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fect operators are aligned in Regge trajectories ∆̂(s). These results require the correlator

of two local operators and the defect to be bounded in a certain region, a condition that

we do not prove in general. We check our conclusions against examples in perturbation

theory and holography, and we make specific predictions concerning the spectrum of defect

operators on Wilson lines. We also give an interpretation of the large s spectrum in the

spirit of the work of Alday and Maldacena [2].
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1 Introduction and summary

The space of conformal field theories (CFTs) is large and varied. Despite this, remark-

able features are common to all members of this special family of quantum field theories.

The most obvious ones are simple consequences of symmetry, unitarity and locality, which

respectively impose that operators form representations of the conformal group, obey uni-

tarity bounds, and that a stress tensor exists. In recent years, it has become clear that

universality also emerges at a more detailed level. It was first discovered that the spectrum

and OPE coefficients of operators with asymptotically large spin (`) is tied to the low-lying

(low-twist τ = ∆ − `) CFT data [2–4]. Recently [1], it was shown that the relation is

analytic rather than asymptotic, and that operators in every CFT are organized in Regge

trajectories. These facts are best understood as consequences of crossing symmetry, and

as such are still rooted in the presence of conformal invariance and unitarity constraints,
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albeit in a far less obvious fashion. For instance, operators of spin as low as two lie in

Regge trajectories, and this is a consequence of boundedness of the four-point function in

the so called Regge limit, which in turn follows from reality of the OPE coefficients, i.e.

from unitarity. The contribution of individual Regge trajectories to the crossing equation

is enhanced and isolated when pairs of operators become light-like separated. Hence, the

lightcone bootstrap is the main source of analytic information on the double-twist operators

that populate the trajectories. This line of development nicely complements the study of

crossing in Euclidean configuration, which is most sensitive to low-dimensional data, rather

than to operators with low twist. Interestingly, the numerical results obtained by studying

the crossing equation around a Euclidean point [5] (see [6, 7] for pedagogical reviews and

further references) are also sensitive to the Lorentzian physics of the lightcone limit [8].1

The combination of the two approaches yields unprecedented amount of information on a

non-supersymmetric, higher dimensional CFT such as the critical 3d Ising model [8].

The spectrum of local operators does not exhaust the set of observables in a CFT.

Extended probes arise naturally both from an experimental and from a theoretical point of

view. Boundaries and interfaces, surface operators, Wilson and ’t Hooft lines are instances

of what we refer to collectively as defects. If the dynamics on a defect preserves the space-

time symmetries that do not deform it, we call it a conformal defect. Conformal defects

support a spectrum of local excitations which are organized according to representations of

the preserved symmetries. Locality implies that the spectrum can be studied in the highly

symmetric case of a flat or spherical defect, in which the algebra of preserved spacetime

transformations is promoted to a full symmetry group. For reasons to become clear shortly,

we are interested in a space-like p-dimensional defect in d dimensions, so that the group

is SO(p + 1, 1) × SO(d − p − 1, 1). We shall also often denote the codimension as q, that

is, p+ q = d. The defect CFT data is constrained by crossing symmetry of the four-point

function of defect primaries, and is tied to the bulk via crossing symmetry of correlators

involving at least two bulk primaries [11, 12]. There is a growing effort in refining our

understanding of the constraints [13–17], extracting numerical and analytic information

from them [18–22], and performing direct computations of correlators in specific models,

see e.g., [23–32].

In this paper, we address the question whether the defect spectra exhibit universal

features akin those briefly discussed above. Of course, crossing symmetry of the defect

four-point function implies the existence of double twist defect operators organized in

Regge trajectories. Furthermore, the theory on the defect comes naturally endowed with

a global symmetry, the SO(q − 1, 1) group of boosts and rotations around a defect of

codimension q. We call transverse spin, and we denote as s, the associated charge. This

global symmetry is the main ingredient of our analysis. In what follows, we show that

the spectrum of any defect CFT includes universal accumulation points at large s. Given

any scalar bulk primary operator of dimension ∆φ, the defect spectrum contains primaries

of dimension

∆̂ ' s+ ∆φ + 2m, s→∞ , (1.1)

1In [9] a new analytic approach has been put forward, which provides the exact spectrum exchanged in

a four-point function which is extremal in the standard bootstrap sense [10].
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for asymptotically large s and (non-negative) integer m. In fact, the entire 1/s expansion

of the ∆̂ is computable once the bulk CFT data is known. In eq. (1.1), and in the rest

of the paper, quantum numbers with a hat refer to the defect spectrum, except for the

charge s.

It is not difficult to build some intuition for the large s limit. Imagine to couple a

p-dimensional CFT to a d-dimensional one via a weakly relevant operator for the lower

dimensional theory. Further, assume that a short flow lands the system on a defect CFT.

The s = 0 sector of the defect spectrum is perturbatively close to the scaling dimensions

of the original p-dimensional theory. On the other hand, operators which transform under

transverse rotations are essentially bulk primaries evaluated at the location of the defect.

The defect primaries in eq. (1.1) are obtained by decomposing the conformal family of a

scalar bulk primary in representations of SO(p + 1, 1) × SO(q − 1, 1), i.e., they are of the

schematic form ∂si (∂
j∂j)

mφ, where i, j denote directions orthogonal to the defect. There-

fore we shall call transverse derivative operators the primaries whose scaling dimensions

obey eq. (1.1). Operators of this kind also appear in the defect spectrum of large N the-

ories. The non-trivial statement, analogous to the case of double-twist operators in an

ordinary CFT, is that their anomalous dimensions2 are not only suppressed at weak cou-

pling or large N , but also at large s. This expansion parameter is lost in the special case of

a codimension one defect, i.e. a boundary or an interface, transverse derivative operators

still exist at small coupling or large N in this case [15], however, we cannot constrain here

their anomalous dimension in a generic CFT.3

Equation (1.1) can be obtained by lightcone bootstrap techniques, which we review and

apply to this case in section 2. In section 3, we derive a Lorentzian inversion formula for the

defect OPE (3.42), analogous to the one obtained in [1] for the four-point function of local

operators — see also the recent derivation in [33]. The formula yields scaling dimensions of

defect operators and bulk-to-defect OPE coefficients as analytic functions of the transverse

spin, and thus implies the existence of trajectories in the (∆̂, s) space. It also resums the

results that could be obtained by a systematic analysis of lightcone expansion, as done

in [34] for the case without defects. However, (3.42), and thus the analytic constraint, is

valid only for s larger than a certain minimum s?. Unfortunately, contrary to [1], we are

not able to prove a theory independent upper bound to s?. We therefore ignore if there is

a universal value of the transverse spin beyond which the spectrum of any defect CFT is

constrained by analyticity.

In section 4, we adopt a more physical point of view, and discuss the suppression of

anomalous dimensions at large s in a two-dimensional effective field theory, in a strict

analogy with the work of Alday and Maldacena on large-spin operators [2]. This picture

gives further intuition on additional accumulation points which are not of the form (1.1).

In particular, we discuss adjoint insertions on Wilson lines, and we point out the connection

between their scaling dimension and the inter-quark potential of a meson made of a heavy

2We call “anomalous dimension” the deviation from eq. (1.1). This is perhaps non-standard, but hope-

fully not confusing.
3This does not exclude that a certain degree of universality appears in the large ∆̂ limit also for the

spectrum of a boundary CFT [17].
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Figure 1. The configuration of the insertions in 〈φ(x1)φ(x2)〉. We show a two-dimensional plane,

transverse to the defect, where the two operators lie. The defect is space-like, it intersects the plane

at the origin, and the two operators are placed at (1, 1) and (z, z̄) respectively.

and a light (adjoint) quark. We predict the following asymptotic behavior:

∆̂ ' s+
f(λ)

2
log s , (1.2)

up to 1/N and 1/s corrections. Here we used the standard N = 4 notation for the cusp

anomalous dimension f(λ), even if the result applies to a generic large-N conformal gauge

theory. The important point is that the coefficient of the logarithm is half of the one

appearing in the twist of single-trace operators.

Section 5 is devoted to the study of specific examples. We confirm the predictions of

the lightcone bootstrap and of the inversion formula in various weakly-coupled scenarios,

as well as in holography. In section 6 we summarize the main results and conclude with

an outlook.

2 Lightcone bootstrap with a defect

Let us recall the notation and fix the setup. We consider a flat defect of codimension

q in d spacetime dimensions. We shall also denote the dimension of the defect by p, i.e.,

p+q = d. The defect will always be space-like, except in section 4. Accordingly, we separate

the spacetime indices (µ = 0, . . . , d − 1) in two subsets: orthogonal (i = 0, . . . , q − 1) and

parallel (a = q, . . . , d − 1) to the defect. Our main focus is the two-point function of

identical scalar primaries which belong to the ambient CFT — bulk primaries for short.

The correlator is a function of two cross-ratios, we refer to appendix A for some technical

details and to ref. [12] for a general introduction to the topic of defect CFTs. Let us choose

xa12 = 0, and focus on the two-dimensional plane in the transverse space which contains

the origin and the two insertions. The geometry is shown in figure 1, and the cross-ratios

can be traded for the lightcone coordinates x2 = (z, z̄):

〈φ(x1)φ(x2)〉 =
g(z, z̄)

(|xi1||xi2|)∆φ
=

g(z, z̄)

(zz̄)∆φ/2
. (2.1)
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Some convenient features of the (z, z̄) coordinates in the defect CFT context are discussed

in [17]. The two-point function can be expanded either in the bulk or in the defect channel.

The former involves the fusion of the two external operators, while the latter is obtained by

separately fusing each of them with the defect. Agreement of the two expansions imposes

the following crossing constraint:

g(z, z̄) =

(
(1− z)(1− z̄)

(zz̄)1/2

)−∆φ∑
O

cφφO aO f∆,J(z, z̄) =
∑
Ô

(b
φÔ

)2 f̂τ̂ ,s(z, z̄) . (2.2)

The first sum runs over the bulk spectrum, and f∆,J(z, z̄) is the bulk conformal block for

the exchange of a primary of quantum numbers (∆, J). The prefactor is chosen so that

f0,0(z, z̄) = 1. The OPE data entering the bulk channel is the product of a three-point

function coefficient (cφφO) and the coefficient of the one-point function of the exchanged

bulk operator (aO). The second sum in eq. (2.2) runs over defect primaries. The latter

do not carry so(p) spin when the external operators are scalars, while a charge s under

the transverse so(q − 1, 1) is allowed. The conformal blocks f̂τ̂ ,s(z, z̄) are then labeled by

s and τ̂ = ∆̂ − s which we call the transverse twist. The real numbers b
φÔ

determine

the two-point function 〈φÔ〉.4 The block in the defect channel is known exactly [12] (see

appendix A for the dictionary between our conventions and those of [12]):

f̂τ̂ ,s(z, z̄) = zτ̂ /2z̄τ̂ /2+s
2F1

(
− s, q

2
−1, 2− q

2
−s, z

z̄

)
2F1

(
τ̂ +s,

p

2
, τ̂ +s+ 1− p

2
, zz̄

)
. (2.3)

When q is even, an order of limits ambiguity arises in the definition of the hypergeometric

function, one must first take s to be integer, and then q to be even. This prescription

is henceforth assumed. The bulk-channel conformal blocks are not known in closed-form

for generic dimension and codimension. However, in q = 2 and any d [12], and q = 3

and d = 4 [21], the blocks satisfy the same Casimir equation as the blocks of a four-point

function of local operators, so any result in those cases carries over to the present situation.

In this work we are mostly interested in the lightcone limit (to be defined more precisely

below), and in this limit the bulk blocks are given, for any d and q, by5

f∆,J(z, z̄) = (1− z̄)
∆−J

2

(
2−J (1−z)

∆+J
2 2F1

(
∆ + J

2
,

∆+J

2
,∆+J, 1−z

)
+O((1− z̄))

)
.

(2.4)

One can ask if there can be a solution to the crossing equation (2.2) with a finite

number of blocks in either the bulk or defect decompositions. On the bulk side the answer

is clearly yes: the trivial defect, i.e., the two-point function without a defect has a single

bulk block, that of the identity, which is crossing symmetric. Whether it is possible to

4We use a few slightly different conventions for the subscripts labeling bφÔ throughout the text depending

on the context and expect that the notation is self-explanatory.
5Notice that these are just the familiar (t-channel) SL(2,R) blocks which appear in the lightcone de-

composition of a four-point function of local operators. This is not hard to understand: the SL(2,R)

transformations act on the z cross-ratios in the same way as they do in the case of a four-point function.

They also act on the defect by simply displacing its intersection with the z plane, as they would on a pair

of local operators with ∆1 = ∆4 = 0. Finally, the OPE limit itself is the usual lightcone OPE.
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have a solution with finitely many non-trivial bulk primaries, on top of the identity, is a

question that we do not address here. On the defect side, it is not hard to prove that

eq. (2.2) cannot be satisfied by finitely many defect primary operators if q > 1. Indeed,

the defect block in eq. (2.3) has an unphysical singularity when zz̄ = 1, for any value of
z
z̄ , which is not consistent with the singularity structure of the two-point function in a

Euclidean configuration. For p > 1 the behavior for zz̄ → 1 is

f̂τ̂ ,s(z, z̄)
zz̄→1∼

Γ
(
p−1

2

)
Γ
(

∆̂− p−2
2

)
22−p√πΓ(∆̂)

( z̄
z

)s/2
× 2F1

(
− s, q

2
− 1, 2− q

2
− s, z

z̄

)
(1− zz̄)−p+1 , p > 1 ,

(2.5)

while for p = 1 the singularity is a logarithm, and the following argument is unchanged.

The case where ∆̂ = p−2
2 looks different in (2.5), but in this case too the argument goes

through. It can be easily checked that all the coefficients of the hypergeometric function in

an expansion around z = 0, which is a polynomial of degree s, are positive. Through the

scalar unitarity bound, the sign of the prefactor in (2.5) is also fixed independently of the

spectrum. Finally, positivity of the (b
φÔ

)2 in eq. (2.2) implies that the singularity cannot

be canceled by a finite number of blocks. In the case of a defect of codimension one the

same singularity is instead potentially physical, and the exponent matches the exchange of

the identity in the bulk channel when the theory is free. This allows for the existence of

solutions to the boundary crossing equation with finitely many blocks [11, 18].

It was shown in [3, 4, 35] that analytic information can still be extracted from a

crossing equation that contains infinitely many terms, by focusing on a limit that drastically

simplifies one of the channels. Both in the Euclidean and in the lightcone OPE limits

the identity dominates, say, the t-channel. This statement is theory independent, and is

therefore the source of the universality of the spectrum needed in the s-channel to ensure

crossing symmetry. In the case of the two-point function with a defect, there are two such

simplifying limits. In the z → 0 limit φ(x2) is light-like separated from the defect, and the

defect OPE is dominated by the operators with the smallest τ̂ = ∆̂− s, as it can be seen

in eq. (2.3). Conversely, when (1− z̄)→ 0 φ(x2) is light-like separated from φ(x1). This is

the limit we will study in this section. When (1 − z̄)→ 0 the identity in the bulk channel

dominates the OPE, as it is clear from (2.4), so one may hope that some analytic universal

statement can be made about the defect spectrum. It remains to be proven that a specific

sector of the defect spectrum is mostly sensitive to the identity in the crossed channel, so

that a perturbation theory can be set up. We argue in this direction in subsection 2.1, and

also in subsection 3.3 making use of the inversion formula.

For the moment, we point out that such a sector of the defect spectrum needs to be

perturbatively close to the spectrum of the trivial defect. Indeed, when there is no defect,

translational invariance is preserved, and the identity is the only exchanged bulk primary

g(z, z̄) = 〈φ(x1)φ(x2)〉 (zz̄)∆φ/2 =

(
(zz̄)1/2

(1− z)(1− z̄)

)∆φ

. (2.6)

– 6 –
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That the identity in the bulk channel is crossing symmetric on its own is a difference

with respect to the four-point function: there the identity is never crossing symmetric. As

anticipated in the introduction, the defect OPE of a real primary φ of dimension ∆φ is

regular and only contains primaries of the kind

(∂i)
n(∂j∂

j)mφ ,

{
∆̂ = ∆φ + n+ 2m,

s = n ,
(2.7)

that is, derivatives of φ transverse to the defect. For later convenience, let us also report

the defect OPE coefficients:

b2s,m =
Γ
( q

2 + s
)

Γ(2m+ s+ ∆φ)Γ
(
m− d

2 + ∆φ + 1
)

Γ
(
m− p

2 + s+ ∆φ

)
Γ(∆φ)Γ(m+ 1)Γ(s+ 1)Γ

(
m+ q

2 + s
)

Γ
(
−d

2 + ∆φ + 1
)

Γ
(
2m− p

2 + s+ ∆φ

) .
(2.8)

We shall now argue that, at large s, the spectrum of any defect does contain a sector close

to the trivial defect, in the same sense as ordinary CFT spectra are close to generalized

free theory in the large spin limit. Our strategy in the rest of the section is analogous to

the one presented in [3, 4]. Now, certain weak points in the argument have been pointed

out in [36]. It may be expected that these issues are easier to tackle here with respect to

the analogous ones in the lightcone bootstrap of the four-point function [3, 4], due to the

simplicity of the defect channel blocks. However, in this work we do not try to solve them.

