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1. Introduction

The amplituhedron proposal for 4-particle integrand of planar N = 4 SYM to all loop orders [1, 2, 3, 4]

is a novel reformulation which only uses positivity conditions for all physical poles to construct the loop

integrand. At 2-loop level, as the first nontrivial case, we have just one (mutual) positivity condition

D12 ≡ (x2 − x1)(z1 − z2) + (y2 − y1)(w1 − w2) > 0, (1.1)

where xi = 〈AiBi 14〉, yi = 〈AiBi 34〉, zi = 〈AiBi 23〉, wi = 〈AiBi 12〉 and Dij = 〈AiBiAjBj〉 are all possible

physical poles in terms of momentum twistor contractions, and xi, yi, zi, wi are trivially set to be positive

for the i-th loop. The resulting integrand is the double-box topology of two possible orientations, and it

is symmetrized for two sets of loop variables [2]. As the loop level increases, its calculational complexity

grows explosively due to the highly nontrivial intertwining of all L(L−1)/2 positivity conditions of Dij ’s.

As far as the 3-loop case, it is done under significant simplification brought by double cuts [2], still there

is considerable complexity that obscures its somehow simple mathematical structure, as we will reveal in

this article and the subsequent work.
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As an illuminating appetizer, we reformulate the 2-loop case in the following. As usual, let’s preserve

z1, z2 for imposing D12> 0, and triangulate the space spanned by x1, x2, y1, y2, w1, w2. We introduce the

ordered subspaces characterized by, for instance:

X(12)Y (12)W (12) ≡ 1

x1(x2 − x1)
1

y1(y2 − y1)
1

w1(w2 − w1)
, (1.2)

which is a d log form (omitting the measure factor) of the orderings x1<x2, y1<y2 and w1<w2. In this

particular subspace, positivity condition (1.1) unambiguously demands

z1 − z2 >
y21w21

x21
, (1.3)

where x21≡x2 − x1 and so forth. Here, x21, y21, w21 can be treated as genuinely positive variables which

replace the original x2, y2, w2. Then the relevant d log form of z1, z2 is simply

1

z2(z1 − z2 − y21w21/x21)
=

x21z1
z1z2D12

, (1.4)

analogously, for X(12)Y (12)W (21) we have

1

z1

(
1

z2
− 1

z2 − z1 − y21w12/x21

)
=
x21z1 + y21w12

z1z2D12
. (1.5)

A seemingly farfetched observation is, after we flip W (12) to W (21), the additional term y21w12 appears

in the numerator above due to the orderings of y1, y2 and w1, w2 are now opposite, allowing one to orient

the double box “vertically”, as explained in a diagrammatic way below.

In figure 1, we have chosen two perpendicular directions for x and y, while the z and w directions are

opposite to those of x and y respectively. Then we assign each loop with a number as usual, but now these

numbers have a meaning of orderings of positive variables. Since loop number 2 is below 1, we naturally

interpret this as y2>y1, and similarly w1>w2. In this way, it is straightforward to conclude that, if we

flip w1>w2 back to w2>w1, there is no consistent way to place loop numbers 1, 2 vertically so the double

box can be only oriented horizontally!

x

z

w

y

1

2

Figure 1: Giving the orderings of positive variables xi, yi, zi, wi a directional meaning.
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If we sum the numerators above over W (12) and W (21) respectively as

1

w1(w2 − w1)
(x21z1) +

1

w2(w1 − w2)
(x21z1 + y21w12) =

x21z1 + y21w1

w1w2
, (1.6)

the ordering of w1, w2 is nicely wiped off as expected. Similarly, after summing all such d log forms over

y- and x-space, we get the symmetrized numerator (x1z2+x2z1+y1w2+y2w1) [2], and the corresponding

denominator is x1x2 y1y2 z1z2w1w2D12 , free of any ordering of xi, yi, zi, wi.

Actually, positivity condition (1.1) already has a diagrammatic implication. If both (x2−x1)(z1−z2)
and (y2−y1)(w1−w2) are positive, which means both the orderings of x1, x2 and z1, z2, and those of y1, y2

and w1, w2, are opposite, D12 is trivially positive. In this case both horizontal and vertical orientations of

the double box are allowed and we call them seed diagrams with respect to a particular ordered subspace,

while those final diagrams are obtained after we sum seed diagrams over all ordered subspaces that admit

them for each distinct topology with an orientation. If (y2−y1)(w1−w2) is negative, for instance, after we

switch to ordered subspace Y (12)W (12) or Y (21)W (21), D12 is then conditionally positive, since x21z12

must be greater than y21w21 or y12w12, and the double box can be only oriented horizontally. But if both

(x2−x1)(z1−z2) and (y2−y1)(w1−w2) are negative, D12 is by no means positive, and diagrammatically it

means there is no legal seed diagram in this ordered subspace.

One may already note that, such a diagrammatic setting only makes sense when all internal lines can

be oriented either horizontally or vertically (which are also borders of adjacent loops), and consequently,

only 3- and 4-vertex are admitted. This category is called the Mondrian diagrams [5], as we will exactly

define them based on the amplituhedron setting in the subsequent work. Inside a Mondrian diagram, the

relation between any two loops is a horizontal contact, or a vertical contact, or no contact. To characterize

a Mondrian diagram in this way turns out to be sufficient for completely identifying its topology!

However, it is known beyond 3-loop, non-Mondrian diagrams also contribute to the planar 4-particle

integrand [6, 7]. Therefore, so far, we have to limit ourselves to the Mondrian types until further gener-

alization is available. Nevertheless, at 3-loop such a setting can perfectly connect the amplituhedron and

the actual loop integrand. To understand its motivation, we will first present the direct calculation in the

context of amplituhedron (or positivity conditions more precisely).

This article is organized as follows. Section 2 presents the fundamentals of positive d log forms which

are necessary for posterior formulations. Section 3 introduces the trick of intermediate variables to handle

the 4-particle amplituhedron at 3-loop, as a bridge towards the precise description of imposing 3 positivity

conditions simultaneously. Section 4 continues to sum the former results over all ordered subspaces, as we

find it “almost” reaches the correct answer. Section 5 further refines co-positive products for each ordered

subspace of y and w, based on the discussions in terms of intermediate variables, as a precise description.

Section 6 sums the refined co-positive products by delicately separating the contributing and the spurious

parts, where the former manifest the Mondrian diagrammatic interpretation, while the latter sum to zero

at the end as their name implies.
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2. Fundamentals of Positive d log Forms

First, we will extend the fundamentals of positive d log forms in [2], as the minimal techniques necessary

for the posterior sections. It is known that, for a general positive variable ranging from a to b (a<b), its

form is given by
b− a

(x− a)(b− x)
, (2.1)

in particular, for a=0 it becomes
b

x(b− x)
, (2.2)

as well as for b=∞ it becomes
1

x− a
, (2.3)

and finally if b=a for the two special cases above, we have

1

x− a
+

a

x(a− x)
=

1

x
, (2.4)

which will be named as the completeness relation. It has a natural interpretation as the sum of projective

lengths of two complementary positive intervals. Note that we have treated a as a constant above, while

it could also be a positive variable. In that case, we only need an additional form 1/a, so the completeness

relation is now
1

a(x− a)
+

1

x(a− x)
=

1

a x
, (2.5)

where the LHS characterize nothing but two ordered subspaces in which x>a and x<a respectively. A

trivial generalization of (2.4) for n xi’s satisfying x1 . . . xn>a and x1 . . . xn<a is then

1

x1 . . . xn − a
+

a

x1 . . . xn(a− x1 . . . xn)
=

1

x1 . . . xn
, (2.6)

here, for example, x1 . . . xn>a is characterized by

1

x2 . . . xn

1

x1 − a/(x2 . . . xn)
=

1

x1 . . . xn − a
. (2.7)

Another less direct generalization of (2.4) for x1+. . .+xn>a and x1+. . .+xn<a is

x1 + . . .+ xn
x1 . . . xn(x1 + . . .+ xn − a)

+
a

x1 . . . xn(a− x1 − . . .− xn)
=

1

x1 . . . xn
, (2.8)

where both terms of the LHS can be proved recursively. If we assume they hold for x1+. . .+xn−1>a and

x1+. . .+xn−1<a, to obtain the form of x1+. . .+xn>a we must separate it into two parts as

x1 + . . .+ xn−1
x1 . . . xn−1(x1 + . . .+ xn−1 − a)

1

xn
+

a

x1 . . . xn−1(a− x1 − . . .− xn−1)
1

x1 + . . .+ xn − a

=
x1 + . . .+ xn

x1 . . . xn(x1 + . . .+ xn − a)
,

(2.9)
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where in the first line xn is simply positive in the first term, while it is greater than (a−x1−. . .−xn−1) in

the second, and their sum nicely returns to the form for n xi’s. To obtain the form of x1+. . .+xn<a, we

can simply insert the form
(a− x1 − . . .− xn−1)

xn((a− x1 − . . .− xn−1)− xn)
(2.10)

into that for (n−1) xi’s, and note that (a−x1−. . .−xn−1) is treated as one positive variable above. These

two forms, as well as (2.8) itself, are often useful in the subsequent derivation.

