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We elaborate the two-fold simplexlike structures of tree amplitudes in planar maximally supersymmetric
Yang-Mills (N ¼ 4 SYM), through its connection to a mathematical structure known as the positive
Grassmannian. Exploiting the reduced Grassmannian geometry and the matrix form of on-shell recursion
relation in terms of super momentum twistors, we manifest that tree amplitudes can be remarkably refined
via the essential building blocks named as fully spanning cells. For a fixed number of negative helicities, an
amplitude can be entirely captured by finite, compact information of the relevant fully spanning cells up to
an arbitrarily large number of external particles.
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I. INTRODUCTION

In recent years, enormous progress on scattering ampli-
tudes has been made using various modern approaches
beyond Feynman diagrams (see e.g., [1–4] for reviews). In
particular, amplitudes of N ¼ 4 SYM in the planar limit
are most understood due to its unmatched symmetries. At
both tree and loop levels, dual superconformal invariance
manifested by (super) momentum twistors [5], greatly
facilitates the calculation of amplitudes and loop integrands
in planarN ¼ 4 SYM [6]. Explicitly, this is realized by the
momentum twistor version of Britto-Cachazo-Feng-Witten
(BCFW) recursion relation [7,8], which constructs ampli-
tudes solely from on-shell subamplitudes, eliminating
gauge redundancy as well as unphysical internal particles.
In the meanwhile, another unanticipated magic, namely

the positive Grassmannian together with on-shell diagrams
and decorated permutations [9–11], provides new insights
into the on-shell construction of amplitudes. This is mostly
achieved in the space of massless spinors, while trans-
forming its entire machinery into momentum twistor space
brings extra complexity [12], since each momentum twistor
is not characterized by the momentum of its literally
corresponding particle, but a kinematic mixture of numer-
ous adjacent particles. It is this entanglement that trivializes
momentum conservation, so that we may concentrate on
the pure kinematics separated from that universal con-
straint. However, for nonplanar N ¼ 4 SYM, momentum
twistors cannot be defined, while on-shell diagrams still
work [13–16], in fact, the broad applicability of on-shell

diagrams is independent of the number of supersymmetries
or spacetime dimensions [17,18].
Back to planar N ¼ 4 SYM, to enhance the advantage

brought by positive Grassmannian, we introduce another
interesting excursion which brings even more insights and
richer structures of amplitudes [19], at tree level for the
moment. It is a purely geometric approach working in
momentum twistor space without referring to on-shell
diagrams and decorated permutations, through establishing
the exact correspondence between Grassmannian geomet-
ric configurations and Yangian invariants generated by
recursion. The momentum twistor BCFW recursion rela-
tion is now presented in the matrix form of positive
Grassmannian, which can be nicely deduced from posi-
tivity plus a minimal knowledge of momentum twistors. It
is a simple linear algebra exercise to read off the geometric
configuration from the matrix representative of each BCFW
cell, which can be mapped back to its corresponding
Yangian invariant directly. To encode this geometric
information more compactly, we need to introduce the
reduced Grassmannian geometry for distinguishing linear
dependencies of different ranks. In addition, for BCFW
cells it is also convenient to denote columns that are set to
zero as “empty slots,” from which we will later reveal the
two-fold simplexlike structures of tree amplitudes, as
elaborated in this paper. Then, for a fixed number of
negative helicities, an amplitude can be entirely captured by
finite characteristic objects called fully spanning cells up to
an arbitrarily large number of external particles.