While this section is not completely rigorous, it does define a calculable perturbative series,

whose predictions we test in some examples in section 5. Furthermore, in subsection 3.3

we shall come back to the question with a more rigorous tool in our hands, which will allow

to rigorously prove part of the results that follow.

2.1 The defect spectrum at large transverse spin

In what follows, we would like to analyze the crossing equation (2.2) in the bulk light-cone

limit, and more specifically in the following region:

1− z̄ � z < 1 . (2.9)

In this regime, the contribution of the higher-twist bulk operators is suppressed with

respect to the identity (2.4), while the defect OPE still converges. We can rewrite the

crossing equation as follows:

1 = lim
z̄→1

(
(1− z)(1− z̄)√

zz̄

)∆φ∑
τ̂ ,s

(b
φÔ

)2 f̂τ̂ ,s(z, z̄) . (2.10)

The conformal blocks of (a subsector of) the defect primaries need to match the (1 − z̄)

dependence in the prefactor. However, each conformal block is analytic at z̄ = 1, as long as

z < 1, therefore limz̄→1(1− z̄)∆φ f̂τ̂ ,s = 0 for every operator in the spectrum. We are led to

conclude that the sum in eq. (2.10) does not converge uniformly at z̄ = 1. Let us look for the

region which is responsible for the singularity. At large and positive τ̂ , for fixed s, the blocks

are suppressed by zτ̂ /2 for every z < 1 — see eq. (2.3). Since τ̂ is not subject to a unitarity

– 7 –
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bound, one should worry about the τ̂ → −∞ as well. In perturbation theory, we expect

the transverse twist to be bounded from below. Furthermore, τ̂ generates time translations

in AdS in the Alday-Maldacena picture explored in section 4, and this supports the more

general assumption that τ̂ is bounded from below in a healthy theory. In the heuristic

spirit of the discussion, we will not comment further on this limit. Finally, precisely in the

limit z̄ → 1 the sum over transverse spins, at fixed τ̂ , ceases to be suppressed. In studying

this last region, we replace the blocks with their large s asymptotics:

f̂τ̂ ,s(z, z̄)
s→∞∼
τ̂ fixed

(zz̄)τ̂ /2z̄s
(

z̄

(z̄ − z)

) q−2
2

(1− zz̄)−
p
2

(
1 +O

(
1

s

))
. (2.11)

This approximation is obtained in the region 0 < z < z̄ < 1. Notice that the blocks are

nicely factorized in the pairs (zz̄, τ̂) and (z̄, s) in this limit. If we now plug the asymp-

totics (2.11) in eq. (2.10), and we analyze the equation order by order in z, we see that

eq. (2.10) is satisfied if the following accumulation points exist in the spectrum:

τ̂ = ∆φ + 2m+O(s−α) , s→∞ , (2.12)

for non-negative integer m, and a real positive α to be determined. The presence of a finite

s correction must be allowed, because we only treated the crossing equation (2.10) in the

strict infinite s limit. The operators (2.12) can obviously be thought of as the transverse

derivatives described in eq. (2.7). Once we plug the spectrum (2.12) back in eq. (2.10), we

also deduce that the OPE coefficients themselves should asymptote the ones in eq. (2.8):

b2s,m = s∆φ−1

(
1

Γ(∆φ)

(
m− d

2 + ∆φ

m

)
+O(s−β)

)
, s→∞ , (2.13)

for some positive β. Let us emphasize what would be needed to make this argument

rigorous — see appendix F in [36] for a more detailed discussion. One should prove that

the following limit exists at fixed τ̂ :

ρ(τ̂) = lim
z̄→1

∞∑
s=0

(b
φÔ

)2 (1− z̄)∆φ z̄s , (2.14)

and that plugging ρ(τ̂) in eq. (2.10) one obtains a convergent sum over τ̂ ,6 so that eq. (2.10)

can be analyzed order by order in z. The rest is then equivalent to the previous discussion:

since the trivial defect in particular solves eq. (2.10), we obtain ρ(τ̂) by plugging the OPE

coefficient of the trivial defect in eq. (2.14). At this point, in turn, the Hardy-Littlewood

tauberian theorem [36] can be used to deduce from eq. (2.14) the asymptotics (2.13).

Finally, we stress that eq. (2.13) establishes an averaged property of the spectrum at large

spin, while we have no control on the OPE coefficient of single defect primaries.7

It is interesting to look in detail at the way the identity is reproduced at leading order

in 1− z̄. This highlights the relation between the large s and small 1− z̄ limits [3, 4]. Let us

6Up to the issue of bounding the spectrum at negative τ̂ , this step can be done precisely as in [4].
7Let us also mention that the power-law form of the subleading corrections to eqs. (2.12)–(2.13) is

assumed, but not implied even by the more rigorous approach.

– 8 –
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write the r.h.s. of the crossing equation (2.2) only including the transverse derivatives and

using the large s asymptotics of the blocks eq. (2.11) and of the OPE coefficients eq. (2.13).

We also replace the sum over spins by an integral, that we cutoff at some minimum spin Λ:

(
z̄

(z̄ − z)

) q−2
2

(1− zz̄)−
p
2

∞∑
m=0

(
m− d

2 + ∆φ

m

)
(zz̄)∆φ/2+m

(
1

Γ(∆φ)

∫ ∞
Λ

dss∆φ−1z̄s
)

=

( √
zz̄

1− z

)∆φ Γ(∆φ,−Λ log z̄)

Γ(∆φ)

1

(− log z̄)∆φ
. (2.15)

In the z̄ → 1 limit, the result matches the bulk identity, for any finite Λ, however large.

This confirms that only asymptotically large values of s matter. In fact, Λ could even be

sent to infinity, as long as the growth is slower than 1/(1 − z̄). This signals which range

of spin is important in reproducing the bulk OPE limit, and cannot be excluded from

the integral:

s ∼ 1

1− z̄ . (2.16)

An alternative way to understand this fact is through a saddle-point approximation of

the simple integral in eq. (2.15), as in [3], which is accurate for large ∆φ. The rela-

tion (2.16) should be contrasted with the one relevant to double twist operators, that is

` ∼ 1/(1 − z̄)1/2 [3, 4]. The different behavior here is responsible for the different finite

spin exponent α — see eq. (2.12) below — of the transverse derivatives with respect to the

one of double twists.

Finite spin corrections to eqs. (2.12) and (2.13) can be computed by taking into account

subleading contributions to the bulk OPE in the z̄ → 1 limit. A trivial series of corrections

is required to match higher orders in 1− z̄ coming from the bulk identity block. Only the

OPE coefficients are affected, and all of the corrections are trivially obtained by expanding

eq. (2.8) at large s. More interestingly, new bulk primaries start contributing at some order

in 1− z̄, according to their twist. For the sake of simplicity, we restrict the analysis to the

correction due to a single bulk block. The case in which infinitely many primaries with

(nearly) degenerate twist exist can also be dealt with, as done in [37, 38] for the four-point

function without defects, and is relevant to weakly coupled CFTs. We leave this analysis

for future work. We assume that the leading contribution after the identity comes from a

single bulk block with minimal twist τmin and dimension ∆min:

(
(zz̄)1/2

(1− z)(1− z̄)

)∆φ(
1 + cφφOmin

amin f∆min,Jmin(z, z̄)
)
∼

∑
s large

∆̂−s= τ̂(s)

b2s,τ̂(s) f̂τ̂(s),s(z, z̄) .

(2.17)

We already assumed that in the regime (2.9) we can account for the leading twist operator

Omin by modifying the trajectory τ̂(s) of the transverse derivative operators and their

OPE coefficient. Let us check that this is sufficient to reproduce the l.h.s., and let us only

consider the leading transverse twist trajectory. This amounts to taking the small z limit

– 9 –



J
H
E
P
0
9
(
2
0
1
8
)
0
9
1

in the bulk collinear block (2.4):

f∆,J(z, z̄)
z→0∼ −2∆−1 Γ

(
1
2 + ∆+J

2

)
√
πΓ
(

∆+J
2

) (1− z̄)
∆−J

2

(
2

(
γE + ψ

(
∆ + J

2

))
+ log z

)
. (2.18)

Note that this contribution is only singular as z̄ → 1 if ∆φ − ∆−J
2 < 0, in which case the

rest of the discussion follows directly. We shall comment below on the opposite scenario.

Let us assume the following parametrization for the leading transverse twist trajectory:

τ̂(s) = ∆φ +
cmin

sα
. (2.19)

At large s, the anomalous dimension produces a logarithm of z on the r.h.s. of eq. (2.17),

which can be matched to the small z behavior of the block eq. (2.18). A short computa-

tion yields:

α =
τmin

2
=

∆min − Jmin

2
, (2.20)

and

cmin = −cφφOmin
amin2∆min

Γ(∆φ)

Γ
(
∆φ − τmin

2

) Γ
(

1
2 + ∆min+Jmin

2

)
√
πΓ
(

∆min+Jmin
2

) . (2.21)

Similarly, a correction to the OPE coefficient (2.13) is required to match the log-

independent part of eq. (2.18):

b2s =
Γ(∆φ + s)

Γ(s+ 1) Γ(∆φ)

(
1 +

bmin

sτmin/2

)
,

bmin = − cφφOmin
amin 2∆min

Γ(∆φ)

Γ
(
∆φ − τmin

2

) Γ
(

1
2 + ∆min+Jmin

2

)
√
πΓ
(

∆min+Jmin
2

)
×
(
γE + ψ

(
∆min + Jmin

2

))
. (2.22)

Let us pause to comment on the non-singular case ∆φ − ∆−J
2 > 0. Following [39], one

can act with the defect Casimir operator Cdef , written down in [12], on both sides of the

crossing equation. On the bulk side we find

Cdef

[
(1− z̄)δf(z)

]
= −2δ(δ − 1)(1− z̄)δ−2f(z) +O(1− z̄)δ−1 , (2.23)

and so the leading behavior of (2.18) can be made singular by repeatedly acting with

the defect Casimir, provided ∆−J
2 − ∆φ is not a positive integer. For generic ∆, ∆φ the

contribution of a bulk primary is thus Casimir-singular in the sense of [8]. On the defect

side, acting with Cdef introduces the eigenvalue for the corresponding defect block, which

grows as s2 for large s and thus enhances the large s behavior. Therefore, the results (2.21)–

(2.22) are valid also if ∆φ − ∆−J
2 > 0 and non integer.

It is interesting to notice that unitarity does not fix the sign of cmin. In other words,

the spectrum does not need to be convex. However, it is intriguing to notice that in all the

– 10 –



J
H
E
P
0
9
(
2
0
1
8
)
0
9
1

examples in section 5 cmin < 0. In most of the cases the leading correction comes from the

exchange of the stress-tensor block, which always turn out to have a negative coefficient of

the one-point function: aT < 0. We shall comment more on this in subsection 5.6.

Here we presented the result for the leading transverse twist correction, but similar

corrections to (2.12) and (2.13) for m 6= 0 are straightforward to obtain. The large s

expansion of anomalous dimensions and OPE coefficients can be set up systematically to

obtain the contribution of a collinear primary and all its descendants, as done in [34] for

the four-point function case. The only requirement is the knowledge of the subleading

contributions to (2.4). However, we shall pursue a different direction. In section 3, we will

obtain an inversion formula for the defect OPE, analogous to the one found in [1] for the

four-point function, which allows to resum the lightcone expansion.

3 Inversion of the defect OPE

In this section we describe a general way to extract the defect spectrum given a two-point

function of bulk primaries. The quantum numbers (τ̂ , s) and the defect OPE coefficient

(b
φÔ

)2 are extracted by an integral transform of the two-point function, which is analytic in

the transverse spin s. This is the defect analog of the inversion formula found in [1], which

applies to four-point functions in theories without defects, and most of the features of the

present integral transform, and its derivation, are similar to [1]. The inversion formula

obtained in this section allows to resum the large s results of section 2, and extract the

scaling dimension of defect operators with finite transverse spin. It also bypasses the need

for some of the assumptions required by the lightcone analysis and discussed in section 2.

The validity of the integral transform, similarly to that of [1], depends on the growth of

the correlator in a certain region. Contrary to [1], though, the behavior of the correlator

in this region is not controlled by an OPE limit, and we cannot place general bounds on

its growth. We shall further comment on this issue in subsection 3.2.

In the rest of this section we derive the inversion formula for the defect OPE following

in the footsteps of [1]. For this purpose we start by obtaining a Euclidean inversion formula,

which simply follows from orthogonality of partial waves, see for example [40] for a detailed

derivation in the case of a four-point function in one-dimensional theories, or [14] for

boundary CFTs. While this Euclidean formula is not analytic in the transverse spin s,

it can be manipulated into a Lorentzian formula that is. A different derivation of the

Lorentzian inversion formula without defects was presented recently in [33]: we leave to

future work the extension of that physically more transparent approach to the present case.

3.1 The Euclidean formula

We start by obtaining an Euclidean inversion formula for the defect OPE. Recall that in

our configuration the two operators lie on a plane orthogonal to the defect. The defect

intersects the plane at the origin, with one external operator placed at x1 = (1, 1) and the

other at x2 = (z, z̄), see figure 1. We introduce the following radial coordinates for the

position of the second operator

z = rw , z̄ =
r

w
, η =

1

2

(
w +

1

w

)
, (3.1)

– 11 –
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where in Euclidean signature z̄ = z∗ and so w is a phase. Since defect blocks (2.3) factorize,

f̂τ̂ ,s(z, z̄) = ĝs(η)f̂
∆̂

(r) , (3.2)

where τ̂ = ∆̂− s, we shall treat the parallel f̂
∆̂

(r) and angular ĝs(η) parts separately.

Parallel factor of defect blocks. Let us start by considering the parallel factor of the

block. Similarly to [40], we re-write the Casimir equation that f̂
∆̂

(r) satisfies [12] in the

form of a Sturm-Liouville problem

D‖f̂(r) = ∆̂(∆̂− p)f̂(r) , with D‖f̂(r) =
rp+1

(1− r2)p
d

dr

(
r1−p(1− r2)p

df̂(r)

dr

)
.

(3.3)

The operator D‖ defined in (3.3) is self-adjoint with respect to the measure

µp(r) =
(1− r2)p

rp+1
, (3.4)

in the interval r ∈ [0, 1], provided the functions are well-behaved near r = 0 and r = 1.

Concretely, self-adjointness requires that the following boundary term vanishes∫ 1

0
dr µp(r)D‖(Ψ(r))Ψ̃(r)−

∫ 1

0
dr µp(r) Ψ(r)D‖(Ψ̃(r))

=

∫ 1

0
dr

d

dr

[
µp(r)r

2

(
dΨ(r)

dr
Ψ̃(r)−Ψ(r)

dΨ̃(r)

dr

)]
.

(3.5)

While for the functions to be square-integrable with respect to the measure (3.4) their

behavior near r = 0 and r = 1 must be such that

Ψ(r) ∼
r→0

r
p
2

+ε , Ψ(r) ∼
r→1

(1− r)− p+1
2

+ε′ , (3.6)

with ε, ε′ positive numbers. However, the parallel factor in the defect conformal blocks,

f̂
∆̂

(r) = r∆̂
2F1

(
∆̂,

p

2
, ∆̂ + 1− p

2
, r2

)
, (3.7)

which is an eigenfunction of D‖, grows as (1− r)1−p for r → 1 (this growth is logarithmic

in the p = 1 case). Therefore, unless p = 1, 2 their square is not integrable against the

measure (3.4), and for no value of p does the boundary term in (3.5) vanish.

Following [1, 40] we consider a linear combination of f̂
∆̂

that is still an eigenfunction

of D‖, with eigenvalue ∆̂(∆̂− p), but is regular at r = 1

Ψ
∆̂

(r) =
1

2

(
f̂

∆̂
(r) +

K
p−∆̂

K
∆̂

f̂
p−∆̂

(r)

)
=
K
p−∆̂

2Kp
rp−∆̂

2F1

(
p

2
, p− ∆̂, p, 1− r2

)
, (3.8)

where we defined

K
∆̂

=
Γ(∆̂)

Γ
(

∆̂− p
2

) . (3.9)
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Also, the behavior of Ψ
∆̂

(r) near r = 1 is such that the corresponding boundary term

in (3.5) vanishes. However, near r = 0 the functions grow as

Ψ
∆̂

(r) ∼
r→0

Γ(p− ∆̂)Γ
(

∆̂− p
2

)
rp−∆̂

2Γ(∆̂)Γ
(
p
2 − ∆̂

) +
r∆̂

2
, (3.10)

and so at best they can be delta-function normalizable, provided we take <(∆̂) = p
2 .

Were we to consider normalizable eigenfunctions of the self-adjoint operator D‖, standard

arguments would imply that they are orthogonal. To show orthogonality in this case, we

will work instead with the following regularized functions

Ψreg.

∆̂
(r) =

K
p−∆̂

2Kp
rp−∆̂+ε

2F1

(
p

2
, p− ∆̂, p, 1−r2

)
, with ∆̂ =

p

2
+i ν , ν ∈ R , (3.11)

with ε > 0 a small number, such that the functions Ψreg.

∆̂
(r) are normalizable. The operator

D‖ is self-adjoint on these functions, since the chosen regularization makes the boundary

term at r = 0 vanish, while it preserves the vanishing of the boundary term at r = 1. Due

to the regularization Ψreg.