It is also convenient to introduce the co-positive product of forms. For example, for y>x1, . . . , xn, to

obtain its form we can divide it into n! parts with respect to n! ordered subspaces in which xσ1<. . .<xσn
as {σ1, . . . , σn} is a permutation of {1, . . . , n}. Then we need to simplify

In(Xn, y) ≡
∑
σn

1

xσ1

1

xσ2 − xσ1
· · · 1

xσn − xσn−1

1

y − xσn
(2.11)

with Xn={x1, . . . , xn}, by induction. Now let’s focus on xn’s location in each permutation while omitting

those of x1, . . . , xn−1, it is straightforward to regroup the sum in order to reach

In
In−1

=
y − xσn−1

(xn − xσn−1)(y − xn)
+

xσn−1 − xσn−2

(xn − xσn−2)(xσn−1 − xn)
+ . . .+

xσ2 − xσ1
(xn − xσ1)(xσ2 − xn)

+
xσ1

xn(xσ1 − xn)

=
y − xσn−1

(xn − xσn−1)(y − xn)
+

xσn−1

xn(xσn−1 − xn)
=

y

xn(y − xn)
,

(2.12)

therefore

In =
yn−1

x1 . . . xn(y − x1) . . . (y − xn)
≡ 1

x1(y − x1)
∩ · · · ∩ 1

xn(y − xn)
, (2.13)

here the symbol ∩ is the co-positive product operation. This product denotes the intersected subspace of

a number of different subspaces as one form. If we evaluate the residue of In at y=∞, it returns to

In(Xn,∞) =

∫
∞

dy

y
× yn

x1 . . . xn(y − x1) . . . (y − xn)
=

1

x1 . . . xn
, (2.14)

which is the completeness relation of n positive variables as all xi’s are trivially less than infinity.

Analogously, for y<x1, . . . , xn, we need to simplify

Jn(y,Xn) =
∑
σn

1

y

1

xσ1 − y
1

xσ2 − xσ1
· · · 1

xσn − xσn−1

(2.15)

with the aid of

Jn
Jn−1

=
1

xn − xσn−1

+
xσn−1 − xσn−2

(xn − xσn−2)(xσn−1 − xn)
+ . . .+

xσ2 − xσ1
(xn − xσ1)(xσ2 − xn)

+
xσ1 − y

(xn − y)(xσ1 − xn)

=
1

xn − xσ1
+

xσ1 − y
(xn − y)(xσ1 − xn)

=
1

xn − y
,

(2.16)
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therefore

Jn =
1

y(x1 − y) . . . (xn − y)
≡ 1

y(x1 − y)
∩ · · · ∩ 1

y(xn − y)
. (2.17)

If we evaluate the residue of Jn at y=0, it returns to

Jn(0, Xn) =

∫
0

dy

y
× 1

(x1 − y) . . . (xn − y)
=

1

x1 . . . xn
, (2.18)

which is also the completeness relation as all xi’s are trivially greater than zero. In fact, (2.13) and (2.17)

can be trivially obtained, if we switch to the perspectives which consider x1, . . . , xn<y and x1, . . . , xn>y

respectively. Such an equivalent but much simpler approach can be further generalized to

1

c1x1(y − x1 − c1)
∩ · · · ∩ 1

cnxn(y − xn − cn)
=

yn−1

c1 . . . cn x1 . . . xn(y − x1 − c1) . . . (y − xn − cn)
, (2.19)

as well as

x1 + c1
c1x1(x1 + c1 − y) y

∩· · ·∩ xn + cn
cnxn(xn + cn − y) y

=
(x1 + c1) . . . (xn + cn)

c1 . . . cn x1 . . . xn(x1 + c1 − y) . . . (xn + cn − y) y
, (2.20)

where we have used the expressions in (2.8). A mixed product of these two types is, for example,

1

c1x1(y − x1 − c1)
∩ x2 + c2
c2x2(x2 + c2 − y) y

=
1

c1x1(y − x1 − c1)
× x2 + c2
c2x2(x2 + c2 − y)

. (2.21)

From these formulas of co-positive products, it is easy to observe that: for n forms that impose positivity

conditions on a number of variables, and there is only one common variable among all conditions of these

forms, denoted by y for instance, we have

I1 ∩ · · · ∩ In = I1 × · · · × In × yn−1, (2.22)

which is trivial to prove if we adopt the perspective above. When there are two or more common variables,

this simplification is no longer valid, in general. Two such examples are given below:

y1
x1x2(y1 − x1)(y1 − x2)

∩ y2
x1x2(y2 − x1)(y2 − x2)

=
y1y2 − x1x2

x1x2(y1 − x1)(y1 − x2)(y2 − x1)(y2 − x2)
,

(2.23)

as well as
y21

x1x2x3(y1 − x1)(y1 − x2)(y1 − x3)
∩ y22
x1x2x3(y2 − x1)(y2 − x2)(y2 − x3)

=
y21y

2
2 − y1y2(x1x2 + x1x3 + x2x3) + (y1 + y2)x1x2x3

x1x2x3(y1 − x1)(y1 − x2)(y1 − x3)(y2 − x1)(y2 − x2)(y2 − x3)
.

(2.24)
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3. The Trick of Intermediate Variables at 3-loop

Now, we are ready to introduce the trick of intermediate variables to handle the 3 intertwining positivity

conditions of the 4-particle amplituhedron at 3-loop. This is not the final answer that we pursuit, but it

divides a difficult problem into two parts in a pedagogical way, and it is a nice mathematical warmup for

the more precise description. These three positivity conditions are

D12 = (x2 − x1)(z1 − z2) + (y2 − y1)(w1 − w2) > 0,

D13 = (x3 − x1)(z1 − z3) + (y3 − y1)(w1 − w3) > 0,

D23 = (x3 − x2)(z2 − z3) + (y3 − y2)(w2 − w3) > 0.

(3.1)

Without loss of generality, let’s work in the ordered subspace X(123) so that x1<x2<x3. Then D12 > 0

unambiguously demands

z1 − z2 +
(y2 − y1)(w1 − w2)

x21
> 0, (3.2)

for instance. Depending on the sign of (y2−y1)(w1−w2), we have

(y2 − y1)(w1 − w2) > 0 : z2 < z1 + c12, c12 ≡
(y2 − y1)(w1 − w2)

x21
,

(y2 − y1)(w1 − w2) < 0 : z1 > z2 + c21, c21 ≡
− (y2 − y1)(w1 − w2)

x21
,

(3.3)

where c12 and c21 are defined as the positive intermediate variables. The corresponding forms are then

Z−12 ≡
1

z1

(
1

z2
− 1

z2 − z1 − c12

)
=

1

z1

z1 + c12
z2(z1 + c12 − z2)

,

Z+
21 ≡

1

z2

1

z1 − z2 − c21
,

(3.4)

in ordered subspaces (Y (12)W (21)+Y (21)W (12)) and (Y (12)W (12)+Y (21)W (21)) respectively, and the

symbols Z+ and Z− are related by the completeness relation

Z+
21 + Z−21 =

1

z1z2
≡ I12, (3.5)

here the identity I12 denotes no positivity condition is imposed on z1 and z2.

Therefore, in subspace X(123), for D12, D13, D23>0 we need to figure out the product[
Z+
31(Y (13)W (13)+Y (31)W (31)) + Z−13(Y (13)W (31)+Y (31)W (13))

]
∩
[
Z+
32(Y (23)W (23)+Y (32)W (32)) + Z−23(Y (23)W (32)+Y (32)W (23))

]
∩
[
Z+
21(Y (12)W (12)+Y (21)W (21)) + Z−12(Y (12)W (21)+Y (21)W (12))

]
,

(3.6)
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where the products involving y- and w-space are easy, so we mainly focus on the products of Z±’s. There

are 23=8 such triple co-positive products, as listed below:

T1 ≡ Z+
31 ∩ Z

+
32 ∩ Z

+
21, T2 ≡ Z+

31 ∩ Z
−
23 ∩ Z

+
21,

T3 ≡ Z−13 ∩ Z
+
32 ∩ Z

+
21, T4 ≡ Z−13 ∩ Z

−
23 ∩ Z

+
21,

T5 ≡ Z+
31 ∩ Z

+
32 ∩ Z

−
12, T6 ≡ Z+

31 ∩ Z
−
23 ∩ Z

−
12,

T7 ≡ Z−13 ∩ Z
+
32 ∩ Z

−
12, T8 ≡ Z−13 ∩ Z

−
23 ∩ Z

−
12,

(3.7)

and now we will determine them one by one.

For T1, it demands that z1 is greater than both (z2+c21) and (z3+c31), so we need to separately discuss

the situations of z2+c21>z3+c31 and z2+c21<z3+c31. The extra complexity is, z2 and z3 are restricted

to the subspace of z2>z3+c32. If c31<c32+c21, we find z2+c21>z3+c32+c21>z3+c31, so z1>z2+c21

already implies z1>z3+c31. If c31>c32+c21, and z2>z3+c31−c21 which already implies z2>z3+c32, we

again have z1>z2+c21. Finally if z3+c32<z2<z3+c31−c21, we switch to z1>z3+c31.

