7176(17)30385-3/sbref6
http://refhub.elsevier.com/S1096-7176(17)30385-3/sbref6
http://refhub.elsevier.com/S1096-7176(17)30385-3/sbref6
http://refhub.elsevier.com/S1096-7176(17)30385-3/sbref6
http://refhub.elsevier.com/S1096-7176(17)30385-3/sbref7
http://refhub.elsevier.com/S1096-7176(17)30385-3/sbref7
http://refhub.elsevier.com/S1096-7176(17)30385-3/sbref7
http://refhub.elsevier.com/S1096-7176(17)30385-3/sbref8
http://refhub.elsevier.com/S1096-7176(17)30385-3/sbref8
http://refhub.elsevier.com/S1096-7176(17)30385-3/sbref9
http://refhub.elsevier.com/S1096-7176(17)30385-3/sbref9
http://refhub.elsevier.com/S1096-7176(17)30385-3/sbref10
http://refhub.elsevier.com/S1096-7176(17)30385-3/sbref10
http://refhub.elsevier.com/S1096-7176(17)30385-3/sbref10
http://refhub.elsevier.com/S1096-7176(17)30385-3/sbref11
http://refhub.elsevier.com/S1096-7176(17)30385-3/sbref11
http://refhub.elsevier.com/S1096-7176(17)30385-3/sbref12
http://refhub.elsevier.com/S1096-7176(17)30385-3/sbref12
http://refhub.elsevier.com/S1096-7176(17)30385-3/sbref13
http://refhub.elsevier.com/S1096-7176(17)30385-3/sbref13
http://refhub.elsevier.com/S1096-7176(17)30385-3/sbref14
http://refhub.elsevier.com/S1096-7176(17)30385-3/sbref14
http://refhub.elsevier.com/S1096-7176(17)30385-3/sbref14
http://refhub.elsevier.com/S1096-7176(17)30385-3/sbref15
http://refhub.elsevier.com/S1096-7176(17)30385-3/sbref15
http://refhub.elsevier.com/S1096-7176(17)30385-3/sbref16
http://refhub.elsevier.com/S1096-7176(17)30385-3/sbref16
http://refhub.elsevier.com/S1096-7176(17)30385-3/sbref17
http://refhub.elsevier.com/S1096-7176(17)30385-3/sbref17
http://refhub.elsevier.com/S1096-7176(17)30385-3/sbref18
http://refhub.elsevier.com/S1096-7176(17)30385-3/sbref18
http://refhub.elsevier.com/S1096-7176(17)30385-3/sbref19
http://refhub.elsevier.com/S1096-7176(17)30385-3/sbref19
http://refhub.elsevier.com/S1096-7176(17)30385-3/sbref19
http://refhub.elsevier.com/S1096-7176(17)30385-3/sbref19
http://refhub.elsevier.com/S1096-7176(17)30385-3/sbref20
http://refhub.elsevier.com/S1096-7176(17)30385-3/sbref20
http://refhub.elsevier.com/S1096-7176(17)30385-3/sbref20
http://refhub.elsevier.com/S1096-7176(17)30385-3/sbref20
http://refhub.elsevier.com/S1096-7176(17)30385-3/sbref21
http://refhub.elsevier.com/S1096-7176(17)30385-3/sbref21
http://refhub.elsevier.com/S1096-7176(17)30385-3/sbref21
http://refhub.elsevier.com/S1096-7176(17)30385-3/sbref22
http://refhub.elsevier.com/S1096-7176(17)30385-3/sbref22
http://refhub.elsevier.com/S1096-7176(17)30385-3/sbref23
http://refhub.elsevier.com/S1096-7176(17)30385-3/sbref23
http://dx.doi.org/10.1093/bioinformatics/btv217
http://dx.doi.org/10.1093/bioinformatics/btv217
http://refhub.elsevier.com/S1096-7176(17)30385-3/sbref25
http://refhub.elsevier.com/S1096-7176(17)30385-3/sbref25
http://refhub.elsevier.com/S1096-7176(17)30385-3/sbref26
http://refhub.elsevier.com/S1096-7176(17)30385-3/sbref26
http://refhub.elsevier.com/S1096-7176(17)30385-3/sbref27
http://refhub.elsevier.com/S1096-7176(17)30385-3/sbref27
http://refhub.elsevier.com/S1096-7176(17)30385-3/sbref27
http://refhub.elsevier.com/S1096-7176(17)30385-3/sbref28
http://refhub.elsevier.com/S1096-7176(17)30385-3/sbref28
http://refhub.elsevier.com/S1096-7176(17)30385-3/sbref29
http://refhub.elsevier.com/S1096-7176(17)30385-3/sbref30
http://refhub.elsevier.com/S1096-7176(17)30385-3/sbref30
http://refhub.elsevier.com/S1096-7176(17)30385-3/sbref31
http://refhub.elsevier.com/S1096-7176(17)30385-3/sbref31
http://refhub.elsevier.com/S1096-7176(17)30385-3/sbref32
http://refhub.elsevier.com/S1096-7176(17)30385-3/sbref32
http://refhub.elsevier.com/S1096-7176(17)30385-3/sbref32
http://refhub.elsevier.com/S1096-7176(17)30385-3/sbref33
http://refhub.elsevier.com/S1096-7176(17)30385-3/sbref33
http://refhub.elsevier.com/S1096-7176(17)30385-3/sbref33
http://refhub.elsevier.com/S1096-7176(17)30385-3/sbref34
http://refhub.elsevier.com/S1096-7176(17)30385-3/sbref34
http://refhub.elsevier.com/S1096-7176(17)30385-3/sbref35
http://refhub.elsevier.com/S1096-7176(17)30385-3/sbref35
http://refhub.elsevier.com/S1096-7176(17)30385-3/sbref35
http://refhub.elsevier.com/S1096-7176(17)30385-3/sbref36
http://refhub.elsevier.com/S1096-7176(17)30385-3/sbref36
http://refhub.elsevier.com/S1096-7176(17)30385-3/sbref37