II. POSITIVE MATRIX FORM OF MOMENTUM
TWISTOR BCFW RECURSION RELATION

To solely work in momentum twistor space, for a tree
amplitude one can always first factor out the maximally
helicity-violating (MHV) part, and the rest is the desired
Yangian invariant we would like to address. The BCFW
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recursion relation starts with the simplest Yangian invar-
iants known as the 5-brackets, then constructs more
complex ones repeatedly with certain deformations that
impose the on-shell condition of internal particles. From the
Grassmannian perspective, this can be deduced from
positivity as a consequence of pure geometry. We present
the resulting matrix configuration in Fig. 1.
Let us give some explanation. For a ðk × nÞ matrix Cαa

to have physical significance, where (kþ 2) and n are the
numbers of negative helicities and total external particles
respectively, C has to be positive (all of its ordered minors
are positive or zero) and it obeys the orthogonal constraint
CαaZa ¼ 0 where Za’s denote n momentum twistors as
kinematical data. If we have two such matrices CL and CR,
we can construct a larger one by sewing them in some
physical way, which induces deformations of the relevant
columns in these two submatrices. To parametrize the
deformations, we need an additional row on the top and
minimally it has five entries to fulfill the constraint
CαaZa ¼ 0. In the geometric sense, the physical way above
is nothing but imposing positivity of this larger matrix.
Explicitly, for CL spanning from column 1 to (jþ 1) and
CR from j to n (see Fig. 1), the deformed subcolumns with
subscript “D” are given by

Lj;D ¼ Lj þ
cj
cjþ1

Ljþ1;

Rjþ1;D ¼ Rjþ1 þ
cjþ1

cj
Rj; Rn−1;D ¼ Rn−1 þ

cn−1
cn

Rn;

ð1Þ
where the c’s are entries of the top row. To ensure positivity,
extra sign factors ð−ÞkL and ð−Þk−1 must be associated to
the cj; cjþ1 and cn−1; cn pairs respectively. After all c’s find
their solutions in CαaZa ¼ 0, the matrix above recovers the
BCFW product of Yangian invariants

½1jjþ 1n − 1n�YLð1;…; j; IÞYRðI; jþ 1;…; n − 1; n̂Þ ð2Þ

whereZI ¼ Ẑjþ1 ¼ Ẑj ¼ ðjjþ 1Þ ∩ ðn − 1n1Þ and Ẑn ¼
ðn − 1nÞ ∩ ð1jjþ 1Þ.
Denoting the matrix in Fig. 1 as Yn−1;j, we can express a

general tree amplitude (or Yangian invariant, precisely) as

Yk
n ¼

Xn−1
i¼kþ3

Xi−2
j¼2

Yi;j: ð3Þ

Each matrix consists of a subset of BCFW cells of various
kL and kR satisfying kL þ kR ¼ k − 1 ≥ 0 and 0 ≤ kL;R ≤
nL;R − 4, with kL ¼ 0 for nL ¼ 3 as the only special case.
The “sum” of BCFW cells, or Grassmannian geometric
configurations, in fact needs to be specified for avoiding
ambiguity of relative signs [20,21]. Such a discussion is
presented in [19], where we used some linear algebra trick
to map BCFW cells back to Yangian invariants, and we
plan to give a more systemic treatment in the future. As we
will soon see, this literal sum is indirectly justified by the
cyclicity of amplitudes via homological identities.

III. REDUCED GRASSMANNIAN GEOMETRY

The matrix recursion relation generates more intricate
geometric configurations beyond trivial single rows made
of five nonzero entries. For example, under the default
recursion scheme, the Next-to-Next-to-MHV (N2MHV)
n ¼ 7 amplitude is given by (geometrically this is called
a contour)

Y2
7 ¼ ½7� þ ½5� þ ½2� þ ð23Þð45Þ þ ð23Þð67Þ þ ð45Þð71Þ;

ð4Þ
where for instance, [7] is a top cell with the 7th column
removed, while (23)(45) denotes vanishing minors ð23Þ ¼
ð45Þ ¼ 0. These BCFW cells are of 4k ¼ kðn − kÞ − 2 ¼ 8
dimensions, for which kinematic and geometric degrees of
freedom are equal (modulo GLðkÞ invariance and vanishing
constraints for the latter).
Representing cells in this way is named as the

Grassmannian geometry, and in particular, [i] which
denotes the ith column is null, is called an empty slot.
Note that, these symbols only make sense when k, n are
specified. For k ≥ 3, we need the reduced Grassmannian
geometry. For example, one N3MHV n ¼ 9 BCFW cell is

ð45
j
6

7Þð89
j
1

2Þ ð5Þ
where the “upstairs” parts denote that, columns 5,6 are
proportional and so are columns 9,1, while as usual (457)
and (892) are 3 × 3 vanishing minors. In this way, linear
dependencies of different ranks are distinguished unam-
biguously so that reading off its dimension is transparent.