As c31 is treated as a positive variable, instead of a rational function of other positive variables as it

actually should be, the discussion above leads to the sum

T1 =

(
1

c31
− 1

c31 − c32 − c21

)
1

z3

1

z2 − z3 − c32
1

z1 − z2 − c21

+
1

c31 − c32 − c21
1

z3

(
1

z2 − z3 − c31 + c21

1

z1 − z2 − c21

+

(
1

z2 − z3 − c32
− 1

z2 − z3 − c31 + c21

)
1

z1 − z3 − c31

)
=

1

c31

z1 − z3
z3(z1 − z2 − c21)(z1 − z3 − c31)(z2 − z3 − c32)

,

(3.8)

and the 1/c31 part will be dropped for later convenience. We see this sum wipes off the subspace division

of c31, physically it means there is no “spurious pole”. And if c31=0, (z1−z3−c31) is cancelled, since this

positivity condition becomes redundant as z1>z2+c21>z3+c32+c21.

Then for T2, z2 and z3 are restricted to the subspace of z3<z2+c23 while other two conditions remain

the same as T1’s. Analogously, we have the following discussion:

c21 < c31,

{
z2 > z3 + c31 − c21, z1 > z2 + c21,

z2 < z3 + c31 − c21, z3 < z2 + c23, z1 > z3 + c31,

c31 < c21 < c23 + c31,

{
z3 < z2 + c21 − c31, z1 > z2 + c21,

z2 + c21 − c31 < z3 < z2 + c23, z1 > z3 + c31,

c21 > c23 + c31, z3 < z2 + c23, z1 > z2 + c21,

(3.9)
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note that we have divided the c21-space. This leads to

T2 =

(
1

c21
− 1

c21 − c31

)(
1

z3

1

z2 − z3 − c31 + c21

1

z1 − z2 − c21

+

(
1

z2

(
1

z3
− 1

z3 − z2 − c23

)
− 1

z3

1

z2 − z3 − c31 + c21

)
1

z1 − z3 − c31

)
+

(
1

c21 − c31
− 1

c21 − c23 − c31

)
1

z2

[(
1

z3
− 1

z3 − z2 − c21 + c31

)
1

z1 − z2 − c21

+

(
1

z3 − z2 − c21 + c31
− 1

z3 − z2 − c23

)
1

z1 − z3 − c31

]
+

1

c21 − c23 − c31
1

z2

(
1

z3
− 1

z3 − z2 − c23

)
1

z1 − z2 − c21

=
1

c21

z1(z2 + c23)− z2z3
z2z3(z1 − z2 − c21)(z1 − z3 − c31)(z2 + c23 − z3)

.

(3.10)

In general, we find that for cij , cjk, cik with respect to T1, T2, T4, T5, T7, T8, it is most convenient to divide

the cik-space. While for cij , cjk, cki with respect to T3, T6, there is no need to divide any of them.

Then for T3, since z1 > z2+c21 > z3+c32+c21 already implies z3 < z1+c13, Z
−
13 becomes redundant,

which leads to

T3 = Z−13 ∩ Z
+
32 ∩ Z

+
21 = Z+

32 ∩ Z
+
21 =

1

z3(z1 − z2 − c21)(z2 − z3 − c32)
, (3.11)

now we see there is indeed no need to consider any cij .

Then for T4, it demands that z3 is less than both (z1+c13) and (z2+c23) while z1 and z2 are restricted

to the subspace of z1>z2+c21. Analogously, we have the following discussion:

c23 < c21 + c13, z1 > z2 + c21, z3 < z2 + c23,

c23 > c21 + c13,

{
z1 > z2 + c23 − c13, z3 < z2 + c23,

z2 + c21 < z1 < z2 + c23 − c13, z3 < z1 + c13,

(3.12)

which leads to

T4 =

(
1

c23
− 1

c23 − c21 − c13

)
1

z2

1

z1 − z2 − c21

(
1

z3
− 1

z3 − z2 − c23

)
+

1

c23 − c21 − c13
1

z2

[
1

z1 − z2 − c23 + c13

(
1

z3
− 1

z3 − z2 − c23

)
+

(
1

z1 − z2 − c21
− 1

z1 − z2 − c23 + c13

)(
1

z3
− 1

z3 − z1 − c13

)]
=

1

c23

(z1 + c13)(z2 + c23)− z2z3
z2z3(z1 − z2 − c21)(z1 + c13 − z3)(z2 + c23 − z3)

.

(3.13)
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Then for T5, z3+c32<z2<z1+c12 implies that (z1+c12) must be greater than (z3+c32) while z1 and z3 are

restricted to the subspace of z1>z3+c31. Analogously, we have the following discussion:

c32 < c31 + c12, z1 > z3 + c31,

c32 > c31 + c12, z1 > z3 + c32 − c12,
(3.14)

which leads to

T5 =

[(
1

c32
− 1

c32 − c31 − c12

)
1

z1 − z3 − c31
+

1

c32 − c31 − c12
1

z1 − z3 − c32 + c12

]
× 1

z3

(
1

z2 − z3 − c32
− 1

z2 − z1 − c12

)
=

1

c32

(z1 + c12)− z3
z3(z1 + c12 − z2)(z1 − z3 − c31)(z2 − z3 − c32)

.

(3.15)

Then for T6, similar to T3, there is no need to consider any cij , the sum is simply

T6 =
1

z1 − z3 − c31

(
1

z2

(
1

z3
− 1

z3 − z2 − c23

)
− 1

z3

1

z2 − z1 − c12

)
=

(z1 + c12)(z2 + c23)− z2z3
z2z3(z1 + c12 − z2)(z2 + c23 − z3)(z1 − z3 − c31)

.

(3.16)

Then for T7, similar to T5, (z1+c12) must be greater than (z3+c32) while z1 and z3 are restricted to the

subspace of z3<z1+c13. Analogously, we have the following discussion:

c12 < c32, z1 > z3 + c32 − c12,

c32 < c12 < c13 + c32, z3 < z1 + c12 − c32,

c12 > c13 + c32, z3 < z1 + c13,

(3.17)

which leads to

T7 =

[(
1

c12
− 1

c12 − c32

)
1

z3

1

z1 − z3 − c32 + c12

+

(
1

c12 − c32
− 1

c12 − c13 − c32

)
1

z1

(
1

z3
− 1

z3 − z1 − c12 + c32

)
+

1

c12 − c13 − c32
1

z1

(
1

z3
− 1

z3 − z1 − c13

)](
1

z2 − z3 − c32
− 1

z2 − z1 − c12

)
=

1

c12

(z1 + c12)(z1 + c13)− z1z3
z1z3(z1 + c12 − z2)(z1 + c13 − z3)(z2 − z3 − c32)

.

(3.18)
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Finally for T8, similar to T4, z3 is less than both (z1+c13) and (z2+c23) while z1 and z2 are restricted to

the subspace of z2<z1+c12. Analogously, we have the following discussion:

c13 < c23,

{
z2 < z1 + c12, z1 < z2 + c23 − c13, z3 < z1 + c13,

z1 > z2 + c23 − c13, z3 < z2 + c23,

c23 < c13 < c12 + c23,

{
z1 + c13 − c23 < z2 < z1 + c12, z3 < z1 + c13,

z2 < z1 + c13 − c23, z3 < z2 + c23,

c12 + c23 < c13, z2 < z1 + c12, z3 < z2 + c23,

(3.19)

which leads to

T8 =

(
1

c13
− 1

c13 − c23

)[(
1

z1

(
1

z2
− 1

z2 − z1 − c12

)
− 1

z2

1

z1 − z2 − c23 + c13

)(
1

z3
− 1

z3 − z1 − c13

)
+

1

z2

1

z1 − z2 − c23 + c13

(
1

z3
− 1

z3 − z2 − c23

)]
+

(
1

c13 − c23
− 1

c13 − c12 − c23

)
1

z1

[(
1

z2 − z1 − c13 + c23
− 1

z2 − z1 − c12

)(
1

z3
− 1

z3 − z1 − c13

)
+

(
1

z2
− 1

z2 − z1 − c13 + c23

)(
1

z3
− 1

z3 − z2 − c23

)]
+

1

c13 − c12 − c23
1

z1

(
1

z2
− 1

z2 − z1 − c12

)(
1

z3
− 1

z3 − z2 − c23

)
=

1

c13

(z1 + c12)(z1 + c13)(z2 + c23)− z1z2z3
z1z2z3(z1 + c12 − z2)(z1 + c13 − z3)(z2 + c23 − z3)

.

(3.20)

Now we have known all eight Ti’s. A consistency check via the completeness relations gives

T2(2↔3) + T1 = Z+
31 ∩ Z

+
21 = Z+

31 × Z
+
21 × z1 =

z1
z2z3(z1 − z2 − c21)(z1 − z3 − c31)

, (3.21)

where we have used (2.22), similarly we also have (dropping all 1/cij prefactors)

T2(1↔2) + T7 = Z−13 ∩ Z
+
32,

T7(2↔3) + T8 = Z−13 ∩ Z
−
12,

T5(1↔2) + T1 = Z+
31 ∩ Z

+
32,

T5(2↔3) + T4 = Z−13 ∩ Z
+
21,

T4(1↔2) + T8 = Z−13 ∩ Z
−
23,

T6(1↔2) + T3 = Z−13 ∩ Z
+
32.