∆̂
(r) are not eigenfunctions of D‖ and so orthogonality is not yet

immediate. Nevertheless, starting from self-adjointness (the first line in (3.12)), we can

evaluate the action of D‖ on the regularized functions to obtain

0 =

∫ 1

0
dr µp(r)

(
D‖(Ψreg.

∆̂1
(r))Ψreg.

∆̂2
(r)−Ψreg.

∆̂1
(r)D‖(Ψreg.

∆̂2
(r))

)
=
(

∆̂1(∆̂1 − p)− ∆̂2(∆̂2 − p)
) ∫ 1

0
dr µp(r) Ψreg.

∆̂1
(r)Ψreg.

∆̂2
(r) +O(ε) .

(3.12)

Taking ε → 0 this implies that if ∆̂1(∆̂1 − p) 6= ∆̂2(∆̂2 − p) the functions are orthogonal.

Finally, all we have to show now is what happens when the eigenvalues coincide, and for

that we need only examine the behavior of the functions near r = 0 where the integral

develops a singularity. In this case, taking ∆̂i = p/2 + i νi, we end up with integrals of

the type ∫
0
dr r−1±i(ν1±ν2) = πδ(ν1 ± ν2) + non-singular , (3.13)

following from the behavior of the measure (3.4) and (3.10).8

All in all, the functions (3.8) are orthogonal when ∆̂i = p/2 + i νi, satisfying9

∫ 1

0
dr µp(r) Ψ

∆̂1
(r)Ψ

∆̂2
(r) =

π

2

K
p−∆̂2

K
∆̂1

[δ(ν1 − ν2) + δ(ν1 + ν2)] . (3.14)

8One could equivalently have shown that the integral of the regularized functions (3.11) provides a

representation of the delta function as ε → 0, this is obvious for p = 2 when the resulting expressions are

very simple.
9The functions Ψ∆̂(r) could be made real for ν ∈ R by an appropriate choice of normalization, but we

have not done so. Also, the orthogonality of (3.14) is enough for our purposes and thus we do not define a

positive inner product.
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Angular factor of defect blocks. We now turn to the angular factor in the conformal

block (3.2). It is useful to go back to the representation of the angular factor in (2.3) as a

Gegenbauer polynomial for integer s via

w−s2F1

(
− s, q

2
− 1, 2− q

2
− s, w2

)
=

(
s+ q

2 − 2
q
2 − 2

)−1

Cq/2−1
s

(
w

2
+

1

2w

)
, (3.15)

such that it becomes

ĝs(η) =

(
s+ q

2 − 2
q
2 − 2

)−1

C(q/2−1)
s (η) . (3.16)

Gegenbauer polynomials are orthogonal with respect to the following measure∫ 1

−1
dη µq(η)C

( q
2
−1)

s (η)C
( q

2
−1)

s′ (η) =
23−qπΓ(s+ q − 2)(

s+ q
2 − 1

)
Γ(s+ 1)Γ

( q
2 − 1

)2 δss′ ,
µq(η) = (1− η2)

q−3
2 , (3.17)

which we rewrite using the normalization of the conformal block themselves∫ 1

−1
dη µq(η)ĝs(η)ĝs′(η) = Nq,sδss′ , Nq,s = 23−qπ

Γ(s+ 1)Γ(s+ q − 2)

Γ(s+ q
2)Γ

(
s+ q

2 − 1
) . (3.18)

Euclidean inversion formula. Finally we can write the following orthogonal decom-

position for the two-point function, similarly to what has been done for the case of the

four-point function of local operators [41] (see also [42]),

g(r, η) =

∞∑
s=0

∫
γ

d∆̂

2πi
b(∆̂, s)ĝs(η)Ψ

∆̂
(r), γ = {∆̂ : ∆̂ ∈ (p/2− i∞, p/2 + i∞) } . (3.19)

Since Ψ
p−∆̂

(r) =
K

∆̂
K
p−∆̂

Ψ
∆̂

(r), we can assume that

b(p− ∆̂, s) =
K
p−∆̂

K
∆̂

b(∆̂, s) . (3.20)

The position of the poles and residues of b(∆̂, s) is revealed by closing the contour γ. At

large ∆̂

f̂
∆̂

(r) ∼ r∆̂(1− r2)−p/2 , (3.21)

so the contour must be closed to the right on the first addend in Ψ
∆̂

, and to the left on

the second - see eq. (3.8). In order for the result to agree with the usual conformal block

decomposition, b(∆̂, s) must have single poles in correspondence of the spectrum, and the

residue must coincide, up to a sign, with the OPE coefficient:10

g(r, η) =

∞∑
s=0

ĝs(η)
∑

∆̂∗∈spectrum

b2
s,∆̂∗

f̂
∆̂∗(r) , b2

s,∆̂∗
= −Res

∆̂=∆̂∗b(∆̂, s) . (3.22)

10For defect operators of dimension less than p/2 we must deform the contour such that it picks up the

pole on the left and does not pick up the reflection according to (3.20) on the right. Similarly if the operator

has dimension exactly p/2 we must take the principle-value of the integral to pick up half of the residue.
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Not all poles in (3.19) arise from poles of b(∆̂, s), as the defect blocks themselves have

poles for special values of ∆̂ and s. However, since the defect blocks f̂
∆̂

(r) have poles for

∆̂ = p
2 − n [17] they are always to the left of p

2 , and thus are not picked up when we close

the contour to the right. Similarly, for the second addend in Ψ
∆̂

, we close the contour to

the left while f̂
p−∆̂

(r) only has poles to the right of p
2 .

Eq. (3.19) can be easily inverted using the orthogonality relations (3.14) and (3.18),

yielding the following Euclidean inversion formula11

b(∆̂, s) =
2

Nq,s

K
∆̂

K
p−∆̂

∫ 1

−1
dη

∫ 1

0
dr µp(r)µq(η) ĝs(η)Ψ

∆̂
(r)g(r, η) . (3.23)

Since in Euclidean signature η is nothing more than the cosine of an angle (see (3.1)), we

change variables in the above integral to obtain

b(∆̂, s) =
1

Nq,s

K
∆̂

K
p−∆̂

∮
|w|=1

dw

iw

∫ 1

0
dr µ(r, w) ĝs

(
1

2w
+
w

2

)
Ψ

∆̂
(r) g

(
r,

1

2w
+
w

2

)
,

µ(r, w) = µp(r)

∣∣∣∣w2i
− 1

2iw

∣∣∣∣q−2

. (3.24)

The above integral might not converge. Let us first consider the region r ∼ 0. Here,

convergence is controlled by the scaling dimension ∆̂min of the lightest defect primary

exchanged in g(r, η). Specifically, the integral converges in the strip∣∣∣<∆̂− p

2

∣∣∣ < ∆̂min −
p

2
. (3.25)

To obtain an analytic function in ∆̂, it is therefore necessary to subtract from g(r, η) the

blocks12 corresponding to operators lighter than p/2, and invert the subtracted two-point

function. If necessary, the poles corresponding to these operators can be added by hand to

b(∆̂, s). Once the strip (3.25) exists, the function b(∆̂, s) can be analytically continued past

its edges as follows. Suppose that we want to extend towards the right — going towards the

left is similar. For ∆̂ > p/2, the kernel of eq. (3.24) has an expansion in growing powers of

r that starts with r−1−∆̂. Then we subtract the leading term g(r, η) ∼ r∆̂min , and integrate

it separately, defining the result by analytic continuation in ∆̂:∫ 1

0
dr r−1−∆̂+∆̂min =

1

∆̂min − ∆̂
. (3.26)

This defines the sought analytic continuation of b(∆̂, s) up to the next exchanged operator.

Proceeding order by order in r, one constructs the full function b(∆̂, s).13

11We thank D. Mazáč for collaboration in obtaining this formula.
12Actually, in order to preserve the analytic structure of the two-point function at r = 1 for generic η,

one should subtract the corresponding Ψ rather than the block. See appendix B.2 of [33] for more details.
13In fact, at ∆̂ = p/2+n, for integer n > 0 the combination K∆̂/Kp−∆̂Ψ∆̂, which appears in the inversion

formula (3.24), develops a log r at small r. This is due to the cancellation of a pole in the difference between

the block and its shadow. This is harmless in general, but extra care is needed if an operator with dimension

p/2 + n exists in the spectrum.
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Divergences at r = 1, on the other hand, are controlled by the bulk channel OPE —

in particular, they are absent if ∆φ < p/2 + 1. They may be regulated by cutting off the

integral at r < 1 − ε. The kernel µ(r, w)Ψ
∆̂

(r) has a regular Taylor expansion close to

r = 1, therefore the divergent part of the inversion formula as ε → 0 does not contain

poles in ∆̂. Hence, it can be safely dropped without altering the spectrum and the residues

of b(∆̂, s).

3.2 The Lorentzian formula

In the Euclidean inversion formula (3.24) the contour of integration in the complex w

plane is the unit circle, as w is a phase. We now want to deform the contour in order

to integrate over real values of w, which correspond to a Lorentzian configuration. The

range of r in the Euclidean formula is confined between 0 and 1. All other points in the

Euclidean plane are related to this fundamental region by inversion. As it is clear from

figure 2, at fixed r < 1 the function g(r, w) has two copies of the bulk OPE singularity at

w = r and w = 1/r. Contrary to the case of the four-point function, there is no singularity

at negative values of w. Further singularities may lie in the limits w = 0 and w = ∞,

which are double lightcone limits — see the explanation in appendix B and figure 6 there.

The OPE singularities are generically branch points, while we know that the correlator is

single valued on the circle |w| = 1. Therefore the cuts run from 0 to r and from 1/r to

∞. The remaining w dependence in the inversion formula comes from ĝs and the measure.

It is useful to consider a larger set of solutions to the Casimir equation associated to

the orthogonal rotations. We make use of (3.15) again to go back to a representation of

ĝs(η) (3.16) as a hypergeometric function

ĥ1(s, w) =

(
s+ q

2 − 2
q
2 − 2

)−1

Cq/2−1
s

(
w

2
+

1

2w

)
= w−s2F1

(
−s, q

2
−1, 2− q

2
−s, w2

)
. (3.27)

Recall that when q is even, an order of limits ambiguity arises in the definition of the

hypergeometric function. The equality (3.15) holds if we first take s to be integer, and

then q to be even. As before, this prescription is assumed every time it is necessary.

Other solutions to the Casimir equation for the angular part of the defect blocks can

be obtained by combining the transformations w → 1/w — which leaves ĥ1 invariant when

s is integer — and s → 2 − q − s, both of which are symmetries of the Casimir equation.

We will use the two following solutions

ĥ2(s, w) := ĥ1(2− q − s, w) = ws+q−2
2F1

(
s+ q − 2,

q

2
− 1,

q

2
+ s, w2

)
, (3.28)

ĥ3(s, w) := ĥ2(s, 1/w) = w2−q−s
2F1

(
s+ q − 2,

q

2
− 1,

q

2
+ s,

1

w2

)
, (3.29)

where ĥ2 is regular at the origin while ĥ3 is regular at infinity. Ideally, one would like to

express ĥ1 as a linear combination of ĥ2 and ĥ3, but this is globally possible only for defects

of even codimension. Indeed, when q is even, the discontinuities of ĥ2 and ĥ3 vanish. Let

us first consider this simpler case.
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b
⊗

z
=
0

z̄
=
0

z, z̄ = 0
defect

w → ∞

w → 0

w = r

w = 1
r

Figure 2. The positive real axis on the w complex plane, at fixed r < 1, maps to the black solid

line in the (z, z̄) plane. The bulk OPE singularities correspond to the intersection of the line with

the past and future lightcones of the operator φ(1, 1).

Even q. In this case,

ĥ1(s, w) = (−1)
q
2
−1 Γ(s+ 1)Γ (s+ q − 2)

Γ
(
s+ q

2 − 1
)

Γ
(
s+ q

2

) (ĥ2(s, w) + ĥ3(s, w)
)
,

s = 0, 1, 2 . . . , q = 2, 4, 6, . . . .

(3.30)

After plugging eq. (3.30) in the Euclidean inversion formula (3.24), we can deform the

contour towards the interior on ĥ2 and towards the exterior on ĥ3 (see figure 3). When

deforming the contour towards the interior, divergences may arise when shrinking the circles

around w = 0 and w = r. The former is not an OPE limit. It lies at the boundary of the

region of convergence of the bulk OPE, which is not positive. In the case of the Caron-Huot

formula [1], positivity was used to place a bound on the growth of the correlator in the

Regge limit, which has the same role there as the small w limit here. Deprived of this tool,

we currently have no way to constrain the growth of the correlator in general. If for small

w the two-point function is bounded by a power, then for s large enough the circle around

w = 0 can be shrunk. Concretely,

if g(r, w) . w−s? , as w → 0 then the formula is valid for s > s? , (3.31)

since the integrand in (3.24) is then bounded by ws−1−s? for w → 0. In all the perturbative

examples of section 5, s? = 0. We should also keep in mind that the inversion formula

only converges after the light defect primaries have been subtracted — see the discussion

below (3.25). A defect block of transverse spin s has s? = s: hence, unless special cancella-

tions happen, the presence of primaries with ∆̂ < p/2 and large s worsens the convergence

of the Lorentzian formula.

The point w = r is a bulk OPE singularity, that includes power laws of the kind (r −
w)−∆φ+τ/2. The integral converges for negative enough ∆φ, and can then be analytically
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w

1−1
1
r

r

w

1 1
r

r

w

1 1
r

C+

C−

Figure 3. Deformation of the |w| = 1 contour of (3.24) used to define b0(∆̂, s) and b∞(∆̂, s)

in (3.33). For the case of odd codimension it was necessary to add zero in the form of two contours

C+ and C− (3.35).

continued. The procedure is allowed because the angular integral in the original Euclidean

formula is convergent for all values of ∆φ. Then we find that the OPE coefficient can be

expressed in terms of the discontinuity of the two-point function across the branch cut

running from w = 0 to w = r:

Disc g(r, w) = g(r, w + i0)− g(r, w − i0) . (3.32)

Note that for even q the measure does not have any branch cuts. Proceeding in the

same way for ĥ3, now deforming the contour towards the exterior, we obtain the following

Lorentzian formula:

b(∆̂, s) =
1

2

K
∆̂

K
p−∆̂

(b0(∆̂, s) + b∞(∆̂, s)) ,

b0(∆̂, s) = −
∫ 1

0
dr

∫ r

0

dw

iπw
w2−q(1− w2)q−2(1− r2)pr−p−1ĥ2(s, w)Ψ

∆̂
(r)Disc g(r, w) ,

b∞(∆̂, s) =

∫ 1

0
dr

∫ ∞
1/r

dw

iπw
w2−q(w2 − 1)q−2(1− r2)pr−p−1ĥ3(s, w)Ψ

∆̂
(r)Disc g(r, w) .

(3.33)

Note that in any theory with q > 2 the two-point function obeys g(r, w) = g(r, 1
w ), and

thus it follows that Disc g(r, w) = −Disc g(r, 1/w). In the case q = 2 the symmetry of the

two-point function is only present in a parity invariant theory, which is assumed here since

we have taken the blocks in eq. (3.16) to be symmetric under w → 1
w . Therefore,

b0(∆̂, s) = b∞(∆̂, s) . (3.34)

Odd q. When the codimension is odd, the relation (3.30) cannot be globally valid, be-

cause of the cuts in ĥ2 and ĥ3. However, we only need a relation which is valid upon

integration. In other words, we can integrate zero in the form of a combination of ĥ2 and
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ĥ3 along the contours C+ and C− in figure 3. In fact, we only integrate ĥ3 which does not

grow at infinity

b(∆̂, s) = b(∆̂, s) + c+

∮
C+

dw [. . . ]ĥ3(s, w) + c−

∮
C−

dw [. . . ]ĥ3(s, w) . (3.35)

where the dots stand for everything in eq. (3.24) except ĝs(η). We need linear combinations

of the conformal block and the ĥ’s which does not blow up in w = 0. This fixes

c± = −e±iπ
2
q Γ(s+ 1)Γ (s+ q − 2)

Γ
(
s+ q

2 − 1
)

Γ
(
s+ q

2

) . (3.36)

Notice that the combination is different in the upper and lower plane, due to the cut in

ĥ3, which extends from w = −1 to w = 1. The structure of cuts in the integrand is

complicated by the contribution of µ(r, w) — see eq. (3.24). As an analytic function of w,

µ(r, w) for odd q has a cut running over the whole real axis. Indeed, let us start from w

purely imaginary. In this case∣∣∣∣w2i
− 1

2iw

∣∣∣∣q =
e−iπ

2
q

2q

(
(w + 1)(w − 1)

w

)q
, −iw > 0 , (3.37)∣∣∣∣w2i

− 1

2iw

∣∣∣∣q = (−1)q
e−iπ

2
q

2q

(
(w + 1)(w − 1)

w

)q
, −iw < 0 . (3.38)

So the discontinuity of the measure on the real axis is

Discµ(u,w) = µ(u,w + i0)− µ(u,w − i0) = (1− (−1)q)µ(u,w + i0), w ∈ R . (3.39)

We can now deform the contour of integration in b(∆̂, s) to the real axis, and drop the arcs

at infinity in C±. We first notice that the discontinuity in µ(r, w) offsets the difference

between c+ and c−. Let us consider first the region |w| > 1. There the only further

discontinuity comes from the correlator g(r, w). In the complementary region |w| < 1, the

integral in b(∆̂, s) on the r.h.s. of eq. (3.35) must be taken into account. This combines

with the contributions from C+ and C− by virtue of the following relations:

ĥ1(s, w)− c+ĥ3(s, w) = −e−iπ
2
q Γ(s+ 1)Γ (s+ q − 2)

Γ
(
s+ q

2 − 1
)

Γ
(
s+ q

2

) ĥ2(s, w) , Iw > 0 , |<w| < 1 ,

(3.40)

ĥ1(s, w)− c−ĥ3(s, w) = −eiπ
2
q Γ(s+ 1)Γ (s+ q − 2)

Γ
(
s+ q

2 − 1
)

Γ
(
s+ q

2

) ĥ2(s, w) , Iw < 0 , |<w| < 1 .

