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Abstract

Recently an efficient method for the simulation of packed bed adsorbers with

implicit adsorption isotherms was presented. It uses a method of lines approach

and exploits standard software for the simultaneous solution of the resulting

differential algebraic equations (DAEs). Application was demonstrated for stoi-

chiometric ion exchange. In the present paper, the approach is extended to sys-

tems described by the adsorbed solution theory. For that purpose, the relation

between the differential index of the DAE system and the spectral properties of

the underlying adsorption equilibrium is established. In particular, it is shown

that real and positive eigenvalues of the Jacobian of the underlying conservation

equations will lead to a differential index of one. It is further shown that real

and positive eigenvalues of the Jacobian related to the IAST can be guaranteed

for binary mixtures with any type of pure component adsorption isotherm or

for multicomponent mixtures with certain restricted types of pure component

isotherms. The new method is illustrated for different explicit and implicit pure

component adsorption isotherms belonging to this class. It is compared with

alternative solution approaches using the modified FastIAS method by Do and

Myers and semi-analytical solutions from equilibrium theory.
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1. Introduction

Dynamic simulation of packed bed adsorbers plays an important role for the

quantitative design of new single and multi bed adsorption processes. Therein,

a detailed description of the adsorption equilibrium is of crucial importance.

Particular challenging are implicit adsorption isotherms. For the efficient sim-

ulation of equilibrium models of packed bed adsorbers with implicit adsorption

isotherms, we recently proposed a new approach [1]. It is based on a reformu-

lation of the underlying partial differential equations, uses a method of lines

(MOL) approach (see e.g. [2]), avoids explicit differentiation of the adsorption

isotherm and applies standard numerics for the simultaneous solution of the

resulting differential and implicit algebraic equations (DAEs). Application was

demonstrated for stoichiometric ion exchange. Focus was on single column op-

eration. However, it is worth noting that the method is also very suitable for

the simulation of multicolumn processes using available software packages for

dynamic flow-sheet simulation like gProms [3], Diva [4] or Diana [5, 6] with a

simultaneous equation oriented solution strategy.

In the present paper, the method is extended to another important type of

adsorption equilibrium, i.e. the ideal adsorbed solution theory (IAST), which

was developed by Myers and Prausnitz [7] to predict the adsorption of multi-

component mixtures from single component adsorption isotherms (SCIs), and

which was successfully applied to gas (e.g. [8]) as well as liquid phase adsorption

(e.g. [9]). The equations of the IAST are implicit and include integral expres-

sions for the calculation of the spreading pressures. Only in special cases an

analytical calculation of the equilibrium composition of the adsorbed phase is

possible [10, 11]. Therefore a number of numerical approaches were proposed in-

cluding the general IAS [7], the FastIAS [12] and the modified FastIAS [12, 13],

among others. For a recent review on available IAST solution approaches, we
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refer to [14] and [15]. All of these methods are based on iterative solution of

the IAST equations, therefore require good initial guesses and almost entirely

apply to analytically integrable explicit single component isotherms.

Therefore, an alternative approach was proposed recently by Landa et al.

[14]. It is based on a differential reformulation of the equilibrium conditions and

applies numerical integration. This method is very powerful and avoids iteration

at the expense of increased computational effort. Further computational effort

is required to calculate the derivatives of the equilibrium concentrations of the

solid phase, which are needed for packed bed adsorber simulation using a method

of lines approach [14].

To overcome the challenges and restrictions of previous approaches, the new

methodology introduced in [1] is used and extended accordingly in the present

paper. The outline of the paper is as follows: First, the model equations are

briefly summarized and some structural properties that are essential for the

new approach are proven. They are based on the spectral properties of the

IAST equations and extend recent results by Landa et al. [14]. Afterwards

application is demonstrated for two different benchmark problems with explicit

and implicit SCIs. Results for explicit SCIs are compared to previous numerical

solution approaches based on the modified FastIAS. In contrast to this, results

for implicit SCIs are new and cannot be obtained with any of the previous

approaches. In addition, numerical results for explicit and implicit SCIs are

validated with semi-analytical solution approaches from equilibrium theory.