FIG. 1. Positive matrix form of momentum twistor BCFW
recursion relation. Sign factors ð−ÞkL and ð−Þk−1 are associated to
the cj; cjþ1 and cn−1; cn pairs respectively. All the blank regions
are filled with zero entries implicitly.
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We may apply (reduced) Grassmannian geometry to
describe the homological identities, which are vanishing
relations between a number of “boundary” cells generated
by the relevant (4kþ 1)-dimensional cells. An example is
the N2MHV n ¼ 7 identity

0 ¼ ∂ð12Þ
¼ −½1� þ ½2� − ð12Þð34Þ þ ð12Þð45Þ
− ð12Þð56Þ þ ð12Þð67Þ; ð6Þ

note that, we have discarded boundary cells that fail to have
kinematical supports of CαaZa ¼ 0, which in this case are
ð712Þ2 (abbreviation of (71)(12), and so forth) and ð123Þ2.
But still, we abuse the term “homological” here, while the
actual kinematics also matters.1

This is the only type of identities of k ¼ 2, n ¼ 7 up to
a cyclic shift, and it guarantees the cyclicity of N2MHV
n ¼ 7 amplitude via

Y2
7 − Y2

7;þ1 ¼ −∂ð23Þ − ∂ð56Þ − ∂ð71Þ; ð7Þ

where Y2
7;þ1 is the cyclicly shifted (by þ1) counterpart of

Y2
7 in (4). Remarkably, the cyclicity of N2MHV amplitudes

up to any n can be shown in a similar but certainly more
complicated way. To manifest it demands the two-fold
simplexlike structures of tree amplitudes, which we will
immediately exhibit in detail.

IV. TRIANGLELIKE DISSECTION OF GENERAL
NkMHV AMPLITUDES

Performing the BCFW recursion relation in its matrix
form and using the representation of reduced Grassmannian
geometry, the two-fold simplexlike structures of tree
amplitudes naturally emerge, after some simple observation
and refinement. As an appetizer, a general NMHV ampli-
tude in terms of 5-brackets is written as

Y1
n ¼

Xn−1
i¼4

Xi−2
j¼2

½1jjþ 1iiþ 1�; ð8Þ

now in terms of empty slots, it becomes

Y1
n ¼

0
BBBBBBBBBB@

½23…n − 4� 1

⋮ ⋰ ⋮
½23� 1 � � � ½…n − 2�
½2� 1 ½5� � � � ½5…n − 2�
1 1 ½4� ½45� � � � ½45…n − 2�

½67…n� ½7…n� ½…n� � � � 1

1
CCCCCCCCCCA
; ð9Þ

where Y1
n is the sum of all entries in the “triangle” above, and each entry is multiplied by its corresponding vertical and

horizontal factors, since we have maximally factored out common empty slots to manifest the pattern, which is uniquely
determined by the triple (6,4,2) (in bold) for any n. This pattern will be later defined as a quadratic growing mode.
The general NkMHV amplitude directly follows a similar arrangement of the NMHV triangle, given by

Yk
n ¼

0
BBBBBBBBBB@

½2…n − k − 3� 1

⋮ ⋰ ⋮
½23� 1 � � � In−2;3
½2� 1 Ikþ5;2 � � � In−1;2
1 1 Ikþ5;1 Ikþ6;1 � � � In;1

½kþ 5…n� ½kþ 6…n� ½…n� � � � 1

1
CCCCCCCCCCA
; ð10Þ

where Ii;1’s in the bottom row, each of which is a sum of BCFW cells, are the only essential objects to be identified, since it
is trivial to obtain Ii;1þj by performing a partial cyclic shift i → iþ j except that label 1 is fixed, for all cells within Ii;1. For
example, from (4) we already know I7;1, then I7;2 is simply given by