(3.41)

Putting all together, we recover a result identical to the case of even codimension, namely

eq. (3.33).

Lorentzian inversion formula for codimension q. All in all, we obtain the following

Lorentzian formula, valid for both even and odd q

b(∆̂, s) = − K
∆̂

K
p−∆̂

∫ 1

0
dr

∫ r

0

dw

iπw
w2−q(1−w2)q−2(1−r2)pr−p−1ĥ2(s, w)Ψ

∆̂
(r)Discg(r, w) .

(3.42)
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Finally, we can change coordinates to z and z̄. If we are only interested in the poles of

b(∆̂, s) in ∆̂ corresponding to the exchanged operators, and not their shadows, we need

only keep the second addend in Ψ
∆̂

(r) — see eq. (3.8). We find

b(∆̂, s)
∣∣∣
poles

=

∫ 1

0

dz

2z
z−

τ̂
2

∫ 1
z

1

dz̄

2πi
(1− zz̄)(z̄ − z)z̄−

∆̂+s
2
−2

2F1

(
s+ 1, 2− q

2
,
q

2
+ s,

z

z̄

)
× 2F1

(
1− ∆̂, 1− p

2
, 1 +

p

2
− ∆̂, zz̄

)
Disc g(z, z̄) , (3.43)

where we have used hypergeometric identities to simplify the equation. The cut between

w = 0 and w = r has been mapped to the line z̄ ∈ [1, 1/z], and can be computed by

going around the branch point at z̄ = 1. Notice that, due to the inverse proportionality

relation between w and z̄ in eq. (3.1), Disc g(r, w) = −Disc g(z, z̄). Eqs. (3.42) and (3.43)

are analytic in s. However, we stress again that their validity cannot be established without

knowledge of the behavior of g(r, w) for w → 0, or equivalently w → ∞. If s? < ∞, s?
being defined in eq. (3.31), the function b(∆̂, s) defined by eq. (3.42) is identical to the

function obtained via the Euclidean inversion formula eq. (3.24) for all integer values of

s > s?. But now, analyticity in s implies that the defect operators organize in analytic

trajectories for s > s?.

Let us also note that, similarly to the formula obtained in [1], the discontinuity in

eq. (3.43) vanishes for a single defect block, and thus its validity cannot be verified term

by term in a defect block decomposition. This is to be contrasted with the Euclidean

formula (3.24), where the poles precisely arise order by order in the defect OPE expansion

of the correlator, as we discussed around eq. (3.26).

Poles of b(s, ∆̂) in τ̂ arise from the lower bound of integration in z, and we can study

eq. (3.43) in an expansion for small z,

b(∆̂, s)
∣∣
poles

=

∫ 1

0

dz

2z
z−

τ̂
2

∑
m=0

zm
m∑

k=−m
cm,k(∆̂, s)B(z, β + 2k) ,

B(z, β) :=

∫ ∞
1

dz̄

2πi
z̄−

β
2
−1Disc g(z, z̄) , (3.44)

where β = ∆̂ + s, and where cm,k(∆̂, s) are trivially obtained from the z expansion of

the integrand in (3.43), with c0,0(∆̂, s) = 1. Note that in eq. (3.44) we pushed the upper

bound of the z̄ integration to infinity, which will not modify the poles of b(s, ∆̂) in ∆̂,

provided g(z, z̄) behaves as (3.31). This follows from the behavior of (3.44) for small z and

with z̄ ∼ 1
z .14

In a series expansion for small z, the functions B(β, z) will give the following contri-

butions to (3.44):∑
m=0

zm
m∑

k=−m
cm,k(∆̂, s)B(z, β + 2k) =

∑
m

bm(∆̂, s) z
τ̂m(β,s)

2 , (3.45)

14The upper bound of the z̄ integration can only produce poles in s, and provided g(z, z̄) grows as given

in eq. (3.31) for w → 0, then these poles will appear only for s 6 s?, that is for s outside the range of

applicability of the formula.
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with each term producing a pole for τ̂ = τ̂m(β, s) in b(∆̂, s), signaling a defect operator with

that transverse twist. The OPE coefficients are obtained from the ∆̂-residue of b(s, ∆̂), at

fixed s, according to (3.22), and so they are obtained from the coefficients in (3.45) after

correcting by a Jacobian factor as

b2
s,∆̂

=

(
1− dτ̂m(β, s)

dβ

)−1

bm(∆̂, s)
∣∣∣
β=τ̂m(β,s)+2s

. (3.46)

3.3 Contributions from a single bulk block

Of course in general one does not have access to the full two-point function. Represent-

ing the two-point function by its bulk OPE, we now discuss what can be inferred from

knowledge of individual exchanged bulk blocks, making contact with the considerations of

section 2.

As discussed in section 2, knowledge of the low twist operators appearing in the bulk

OPE translates into statements about the large transverse spin defect spectrum. The

analysis of section 2 is not free from assumptions, similarly to the usual lightcone story

applied to the four-point function of local operators. In the latter case, only recently have

some of the assumptions started to be put on a firmer footing [36]. We can now recover

the results of section 2 making use of the inversion formula. Assuming that the correlation

function behaves as in eq. (3.31), the inversion formula shows that operators organize in

analytic families for s > s?. Now we can prove that these trajectories have accumulation

points for s → ∞ at τ̂ → ∆φ + 2m. Furthermore, unlike in section 2, where we obtained

the contribution of an exchanged bulk block to the defect spectrum in a 1/s expansion,

the results obtained through (3.42) amount to the full contribution of the block at finite

s > s?. These results therefore resum the 1/s expansion that could be obtained from

carrying out the procedure of section 2 to all orders in 1/s, as done in [8, 34, 37, 38] for

the case without defects.

Let us see how the transverse derivatives come about in this context. For large trans-

verse spin s, we see from (3.44) that the integral is dominated by z̄ → 1. From the

behavior of the bulk blocks in this limit (2.4), we find that the leading contributions come

from operators with lowest twist, τ = ∆− J , which contribute as

g(z, z̄) ∼ (1− z̄)−∆φ+ τ
2 (a function of z) + . . . , for z̄ → 1 . (3.47)

The leading contribution is always the identity. As it is expected and we confirm below,

the inversion of the identity yields the spectrum of the trivial defect, i.e., the transverse

derivatives and their OPE coefficients.

Note that we can perform the z̄ integral that defines B(z, β) in eq. (3.44), at fixed

z, block by block. Indeed, the bulk channel OPE still converges in the whole region

0 < z < 1/z̄ < 1. This is most easily seen in the coordinates defined in appendix B, to

which we refer. However, it will be convenient to work in a small z expansion, which is

where the poles of b(∆̂, s) arise from, and so we now discuss the circumstances under which

this is allowed.

– 21 –



J
H
E
P
0
9
(
2
0
1
8
)
0
9
1

Small z expansion. The small z expansion does not commute with the infinite sum over

bulk blocks, as it is clear from the fact that while (3.44) should behave like (3.45), all the

blocks except the identity contain a single logarithm of z as z → 0, see eq. (2.18).15 This

is exactly the same problem discussed in [1] for the four-point function without defects.

There, in section 4.3.2, a way out was found — see also [8]: after subtracting a known sum

from the inversion formula, one can commute the small z limit with the block expansion.

In this section, we will content ourselves of computing the contributions of individual bulk

blocks after taking their small z limit, without any subtraction. We expect that the error

we make becomes small when the defect spectrum differs from the one of the trivial defect

by small anomalous dimensions: indeed, in this case also the r.h.s. of eq. (3.45) is well

approximated by an expansion up to a single log z. This happens for instance at large spin,

where the analytic functions in s that we find below resum part of the lightcone expansion.

In some specific situations, the result is actually exact down to s = s?. These are the

cases considered in section 5: defects whose deviation from the trivial one is controlled by

a perturbative parameter. At leading order in this coupling, a single logarithm of z is all

what there is on the r.h.s. of eq. (3.45). Furthermore, in these examples a finite number

of bulk channel blocks have a non-zero discontinuity, therefore we are free to take small z

block by block.16

It should be borne in mind that, to go beyond these results, a procedure similar to [1]

is needed.

Identity exchange and the transverse derivative operators. As discussed above,

the leading contributions to the large transverse spin spectrum come from leading twist

bulk operators, and thus the identity operator, which has twist zero, dominates.17 If

this is the only exchanged bulk operator then from (2.2) we find s? = −∆φ, and the

inversion formula (3.42) is valid for all spins starting at s = 0. This happens for the trivial

defect (2.6), and thus we recover the full spectrum. However, if the identity is just part of

a more complicated two-point function the w → 0 behavior, and thus s? can be modified

(see, e.g., the simple example in subsection 5.1).

Taking the leading small z term in the identity contribution to g(z, z̄) we find

B(z, β) =

∫ ∞
1

dz̄z̄−
β
2
−1 1

2πi
Disc

(
(1− z̄)√

zz̄

)−∆φ

=
z

∆φ
2 Γ
(

∆̂+s+∆φ

2

)
Γ
(

∆̂+s−∆φ

2 + 1
)

Γ
(

∆φ

) , (3.48)

where we see that in (3.44) this produces a pole in τ̂ = ∆φ, corresponding to the leading

twist defect primary operator. The residue of B(z, β) matches precisely with the OPE

coefficient of the trivial defect (2.8), for m = 0. Subleading powers in the small z expansion

15One might complain that using eq. (2.18) of the block is not allowed here because the lightcone expansion

of the block does not converge in the whole range 1 < z̄ <∞. One can instead use the expansion presented

in section 4.2.1 of [12], where the expansion parameter is 1−z̄
z̄

, which can be integrated in the desired range.

The result still contains a single log z.
16A similar situation was also very recently discussed for the four-point function case in [43].
17All remaining operators are constrained by unitarity bounds to have τ = ∆ − J > 0, provided d > 2

which is assumed throughout this work since we consider q > 1.
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of the identity block and of (3.43) produce poles corresponding to the rest of the trivial

spectrum, (2.7) with m > 0.

Since the bulk identity exchange corresponds to the leading contribution to the spec-

trum at large s, we thus recover the existence of transverse derivative operators with

τ̂ → ∆φ+ 2m as s→∞. A main difference with respect to section 2 is that now we obtain

the full OPE coefficient (2.8), instead of an asymptotic series in 1/s.

Note that the integral in (3.48) naively diverges for large ∆φ, but the result can be

defined by analytic continuation and is finite, similarly to what was observed in [1].18

Finally we note that i Discg(z, z̄) in (3.43) does not have a definite sign, in contrast

to the case of the double-discontinuity in [1]. This is clear from the identity contribution

in (3.48) where

(2i)−1 Disc
(
(1− z̄)−∆φ

)
= (z̄ − 1)−∆φ sin(π∆φ) . (3.49)

Even though positivity of the defect OPE coefficients requires the residues of b(∆̂, s)

in (3.43) to have definite sign, as is the case for (3.48) above, this does not follow form the

sign of the discontinuity.

Leading bulk twist contribution. The defect operator dimensions and OPE coeffi-

cients obtained from the inversion of the identity block will then be corrected for finite

spin by the presence of all the remaining bulk blocks. We define the anomalous dimension

of the transverse derivative operators whose dimensions approach ∆φ + 2m as

γs,m := τ̂m − (∆φ + 2m) . (3.50)

As discussed above, if the γs,m are small then we can consider the small z limit of the bulk

block decomposition.

We can draw from (3.47) a first general observation: if the exchanged operator has

twist τ = 2∆φ + 2n, with n > 0 an integer, the contribution of the relative block to

the discontinuity of g(z, z̄) vanishes. In other words, exact double twists of the external

operator have zero discontinuity and do not contribute under the inversion formula. Note

that while the discontinuity naively vanishes also for negative integer n, the integral is

divergent for z̄ → 1 in this case. One must then first compute the discontinuity for arbitrary

n and perform the integration. In the end, when n is taken to be a negative integer, the

zero of the discontinuity cancels the divergence in the integral, and the final result of the

inversion formula is finite. This is in precise agreement with the results of section 2.1: the

bulk blocks with non vanishing discontinuity either give singular contributions to g(z, z̄)

as z̄ → 1, or contributions that can be made singular by acting with the Casimir.19

18The result of the Euclidean inversion formula gives a finite answer that is analytic in ∆φ. For ∆φ < 1

eq. (3.48) converges and thus it matches the result of the Euclidean inversion. The integral in (3.48) can then

be analytically continued from there to ∆φ > 1. This will also happen for the exchange of low dimensional

bulk primaries, as the behavior for z̄ → 1 of g(z, z̄) is controlled by the bulk channel OPE — see (3.47).

For low dimensional bulk blocks then the result should also be obtained by analytic continuation.
19The same behavior is observed for the inversion formula of the four-point function with no defects as

pointed out in [1] — see also [44].
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Then, the contribution of the identity and a bulk primary O of twist τ and spin J

to (3.45) has the following form in a small z expansion:∑
m=0

Im(∆̂, s)z
∆φ
2

+m + cφφOaO
∑
m=0

(
Cm1 (∆̂, s) + Cm2 (∆̂, s) log z

)
z

∆φ
2

+m . (3.51)

The leading contributions to the anomalous dimension, and the correction to the OPE

coefficients (2.8) are obtained from the above as20

γs,m =
2cφφOaOC

m
2

Im

∣∣∣∣∣
∆̂=∆φ+s+2m

, δb2s,m =
dγs,m

d∆̂
Im +γs,m

dIm

d∆̂
+ cφφOaOC

m
1

∣∣∣
∆̂=∆φ+s+2m

.

(3.52)

Applying these results to the bulk collinear block given in eq. (2.4) and expanding the

answer for large s, we have recovered the results obtained with the lightcone approach of

section 2, for different values of m and to second order in 1
s . To this order, the Jacobian

factor contribution in (3.52) is crucial.

This proves the existence of the individual transverse derivative operators, instead of

the averaged statement obtained with the lightcone analysis.21

While the methods of section 2 only provide an asymptotic series in 1
s , the inversion

formula yields the contribution of a given bulk block to the anomalous dimension and OPE

coefficient of a defect operator of any transverse spin s > s?. As an example, we compute

the full correction arising from the exchange of a bulk scalar, and from the bulk stress

tensor, to the leading twist defect operator γs,0.

Scalar operator exchange. Let us first obtain how a scalar operator O of dimension

∆ contributes to γs,0. Apart from the scalar operator O, here we only take into account

the contribution of the identity. While the bulk blocks are not known in closed form, we

can make use of the representation of the scalar block as an infinite sum of hypergeometric

functions as given in appendix B of [12].22 Taking the leading z → 0 term of the block we

apply (3.44) term by term in the block representation as an infinite sum. This amounts to

a representation of the block as an infinite sum in powers of z̄−1
z̄ that converges for all of z̄

in the integration region of (3.44). We then commute the integral over z̄ with the infinite

sum, and are able to resum the result to find

γs,0
∣∣
∆,J=0

= −cφφOaO
2∆Γ

(
∆+1

2

)
Γ(∆φ)Γ(s+ 1) 3F2

(
∆−q+2

2 , ∆
2 ,

∆−2∆φ+2
2 ; ∆

2 + s+ 1,∆− d−2
2 ; 1

)
√
πΓ
(

∆
2

)
Γ
(
∆φ − ∆

2

)
Γ
(

∆
2 + s+ 1

) .

(3.53)

20In case Im is zero the denominator should be the first non-zero order, this happens for instance if the

external operator φ is perturbatively close to the unitarity bound, since in this case b2s,m = 0 for m 6= 0 and

∆φ = d
2
− 1.

21To be precise, for a given finite spin, it may happen that the contributions from the various bulk

primaries to the residue of a certain pole sum up to zero. However, this cannot happen for sufficiently

large spin, where the corrections from different exchanged operators are of different size. In this sense our

results, similarly to those of [1], establish the existence of each individual transverse derivative operator for

sufficient large s.
22Alternatively we could have used the recursion relation for the bulk blocks obtained in [12].
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We can proceed similarly for subleading transverse twists by keeping more terms in the

small z expansion, but since the resulting anomalous dimension have longer expressions we

do not display them here. Note that by taking the z → 0 limit of the scalar block we are

assuming small anomalous dimensions, and the result we present here should be seen as

the leading contribution in the small parameter that controls the anomalous dimension.