(3.22)

These relations, in fact, serve as an equivalent approach to obtain all other Ti’s one by one, once we know

T1 and T3, following the sequence below:

T1 → T2 → T7 → T8, T1 → T5 → T4 → T8, T3 → T6. (3.23)
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In addition, we have also observed that from

T8 =
(z1 + c12)(z1 + c13)(z2 + c23)− z1z2z3

z1z2z3(z1 + c12 − z2)(z1 + c13 − z3)(z2 + c23 − z3)
, (3.24)

all other Ti’s can be obtained via flipping cij to −cji in the denominator with respect to flipping each Z−ij
to Z+

ji , as well as setting cij to zero in the numerator. Therefore, T8 is named as the master form.

There is still another equivalent approach to get the master form which divides the z-space instead of

the c-space. Defining

η12 ≡ z1 − z2 + c12 > 0, η13 ≡ z1 − z3 + c13 > 0, η23 ≡ z2 − z3 + c23 > 0, (3.25)

we find the sum is then

T8 =
1

c12

(
1

c13c23
× Z(321) +

1

c13η23
× Z(231) +

1

η13η23
× Z(213)

)
+

1

η12

(
1

c13c23
× Z(312) +

1

c13η23
× Z(132) +

1

η13η23
× Z(123)

)
=

1

c12c13c23

(z1 + c12)(z1 + c13)(z2 + c23)− z1z2z3
z1z2z3 η12η13η23

,

(3.26)

as expected. Both ways to get the master form using the completeness relations and dividing the z-space

can be generalized beyond 3-loop. Once it is known, we can apply the observation above to get all 2
L(L−1)

2

co-positive products of arbitrary Z±’s. This observation has not been proved, but it turns out to be valid

at 4-loop. In appendix A, we use the latter way to get the master form at 4-loop and after that, we check

this observation explicitly via two examples, as a mathematical exercise of curiosity.
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4. A Naive Sum

Next, we continue to sum the former results over all ordered subspaces, and we find this naive sum which

takes the advantage of intermediate variables “almost” reaches the correct answer, as it can reproduce 96

out of the total 120 monomials in the latter.

To figure out the co-positive products involving y- and w-space, we define, for instance:

S(12) ≡ Y (12)W (12) + Y (21)W (21), A(12) ≡ Y (12)W (21) + Y (21)W (12), (4.1)

in which the orderings of y1, y2 and w1, w2 are the same or opposite respectively. According to (3.6), each

Z+
ij is associated with an S(ij), as well as Z−ij with an A(ij). Then we explicitly calculate the products of

S’s and A’s with respect to all Ti’s as

T1 : S1 ≡ S(13) ∩ S(23) ∩ S(12) = Y (123)W (123) + Y (132)W (132) + Y (213)W (213)

+ Y (231)W (231) + Y (312)W (312) + Y (321)W (321),

T2 : S2 ≡ S(13) ∩A(23) ∩ S(12) = Y (123)W (132) + Y (132)W (123)

+ Y (231)W (321) + Y (321)W (231),

T3 : S3 ≡ A(13) ∩ S(23) ∩ S(12) = Y (132)W (312) + Y (312)W (132)

+ Y (213)W (231) + Y (231)W (213),

T4 : S4 ≡ A(13) ∩A(23) ∩ S(12) = Y (123)W (312) + Y (312)W (123)

+ Y (213)W (321) + Y (321)W (213),

T5 : S5 ≡ S(13) ∩ S(23) ∩A(12) = Y (123)W (213) + Y (213)W (123)

+ Y (312)W (321) + Y (321)W (312),

T6 : S6 ≡ S(13) ∩A(23) ∩A(12) = Y (132)W (213) + Y (213)W (132)

+ Y (312)W (231) + Y (231)W (312),

T7 : S7 ≡ A(13) ∩ S(23) ∩A(12) = Y (123)W (231) + Y (231)W (123)

+ Y (132)W (321) + Y (321)W (132),

T8 : S8 ≡ A(13) ∩A(23) ∩A(12) = Y (123)W (321) + Y (132)W (231) + Y (213)W (312)

+ Y (231)W (132) + Y (312)W (213) + Y (321)W (123),

(4.2)

note that in particular, above we have used Y (13) ∩ Y (32) ∩ Y (21)=0 and so forth. These results are for

subspace X(123) only, and we need to consider all other ordered subspaces of x, such as

X(123) : S1T1 + S2T2 + S3T3 + S4T4 + S5T5 + S6T6 + S7T7 + S8T8,

→X(132) : S1T1 + S2T2 + S3T5 + S4T6 + S5T3 + S6T4 + S7T7 + S8T8,
(4.3)
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where switching 2↔ 3 for x, y, z, w leads to switching T3↔T5 and T4↔T6, as can be easily verified, and

the rest pieces are similarly given by

X(213) : S1T1 + S2T3 + S3T2 + S4T4 + S5T5 + S6T7 + S7T6 + S8T8,

X(231) : S1T1 + S2T5 + S3T2 + S4T6 + S5T3 + S6T7 + S7T4 + S8T8,

X(312) : S1T1 + S2T3 + S3T5 + S4T7 + S5T2 + S6T4 + S7T6 + S8T8,

X(321) : S1T1 + S2T5 + S3T3 + S4T7 + S5T2 + S6T6 + S7T4 + S8T8.

(4.4)

Therefore, summing them over all ordered subspaces of x, y, w, we obtain

Sum = (Correct answer)−Difference, (4.5)

where

(Correct answer)×Denominator

= (x2x3z1z2 + y2y3w1w2)D13 +
(
x23z1z2y2w1 + x2x3z

2
1y3w2 + x2z1y

2
3w1w2 + x3z2y2y3w

2
1

)
+ (5 permutations of 1,2,3),

(4.6)

as well as

Difference×Denominator

=x2x3z1z2(−y1w1 − y3w3) + y2y3w1w2(−x1z1 − x3z3) + (5 permutations of 1,2,3),
(4.7)

and we have defined the product of all physical poles as

Denominator ≡ x1x2x3 y1y2y3 z1z2z3w1w2w3D12D13D23. (4.8)

Since D13 contains 8 monomials, the correct answer has (2×8+4)×6=120 monomials, and the sum has 96

so their difference has 4×6=24 monomials. It is important to notice that terms such as x2x3z1z2(−y1w1)

are not dual conformally invariant by themselves, but grouped as x2x3z1z2D13 they are.

This tentative answer simplified by the trick of intermediate variables captures more than we expect.

Even though it oversimplifies the complexity of cij ’s which are functions of x, y, w, it still gives most parts

of the correct answer. If we manually heal the dual conformal invariance, it is then correct. Remarkably,

even if it does not give the full numerator, it can wipe off the subspace division of all positive variables,

which frees it from “spurious poles”. After we refine the calculation and reach the correct answer, we will

return to discuss the diagrammatic interpretation of (4.6).
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5. Refined Co-positive Products

To precisely describe the 4-particle amplituhedron at 3-loop, we need to further refine co-positive products

for each ordered subspace of y and w, based on the former discussions using intermediate variables. These

seemingly lengthy results can be nicely rearranged in order to manifest its simple mathematical structure,

namely the Mondrian diagrammatic interpretation.

From the previous setting we know that, for each ordered subspace of x, there are eight Ti’s, namely

the co-positive products in terms of intermediate variables. From (4.2), each of T1, T8 corresponds to six

ordered subspaces of y and w, while each of T2, T3, T4, T5, T7, T8 corresponds to four, so that in total their

number is 6×6=36 as expected. If we abandon intermediate variables, in principle we have to figure out

36 co-positive products instead of 8, as elaborated in the following.

For T1, the six different ordered subspaces lead to six different sets of cij ’s. First for Y (123)W (123),

the condition c31>c32+c21 is now replaced by

(y32 + y21)(w32 + w21)

x32 + x21
>
y32w32

x32
+
y21w21

x21
=⇒

(
y32
y21
− x32
x21

)(
w32

w21
− x32
x21

)
< 0, (5.1)

where x32, x21, y32, y21, w32, w21 are positive variables in this subspace (as usual, we first work in X(123)).

The corresponding form is

1

y21

1

y32 − y21x32/x21
1

w32

1

w21 − w32x21/x32
+ (y ↔ w)

=
x21x32(y21w32 + y32w21)

y21y32w21w32(x32y21 − x21y32)(−x32w21 + x21w32)
,

(5.2)

then using the completeness relation, the form of c31<c32+c21 is

1

y21y32w21w32
− x21x32(y21w32 + y32w21)

y21y32w21w32(x32y21 − x21y32)(−x32w21 + x21w32)

=
x232y21w21 + x221y32w32

y21y32w21w32(x32y21 − x21y32)(x32w21 − x21w32)
.