I7;1 ¼
�� ð45Þð71Þ

½5� ð23Þ
� ð67Þ
ð45Þ

�
→ I7;2 ¼

�� ð56Þð81Þ
½6� ð34Þ

� ð78Þ
ð56Þ

�
; ð11Þ

1We thank Jake Bourjaily for pointing out this subtlety.
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where I7;1 packs up four cells and so does I7;2, note the
common vanishing minors have been also factored out.
This is the trianglelike dissection of tree amplitudes,

which isolates Ii;1 for further dissection. Before that, let us
digress to discuss how it refines the counting of BCFW
cells. It is known that the number of BCFW terms in tree
amplitudes is given by

Nk
n ¼

1

n − 3

�
n − 3

k

��
n − 3

kþ 1

�
: ð12Þ

The double slicing (vertical and horizontal) in (10) gives its
second order difference as

Δ2Nk
n ¼ ΔNk

n − ΔNk
n−1 ¼ Nk

n − 2Nk
n−1 þ Nk

n−2; ð13Þ

which is exactly the number of BCFW cells in In;1. For the
first nontrivial case k ¼ 2, we have

Δ2N2
n ¼ ðn − 5Þ2; ð14Þ

this will be useful as a highly nontrivial consistency check
of the further simplexlike structure.

V. N2MHV FULLY SPANNING CELLS AND
SOLID SIMPLICES

Further dissecting Ii;1 reveals the following pattern:

Ii;1 ¼ ðcells descend from Ii−1;1Þ
þ ðnew fully spanning cells for n ¼ iÞ; ð15Þ

the first part of cells above follow simple patterns of the
solid simplices, and so do the second when i is increased by
one or more. The fully spanning cells are named such that
none of their i columns are removed when they first show
up in Ii;1. Each time we increase i by one, they are the only
objects need to be identified together with their growing
parameters, which will uniquely determine their “growing”

patterns in In;1 up to any n. Remarkably, the recursive
growth of new fully spanning cells terminates at
n ¼ 4kþ 1, as we will later see.
Explicitly, let us illustrate this pattern of Ii;1 for the

family of N2MHV amplitudes, their fully spanning cells are
given by

G7;0 ¼
� ð45Þð71Þ

½5� ð5Þ

G7;1 ¼ ð23Þ
� ð67Þ

ð45Þ ð6; 4Þ

G8;1 ¼

8>><
>>:

ð234Þ2ð678Þ2 ð7; 4Þ
ð456Þ2ð781Þ2 ð7; 5Þ
ð23Þð456Þ2ð81Þ ð6; 4Þ

G9;2 ¼
� ð2345Þ2ð6789Þ2

ð23Þð4567Þ2ð891Þ2
ð8; 6; 4Þ ð16Þ

whereGi;m is the part purely made of fully spanning cells in
Ii;1 and m is its corresponding growing mode, followed by
their growing parameters (some cells share the same
parameters). Note that [5] in G7;0 above actually originates
from I6;1 as a top cell, but for convenience it is put together
with (45)(71) as they share one parameter.
The meaning of growing modes and parameters can be

seen from, for instance, how three sample cells below of
constant, linear and quadratic modes mutate as i of Ii;1
increases, according to

ð45Þð71Þ → ½5�ð46Þð81Þ → ½56�ð47Þð91Þ; ð17Þ
ð23Þð67Þ → ½6�ð23Þð78Þ → ½67�ð23Þð89Þ