Stress tensor exchange. We now turn to the stress tensor exchange, whose blocks are

easily computed by solving the recursion relation obtained in [12] for an operator with

J = 2 and ∆ = d. In this case it is easy to obtain a closed form answer for the z → 0 limit

of the block, and again we compute its contribution to b(s,∆) via (3.44). Again considering

only the stress tensor and the identity, we obtain the following anomalous dimension:

γs,0
∣∣
∆=d,J=2

= −cφφTaT
2dΓ

(
d+3

2

)
Γ(∆φ)Γ(s+ 1)Γ

(
∆φ + s− p

2

)
√
πΓ
(
1 + d

2

)
Γ
(
∆φ − d−2

2

)
Γ
( q

2 + s
)

Γ(∆φ + s)
. (3.54)

In section 5 we will only need the contributions (3.53) and (3.54), but of course one

can repeat this procedure for subleading twists. Similarly the corrections to the OPE

coefficients of the trivial defect (2.8) arising from either of these two exchanges can be

computed. Since their expressions are not particularly illuminating, and in the case of the

scalar exchange the infinite sums were not performed to get a closed form result, we do

not present them here. Note that in computing the OPE coefficient one must include the

Jacobian factor of eq. (3.46).

Behavior of a single bulk block as w → 0. While we cannot bound the growth of

g(z, z̄) as w → 0, we can check the behavior of a single bulk block. This is trivial for the

cases in which the blocks are known in closed form, and one finds that for codimension two

and d = 4, 6, the behavior is power-law. Assuming that the behavior of the bulk block is

power-law for all values of p and q we can solve both the quadratic and quartic Casimir

equations in the small w limit to find23

f∆,J ∼ w−
p
2 f(r) , as w → 0 , (3.55)

where f(r) is a function of r that is fixed up to two constants by the Casimir equations.

Putting in the behavior of the prefactor in (2.2) we find that for a single bulk block

s? = p
2 −∆φ. Indeed, the anomalous dimensions in eqs. (3.53) and (3.54) become singular

precisely at s = s?. Of course, the small w behavior can be different from eq. (3.55), for a

theory where an infinite number of bulk blocks is exchanged.

4 Defect operators and motions in AdS

In sections 2 and 3 we discovered that transverse derivative operators are a necessary

ingredient to ensure crossing symmetry of a correlator. In this section we give them a more

physical characterization, which exploits the presence of a semi-classical limit of the states

23There is another nontrivial solution allowed by the Casimir that does not match the behaviors obtained

in codimension two.
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b

b

b

×

×

×

×
0

π

τ

ψ = πψ = 0
ϕ

ϕ
θ = π

2
θ = 0

θ = π
2θ = π

2

θ = 0

Figure 4. A three dimensional version of the configuration discussed in the text. In red, the line

defect marks two lines along τ at θ = π
2 and ψ = 0, π. The particle spins fast along the ϕ direction.

in radial quantization at large s [2]. One of the main advantages of a picture directly based

on the Hilbert space is that it provides intuition on the presence of other accumulation

points in the spectrum. In particular, this analysis will allow us to identify another class

of defect operators, which are present on the spectrum of Wilson lines in large N gauge

theories, similar in nature to the single-trace operators of the ambient CFT.

Historically, the existence of double-twist primaries in the spectrum of an arbitrary

CFT was first established precisely by looking at semi-classical states on a sphere. We

give a brief review of the argument in [2], before explaining its consequences for a defect

CFT. Consider first the state created by a descendant of a low-lying scalar primary,

schematically ∂`φ. At large spin, the state becomes classical, and can be approximated

by a single particle which rotates close to the speed of light on the equator. Following [2],

we consider the four-dimensional case — the generalization being straightforward. We

parametrize the conformal time with τ and the 3-sphere with Hopf angles (θ, ϕ, ψ), with

θ ∈ [0, π/2] and ϕ and ψ describing circles:

ds2 = −dτ2 + dθ2 + cos2 θ dϕ2 + sin2 θ dψ2 . (4.1)

The trajectory of the particle can be chosen to be τ = ϕ, with θ = 0. For reasons to

become clear shortly, it is convenient to apply a Weyl transformation to the cylinder, and

turn it into the manifold AdS3×S1. The authors of [2] chose the following parametrization

in terms of coordinates (u, χ, σ, ψ):

ds2 = −du2 + dχ2 − 2 sinh 2σ dudχ+ dσ2 + dψ2, (4.2)

where

sinh ρ =
1

tan θ
, (4.3a)

sinh 2σ = − sin(τ − ϕ) sinh 2ρ , (4.3b)

e4iu = e2i(τ+ϕ) cos(τ − ϕ) + i cosh 2ρ sin(τ − ϕ)

cos(τ − ϕ)− i cosh 2ρ sin(τ − ϕ)
, (4.3c)

sinh 2χ =
cos(τ − ϕ) sinh 2ρ√

1 + sin2(τ − ϕ) sinh2 2ρ
. (4.3d)
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This coordinate system has three key features. Firstly, the Hamiltonian equals the twist,

i.e. i∂u = i∂τ − (−i∂ϕ). Secondly, the fast particle on the sphere now sits at χ = +∞ and

σ = 0. Finally, the killing vector S = −i∂ϕ ∼ e2|χ| for large χ — the explicit expression can

be found in [2]. This construction does not tell us anything new about the single particle

state: of course, the energy of the particle at rest in this two-dimensional quantum system

is finite, which we knew from the start, since ∆−S = ∆φ for this state. However, consider

now the state on the sphere in which two fast rotating particles are present, the second

trajectory being τ = ϕ+π. This state certainly exists, but now its scaling dimension is not

obvious, since the theory is in general strongly coupled. However, in AdS the particles sit

infinitely far apart at χ = ±∞, and the system is gapped due to the unitarity bound, so that

no interaction is left in the infinite spin limit. The authors of [2] concluded that the twist

of such state is τDT = τ1 + τ2, where τi is the individual twist of the operators responsible

for the single particle states. This establishes the existence of double-twist operators.

Let us now consider a defect CFT. Since we aim at studying the scaling dimension

of defect operators, we center the radial quantization in a point on the defect. On the

cylinder, then, the defect extends along the time direction. We still consider a defect of

codimension at least two, so we can localize it at θ = π/2. Depending on the dimension, it

will cross the ψ circle in two points, or it will fill it. In this setup, we reconsider the state

of a particle rotating fast along the ϕ circle. This is now a state with large transverse spin

s. When we move on to AdS3 × S1, we find the defect at χ = σ = 0. The same argument

as before allows us to conclude that, in the limit s→∞, the transverse twist of this state

equals the twist of the bulk single particle state:

τ̂TD = τφ, s =∞ . (4.4)

We rediscover in this way the transverse derivative operators. This picture allows us to

discuss the finite spin corrections as well, again following [2]. When the transverse spin is

large but not infinite, we can use the mentioned behavior of the spin generator S ∼ e2|χ| to

argue that the wave function of the particle is peaked at a distance from the defect of order
1
2 log s. The particle is still localized also in σ, because the warp factor in the metric (4.2)

favors the position σ = 0. Since the system is gapped, the leading correction to the twist

is a Yukawa potential, due to the exchange between the defect and the light particle of the

leading twist state. We find therefore the correction

τ̂TD = τφ + const e−τmin∆χ = τφ + const s−τmin/2 . (4.5)

Of course, we also know the precise coefficient from eq. (2.21). Recall that, in the case of the

double-twist operators, the exponent of the correction is twice as large in absolute value:

in AdS, this is simply a consequence of the different distance along χ of the interacting

particles in the two cases.

In a gauge theory, one can also consider states in which the rotating particles are

charged, and the authors of [2] consider this situation as well. In the case of a two-particle

state, color flux extends between the two particles. The warp factor confines the flux close

to σ = 0, so that the twist of the state now equals the mass of a meson whose constituents
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are two light quarks. The flux-tube contributes to the mass with a constant energy per unit

length. In the case of adjoint quarks, in N = 4 SYM the energy density is traditionally

denoted f(λ), and we keep this notation, even if the argument is valid in general. Since

∆χ ' log `, the twist of the state is dominated by this contribution at large spin. Single

trace operators precisely exhibit this behavior:

τS.T. ' f(λ) log ` . (4.6)

In advocating this picture, we disregarded the possibility that the flux tube breaks: string-

breaking effects are suppressed at large N , or in perturbation theory even at finite N , and

we restrict our considerations to those cases.

If we now consider the defect spectrum on a Wilson line, a very similar class of states

emerges. At large N , these are created by the insertion of an adjoint operator Dsφ in the

trace, and correspond to a color particle rotating around the defect. In AdS, we now see

that this state is a meson whose constituents are a heavy quark sitting at the origin in the

(χ, σ) plane, and a light quark placed far away along the χ direction, as before. Again,

the distance between the two sources is half of what it was in the case of a single trace

operator. We predict therefore the existence of defect operators of transverse twist

τ̂ ' f(λ)∆χ =
f(λ)

2
log s , (4.7)

where f(λ) is the same function that appears in the anomalous dimension of single trace

operators (4.6). It would be interesting to check this prediction, perhaps along the lines

of [28].

5 Examples

In this section we present a few illustrative examples. We start from a defect in free theory,

which provides a simple instance where the inversion formula (3.43) does not converge down

to zero transverse spin. We then point out a consequence of our results for the spectrum

of certain Wilson lines in supersymmetric gauge theories. In subsection 5.3, we define

a holographic defect in a three dimensional CFT and re-derive the large s spectrum in

eqs. (2.19)–(2.21) from a computation in the spirit of section 4. In subsections 5.4 and 5.5,

we turn to two examples in which the full defect OPE can be obtained by applying the

inversion formula on a single block.

Finally, in subsection 5.6 we point out an interesting common feature of all

the examples.

5.1 Defects in free theory

As a first, simple, example we consider the defect spectra that can appear in the bulk-to-

defect OPE of a free scalar (∆φ = d−2
2 ). It was shown in section B.1.1 of [12] that only

two towers of defect operators are allowed by the equations of motion:

τ̂ = ∆φ ,

τ̂ = ∆φ + 2− q − 2s , s 6
4− q

2
. (5.1)
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The first set is the tower of transverse derivatives, which are not allowed to acquire

anomalous dimension. This agrees with the lightcone analysis, and with the inversion

formula (3.43), since all the operators in the bulk OPE of φ with itself have zero discon-

tinuity, except the identity. In turn, as remarked in subsection 3.3, the inversion of the

identity precisely yields the spectrum of the trivial defect, with the OPE coefficients (2.8).

Those vanish for m > 0 when ∆φ is at the unitarity bound, and indeed only the leading

transverse twist trajectory appears in eq. (5.1). What about the second tower in eq. (5.1)?

These are isolated operators at low spin, as enforced by the unitarity bound in eq. (5.1).

The lightcone expansion is blind to this kind of solutions. As we shall see now in a specific

example, these operators also lie below the radius of convergence s? of the inversion formula.

The simplest example of a non-trivial defect in free theory is obtained by integrating

a free field on a dimension p = d
2 − 1 surface, which requires even d > 4 — see e.g. [12]

for more details. It follows from (5.1) that the tower with bounded spin is only present if

d 6 6. In this case, a single defect operator with s = 0 and ∆̂ = 0 is allowed — the identity

operator. The two-point function of the free field is given by

〈φ(1, 1)φ(z, z̄)〉 =
1

((1− z)(1− z̄))∆φ
+

a2
φ

(zz̄)∆φ/2
, (5.2)

which indeed differs from that of a trivial defect (first addend in (5.2)) by the appearance of

the defect identity (second addend in (5.2)). We now want to use the Lorentzian inversion

formula (3.43) to recover the spectrum. We should check the behavior of g(r, w) for w → 0

(or similarly w → ∞) before dropping the arcs near w = 0 and w = ∞ when going

from (3.24) to (3.42). The two-point function has the following asymptotics:

g(r, w) = r∆φ

〈
φ(1, 1)φ

(
rw,

r

w

)〉
∼ a2

φw
0 +O(w∆φ) , for w → 0 , (5.3)

and so from (3.31) we find that the inversion formula (3.43) is valid for only for s > s? = 0.

Indeed, while the inversion of the first addend in (5.2) reproduces the spectrum of the

trivial defect, the second addend has zero discontinuity and does not contribute. Since the

formula is not valid for s = 0, this is not at odds with the presence of the identity in the

defect OPE of φ.

5.2 Wilson lines in supersymmetric gauge theories

It was conjectured in [45] that the one-point function of the stress tensor in the presence of

certain BPS Wilson lines is related to the so-called Bremsstrahlung function as follows:24

aT = −Γ
(
d−1

2

)
π
d−3

2

d(d− 2)

d− 1
B . (5.4)

The Bremsstrahlung function measures the energy emitted by an accelerated charged par-

ticle at small velocities. The class of superconformal gauge theories in which the conjecture

holds has not been completely explored yet. The relation (5.4) has been checked for 1/2

24In [45], the coefficient of the one-point function of Tµν is called h, with h = −aT /d.
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BPS Wilson lines in N = 4 SYM by direct computation of the two sides [46–48]. Evidence

has been put forward also for 1/2 and 1/6 BPS Wilson lines in ABJM [45, 49, 50], and for

1/2 BPS Wilson lines in four dimensional N = 2 theories [51].

Our results add an entry to the list of observables related to the Bremsstrahlung func-

tion. Indeed, via eqs. (2.21)–(2.22) we see that B controls one of the leading contributions

to the anomalous dimensions and the OPE coefficients of the transverse derivative op-

erators at large spin. More precisely, recall that the Ward identities fix the three-point

function 〈φφTµν〉:

cφφT = − d∆φ

(d− 1)Sd
, Sd =

2πd/2

Γ
(
d
2

) , (5.5)

so that eqs. (2.21)–(2.22) become:25

cmin,T = − 32π
3
2

(d− 1)3

Γ(d+ 1)Γ
(
d+3

2

)
Γ(∆φ + 1)

Γ
(
d
2

)2
Γ
(
d−2

2

)
Γ
(
∆φ − d−2

2

) B
CT

, (5.6)

bmin,T = cmin

(
γE + ψ (d/2 + 1)

)
. (5.7)

Theories obeying the conjecture (5.4) also have a protected scalar of dimension d − 2 in

their spectrum, belonging to the same superconformal multiplet as the stress tensor. The

contribution of this scalar to the anomalous dimensions, and OPE coefficients, of transverse

derivative operators is then of the same order as that of the stress tensor at large s, and

we must take it into account. The coupling of this scalar and of the stress tensor, both

to the Wilson line and to local operators that belong to certain short representations of

the superconformal algebra, are related by the superconformal algebra. In these cases one

can compute the correction to eqs. (5.6)–(5.7) from the scalar operator. Depending on the

theory one might need to consider other scalars of dimension d− 2 (or lower).

Let us consider first the case of four-dimensional N = 4 superconformal field theories

in more detail. From the classification of irreducible highest-weight representations carried

out in detail in [53] (see also the summary in [54]), we see that the only multiplet present in

interacting theories that can contain twist-two conformal primaries in symmetric traceless

representations is the stress tensor superconformal multiplet.26 The twist-two symmetric

traceless operators present in this superconformal multiplet are the stress tensor itself, the

SU(4)R current — which does not acquire a one-point function [12], and the superprimary

— a scalar of dimension two in the 20′ representation of the R-symmetry group SU(4)R.

From the two-point function of bulk operators neutral under SU(2)R, we deduce that their

defect OPE must contain transverse derivative operators obeying exactly (5.6)–(5.7), since

25Our convention for the central charge is the same as eq. (4.2) in [52], i.e., the two-point function of Tµν
has coefficient CT /S

2
d . Of course, the combination cφφ

T aT is independent of this choice, but notice that

cφφ
T =

S2
d

CT
cφφT .

26Concretely, apart from the stress tensor multiplet (B
1
2
, 1
2

[0,2,0] in the notation of [53]), the only multiplets

that accommodate twist-two operators are the free vector multiplet (B
1
2
, 1
2

[0,1,0]), and multiplets containing

conserved currents of spin greater than two (C1,1
[0,0,0] and B

1
4
, 1
4

[1,0,1],(0,0)), which should be absent in interacting

theories [55, 56].
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the scalar 20′ operators cannot be exchanged in the bulk OPE. Considering the two-point

functions of operators which transform non-trivially under SU(4)R, we need to take into

account the contribution of the dimension two scalar. In general, the relation between the

coupling to the bulk operators of the scalar and the stress tensor is not known. However, if

we consider the two point function of half-BPS bulk operators (B
1
2
, 1
2

[0,p,0]), the superconformal

blocks obtained in [21] should allow for this relation to be determined and for a prediction

to be made. This would amount to the anomalous dimension of long defect operators (L? in

the notation of [21]) whose transverse twists approach p+ 2m as s→∞, and transforming

in all representations of the SO(5)R R-symmetry, preserved by the line defect, that appear

in the decomposition of the bulk operator’s [0, p, 0] irrep of SU(4)R.

For four-dimensional N = 2 superconformal field theories there are various multiplets

that can accommodate twist two operators. In particular, the stress-tensor supermultiplet

once again contains a dimension two scalar as its superconformal primary, now neutral

under the R-symmetry, this means that its contribution to (5.6)–(5.7) should generically

be included. The relation between the one-point function of the scalar and the stress tensor

is obtained in [51], however, the relation between their couplings to bulk operators is only

known when considering half-BPS bulk operators, and only up to a sign. It would be

interesting to work this out and add this correction to (5.6)–(5.7).