(5.3)

Making relevant replacements in (3.8) gives the full form

T1, Y (123)W (123) =
1

D12D13D23
Y (123)W (123)

D13 + y21w32 + y32w21

x1z3
, (5.4)

analogously, for Y (321)W (321) it becomes

T1, Y (321)W (321) =
1

D12D13D23
Y (321)W (321)

D13 + y12w23 + y23w12

x1z3
. (5.5)

For convenience, we will drop the prefactors Y (. . .)W (. . .)/D12D13D23 below.

Next for Y (132)W (132), we trivially have c31<c21 since

y31w31

x32 + x21
<

(y23 + y31)(w23 + w31)

x21
(5.6)

– 15 –



always holds, which belongs to the situation of c31<c32+c21. Therefore the sum in (3.8) trivially has one

term only, which gives

T1, Y (132)W (132) =
D13

x1z3
, (5.7)

analogously, for Y (231)W (231) it becomes

T1, Y (231)W (231) =
D13

x1z3
. (5.8)

Last for Y (213)W (213), we trivially have c31<c32 since

y31w31

x32 + x21
<

(y31 + y12)(w31 + w12)

x32
(5.9)

always holds, which belongs to the situation of c31<c32+c21. Therefore the sum in (3.8) trivially has one

term only, which gives

T1, Y (213)W (213) =
D13

x1z3
, (5.10)

as well as for Y (312)W (312),

T1, Y (312)W (312) =
D13

x1z3
. (5.11)

Then for T2 in Y (123)W (132), the condition c21<c31 is replaced by

y21(w23 + w31)

x21
<

(y32 + y21)w31

x32 + x21
=⇒ y32

y21
>
x32
x21

+
w23

w31
+
x32
x21

w23

w31
≡ α, (5.12)

and the corresponding form is
1

y21

1

y32 − y21α
, (5.13)

similarly, c21>c23+c31 is replaced by

y21(w23 + w31)

x21
>
y32w23

x32
+

(y32 + y21)w31

x32 + x21
=⇒ y32

y21
<
x32
x21

, (5.14)

and the corresponding form is
1

y32

1

y21 − y32x21/x32
, (5.15)

hence the form of c31<c21<c23+c31 is

1

y21y32
− 1

y21

1

y32 − y21α
− 1

y32

1

y21 − y32x21/x32
. (5.16)

Making relevant replacements in (3.10) gives

T2, Y (123)W (132) =
x32 + x21
x1z2z3

[(
z1 −

y21w31

x32 + x21

)(
z2 +

y32w23

x32

)
− z2z3

]
, (5.17)
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analogously, for Y (321)W (231) it becomes

T2, Y (321)W (231) =
x32 + x21
x1z2z3

[(
z1 −

y12w13

x32 + x21

)(
z2 +

y23w32

x32

)
− z2z3

]
. (5.18)

Switching y↔w, for Y (132)W (123) and Y (231)W (321) we obtain

T2, Y (132)W (123) =
x32 + x21
x1z2z3

[(
z1 −

y31w21

x32 + x21

)(
z2 +

y23w32

x32

)
− z2z3

]
,

T2, Y (231)W (321) =
x32 + x21
x1z2z3

[(
z1 −

y13w12

x32 + x21

)(
z2 +

y32w23

x32

)
− z2z3

]
.

(5.19)

Then for T3 in Y (132)W (312), Y (312)W (132), Y (213)W (231) and Y (231)W (213), there is no difference

in the discussions as we do not divide any cij . Immediately, (3.11) gives

T3, Y (132)W (312) =
D13

x1z3
, T3, Y (231)W (213) =

D13

x1z3
,

T3, Y (312)W (132) =
D13

x1z3
, T3, Y (213)W (231) =

D13

x1z3
,

(5.20)

note that we must separately write these identical results, since they have different hidden prefactors.

Then for T4 in Y (123)W (312), the condition c23<c21+c13 is replaced by

y32(w21 + w13)

x32
<
y21w21

x21
+

(y32 + y21)w13

x32 + x21
=⇒ y32

y21
<
x32
x21

, (5.21)

and the corresponding form is
1

y32

1

y21 − y32x21/x32
, (5.22)

similarly, the form of c23>c21+c13 is
1

y21

1

y32 − y21x32/x21
. (5.23)

Making relevant replacements in (3.13) gives

T4, Y (123)W (312) =
x32 + x21
x1z2z3

[(
z1 +

(y32 + y21)w13

x32 + x21

)(
z2 +

y32(w21 + w13)

x32

)
−
(
z2 +

y32w13

x32 + x21

)
z3

]
,

(5.24)

analogously, for Y (321)W (213) it becomes

T4, Y (321)W (213) =
x32 + x21
x1z2z3

[(
z1 +

(y12 + y23)w31

x32 + x21

)(
z2 +

y23(w31 + w12)

x32

)
−
(
z2 +

y23w31

x32 + x21

)
z3

]
.

(5.25)

Switching y↔w, for Y (312)W (123) and Y (213)W (321) we obtain

T4, Y (312)W (123) =
x32 + x21
x1z2z3

[(
z1 +

y13(w32 + w21)

x32 + x21

)(
z2 +

(y21 + y13)w32

x32

)
−
(
z2 +

y13w32

x32 + x21

)
z3

]
,

T4, Y (213)W (321) =
x32 + x21
x1z2z3

[(
z1 +

y31(w12 + w23)

x32 + x21

)(
z2 +

(y31 + y12)w23

x32

)
−
(
z2 +

y31w23

x32 + x21

)
z3

]
.

(5.26)
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Then for T5 in Y (123)W (213), the condition c32<c31+c12 is replaced by

y32(w31 + w12)

x32
<

(y32 + y21)w31

x32 + x21
+
y21w12

x21
=⇒ y32

y21
<
x32
x21

, (5.27)

and the corresponding form is
1

y32

1

y21 − y32x21/x32
. (5.28)

Making relevant replacements in (3.15) gives

T5, Y (123)W (213) =
x32 + x21
x1z3

(
z1 − z3 −

y32w31

x32 + x21
+
y21w12

x21

)
, (5.29)

analogously, for Y (321)W (312) it becomes

T5, Y (321)W (312) =
x32 + x21
x1z3

(
z1 − z3 −

y23w13

x32 + x21
+
y12w21

x21

)
. (5.30)

Switching y↔w, for Y (213)W (123) and Y (312)W (321) we obtain

T5, Y (213)W (123) =
x32 + x21
x1z3

(
z1 − z3 −

y31w32

x32 + x21
+
y12w21

x21

)
,

T5, Y (312)W (321) =
x32 + x21
x1z3

(
z1 − z3 −

y13w23

x32 + x21
+
y21w12

x21

)
.

(5.31)

Then for T6 in Y (132)W (213), Y (213)W (132), Y (312)W (231) and Y (231)W (312), there is no difference

in the discussions, similar to the case of T3. But the difference among cij ’s now matters, as (3.16) gives

T6, Y (132)W (213) =
x32 + x21
x1z2z3

[(
z1 +

(y23 + y31)w12

x21

)(
z2 +

y23(w31 + w12)

x32

)
− z2z3

]
,

T6, Y (231)W (312) =
x32 + x21
x1z2z3

[(
z1 +

(y13 + y32)w21

x21

)(
z2 +

y32(w21 + w13)

x32

)
− z2z3

]
,

(5.32)

switching y↔w, we obtain

T6, Y (213)W (132) =
x32 + x21
x1z2z3

[(
z1 +

y12(w23 + w31)

x21

)(
z2 +

(y31 + y12)w23

x32

)
− z2z3

]
,

T6, Y (312)W (231) =
x32 + x21
x1z2z3

[(
z1 +

y21(w13 + w32)

x21

)(
z2 +

(y21 + y13)w32

x32

)
− z2z3

]
.

(5.33)

Then for T7 in Y (123)W (231), the condition c12<c32 is replaced by

y21(w13 + w32)

x21
<
y32w32

x32
=⇒ y32

y21
>
x32
x21

(
1 +

w13

w32

)
≡ β, (5.34)
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and the corresponding form is
1

y21

1

y32 − y21β
, (5.35)

similarly, c12>c13+c32 is replaced by

y21(w13 + w32)

x21
>

(y32 + y21)w13

x32 + x21
+
y32w32

x32
=⇒ y32

y21
<
x32
x21

, (5.36)

and the corresponding form is
1

y32

1

y21 − y32x21/x32
. (5.37)

Making relevant replacements in (3.18) gives

T7, Y (123)W (231) =
x32 + x21
x1z2z3

[(
z1 +

y21(w13 + w32)

x21

)(
z1 +

(y32 + y21)w13

x32 + x21

)
−
(
z1 +

y21w13

x32 + x21

)
z3

]
,

(5.38)

analogously, for Y (321)W (132) it becomes

T7, Y (321)W (132) =
x32 + x21
x1z2z3

[(
z1 +

y12(w23 + w31)

x21

)(
z1 +

(y12 + y23)w31

x32 + x21

)
−
(
z1 +

y12w31

x32 + x21

)
z3

]
.