http://refhub.elsevier.com/S1096-7176(17)30385-3/sbref37
http://refhub.elsevier.com/S1096-7176(17)30385-3/sbref37
http://refhub.elsevier.com/S1096-7176(17)30385-3/sbref37
http://refhub.elsevier.com/S1096-7176(17)30385-3/sbref38
http://refhub.elsevier.com/S1096-7176(17)30385-3/sbref38
http://refhub.elsevier.com/S1096-7176(17)30385-3/sbref39
http://refhub.elsevier.com/S1096-7176(17)30385-3/sbref39
http://refhub.elsevier.com/S1096-7176(17)30385-3/sbref40
http://refhub.elsevier.com/S1096-7176(17)30385-3/sbref40
http://refhub.elsevier.com/S1096-7176(17)30385-3/sbref41
http://refhub.elsevier.com/S1096-7176(17)30385-3/sbref41
http://refhub.elsevier.com/S1096-7176(17)30385-3/sbref41
http://refhub.elsevier.com/S1096-7176(17)30385-3/sbref42
http://refhub.elsevier.com/S1096-7176(17)30385-3/sbref42
http://refhub.elsevier.com/S1096-7176(17)30385-3/sbref42
http://refhub.elsevier.com/S1096-7176(17)30385-3/sbref43
http://refhub.elsevier.com/S1096-7176(17)30385-3/sbref43
http://refhub.elsevier.com/S1096-7176(17)30385-3/sbref43
http://refhub.elsevier.com/S1096-7176(17)30385-3/sbref43
http://refhub.elsevier.com/S1096-7176(17)30385-3/sbref44
http://refhub.elsevier.com/S1096-7176(17)30385-3/sbref44
http://refhub.elsevier.com/S1096-7176(17)30385-3/sbref45
http://refhub.elsevier.com/S1096-7176(17)30385-3/sbref45
http://refhub.elsevier.com/S1096-7176(17)30385-3/sbref45
http://refhub.elsevier.com/S1096-7176(17)30385-3/sbref46
http://refhub.elsevier.com/S1096-7176(17)30385-3/sbref46
http://refhub.elsevier.com/S1096-7176(17)30385-3/sbref46
http://refhub.elsevier.com/S1096-7176(17)30385-3/sbref47
http://refhub.elsevier.com/S1096-7176(17)30385-3/sbref47
http://refhub.elsevier.com/S1096-7176(17)30385-3/sbref48
http://refhub.elsevier.com/S1096-7176(17)30385-3/sbref48
http://refhub.elsevier.com/S1096-7176(17)30385-3/sbref48
http://refhub.elsevier.com/S1096-7176(17)30385-3/sbref49
http://refhub.elsevier.com/S1096-7176(17)30385-3/sbref49
http://refhub.elsevier.com/S1096-7176(17)30385-3/sbref50
http://refhub.elsevier.com/S1096-7176(17)30385-3/sbref50
http://refhub.elsevier.com/S1096-7176(17)30385-3/sbref50
http://refhub.elsevier.com/S1096-7176(17)30385-3/sbref51
http://refhub.elsevier.com/S1096-7176(17)30385-3/sbref51
http://refhub.elsevier.com/S1096-7176(17)30385-3/sbref52
http://refhub.elsevier.com/S1096-7176(17)30385-3/sbref52
http://refhub.elsevier.com/S1096-7176(17)30385-3/sbref53
http://refhub.elsevier.com/S1096-7176(17)30385-3/sbref53
http://refhub.elsevier.com/S1096-7176(17)30385-3/sbref54
http://refhub.elsevier.com/S1096-7176(17)30385-3/sbref54
http://refhub.elsevier.com/S1096-7176(17)30385-3/sbref55
http://refhub.elsevier.com/S1096-7176(17)30385-3/sbref55
http://refhub.elsevier.com/S1096-7176(17)30385-3/sbref56
http://refhub.elsevier.com/S1096-7176(17)30385-3/sbref56
http://refhub.elsevier.com/S1096-7176(17)30385-3/sbref57
http://refhub.elsevier.com/S1096-7176(17)30385-3/sbref57
http://refhub.elsevier.com/S1096-7176(17)30385-3/sbref58
http://refhub.elsevier.com/S1096-7176(17)30385-3/sbref58
http://refhub.elsevier.com/S1096-7176(17)30385-3/sbref58

	A mathematical framework for yield (vs. rate) optimization in constraint-based modeling and applications in metabolic engineering
	Introduction
	Rate and yield optimization
	Basic terminology and examples
	Mathematical treatment
	2.2.1. Definitions
	2.2.2. Yield optimization as an LP

	Flux coupling analysis

	Rate-optimal and yield-optimal solution sets
	Basic terminology and examples
	Rate-optimal solution sets
	Mathematical properties of yield optimization
	Yield-optimal solution sets

	Phase planes and yield spaces
	Basic terminology and examples
	Mathematical treatment
	EFMs and EFVs in phase planes and yield spaces
	Computation of phase planes and yield spaces
	Implementation in CellNetAnalyzer

	Production envelopes and yield spaces in strain design
	Biased strain design
	Unbiased strain design

	Examples of production envelopes and yield spaces in E. coli and their use for strain design
	Acetate production in E. coli
	Ethanol production in a E. coli genome-scale model
	Designing E. coli acetate producer strains

	Conclusions
	Acknowledgments
	Appendix: Mathematical results and proofs
	Supplementary material
	References