Finally, for three-dimensional N = 6 or N = 8 superconformal theories, once again

there is a scalar in the stress tensor multiplet of dimension d − 2, which transforms non-

trivially under the R-symmetry.27 This means that for R-symmetry singlet bulk operators

this primary cannot be exchanged and the result in (5.6)–(5.7) holds.

5.3 A holographic line defect in pure gravity

In this subsection we present a holographic example. We find a solution of Einstein’s

equations with cosmological constant that we conjecture dual to a line defect in three

dimensions, similar to the defect constructed in [57] for Einstein-Maxwell theory. We

then compute anomalous dimensions of defect operators due to the exchange of the stress

tensor. The computation is a holographic realization of the argument in section 4, and the

result is in agreement with the lightcone bootstrap. This confirms the consistency of the

whole picture.

The metric. In view of the spirit of the argument given in section 4, in this subsection

we work in Lorentzian signature with a time-like defect. It will be convenient to write the

metric using an AdS2−slicing — see for example [57]:

ds2 = g(ξ)ds2
AdS2

+
dξ2

f(ξ)
+ ξ2dϕ2 , (5.8)

where the AdS2 factor is given by

ds2
AdS2

= −η2dτ2 +
dη2

η2
, (5.9)

27Other scalars of dimension less or equal to one appear in multiplets that are either free, contain conserved

currents of spin greater than one, or enhance the supersymmetry in the N = 6 case, and so we do not need

to consider them.
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ξ = ∞ ∂AdS4

η

ξ

ξ
=

0

η = ∞
⊗

(a) (ξ, η)

θ

r

⊗

⊗

(b) (r, θ)

Figure 5. (a) Depiction of the geometry in the coordinates of eqs. (5.8) and (5.9), at fixed (τ, ϕ).

The metric has a conical singularity at ξ = 0 (dashed line), and is asymptotically AdS4 at large ξ.

(b) Depiction of the geometry in global coordinates at fixed (t, ϕ), see eqs. (5.16) and (5.17). The

conical singularity now extends along the diameter of the sphere (dashed line).

and ξ and ϕ are radial and angular coordinates respectively. This metric has a manifest

SO(2, 1)×SO(2) symmetry, which is the expected symmetry group for a line defect in three

dimensions. Notice that we used reparametrization invariance to fix the coefficient of dϕ2.

We would like this space to be asymptotically AdS4, so we impose appropriate bound-

ary conditions at large ξ:

f(ξ) = ξ2 + 1 +O
(

1

ξ

)
, g(ξ) = ξ2 + 1 +O

(
1

ξ

)
. (5.10)

The boundary can also be reached sending η → ∞, which lands us on a one-dimensional

subspace parametrized by τ , which is the defect locus in the CFT — see figure 5. The

boundary conditions in eq. (5.10) are enough to single-out a one-parameter solution to

Einstein’s equations. The function f is fixed in terms of g:

f(ξ) =
4ξg(ξ)(−1 + 3g(ξ))

g′(ξ)(4g(ξ) + ξg′(ξ))
. (5.11)

The function g reads

g(ξ) = ξ2 + 1 +
1

3
(ξ2 + 1)

(
−1 + cos Θ(ξ)−

√
3 sin Θ(ξ)

)
, (5.12)

where

Θ(ξ) =
2

3
arcsin

 C
(1 + ξ2)

3
2

 . (5.13)

The parameter C controls the metric close to ξ = 0. In particular, turning on a small C
one gets

f(ξ) = 1− 4 C
3
√

3
+O

(
ξ2, C2

)
. (5.14)

This means that the metric develops a conical singularity at ξ = 0, which breaks the

isometries of AdS4 down to the defect conformal group. The singularity is a conical defect

for C > 0 and a conical excess in the opposite case.
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Single particle states and anomalous dimensions. A basic entry in the AdS/CFT

dictionary states that the energy of a state in AdS with respect to global time equals the

scaling dimension of the corresponding CFT operator. The discussion in section 4 suggests

that a large transverse spin operator is dual to a state describing a single particle with a

large momentum in the ϕ direction. Starting with C = 0, one obtains free propagation in

empty AdS, and the spectrum of a trivial defect in the dual CFT. The conical singularity

perturbs the gravitational potential, therefore the corresponding energy shift is dual to the

contribution of the stress tensor to the scaling dimension of the CFT operator. In this sub-

section we demonstrate this matching. The computation is analogous to the determination

of the anomalous dimension of large spin double-trace operators, as performed in section

2 of [58], which we follow closely — see also [59].

The first step is to switch to spherical coordinates:

τ =
1

cos θ sin ρ(r) sec t− tan t
,

η =
2(cos θ sin ρ(r)− sin τ)√

−2 cos 2θ sin2 ρ(r) + cos 2ρ(r) + 3
,

ξ = sin θ tan ρ(r) ,

(5.15)

where ρ(r) = arctan r. In the new coordinates, the AdS2 locus of the conical singularity

extends along t and along a diameter of the sphere at fixed t, see figure 5. It pierces the

cylindrical boundary at the location of the defect — at θ = 0 and θ = π — as depicted in

figure 4.28 The wave function of a particle that rotates fast in the ϕ direction is peaked

close to the boundary, therefore we only need to consider the large r limit to obtain the

leading order correction in s. As it can be seen from eq. (5.13), this is equivalent to keeping

only the leading order in C in all formulae. In this limit the metric is as follows:

ds2 = gttdt
2 + grrdr

2 + gθθdθ
2 + gϕϕdϕ

2 , (5.16)

where

gtt = −r2 − 1− C 4
(
r2 + 1

)
3 (r2 cos 2θ − r2 − 2)

√
3r2 sin2 θ + 3

,

grr =
1

(1 + r2)2

(
r2 + 1− C

√
2

3

4
(
r2 + 1

) (
2r2 cos 2θ + 3 cos 2θ − 2r2 − 1

)
3 (−r2 cos 2θ + r2 + 2)5/2

)
,

gθθ = r2 + C
√

2

3

4r2
(
r2 cos 2θ + 3 cos 2θ − r2 + 1

)
3 (−r2 cos 2θ + r2 + 2)5/2

,

gϕϕ = r2 sin θ .

(5.17)

The rest of the exercise is first-order perturbation theory applied to the Hamiltonian

of a free scalar coupled to gravity. The unperturbed wave function is the following (see

28But notice that the labeling of coordinates is different from section 4, where holography was not involved.

Also, the AdS2×S1 frame induced on the boundary from eq. (5.8) is not the same as the AdS3×S1 frame

employed in section 4.
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e.g., [60])

ψm,`,s(t, ρ, θ, ϕ) =
1

N∆φm`
e−iEm,` tY s

` (θ, ϕ)

× sin` ρ cos∆φρ 2F1

(
−m,∆φ +m+ `, `+

3

2
; sin2 ρ

)
, (5.18)

where

Em,` = ∆φ + 2m+ ` , (5.19)

Y s
` is a spherical harmonic and the normalization is

N∆φm` = (−1)m

√√√√m!Γ
(
d
2 + `

)2
Γ
(

2−d
2 +m+ ∆φ

)
Γ
(
d
2 +m+ `

)
Γ(m+ `+ ∆φ)

. (5.20)

In empty AdS4, ψ is a descendant of a scalar primary of dimension ∆φ. The dual inter-

pretation of the labels is as follows: m counts the number of Laplacians, while ` and s are

the angular momentum and its ϕ-component respectively. A feature of the spectrum of

a trivial defect — see eq. (2.7) — is that primary states of the defect correspond to bulk

descendants with s = `, i.e. the transverse spin equals the total spin of the bulk descendant.

The quantity `− |s| counts the number of derivatives along the defect. To isolate a defect

primary, therefore, we choose ` = s. Furthermore, we only consider the m = 0 case for

simplicity, that is, we focus on the leading transverse twist trajectory. It is then easy to

see that ψ0,s,s(t, ρ, θ, ϕ) in eq. (5.18) is the wave function of a defect primary. Indeed,

Ka(Pz)
s |φ〉 = 0, (5.21)

where z is a complex coordinate parameterizing a plane and a is a direction orthogonal to

the same plane. Alternatively, one can check that the special conformal generator along

the defect annihilates ψ0,s,s(t, ρ, θ, ϕ).

The first order correction to the energies (5.19) is then

δE = 〈m, s|δH|m, s〉 , (5.22)

where δH is the O(C) term in the Hamiltonian of the scalar field. The computation is

simplified by the fact that δ
√−g = O(C2). From the metric in (5.16) the kinetic energy of

all the coordinates except ϕ receive corrections. We end up with three integrals

δE = 2C
∫
drdΩ2r

2 (I1 + I2 + I3) , (5.23)

where the integrands Ii are given by

I1 =
2r2s(∆ + s)2

(
r2 + 1

)−∆−s−1 |Y s
s (θ, ϕ)|2

3
√

3r2 sin2 θ + 3 (r2 cos 2θ − r2 − 2)
, (5.24)

I2 =
2
√

2
3r

2s−2
((

2r2 + 3
)

cos 2θ − 2r2 − 1
) (
r2 + 1

)−∆−s−1 (
s−∆r2

)2 |Y s
s (θ, ϕ)|2

3 (−r2 cos 2θ + r2 + 2)5/2
,

(5.25)

I3 = −
2
√

2
3r

2s−2
((
r2 + 3

)
cos 2θ − r2 + 1

) (
r2 + 1

)−∆−s |∂θY s
s (θ, ϕ)|2

3 (−r2 cos 2θ + r2 + 2)5/2
. (5.26)
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For ` = m = s the spherical harmonics simplify significantly:

|Y s
s (θ, ϕ)|2 =

1

2π
3
2

Γ(3
2 + s)

Γ(1 + s)
(sin θ)2s , (5.27)

|∂θY s
s (θ, ϕ)|2 =

1

2π
3
2

Γ(3
2 + s)

Γ(1 + s)
s(cos θ)2(sin θ)2s−2 . (5.28)

The leading large s asymptotics can be easily obtained using a saddle-point approximation.

It turns out that of the three integrals in (5.23) the first is the dominant one. After the

dust has settled we find

δE = −C Γ(∆φ + 1)

3
√

3Γ
(
∆φ − 1

2

) s− 1
2 . (5.29)

The exponent of the correction matches the lightcone prediction eq. (2.20). In order to

compare the prefactor with eq. (2.21), we need to compute the one-point function of the

stress tensor in this geometry. This is an exercise in holographic renormalization [61],

which we perform in Euclidean signature. One first writes the metric in Fefferman-Graham

coordinates [62]:

ds2 =
1

z2

(
dz2 + hµν(x, z)dxµdxν

)
. (5.30)

We get

htt = 1 +
z2

2
− 2

9
√

3
C 1

sin3 θ
z3 +O(z4) , (5.31)

hθθ = 1− z2

2
− 2

9
√

3
C 1

sin3 θ
z3 +O(z4) , (5.32)

hϕϕ = sin2 θ

(
1− 1

2
z2 +

4

9
√

3
C 1

sin3 θ
z3 +O(z4)

)
. (5.33)

The boundary now sits at z = 0, and the expectation value of the stress-tensor is encoded

in the coefficient of zd in the boundary expansion of hµν :

〈Tµν〉 =
d

16πGN
h(d)
µν . (5.34)

This immediately yields the one-point function on the cylinder. One can then apply a

Weyl transformation to rewrite it on the plane. We report the result in Cartesian co-

ordinates, which allows for an easy comparison with the form predicted by conformal

invariance eq. (A.10). Recall that the defect extends along t, while we call (x, y) the

orthogonal coordinates:

〈Ttt〉 = − C
24
√

3πGN

1

|x⊥|3
, 〈Txx〉 =

C
24
√

3πGN

2y2 − x2

|x⊥|5
, (5.35)

〈Tyy〉 =
C

24
√

3πGN

2x2 − y2

|x⊥|5
, 〈Txy〉 = − C

8
√

3πGN

xy

|x⊥|5
. (5.36)

This allows to extract the coefficient of the one-point function:

aT = − C
8
√

3πGN
= − CT

384
√

3
C . (5.37)
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The Newton constant is related to the central charge as follows:29

GN =
π
d
2
−1Γ(d+ 2)

2(d− 1)Γ
(
d
2

)3
CT

. (5.38)

The last ingredient is the three-point function coefficient cφφT , which was given in eq. (5.5).

By plugging eqs. (5.37) and (5.5) in the lightcone bootstrap formula eq. (2.21), we precisely

recover the anomalous dimension eq. (5.29).

5.4 The replica twist defect

The replica defect arises in the computation of the geometric Rényi entropies in QFT [63–

65]. It is built as a boundary condition for the tensor product of n copies of the QFT

of interest — (QFT)n. In particular, the fields of consecutive copies are identified on a

codimension one surface ending on the location of the defect, which has therefore codi-

mension two. Given the replica defect supported on a surface Σ lying on a constant time

slice, consider the path-integral Zn(Σ) of the theory in the presence of the defect. Then

the following holds:

Sn(Σ) =
1

1− n log
Zn(Σ)

Zn
, SEE(Σ) = lim

n→1
Sn(Σ) , (5.39)

where Z is the path-integral over a single copy of the QFT, and Sn(Σ) and SEE(Σ) are

respectively the Rényi and entanglement entropies of the density matrix obtained by tracing

over the degrees of freedom enclosed in the region Σ. The second equation in (5.39), in

particular, requires a definition of the theory that holds for complex values of n. It was

argued in [66] — see also [67] — that an analytic continuation exists such that, when the

original theory is a CFT, correlation functions preserve the features of a defect CFT, in

particular the existence of a well defined defect OPE limit. The crucial step is to consider

the orbifolded theory (CFT)n/Zn, where only the local operators invariant under cyclic

permutations of the copies are retained. In particular, the orbifold contains a unique stress

tensor out of the n coming from each copy. This property is crucial in the proof of the

quantum null energy condition [67]. Notice also that the replica defect is trivial at n = 1.

Hence, it provides the example of a defect CFT with a perturbative parameter, such that

the leading order deviation from the trivial defect is physically interesting in its own right.

In this section, we apply the inversion formula to a scalar two-point function and

obtain the anomalous dimensions of a class of defect operators at leading order in (n− 1).

The result matches the computation in [67], performed by direct OPE decomposition of the

correlator. The external operator is the Zn-symmetrization of a scalar primary φ belonging

to a single copy:

[φ] =

n∑
k=1

φ(k) , (5.40)

where the bracket denotes orbifold operators, and φ(k) stands for the operator φ inserted

in the k-th copy. We call [φ] a single-copy orbifold operator, while multiple-copy operators

29Our conventions are summarized in footnote 25.
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are the Zn-symmetrization of products of operators on different replicas (e.g. φ
(i)
1 φ

(j)
2 with

i 6= j). The bulk OPE [φ]× [φ] contains single-copy and double-copy operators. The former

correspond to the primaries in the fusion φ×φ, while the latter arise from the non-singular

fusion φ(i) × φ(j), i 6= j, and have twist τ = 2∆φ + 2m with integer m. This fusion rule

is independent of the number of copies, and survives in the analytically continued theory.

From the explicit analytic continuation of single-copy operators [67], one sees that the only

single-copy operator with a vev of order (n − 1) is the stress-tensor. However, a single

block is not crossing symmetric, and the double-copy operators come to the rescue and

also acquire a one-point function. Since the twists of the latter differ from 2∆φ by an even

integer, they do not contribute a discontinuity to the two-point function 〈[φ][φ]〉, and so do

not affect the OPE coefficients nor the anomalous dimensions of defect operators. Hence,

the defect spectrum is simply found by inverting the stress tensor block. The one-point

function of the stress-tensor at order (n− 1) is known exactly [64, 68, 69]:30

∂naT |n=1 = −d πd/2 Γ (d/2)

Γ (d+ 2)

CT
S2
d

, Sd =
2πd/2

Γ
(
d
2

) , (5.41)

and the same is true for the OPE coefficient, see eq. (5.5). To obtain the leading transverse-

twist primaries, we only need to evaluate eq. (3.54) for q = 2, and the result is

τ̂ = ∆φ − (n− 1)
∆φ

d− 1

(
∆φ − d

2 + 1
)
s

(∆φ)s
+O

(
(n− 1)2

)
, (5.42)

where (a)s = Γ(a + s)/Γ(s). This is the correct result [67].31 However, to confirm its

validity down to finite transverse spin we need to know the behavior of the two-point

function 〈[φ][φ]〉 as w → 0. In the absence of a general bound, we resort to the explicit

form computed in [67]:

g(z, z̄) =

(
(1− z)(1− z̄)

(zz̄)1/2

)−∆φ (
1 + cφφT aT fd,2(z, z̄) + I +O(n− 1)2

)
,

I = − (n− 1)

∫ −∞
0

dλ

(λ− 1)2

(
1 +

1

wξ
(1− λ) +

w

ξ

(
1− 1

λ

))−∆φ

, (5.43)

where fd,2(z, z̄) is the bulk stress-tensor block and ξ is defined in eq. (A.4). The integral I

can be seen in a bulk block decomposition to encode the contributions of the aforementioned

exact double-twist operators. Expanding I at leading order in w one finds(
(1− z)(1− z̄)

(zz̄)1/2

)−∆φ

I = (n− 1)w∆ π∆ cscπ∆
(
1 +O(w)

)
+ (n− 1)w∆r1−∆ Γ(∆)Γ(∆− 1)

Γ(2∆)
2F1

(
∆− 1,∆, 2∆, 1− 1

r2

) (
1 +O(w)

)
. (5.44)

This asymptotics, together with the single block asymptotics eq. (3.55), ensure that s? < 0

— see eq. (3.31) — and so eq. (5.42) holds for all s.