(5.39)

Switching y↔w, for Y (231)W (123) and Y (132)W (321) we obtain

T7, Y (231)W (123) =
x32 + x21
x1z2z3

[(
z1 +

(y13 + y32)w21

x21

)(
z1 +

y13(w32 + w21)

x32 + x21

)
−
(
z1 +

y13w21

x32 + x21

)
z3

]
,

T7, Y (132)W (321) =
x32 + x21
x1z2z3

[(
z1 +

(y23 + y31)w12

x21

)(
z1 +

y31(w12 + w23)

x32 + x21

)
−
(
z1 +

y31w12

x32 + x21

)
z3

]
.

(5.40)

Finally for T8 in Y (123)W (321), the condition c13<c23 is replaced by

(y32 + y21)(w12 + w23)

x32 + x21
<
y32w23

x32
=⇒ x21

x32
>
y21
y32

+
w12

w23
+
y21
y32

w12

w23
≡ γ, (5.41)

and the corresponding form is
1

x32

1

x21 − x32γ
, (5.42)

similarly, c13>c12+c23 is replaced by

(y32 + y21)(w12 + w23)

x32 + x21
>
y21w12

x21
+
y32w23

x32
=⇒

(
y32
y21
− x32
x21

)(
w23

w12
− x32
x21

)
< 0, (5.43)

by trivially adjusting the prefactors of (5.2), we get the corresponding form

(y21w32 + y32w21)

(x32y21 − x21y32)(−x32w21 + x21w32)
. (5.44)
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Making relevant replacements in (3.20) gives

T8, Y (123)W (321) =
x32 + x21
x1z1z2z3

[(
z2 +

y32w23

x32

)(
z1 +

y21w12

x21

)(
z1 +

(y32 + y21)(w12 + w23)

x32 + x21

)
−
(

y21w12

x32 + x21

(
z2 +

y32w23

x21

)
+

(
z2 +

y32w23

x32 + x21

)
z1

)
z3

]
,

(5.45)

analogously, for Y (321)W (123) it becomes

T8, Y (321)W (123) =
x32 + x21
x1z1z2z3

[(
z2 +

y23w32

x32

)(
z1 +

y12w21

x21

)(
z1 +

(y12 + y23)(w32 + w21)

x32 + x21

)
−
(

y12w21

x32 + x21

(
z2 +

y23w32

x21

)
+

(
z2 +

y23w32

x32 + x21

)
z1

)
z3

]
.

(5.46)

Next for Y (132)W (231), we trivially have c13<c12 since

y31w13

x32 + x21
<

(y23 + y31)(w13 + w32)

x21
(5.47)

always holds, which forbids the situation of c13>c12+c23 so we only need to discuss whether c13 is greater

than c23. The condition c13<c23 is replaced by

y31w13

x32 + x21
<
y23w32

x32
=⇒ y31

y23
<

(
1 +

x21
x32

)
w32

w13
≡ δ, (5.48)

and the corresponding form is
1

y31

1

y23 − y31/δ
. (5.49)

Making relevant replacements in (3.20) gives

T8, Y (132)W (231) =
x32 + x21
x1z1z2z3

(
z1 +

y31w13

x32 + x21

)[(
z1 +

(y23 + y31)(w13 + w32)

x21

)(
z2 +

y23w32

x32

)
− z2z3

]
,

(5.50)

analogously, for Y (231)W (132) it becomes

T8, Y (231)W (132) =
x32 + x21
x1z1z2z3

(
z1 +

y13w31

x32 + x21

)[(
z1 +

(y13 + y32)(w23 + w31)

x21

)(
z2 +

y32w23

x32

)
− z2z3

]
.

(5.51)

Last for Y (213)W (312), we trivially have c13<c23 since

y31w13

x32 + x21
<

(y31 + y12)(w21 + w13)

x32
(5.52)

always holds. Therefore the sum in (3.20) trivially has one term only, which gives

T8, Y (213)W (312) =
x32 + x21
x1z1z2z3

[(
z1 +

y12w21

x21

)(
z1 +

y31w13

x32 + x21

)(
z2 +

(y31 + y12)(w21 + w13)

x32

)
− z3

(
y31w13

x32 + x21

(
z1 +

y12w21

x21

)
+ z1z2

)]
,

(5.53)
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analogously, for Y (312)W (213) it becomes

T8, Y (312)W (213) =
x32 + x21
x1z1z2z3

[(
z1 +

y21w12

x21

)(
z1 +

y13w31

x32 + x21

)(
z2 +

(y21 + y13)(w31 + w12)

x32

)
− z3

(
y13w31

x32 + x21

(
z1 +

y21w12

x21

)
+ z1z2

)]
.

(5.54)
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6. The Correct Sum and its Mondrian Diagrammatic Interpretation

Collecting the 36 co-positive products for all ordered subspaces of y and w, we can continue to sum these

results. And this time it indeed reaches the correct answer. Instead of a brute-force summation, for each

piece we delicately separate the contributing and the spurious parts. The former manifest the Mondrian

diagrammatic interpretation with which they nicely sum to (4.6), while the latter sum to zero at the end.

1 1 1
1

1 12

2 2

2 2

2 33
3

3

3

3

Figure 2: Legal seed diagrams of X(123)Y (123): ladders and tennis courts.

The first example is Y (123)W (123), for which the form (5.4) can be rewritten as

T1, Y (123)W (123) =
1

D12D13D23
Y (123)W (123)

D13 + y21w32 + y32w21

x1z3

=
1

D12D13D23 z1z2z3
X(123)Y (123)W (123)× x21x32z1z2(D13 + y21w32 + y32w21)

= (prefactors)× (x21x32z1z2D13 + x21x32z1z2(y21w32 + y32w21)),

(6.1)

where again we will drop the prefactors that simply encode its information of ordered subspaces as well as

physical poles. The first term above denotes the seed diagram which pictorially is a horizontal ladder, the

first diagram given in figure 2. According to the contact rules conceived in the introduction, since boxes

1, 2 have a horizontal contact and so do boxes 2, 3, we can trivially read off the factor x21x32z1z2D13 from

that ladder diagram. In fact, this factor originates from x21x32z12z23D13 in the ordered subspace Z(321),

before we sum over all subspaces of z that admit it. As we have stated, Y (123)W (123) forbids any vertical

contact of boxes (or loops), so we only have a horizontal ladder for this subspace, while the rest terms are

spurious. For later convenience, we can define

T1, Y (123)W (123) = (100000) + S1, Y (123)W (123),

S1, Y (123)W (123) ≡ x21x32z1z2(y21w32 + y32w21),
(6.2)

where the symbol (100000) denotes which ones are present for W (123) among the six legal seed diagrams

for X(123)Y (123) in figure 2, as the latter cover two distinct topologies of various orientations at 3-loop.

The numbers filled in the boxes above are uniquely determined by the orderings X(123)Y (123), and if the

ordering of w conflicts with that of y, the relevant diagram is excluded.
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Analogously, for W (132) we have

T2, Y (123)W (132) = x21x32z1z2D13 + x21(x32 + x21)z
2
1y32w23 + S2, Y (123)W (132),

= (100100) + S2, Y (123)W (132),

S2, Y (123)W (132) = x21z1(x32z2 − y21w23)y32w31,

(6.3)

where (100100) denotes the first and fourth diagrams in figure 2 are present. Note that, (x32+x21) in the

first line is nothing but (x3−x1), which means a horizontal contact between boxes 1, 3.

The results for the rest four orderings of w for Y (123) are given by

T5, Y (123)W (213) = x21x32z1z2D13 + (x32 + x21)x32z1z2y21w12 + S5, Y (123)W (213),

= (101000) + S5, Y (123)W (213),

S5, Y (123)W (213) = x21x32z1z2y21w31

(6.4)

for W (213), and

T7, Y (123)W (231) = x21x32z1z2D13 + (x32 + x21)x32z1z2y21(w13 + w32) + x32z2y21(y32 + y21)(w13 + w32)w13

+ S7, Y (123)W (231),

= (101001) + S7, Y (123)W (231),

S7, Y (123)W (231) = −x21x32z2z3y21w13

(6.5)

for W (231), and

T4, Y (123)W (312) = x21x32z1z2D13 + x21(x32 + x21)z
2
1y32(w21 + w13) + x21z1(y32 + y21)y32w13(w21 + w13)

+ S4, Y (123)W (312),

= (100110) + S4, Y (123)W (312),

S4, Y (123)W (312) = −x21x32z1z3y32w13

(6.6)

for W (312), and

T8, Y (123)W (321) = x21x32z1z2D13 + y21y32w12w23D13

+ (x32 + x21)x32z1z2y21w12 + x21(x32 + x21)z
2
1y32w23

+ x21z1(y32 + y21)y32(w12 + w23)w23 + x32z2y21(y32 + y21)w12(w12 + w23)

+ S8, Y (123)W (321),

= (111111) + S8, Y (123)W (321),

S8, Y (123)W (321) = −x21x32z3(z2y21w12 + z1y32w23) + x21z3y21y32w12w23

(6.7)
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for W (321). It is clear that for different orderings of w, although their positive variables are different, the

factors corresponding to any contact between boxes are the same. For example, both W (213) and W (231)

admit the third diagram in figure 2, so the relevant w factors are w12 and (w13+w32) respectively, both of

which equal to (w1−w2). We also see that Y (123)W (321) admits all six diagrams, since the orderings of

y and w are completely opposite.