þ½4�ð23Þð78Þ þ ½47�ð23Þð89Þ
þ ½45�ð23Þð89Þ; ð18Þ

for I7;1, I8;1 and I9;1, and

ð2345Þ2ð6789Þ2 → ½8�ð2345Þ2ð679 10Þ2→ ½89�ð2345Þ2ð67 10 11Þ2
þ½6�ð2345Þ2ð789 10Þ2 þ ½69�ð2345Þ2ð78 10 11Þ2
þ½4�ð2356Þ2ð789 10Þ2 þ ½67�ð2345Þ2ð89 10 11Þ2

þ ½49�ð2356Þ2ð78 10 11Þ2
þ ½47�ð2356Þ2ð89 10 11Þ2
þ ½45�ð2367Þ2ð89 10 11Þ2; ð19Þ

for I9;1, I10;1 and I11;1. Note the increasing numbers of
empty slots induce partial cyclic shifts for the associated
cells, while maintaining their cyclic topologies, similar to
that of obtaining Ii;1þj from Ii;1 in (10). We can further
extract the key mathematical objects that best describe all
such patterns, namely the solid simplices.

A solid m-simplex is fully characterized by its growing
mode m, (mþ 1) growing parameters and level which
counts the empty slots at each point within it. The term
“solid”means inside the simplex there are also a number of
points. In Fig. 2, we depict three solid simplices of
constant, linear and quadratic growing modes (0-, 1-,
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and 2-modes for short) up to level 3, of growing parameters
(8), (8,6), (8,6,4) respectively.
Remarkably, the 2-mode with parameters (6,4,2) exactly

characterizes the NMHV triangle (9), which is extended to
the general NkMHV trianglelike dissection in (10).
Obviously, the two-fold simplexlike structures are closely
related, and the pattern of a 2-mode is manifest in the form
which maximally factors out empty slots as (9). General
solidm-simplices similarly follow these patterns [19]. Now
we can only concentrate on empty slots, while the induced
geometric configurations can be trivially inferred from their
original cyclic topologies.
Let us immediately see the power of solid simplices for

the N2MHV case: back to (16), according to the growing
modes and levels of fully spanning cells, for any n, it is easy
to count the terms in In;1 as

2þ 2ðn − 6Þ þ 3ðn − 7Þ þ 2 ·
ðn − 7Þðn − 8Þ

2
¼ ðn − 5Þ2;

ð20Þ

which nicely matches Δ2N2
n in (14).

VI. TERMINATION OF THE RECURSIVE
GROWTH OF FULLY SPANNING CELLS

Naturally, it is economical to only generate the fully
spanning cells along with their growing parameters, for a
given k. This is called the refined BCFW recursion relation
[19], which constructs fully spanning cells solely from
those of lower k’s, and it terminates at n ¼ 4kþ 1.
Explicitly, we find the numbers of fully spanning cells
for k ¼ 1, 2, 3 as summarized in the table below (all the
unspecified entries are zeros implicitly).

k

n 5 6 7 8 9 10 11 12 13 14

1 1
2 1 3 3 2
3 1 7 18 27 26 15 5

Note the first fully spanning cell for any k is a top cell,
and it is the only one in the anti-MHV sector (n ¼ kþ 4).

VII. SUMMARY AND OUTLOOK

So far we have witnessed the concise profile of tree
amplitudes in planar N ¼ 4 SYM, with the aid of the
matrix form of BCFW recursion relation and reduced
Grassmannian geometry. The two-fold simplexlike struc-
tures are an extension following the same logic of, e.g.,
[22–24]. It is the simple Parke-Taylor formula [25] of MHV
tree amplitudes of gluons that first freed us from countless
Feynman diagrams, and up to this point, the similar idea
has been extended to the solid simplices for general
NkMHV amplitudes from the Grassmannian perspective,
so that infinite terms now can be essentially captured by
finite, compact information.
In the future, we will present how this formalism helps

manifest the cyclicity of general NkMHV amplitudes. The
NMHV sector has been solved in [19], so the first nontrivial
case is the N2MHV sector. Also, we would like to explore
how to extend it to, say, the 1-loop integrand level, which is
expected to be much more intricate.
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