30Our convention is related to the one in [64] as follows: aT = −dhn/(2π). See also footnote 25.
31In fact, our anomalous dimension is twice the one in eq. (3.25) of [67]. However it matches their eq. (B4),

so we attribute the discrepancy to a typo.
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5.5 The Ising twist defect

There exists a conformal defect with codimension two in the 3d Ising model, as supported

by numerical evidence [23] and also by results from the epsilon expansion and the conformal

bootstrap [19]. Local operators odd (even) under the Z2 flavor symmetry of the 3d Ising

CFT are multi-valued (single-valued) around the twist defect. As a consequence, the Z2

odd (even) defect spectrum take half-integer (integer) values of the transverse spin s.

Following the literature, let us dub ψs the leading transverse twist primaries in the

defect OPE of the spin field σ:

σ ∼
∑
s

ψs + higher τ̂ , s ∈ N +
1

2
. (5.45)

The dimensions and OPE coefficients of the ψs have been calculated in the epsilon expansion

in [19], i.e. by setting d = 4− ε and keeping q = 2. To leading order in ε,

τ̂ψs = 1−
(

1

2
+

1

24s

)
ε+O(ε2) , (5.46)

|bσψs | = 1 +
ψ(1)− ψ(s+ 1)

4
ε+O(ε2) , ψ(z) =

d

dz
ln Γ(z) . (5.47)

Let us interpret these values from the lightcone bootstrap point of view. The scaling

dimension of σ is

∆σ = 1− ε

2
+O(ε2) , (5.48)

so the ψs are easily identified as the leading trajectory of transverse derivative operators.

The fusion σ × σ, at the leading non-trivial order in ε, can be written as follows:

σ × σ ∼ 1 + ε+ {τ = 2∆σ}+ higher twists + O(ε2) , (5.49)

where ε is the energy operator and {τ = 2∆σ} denotes the conserved currents of the free

theory, which do not acquire anomalous dimension at this order [70] — see also [37] and [71]

for a more general understanding of this fact. The higher-twist primaries are decoupled in

the free theory, and so their OPE coefficient is O(ε). Hence, they also appear as operators

with τ = 2∆σ+2m in this OPE. All together, the only primary contributing a discontinuity

is ε, which is therefore fully responsible for eqs. (5.46) and (5.47). The required OPE data

were presented in [19]:

∆ε = 2− 2ε

3
+O(ε2) , cσσεaε = −1

8
+O(ε) . (5.50)

In fact, the full result (5.46), (5.47) is encoded in the leading transverse spin correction.

Indeed, plugging eq. (5.50) in eq. (2.21), we reproduce the value of the anomalous dimension

γs,0 = − 1
24sε. Furthermore, the correction bmin in eq. (2.22) is O(ε2), and indeed the square

root of eq. (2.8) reduces to (5.47). Despite the simplicity of the result, it is not obvious

why the large s expansion of the anomalous dimension should truncate at order 1/s. We

can address the question by means of the inversion formula. By evaluating the single block
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contribution eq. (3.53) with q = 2, d = 4 − ε and the CFT data in eqs. (5.48) and (5.50),

we indeed get, for s > 0,

γs,0 = − ε

24

1

s+ 1
2F1(1, 1, s+ 2, 1) +O(ε2) = − ε

24s
+O(ε2) . (5.51)

It is interesting to notice that each bulk collinear block contributes an infinite series in 1/s,

and the final result emerges from infinitely many exact cancellations. As before, in principle

we must check the small w limit of the 〈σσ〉 correlator to confirm that the leading-twist

spectrum (5.46), as found with the inversion formula, is complete. We could not obtain this

behavior analytically, however, a numerical analysis of the correlator of [19], suggests that

for w → 0 the 〈σσ〉 correlator behaves like ∼ αrw0, where αr is a coefficient that depends

on the radius r. Thus s? = 0 and the inversion formula (3.42) only holds for s > 0. We

were not able to find the contribution of a single scalar block to the OPE coefficient in

closed form. However, from the computation of the OPE coefficient as an infinite sum,

discussed in section 3.3, we can easily check that the same cancellations are in place: this

time, after appropriately including the Jacobian in eq. (3.46), no contribution is left at

order ε. Therefore, we also recover eq. (5.47). We can also predict the existence of the

higher transverse twist primaries, with τ̂ → ∆σ+2m at large spin, whose OPE coefficients,

for m 6= 0, are of order ε as clear from the fact that (2.8) vanishes for m > 0 and ∆φ at

the unitarity bound.

Let us conclude with some comments on the Z2 even defect spectrum. In free theory,

the leading transverse twist operators are bilinear of the ψs, and all operators ψs1ψs2 with

integer transverse spin s1 +s2 = s have the same transverse twist τ̂ = 2−ε. This b s+1
2 c-fold

degeneracy is lifted at the Wilson-Fisher fixed point, and we parametrize the eigenvalues

of the matrix of anomalous dimensions as follows:

τ̂s,j = 2 + ε (δs,j − 1) +O(ε2) . (5.52)

In [19], it was pointed out that the following accumulation points exist at infinite trans-

verse spin:

δ∞,j = − 1

12(2j − 1)
, j = 1, 2, . . . . (5.53)

The results of section 2 predict an additional accumulation point: the leading transverse

derivative of the energy operator ε, that is,

δ∞,0 =
1

3
. (5.54)

In fact, it is not hard to see that this accumulation point exists,32 and that furthermore

eqs. (5.53) and (5.54) comprise all the anomalous dimensions of this class of operators. As

for the accumulation points (5.53), those are not transverse derivatives of ε, and therefore

we should expect their OPE coefficient to be subleading at large s. We did not check this

fact. Both the lightcone bootstrap and the use of the inversion formula are complicated

by the presence of infinitely many bulk blocks contributing already at order ε, so we leave

this analysis for future work.

32We thank D. Mazáč for sharing with us an elegant analytic proof of this fact.
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5.6 On the sign of 〈Tµν〉

In this subsection, we observe a feature of the one-point function of the stress tensor in the

presence of a defect which is found in many examples. Let us start from the holographic

defect discussed in subsection 5.3, and in particular from eq. (5.37). The attractive nature

of gravity indicates that the parameter C should be positive — see e.g., eq. (5.29). From

eq. (5.37), we deduce that aT < 0. The same happens in all unitary defect conformal

field theories we are aware of: in particular, the Wilson lines in free theories discussed

in [12], the supersymmetric Wilson line briefly discussed in subsection 5.2, and the Renyi

twist operator [64, 65]. Let us briefly explain why this is the case for the latter. In [68],

eq. (4.21), the following expression was derived:

aT (n) = − d

d− 1
n (E(T0)− E(T0/n)) . (5.55)

Here, n is the so-called replica index, E(T ) is the energy density of a thermal state at

temperature T on the (d− 1)-dimensional hyperbolic space Hd−1 of unit radius and T0 =

1/2π. Stability of the canonical ensemble implies that the specific heat dE
dT is positive. Here

E is the total energy, but since 〈Tµν〉 is constant on this background, the same property

is valid for E(T ). We deduce that aT < 0 if n > 1. On the other hand, exactly at n = 1

the defect becomes trivial, and for n < 1 the theory becomes non unitary: for instance,

the two-point function of the displacement operator [12] has negative norm CD < 0 for n

slightly smaller than 1, as it can be deduced by the following equation [65, 72, 73]:

∂nCD|n=1 =
2π2

d+ 1

CT
S2
d

. (5.56)

The evidence put forward so far makes it plausible that aT ≤ 0 in all unitary defect

conformal field theories. It would be interesting to prove this statement or look for a

counter-example, but we leave this for future work.

6 Discussion and outlook

The main technical tool used in this paper is the inversion formula (3.42). The formula

expresses the defect spectrum and the OPE coefficients as an integral over the discontinuity

of the two-point function. The integral kernel is analytic in s, which means that the

spectrum of every defect CFT is organized in Regge trajectories ∆̂(s), at least down to

some minimum spin s?. The value of s? is finite as long as the correlator is polynomially

bounded in a certain double lightcone limit — see figure 6.

At large s, the generating function (3.43) localizes close to z̄ = 1, and is therefore

dominated by the bulk-channel OPE limit of the discontinuity. This fact puts on solid

ground the result first obtained in section 2 via the lightcone bootstrap: in every defect

CFT, a subset of the trajectories asymptote the spectrum of the trivial defect at large s —

see eq. (1.1). We call transverse derivatives the operators on these trajectories. Since s is a

global charge for the defect spectrum, it is interesting to contrast this result with the large

charge sector of an ordinary CFT [74–76]. There, an operator with a large charge creates
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in radial quantization a state with homogeneous charge and energy density. The scaling

of the low-lying spectrum with the charge is not linear, and therefore incompatible with

the presence of the transverse derivatives. In fact, as we saw in section 4, the semiclassical

picture in this case is very different from a condensed matter phase. Since a defect CFT is

non local, there is no notion of energy density on the defect, and once seen from the bulk,

the transverse derivative breaks a spacetime rotational symmetry rather than a global one.

Finite s corrections to the spectrum and the OPE coefficients can in principle be

computed systematically, by applying the inversion formula block by block, as a convergent

expansion. In contrast to the lightcone bootstrap where only an asymptotic expansion is

obtained, by using the inversion formula one gets a better and better approximation to

the defect spectrum as more bulk blocks are added. However, in practice we achieve

analytic control only by replacing the bulk-channel blocks with their expansion in powers

of z. Although this procedure is in general incorrect, it is sufficient to resum part of the

large s expansion of the anomalous dimensions of the transverse derivatives. In fact, if

the discontinuity receives contributions only by a finite number of blocks, the procedure

yields the full spectrum. This happens sometimes in a perturbative setup, as we saw in

the examples and we further remark in the next subsection.

The perturbative setting also highlights a difference between this inversion formula and

the inversion formula for the four-point function. The discontinuity of a single logarithm,

unlike the double discontinuity, does not vanish. This has an immediate consequence for

defects embedded in theories with a slightly broken higher spin symmetry: the transverse

derivatives acquire anomalous dimension at leading order in the breaking parameter. We

saw this happening in subsection 5.5. The opposite is true in the case of the four-point

function, a fact recently exploited in [43] to efficiently apply large-spin perturbation theory

order by order in the ε expansion.

Some important aspects concerning the inversion formula remain to be clarified.

Firstly, we did not place an upper bound on s?. Theories whose correlators are not polyno-

mially bounded in the asymptotic region mentioned earlier may not display Regge trajec-

tories. It would be very interesting to prove an upper bound, or to find a counter-example.

A bound cannot be proven in the same way as in [1], because the bulk channel OPE is

not positive, a fact that is also tied to the appearance of the discontinuity in the formula,

which has no definite sign, unlike the double discontinuity of the Caron-Huot formula.

Secondly, it would be important to set up a procedure that works order by order in the

small z expansion and at the same time does not spoil the convergence of the formula. This

problem is related to the necessity of dealing with the towers of double- and multi-twist

operators in the bulk channel OPE. In the case of the four-point function, this issue has

been solved [1, 8].

Outlook. The results of this work suggest various future directions of research. It would

be interesting to study the large s spectrum in other examples, possibly beyond leading

order in perturbation theory, or rather in strongly coupled scenarios. For instance, in

section 4 we pointed out that the spectrum of a Wilson line at large N supports operators

whose transverse twist measures the energy of a heavy-light quark pair — see eq. (4.7).
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It would be interesting to explore this case with the inversion formula, and to study the

transverse derivatives as well. Notice that one-point functions of double trace operators

are suppressed at large N , so the inversion formula suggests that the anomalous dimension

of the transverse derivatives receives contribution only from the exchange of single trace

operators at leading order in 1/N .

From a technical point of view, the inversion formula (3.42) can be obtained via ma-

nipulations that are much simpler than in the case of the four-point function. The formula

itself depends on a kernel explicitly known in closed form. This makes the defect case a

good playground, both for applications and for generalizations of the formula. In partic-

ular, deriving the inversion formula in the case of external spinning operators might be a

doable task. For this purpose, a method similar to the one presented in [77] may be useful.

Also in this last case, the presence of the transverse derivatives at large s is expected from

the lightcone bootstrap analysis, which is essentially unchanged. Their scaling dimensions

should again approximate the trivial defect, i.e.,

τ̂ ' τφ + 2m, s→∞ . (6.1)

Finally, one obvious direction of investigation concerns the inversion of the bulk OPE,

and it is work in progress. Under many respects, this problem is more similar to the one

solved by the inversion formula for the four-point function [1]. Indeed, the inversion of the

bulk OPE would yield the same spectrum, albeit associated to different OPE coefficients.

This inversion formula would recover bulk information from the defect OPE in the limit

when one of the bulk operators is light-like separated from the defect, i.e., the opposite limit

to the one considered in 2. A preliminary lightcone bootstrap analysis seems to show that

the existence of double twist operators is sufficient to satisfy the crossing constraint in this

limit at the leading order, so that no obstruction exists at this level for a CFT to support

a conformal defect. An inversion formula for the bulk OPE, combined with (3.42), could

also allow for an iterative procedure to obtain approximate solutions to crossing symmetry

starting from only a few operators, similarly to what was done in [8] for the 3d Ising model.

Furthermore, the crossed-channel — which in this case is the defect channel — is positive,

and this may provide a better control over the convergence of the formula. It would also

be interesting to see if the positivity of the defect OPE can be used to answer the question

raised in subsection 5.6 on the sign of the one-point function of the stress tensor.
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A Conformal blocks

Here we review the kinematics of a two-point function of bulk operators in the presence of

a flat defect of codimension q in d dimensions, following [12]. Recall that we separate the

space time indices (µ = 0, . . . , d − 1) into two subsets, those orthogonal to the defect are

labeled by i = 0, . . . , q − 1 and those parallel to the defect by a = q, . . . , d − 1. The two-

point function of bulk identical scalars depends on two conformally invariant cross-ratios,

and we parametrize it by

〈φ(x1)φ(x2)〉 =
1

(|x⊥1 ||x⊥2 |)∆φ
g(χ, η) , (A.1)

where we use x⊥ = {xi} and x‖ = {xa}, and the cross-ratios are given by33

χ =
|x‖12|2 + |x⊥1 |2 + |x⊥2 |2

|x⊥1 ||x⊥2 |
=

1 + zz̄

(zz̄)1/2
=

1

r
+ r ,

η =
x1ix

i
2

|x⊥1 ||x⊥2 |
=

z + z̄

2(zz̄)1/2
=

1

2

(
w +

1

w

)
. (A.2)

As discussed in section 2 we work in Lorentzian signature with a space-like defect, and

with the geometry shown in figure 1, so for convenience above we have shown the rela-

tion between the cross-ratios (χ, η) and the lightcone (z, z̄) coordinates, as well as the

radial coordinates r and w. The crossing equation reads (or equivalently (2.2) in (z, z̄)

coordinates)

g(χ, η) = ξ−∆φ
∑
O

cφφO aO f∆,J(χ, η) =
∑
Ô

(b
φÔ

)2 f̂τ̂ ,s(χ, η) , (A.3)

where we defined the transverse twist τ̂ = ∆̂− s, and

ξ = χ− 2η =
(1− z)(1− z̄)

(zz̄)1/2
. (A.4)

The defect conformal blocks are known exactly [12]34

f̂τ̂ ,s(χ, η) =

(
s+ q

2 − 2
q
2 − 2

)−1

C(q/2−1)
s (η) 2F1

(
∆̂

2
+

1

2
,

∆̂

2
; ∆̂ + 1− p

2
;

4

χ2

)
, (A.5)

33Here η is what was called cosφ in [12].
34The blocks here differ from the ones of [12] by a factor of 2s.
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where C
(m)
n (x) is a Gegenbauer polynomial, and changing variables to (z, z̄) the above

block can be re-written as (2.3), after using the following relation(
s+ q

2 − 2
q
2 − 2

)−1

Cq/2−1
s

(
w

2
+

1

2w

)
= w−s2F1

(
− s, q

2
− 1, 2− q

2
− s, w2

)
. (A.6)

When q is even, an order of limits ambiguity arises in the definition of the hypergeometric

function in (A.6), with the equality holding if we first take s to be integer, and then q to

be even. This prescription is always assumed throughout the paper. The normalization is

chosen such that, given a leading contribution to the defect OPE of the kind

φ(xµ) ∼ b
φÔ
|x⊥|−∆φ+∆̂−sxi1 · · ·xisÔi1...is(xa) + . . . , (A.7)

the contribution of Ô to the two-point function is as in eq. (A.3), provided that the two-

point function of defect primaries is normalized as

〈Ôi1...is(xa1)Ôj1...js(xa2)〉 = 2s
P i1...is;j1...js

(x2
12)∆̂

. (A.8)

Here P is the projector onto symmetric and traceless tensors, which can be defined in terms

of the Todorov operator (see [12] for more details)

P i1...is;j1...js ≡ 1

s!
( q

2 − 1
)
s

Di1 . . . Diswj1 . . . wjs ,

Di =

(
q − 2

2
+ wj

∂

∂wj

)
∂

∂wi
− 1

2
wi

∂2

∂wj∂wj
. (A.9)

Finally, we denote the defect OPE coefficient of the identity, bφ1̂, by aφ, such that the

one-point function of a bulk primary of dimension ∆ and spin J is

〈φ(xµ, zµ)〉 =
aφ

|x⊥|∆φ

(
(zixi)2

|x⊥|2 − z
izi
)J

2

, (A.10)

where zµ is an auxiliary null vector used to contract the indices of the spin J operator

(see [12] for how to recover the index structure encoded in the polynomial dependence

in z).