Let’s sum the six spurious parts over subspaces of w for Y (123), which gives

SY (123) =
1

D12D13D23 z1z2z3w1w2w3
X(123)Y (123)× x21y21(x32z2 − y32w2)(z1w3 − z3w1)

= (prefactors)× x21y21(x32z2 − y32w2)(z1w3 − z3w1),

(6.8)

and as usual the prefactors are dropped. For the sum of each seed diagram over all subspaces that admit

it, we will present examples of two distinct topologies below.

First, for the first diagram in figure 2, x21x32z1z2D13 trivially remains the same after we sum it over

subspaces of y and w, since the completeness relation gives∑
Y

Y (. . .)
∑
W

W (. . .) =
1

y1y2y3w1w2w3
, (6.9)

then it becomes x2x3z1z2D13 after we sum it over subspaces of x that admit it, since∑
admitting X

x21x32 = X(123)x21x32 =
1

x1
=

1

x1x2x3
x2x3, (6.10)

and this is the correct answer, as one of those in (4.6).

Then, for the third diagram in figure 2, x31x32z1z2y21w12 becomes x23z1z2y2w1 since∑
admitting Y

∑
admitting W

y21w12 =
1

y3w3
Y (12)W (21) y21w12 =

1

y1y2y3w1w2w3
y2w1, (6.11)

as well as ∑
admitting X

x31x32 = X(σ(12) 3)x31x32 =
1

x1x2x3
x23, (6.12)

where

X(σ(12) 3) = X(123) +X(213) =
x3

x1x2(x3 − x1)(x3 − x2)
, (6.13)

and this is another one in (4.6). The rest four diagrams of different orientations are similar.

We can continue the separation for the rest five orderings of y, each of which contains six orderings of

w. Since we still work in X(123), the general seed diagrams for different orderings of y are given in figure

3, where some boxes are kept blank as the ordering of x alone can only fix part of numbers filled in these

boxes. Straightforwardly, for Y (132) we have

T2, Y (132)W (123) = (100100) + S2, Y (132)W (123),

S2, Y (132)W (123) = x21z1(x32z2 − y23w21)y31w32

(6.14)
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1
1

2
3

3

Figure 3: Legal seed diagrams of X(123) of which some boxes are kept blank.

for W (123), and

T1, Y (132)W (132) = (100000) + S1, Y (132)W (132),

S1, Y (132)W (132) = 0
(6.15)

for W (132), and

T6, Y (132)W (213) = (101110) + S6, Y (132)W (213),

S6, Y (132)W (213) = x21x32z1z2y31w31

(6.16)

for W (213), and

T8, Y (132)W (231) = (111111) + S8, Y (132)W (231),

S8, Y (132)W (231) = −x21z2(x32z3 − y23w32)y31w13

(6.17)

for W (231), and

T3, Y (132)W (312) = (100000) + S3, Y (132)W (312),

S3, Y (132)W (312) = 0
(6.18)

for W (312), and

T7, Y (132)W (321) = (101001) + S7, Y (132)W (321),

S7, Y (132)W (321) = −x21x32z2z3y31w12

(6.19)

for W (321). The sum of six spurious parts over subspaces of w for Y (132) is

SY (132) = x21y31(x32z2(z1w3 − z3w1)− y23w3(z1w2 − z2w1)). (6.20)

Then for Y (213), we have

T5, Y (213)W (123) = (101000) + S5, Y (213)W (123),

S5, Y (213)W (123) = x21x32z1z2y31w21

(6.21)

for W (123), and

T6, Y (213)W (132) = (101101) + S6, Y (213)W (132),

S6, Y (213)W (132) = x21x32z1z2y31w31

(6.22)
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for W (132), and

T1, Y (213)W (213) = (100000) + S1, Y (213)W (213),

S1, Y (213)W (213) = 0
(6.23)

for W (213), and

T3, Y (213)W (231) = (100000) + S3, Y (213)W (231),

S3, Y (213)W (231) = 0
(6.24)

for W (231), and

T8, Y (213)W (312) = (111111) + S8, Y (213)W (312),

S8, Y (213)W (312) = −x21x32z1z3y31w13

(6.25)

for W (312), and

T4, Y (213)W (321) = (100110) + S4, Y (213)W (321),

S4, Y (213)W (321) = −x21x32z1z3y31w23

(6.26)

for W (321). The sum of six spurious parts over subspaces of w for Y (213) is

SY (213) = 0. (6.27)

Then for Y (231), we have

T7, Y (231)W (123) = (101010) + S7, Y (231)W (123),

S7, Y (231)W (123) = −x21x32z2z3y13w21

(6.28)

for W (123), and

T8, Y (231)W (132) = (111111) + S8, Y (231)W (132),

S8, Y (231)W (132) = −x21z2(x32z3 − y32w23)y13w31

(6.29)

for W (132), and

T3, Y (231)W (213) = (100000) + S3, Y (231)W (213),

S3, Y (231)W (213) = 0
(6.30)

for W (213), and

T1, Y (231)W (231) = (100000) + S1, Y (231)W (231),

S1, Y (231)W (231) = 0
(6.31)

for W (231), and

T6, Y (231)W (312) = (101101) + S6, Y (231)W (312),

S6, Y (231)W (312) = x21x32z1z2y13w13

(6.32)
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for W (312), and

T2, Y (231)W (321) = (100100) + S2, Y (231)W (321),

S2, Y (231)W (321) = x21z1(x32z2 − y32w12)y13w23

(6.33)

for W (321). The sum of six spurious parts over subspaces of w for Y (231) is

SY (231) = −x21w2y13y32(z1w1 − z2w3). (6.34)

Then for Y (312), we have

T4, Y (312)W (123) = (100101) + S4, Y (312)W (123),

S4, Y (312)W (123) = −x21x32z1z3y13w32

(6.35)

for W (123), and

T3, Y (312)W (132) = (100000) + S3, Y (312)W (132),

S3, Y (312)W (132) = 0
(6.36)

for W (132), and

T8, Y (312)W (213) = (111111) + S8, Y (312)W (213),

S8, Y (312)W (213) = −x21x32z1z3y13w31

(6.37)

for W (213), and

T6, Y (312)W (231) = (101110) + S6, Y (312)W (231),

S6, Y (312)W (231) = x21x32z1z2y13w13

(6.38)

for W (231), and

T1, Y (312)W (312) = (100000) + S1, Y (312)W (312),

S1, Y (312)W (312) = 0
(6.39)

for W (312), and

T5, Y (312)W (321) = (101000) + S5, Y (312)W (321),

S5, Y (312)W (321) = x21x32z1z2y13w12

(6.40)

for W (321). The sum of six spurious parts over subspaces of w for Y (312) is

SY (312) = x21x32z1y13(z2w1 − z3w3). (6.41)

Finally for Y (321), we have

T8, Y (321)W (123) = (111111) + S8, Y (321)W (123),

S8, Y (321)W (123) = −x21x32z3(z2y12w21 + z1y23w32) + x21z3y12y23w21w32

(6.42)
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for W (123), and

T7, Y (321)W (132) = (101010) + S7, Y (321)W (132),

S7, Y (321)W (132) = −x21x32z2z3y12w31

(6.43)

for W (132), and

T4, Y (321)W (213) = (100101) + S4, Y (321)W (213),

S4, Y (321)W (213) = −x21x32z1z3y23w31

(6.44)

for W (213), and

T2, Y (321)W (231) = (100100) + S2, Y (321)W (231),

S2, Y (321)W (231) = x21z1(x32z2 − y12w32)y23w13

(6.45)

for W (231), and

T5, Y (321)W (312) = (101000) + S5, Y (321)W (312),

S5, Y (321)W (312) = x21x32z1z2y12w13

(6.46)

for W (312), and

T1, Y (321)W (321) = (100000) + S1, Y (321)W (321),

S1, Y (321)W (321) = x21x32z1z2(y12w23 + y23w12)
(6.47)

for W (321). The sum of six spurious parts over subspaces of w for Y (321) is

SY (321) = x21y23(x32z1(z2w1 − z3w3)− y12w3(z1w1 − z3w2)). (6.48)

Collecting the six spurious sums for all ordered subspaces of y, namely (6.8), (6.20), (6.27), (6.34), (6.41)

and (6.48), we can further sum them over y-space as

S123 = x21(−2z1y2y3w2w3 − z1y1w1(y2w3 + y3w2) + z2y3w3(y1w2 + y2w1) + z3y2w2(y1w3 + y3w1)), (6.49)

where subscript 123 denotes this sum belongs to the sector of X(123). In order to obtain the full result,

which is permutation invariant of loop numbers, we calculate the final sum:

S123X(123) + (5 permutations of 1,2,3) = 0, (6.50)

which nicely vanishes as expected. Therefore, the contributing parts indeed form the correct answer (4.6)

which includes the six Mondrian diagrams in figure 2 and their permutations. Note the hidden prefactors

are nothing but the reciprocal of ‘Denominator’ in (4.8).
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7. Summary: a Mondrian Preamble

By separating the contributing and the spurious parts of each form in all ordered subspaces and assigning

the former with corresponding Mondrian factors, which follow simple rules given by

horizontal contact: (xj − xi)(zi − zj)

vertical contact: (yj − yi)(wi − wj)

no contact: Dij = (xj − xi)(zi − zj) + (yj − yi)(wi − wj)

(7.1)

between any two loops labelled by i, j, we obtain the seed diagrams. If we assume the spurious terms will

always sum to zero at the end, there is no need to sum the seed diagrams over all ordered subspaces since

they are already topologically valuable. There is a simple way to find seed diagrams: let’s work in simply

one ordered subspace X(12)Z(21)Y (12)W (21) at 2-loop, as the first nontrivial example. Then, it is clear

that D12 is trivially positive, so there is no positivity condition to be imposed. But as a physical pole D12

must appear in the denominator, which identically turns the form into

1

x1x2 z1z2 y1y2w1w2

D12

D12
=

1

x1x2 z1z2 y1y2w1w2

(x2 − x1)(z1 − z2) + (y2 − y1)(w1 − w2)

D12
. (7.2)

As usual, dropping the prefactors which contain all physical poles, we precisely obtain two 2-loop ladders

of horizontal and vertical orientations (the vertical one is shown in figure 1).

The 3-loop example is more interesting. Similarly in ordered subspace X(123)Z(321)Y (123)W (321),

we can separate the triple product as

D12D13D23 =x21z12 · x32z23 ·D13 + y21w12 · y32w23 ·D13

+ x31z13 · x32z23 · y21w12 + x21z12 · x31z13 · y32w23

+ x21z12 · y31w13 · y32w23 + y21w12 · y31w13 · x32z23,

(7.3)

which precisely correspond to the six diagrams in figure 2 (including two ladders and four tennis courts).

Here, for notational compactness we have defined x31≡x32+x21 for instance, as x32 and x21 are primitive

positive variables in this subspace while x31 is not.

In general, Mondrian diagrams of higher loop levels satisfy this neat pattern: the product of all Dij ’s

can be expanded as a sum of all topologies of all orientations, in an ordered subspace where the orderings

of x, z are opposite, and so are those of y, w. However, there are more subtle issues to be clarified, and we

will discuss them more systematically in the subsequent work.
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A. The Master Form at 4-loop

To obtain the master form T64 (its subscript is due to 26=64) at 4-loop by dividing the z-space, we define

η12 ≡ z1 − z2 + c12 > 0, η13 ≡ z1 − z3 + c13 > 0, η23 ≡ z2 − z3 + c23 > 0,

η14 ≡ z1 − z4 + c14 > 0, η24 ≡ z2 − z4 + c24 > 0, η34 ≡ z3 − z4 + c34 > 0,
(A.1)

the sum is then

T64 ≡ Z−14 ∩ Z
−
24 ∩ Z

−
34 ∩ Z

−
13 ∩ Z

−
23 ∩ Z

−
12

=
1

c12

[
1

c13c23

(
1

c14c24c34
Z(4321) +

1

c14c24η34
Z(3421) +

1

c14η24η34
Z(3241) +

1

η14η24η34
Z(3214)

)
+

1

c13η23

(
1

c14c24c34
Z(4231) +

1

c14η24c34
Z(2431) +

1

c14η24η34
Z(2341) +

1

η14η24η34
Z(2314)

)
+

1

η13η23

(
1

c14c24c34
Z(4213) +

1

c14η24c34
Z(2413) +

1

η14η24c34
Z(2143) +

1

η14η24η34
Z(2134)

)]
+

1

η12

[
1

c13c23

(
1

c14c24c34
Z(4312) +

1

c14c24η34
Z(3412) +

1

η14c24η34
Z(3142) +

1

η14η24η34
Z(3124)

)
+

1

η13c23

(
1

c14c24c34
Z(4132) +

1

η14c24c34
Z(1432) +

1

η14c24η34
Z(1342) +

1

η14η24η34
Z(1324)

)
+

1

η13η23

(
1

c14c24c34
Z(4123) +

1

η14c24c34
Z(1423) +

1

η14η24c34
Z(1243) +

1

η14η24η34
Z(1234)

)]
=

1

c12c13c14c23c24c34

N

z1z2z3z4 η12η13η14η23η24η34
,

(A.2)

where
N = (z1 + c12)(z1 + c13)(z1 + c14)(z2 + c23)(z2 + c24)(z3 + c34)

− z1z2z3(z1 + c14)(z2 + c24)(z3 + c34)− z1z2z4(z1 + c13)(z2 + c23)(z3 + c34)

− z1z3z4(z1 + c12)(z2 + c23)(z2 + c24)− z2z3z4(z1 + c12)(z1 + c13)(z1 + c14)

+ z1z2z3z4 (− (z1 + c12)(z3 + c34)− (z1 + c13)(z2 + c24)− (z1 + c14)(z2 + c23)

+ (z1 + c12)(z3 + z4) + (z1 + c13)(z2 + z4) + (z1 + c14)(z2 + z3)

+ (z2 + c23)(z1 + z4) + (z2 + c24)(z1 + z3) + (z3 + c34)(z1 + z2)

− z1z2 − z1z3 − z1z4 − z2z3 − z2z4 − z3z4) .

(A.3)

Now let’s determine T1≡Z+
41 ∩ Z

+
42 ∩ Z

+
43 ∩ Z

+
31 ∩ Z

+
32 ∩ Z

+
21, for instance, by flipping all cij ’s to −cji’s in

the denominator and setting all cij ’s to zero in the numerator, which gives

T1 =
1

c12c13c14c23c24c34

(z1 − z3)(z1 − z4)(z2 − z4)
z4 ζ12ζ13ζ14ζ23ζ24ζ34

, (A.4)
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where we have similarly defined

ζ12 ≡ z1 − z2 − c21 > 0, ζ13 ≡ z1 − z3 − c31 > 0, ζ23 ≡ z2 − z3 − c32 > 0,

ζ14 ≡ z1 − z4 − c41 > 0, ζ24 ≡ z2 − z4 − c42 > 0, ζ34 ≡ z3 − z4 − c43 > 0.
(A.5)

To confirm this is indeed the correct answer, we can separate it into two parts as

T1 =
(
Z+
41 ∩ Z

+
42 ∩ Z

+
31

)
∩
(
Z+
43 ∩ Z

+
32 ∩ Z

+
21

)
=

(z1 − z4)(z2 − z4)(z1 − z3)
c14c24c13 ζ14ζ24ζ13

× 1

c34c23c12 z4 ζ34ζ23ζ12
, (A.6)

where the second part can be trivially obtained if we treat ζ34, ζ23, ζ12 as genuinely positive variables. For

the first part, in terms of ζ34, ζ23, ζ12 we have

ζ13 = ζ12 + ζ23 + c21 + c32 − c31 > 0 =⇒ c31 < ζ12 + ζ23 + c21 + c32, (A.7)

and the corresponding form is

1

c31
− 1

c31 − (ζ12 + ζ23 + c21 + c32)
=
z1 − z3
c13 ζ13

. (A.8)

Analogously we have

ζ24 = ζ23 + ζ34 + c32 + c43 − c42 > 0 =⇒ z2 − z4
c24 ζ24

, (A.9)

as well as

ζ14 = ζ12 + ζ23 + ζ34 + c21 + c32 + c43 − c41 > 0 =⇒ z1 − z4
c14 ζ14

, (A.10)

therefore, we have neatly confirmed expression (A.4) of T1.

Another check of the master form is the completeness relation

Z−14∩Z
−
24∩Z

−
34∩Z

−
13∩Z

−
23∩Z

−
12 +Z−14∩Z

−
24∩Z

+
34∩Z

−
13∩Z

−
23∩Z

−
12 = Z−14∩Z

−
24∩Z

−
13∩Z

−
23∩Z

−
12, (A.11)

for instance, of which the essential part is Z−34+Z+
34 = I34. To prove this, we can focus on the numerators

while omitting their common denominator, so that the relation becomes

N −N(c34=0, 3↔4) =

(
N

η34

)
c34→∞

η34, (A.12)

where N is the numerator in (A.3). Let’s immediately give some explanation of the quantities above. For

the RHS, unlike the 3-loop case (3.21), it is much more nontrivial to fix this quintuple co-positive product.

Hence we use another way to circumvent it, which is extremely simple: we set c34→∞ and then evaluate

its residue, since this trivializes z3−z4+c34>0, after that we need a compensating factor η34 as terms of

the LHS are purely numerators. For the second term of the LHS, the operation (c34 = 0, 3↔4) is easy to

understand, while the minus sign comes from the operation (c34→−c43, 3↔4) of the denominator

1

z3 + c34 − z4
→ 1

z3 − c43 − z4
→ 1

z4 − c34 − z3
= − 1

z3 + c34 − z4
, (A.13)

as this term demands z4−z3−c34>0, but to have a common denominator produces an minus sign.
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