B Convenient coordinates for the bulk channel OPE

Following [17], let us define the following change of variables:

ρ =
1−√z
1 +
√
z
, ρ̄ =

1−
√
z̄

1 +
√
z̄
. (B.1)

The configuration of the operators in the ρ coordinates is depicted in figure 6. The defect is

now spherical, and crosses the (ρ, ρ̄) plane in two points. The configuration is of course very

similar to the one customarily used to describe a four-point function of local operators [78].
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b

b

⊗ ⊗

(ρ, ρ̄)

ρ̄
=
−1 ρ

=
1ρ

=
0

ρ̄
=
0

Figure 6. The bulk channel ρ coordinates defined in [17]. The defect is a sphere and crosses the

plane at the location of the two red dots. The operators are drawn in the time-like configuration

that corresponds to 0 < z < 1/z̄ < 1, that is the region of integration in eq. (3.42).

In the region 0 < ρ, ρ̄ < 1 the bulk-channel OPE has the following structure, for a scaling

operator of dimension ∆ and SL(2,R) spin J :

g(ρ, ρ̄) ∼ ρ̄∆−J
2 ρ

∆+J
2 . (B.2)

The integral in the Lorentzian inversion formula (3.42) extends over the region (0 < ρ <

1,−1 < ρ̄ < 0), corresponding to the configuration of the operators drawn in figure 6. The

bulk channel OPE in this region still has the form (B.2), and is only modified by the phases

picked up going past the singularity at ρ̄ = 0. Since the OPE is absolutely convergent in

the region ρ, ρ̄ < 1, it still converges after the continuation.

The w → 0 limit at fixed r is the limit in which the operators reach the upper and

lower corners of the causal diamond of the defect.

Open Access. This article is distributed under the terms of the Creative Commons

Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in

any medium, provided the original author(s) and source are credited.
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[29] A. Söderberg, Anomalous dimensions in the WF O(N) model with a monodromy line defect,

JHEP 03 (2018) 058 [arXiv:1706.02414] [INSPIRE].

[30] C. Melby-Thompson and C. Schmidt-Colinet, Double trace interfaces, JHEP 11 (2017) 110

[arXiv:1707.03418] [INSPIRE].

[31] M. de Leeuw, A.C. Ipsen, C. Kristjansen and M. Wilhelm, Introduction to integrability and

one-point functions in N = 4 SYM and its defect cousin, talk given at the Les Houches

Summer School: Integrability: From Statistical Systems to Gauge Theory, June 6–July 1, Les

Houches, France (2017), arXiv:1708.02525 [INSPIRE].

[32] M. Kim, N. Kiryu, S. Komatsu and T. Nishimura, Structure constants of defect changing

operators on the 1/2 BPS Wilson loop, JHEP 12 (2017) 055 [arXiv:1710.07325] [INSPIRE].

[33] D. Simmons-Duffin, D. Stanford and E. Witten, A spacetime derivation of the Lorentzian

OPE inversion formula, JHEP 07 (2018) 085 [arXiv:1711.03816] [INSPIRE].

[34] L.F. Alday and A. Zhiboedov, An algebraic approach to the analytic bootstrap, JHEP 04

(2017) 157 [arXiv:1510.08091] [INSPIRE].

[35] D. Pappadopulo, S. Rychkov, J. Espin and R. Rattazzi, OPE Convergence in Conformal

Field Theory, Phys. Rev. D 86 (2012) 105043 [arXiv:1208.6449] [INSPIRE].

[36] J. Qiao and S. Rychkov, A tauberian theorem for the conformal bootstrap, JHEP 12 (2017)

119 [arXiv:1709.00008] [INSPIRE].

[37] L.F. Alday and A. Zhiboedov, Conformal bootstrap with slightly broken higher spin

symmetry, JHEP 06 (2016) 091 [arXiv:1506.04659] [INSPIRE].

[38] L.F. Alday, Solving CFTs with weakly broken higher spin symmetry, JHEP 10 (2017) 161

[arXiv:1612.00696] [INSPIRE].

[39] L.F. Alday, A. Bissi and T. Lukowski, Large spin systematics in CFT, JHEP 11 (2015) 101

[arXiv:1502.07707] [INSPIRE].

[40] M. Hogervorst and B.C. van Rees, Crossing symmetry in alpha space, JHEP 11 (2017) 193

[arXiv:1702.08471] [INSPIRE].

[41] V.K. Dobrev, V.B. Petkova, S.G. Petrova and I.T. Todorov, Dynamical derivation of vacuum

operator product expansion in euclidean conformal quantum field theory, Phys. Rev. D 13

(1976) 887 [INSPIRE].

[42] M.S. Costa, V. Goncalves and J. Penedones, Conformal Regge theory, JHEP 12 (2012) 091

[arXiv:1209.4355] [INSPIRE].

[43] L.F. Alday, J. Henriksson and M. van Loon, Taming the ε-expansion with large spin

perturbation theory, JHEP 07 (2018) 131 [arXiv:1712.02314] [INSPIRE].

[44] L.F. Alday and S. Caron-Huot, Gravitational S-matrix from CFT dispersion relations,

arXiv:1711.02031 [INSPIRE].

[45] A. Lewkowycz and J. Maldacena, Exact results for the entanglement entropy and the energy

radiated by a quark, JHEP 05 (2014) 025 [arXiv:1312.5682] [INSPIRE].

[46] K. Okuyama and G.W. Semenoff, Wilson loops in N = 4 SYM and fermion droplets, JHEP

06 (2006) 057 [hep-th/0604209] [INSPIRE].

– 47 –

https://doi.org/10.1007/JHEP08(2017)020
https://arxiv.org/abs/1705.03898
https://inspirehep.net/search?p=find+EPRINT+arXiv:1705.03898
https://doi.org/10.1016/j.nuclphysb.2017.07.004
https://doi.org/10.1016/j.nuclphysb.2017.07.004
https://arxiv.org/abs/1706.00756
https://inspirehep.net/search?p=find+EPRINT+arXiv:1706.00756
https://doi.org/10.1007/JHEP03(2018)058
https://arxiv.org/abs/1706.02414
https://inspirehep.net/search?p=find+EPRINT+arXiv:1706.02414
https://doi.org/10.1007/JHEP11(2017)110
https://arxiv.org/abs/1707.03418
https://inspirehep.net/search?p=find+EPRINT+arXiv:1707.03418
https://arxiv.org/abs/1708.02525
https://inspirehep.net/search?p=find+EPRINT+arXiv:1708.02525
https://doi.org/10.1007/JHEP12(2017)055
https://arxiv.org/abs/1710.07325
https://inspirehep.net/search?p=find+EPRINT+arXiv:1710.07325
https://doi.org/10.1007/JHEP07(2018)085
https://arxiv.org/abs/1711.03816
https://inspirehep.net/search?p=find+EPRINT+arXiv:1711.03816
https://doi.org/10.1007/JHEP04(2017)157
https://doi.org/10.1007/JHEP04(2017)157
https://arxiv.org/abs/1510.08091
https://inspirehep.net/search?p=find+EPRINT+arXiv:1510.08091
https://doi.org/10.1103/PhysRevD.86.105043
https://arxiv.org/abs/1208.6449
https://inspirehep.net/search?p=find+EPRINT+arXiv:1208.6449
https://doi.org/10.1007/JHEP12(2017)119
https://doi.org/10.1007/JHEP12(2017)119
https://arxiv.org/abs/1709.00008
https://inspirehep.net/search?p=find+EPRINT+arXiv:1709.00008
https://doi.org/10.1007/JHEP06(2016)091
https://arxiv.org/abs/1506.04659
https://inspirehep.net/search?p=find+EPRINT+arXiv:1506.04659
https://doi.org/10.1007/JHEP10(2017)161
https://arxiv.org/abs/1612.00696
https://inspirehep.net/search?p=find+EPRINT+arXiv:1612.00696
https://doi.org/10.1007/JHEP11(2015)101
https://arxiv.org/abs/1502.07707
https://inspirehep.net/search?p=find+EPRINT+arXiv:1502.07707
https://doi.org/10.1007/JHEP11(2017)193
https://arxiv.org/abs/1702.08471
https://inspirehep.net/search?p=find+EPRINT+arXiv:1702.08471
https://doi.org/10.1103/PhysRevD.13.887
https://doi.org/10.1103/PhysRevD.13.887
https://inspirehep.net/search?p=find+J+%22Phys.Rev.,D13,887%22
https://doi.org/10.1007/JHEP12(2012)091
https://arxiv.org/abs/1209.4355
https://inspirehep.net/search?p=find+EPRINT+arXiv:1209.4355
https://doi.org/10.1007/JHEP07(2018)131
https://arxiv.org/abs/1712.02314
https://inspirehep.net/search?p=find+EPRINT+arXiv:1712.02314
https://arxiv.org/abs/1711.02031
https://inspirehep.net/search?p=find+EPRINT+arXiv:1711.02031
https://doi.org/10.1007/JHEP05(2014)025
https://arxiv.org/abs/1312.5682
https://inspirehep.net/search?p=find+EPRINT+arXiv:1312.5682
https://doi.org/10.1088/1126-6708/2006/06/057
https://doi.org/10.1088/1126-6708/2006/06/057
https://arxiv.org/abs/hep-th/0604209
https://inspirehep.net/search?p=find+EPRINT+hep-th/0604209


J
H
E
P
0
9
(
2
0
1
8
)
0
9
1

[47] J. Gomis, S. Matsuura, T. Okuda and D. Trancanelli, Wilson loop correlators at strong

coupling: From matrices to bubbling geometries, JHEP 08 (2008) 068 [arXiv:0807.3330]

[INSPIRE].

[48] D. Correa, J. Henn, J. Maldacena and A. Sever, An exact formula for the radiation of a

moving quark in N = 4 super Yang-Mills, JHEP 06 (2012) 048 [arXiv:1202.4455]

[INSPIRE].

[49] M.S. Bianchi, L. Griguolo, A. Mauri, S. Penati, M. Preti and D. Seminara, Towards the exact

Bremsstrahlung function of ABJM theory, JHEP 08 (2017) 022 [arXiv:1705.10780]

[INSPIRE].

[50] L. Bianchi, L. Griguolo, M. Preti and D. Seminara, Wilson lines as superconformal defects in

ABJM theory: a formula for the emitted radiation, JHEP 10 (2017) 050

[arXiv:1706.06590] [INSPIRE].

[51] B. Fiol, E. Gerchkovitz and Z. Komargodski, Exact Bremsstrahlung function in N = 2

superconformal field theories, Phys. Rev. Lett. 116 (2016) 081601 [arXiv:1510.01332]

[INSPIRE].

[52] F.A. Dolan and H. Osborn, Conformal four point functions and the operator product

expansion, Nucl. Phys. B 599 (2001) 459 [hep-th/0011040] [INSPIRE].

[53] F.A. Dolan and H. Osborn, On short and semi-short representations for four-dimensional

superconformal symmetry, Annals Phys. 307 (2003) 41 [hep-th/0209056] [INSPIRE].

[54] C. Beem, L. Rastelli and B.C. van Rees, More N = 4 superconformal bootstrap, Phys. Rev. D

96 (2017) 046014 [arXiv:1612.02363] [INSPIRE].

[55] J. Maldacena and A. Zhiboedov, Constraining conformal field theories with a higher spin

symmetry, J. Phys. A 46 (2013) 214011 [arXiv:1112.1016] [INSPIRE].

[56] V. Alba and K. Diab, Constraining conformal field theories with a higher spin symmetry in

d = 4, arXiv:1307.8092 [INSPIRE].

[57] G.T. Horowitz, N. Iqbal, J.E. Santos and B. Way, Hovering black holes from charged defects,

Class. Quant. Grav. 32 (2015) 105001 [arXiv:1412.1830] [INSPIRE].

[58] A.L. Fitzpatrick, J. Kaplan and M.T. Walters, Universality of long-distance AdS physics

from the CFT bootstrap, JHEP 08 (2014) 145 [arXiv:1403.6829] [INSPIRE].

[59] A. Kaviraj, K. Sen and A. Sinha, Universal anomalous dimensions at large spin and large

twist, JHEP 07 (2015) 026 [arXiv:1504.00772] [INSPIRE].

[60] J. Penedones, TASI lectures on AdS/CFT, in the proceedings of the Theoretical Advanced

Study Institute in Elementary Particle Physics: New Frontiers in Fields and Strings (TASI

2015), June 1–26, Boulder, U.S.A. (2015), arXiv:1608.04948 [INSPIRE].

[61] S. de Haro, S.N. Solodukhin and K. Skenderis, Holographic reconstruction of space-time and

renormalization in the AdS/CFT correspondence, Commun. Math. Phys. 217 (2001) 595

[hep-th/0002230] [INSPIRE].

[62] C. Fefferman and C.R. Graham, The ambient metric, Ann. Math. Stud. 178 (2011) 1

[arXiv:0710.0919] [INSPIRE].

[63] P. Calabrese and J.L. Cardy, Entanglement entropy and quantum field theory, J. Stat. Mech.

0406 (2004) P06002 [hep-th/0405152] [INSPIRE].

[64] L.-Y. Hung, R.C. Myers and M. Smolkin, Twist operators in higher dimensions, JHEP 10

(2014) 178 [arXiv:1407.6429] [INSPIRE].

– 48 –

https://doi.org/10.1088/1126-6708/2008/08/068
https://arxiv.org/abs/0807.3330
https://inspirehep.net/search?p=find+EPRINT+arXiv:0807.3330
https://doi.org/10.1007/JHEP06(2012)048
https://arxiv.org/abs/1202.4455
https://inspirehep.net/search?p=find+EPRINT+arXiv:1202.4455
https://doi.org/10.1007/JHEP08(2017)022
https://arxiv.org/abs/1705.10780
https://inspirehep.net/search?p=find+EPRINT+arXiv:1705.10780
https://doi.org/10.1007/JHEP10(2017)050
https://arxiv.org/abs/1706.06590
https://inspirehep.net/search?p=find+EPRINT+arXiv:1706.06590
https://doi.org/10.1103/PhysRevLett.116.081601
https://arxiv.org/abs/1510.01332
https://inspirehep.net/search?p=find+EPRINT+arXiv:1510.01332
https://doi.org/10.1016/S0550-3213(01)00013-X
https://arxiv.org/abs/hep-th/0011040
https://inspirehep.net/search?p=find+EPRINT+hep-th/0011040
https://doi.org/10.1016/S0003-4916(03)00074-5
https://arxiv.org/abs/hep-th/0209056
https://inspirehep.net/search?p=find+EPRINT+hep-th/0209056
https://doi.org/10.1103/PhysRevD.96.046014
https://doi.org/10.1103/PhysRevD.96.046014
https://arxiv.org/abs/1612.02363
https://inspirehep.net/search?p=find+EPRINT+arXiv:1612.02363
https://doi.org/10.1088/1751-8113/46/21/214011
https://arxiv.org/abs/1112.1016
https://inspirehep.net/search?p=find+EPRINT+arXiv:1112.1016
https://arxiv.org/abs/1307.8092
https://inspirehep.net/search?p=find+EPRINT+arXiv:1307.8092
https://doi.org/10.1088/0264-9381/32/10/105001
https://arxiv.org/abs/1412.1830
https://inspirehep.net/search?p=find+EPRINT+arXiv:1412.1830
https://doi.org/10.1007/JHEP08(2014)145
https://arxiv.org/abs/1403.6829
https://inspirehep.net/search?p=find+EPRINT+arXiv:1403.6829
https://doi.org/10.1007/JHEP07(2015)026
https://arxiv.org/abs/1504.00772
https://inspirehep.net/search?p=find+EPRINT+arXiv:1504.00772
https://arxiv.org/abs/1608.04948
https://inspirehep.net/search?p=find+EPRINT+arXiv:1608.04948
https://doi.org/10.1007/s002200100381
https://arxiv.org/abs/hep-th/0002230
https://inspirehep.net/search?p=find+EPRINT+hep-th/0002230
https://arxiv.org/abs/0710.0919
https://inspirehep.net/search?p=find+EPRINT+arXiv:0710.0919
https://doi.org/10.1088/1742-5468/2004/06/P06002
https://doi.org/10.1088/1742-5468/2004/06/P06002
https://arxiv.org/abs/hep-th/0405152
https://inspirehep.net/search?p=find+EPRINT+hep-th/0405152
https://doi.org/10.1007/JHEP10(2014)178
https://doi.org/10.1007/JHEP10(2014)178
https://arxiv.org/abs/1407.6429
https://inspirehep.net/search?p=find+EPRINT+arXiv:1407.6429


J
H
E
P
0
9
(
2
0
1
8
)
0
9
1

[65] L. Bianchi, M. Meineri, R.C. Myers and M. Smolkin, Rényi entropy and conformal defects,
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