2. Theoretical methods

2.1. Model equations

The following is based on the equilibrium dispersive model, which is com-

monly used for describing the dynamics of fixed bed adsorbers [16, 17]. The

model assumes isothermal operation, thermodynamic equilibrium between fluid

phase with adsorbable components c ∈ R
N and solid phase with adsorbed com-

ponents q ∈ R
N , a constant mobile phase velocity u and a constant void fraction
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ǫ. These assumptions result in the following system of partial differential equa-

tions with time t and spatial coordinate z

F
∂q(c)

∂t
+

∂c

∂t
+ u

∂c

∂z
= Da

∂2c

∂z2
. (1)

Therein, F = 1−ǫ
ǫ

is the volumetric phase ratio, and Da is an apparent dispersion

coefficient lumping together all effects causing band broadening. For vanishing

axial dispersion with Da = 0, the ideal equilibrium model is obtained from the

above equation.

For a given adsorption isotherm q(c), given boundary and initial conditions,

Eq. (1) can be solved for the unknown fluid phase concentrations c. In the

present paper the adsorption isotherm is determined using the well known ideal

adsorbed solution theory (IAST) [7, 8, 9]. The following equations provide

a compact but complete representation of the IAST focusing on the essential

variables and equations for this paper.

Single component isotherms (SCIs)

q0i = q0i (c
0
i ), i = 1, ..., N, (2)

equilibrium condition

∫ c0i

0

q0i (s)

s
ds =

∫ c0N

0

q0N (s)

s
ds, i = 1, ..., N − 1, (3)

summation condition
N
∑

j=1

cj
c0j

= 1, (4)

solid phase concentrations

qi =





N
∑

j=1

1

q0j

cj
c0j





−1

ci
c0i
, i = 1, ..., N. (5)

In theses equations, c0 and q0 denote the so-called hypothetical fluid and solid

phase concentrations. q0(c0) represents the given pure component isotherms

and c0 is an additional implicit variable, which follows from Eqs. (3) and (4).

For the details we refer to [7].
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2.2. Reformulation and solution strategy

Besides the adsorption isotherms q(c), the solution of Eq. (1) also requires

the Jacobian matrix of the derivatives of the adsorption isotherms ∂q/∂c accord-

ing to the chain rule of differentiation. These derivatives however are difficult to

obtain for complex adsorption isotherms. A method for the IAST based on some

analytical formulas has been proposed in [14]. However, the method is tailored

to the specific solution strategy in [14], which delivers a priori the hypothetical

fluid phase concentrations c0i as functions of the true fluid phase concentration

ci and is not directly applicable to other solutions strategies. This motivates the

following reformulation. A new set of variables v ∈ R
N is introduced according

to

v = Fq(c) + c. (6)

It represents the joint capacity of the fluid and the adsorbed phase in Eq. (1).

In terms of the new variables the model (1) reads

∂v

∂t
+ u

∂c

∂z
= Da

∂2c

∂z2
. (7)

This equation is solved for v. In addition, the following set of 2N implicit

algebraic equations for c0 and c is derived from Eqs. (2)-(5) and the definition

of v

0 = fi :=

∫ c0i

0

q0i (s)

s
ds−

∫ c0N

0

q0N (s)

s
ds, i = 1, ..., N − 1, (8)

0 = fN :=

N
∑

j=1

cj
c0j

− 1, (9)

0 = gi := Fqi(c) + ci − vi

= F





N
∑

j=1

1

q0j (c
0
j )

cj
c0j





−1

ci
c0i

+ ci − vi i = 1, ..., N.
(10)
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In the last equation, (5) was used to eliminate the qi variables.

For the numerical solution, the partial differential equation (7) is discretized

using a method of lines approach [2]. For demonstration purposes the limiting

case of vanishing axial dispersion is considered in the remainder, and a simple

scheme with first order backward differences on an equidistant grid is used for

the convection term. However, application of more efficient discretization meth-

ods using adaptive grids [18] and/or high resolution methods [19] is straight

forward. The resulting system of ordinary differential equations (7) for v is

solved simultaneously with algebraic equations (8)-(10) for c and c0 using stan-

dard DAE numerics like DASSL [20] or LIMEX [21] or ODE15s in Matlab[22]

provided that the differential index is equal to one [23]. The numerical solution

of higher index systems is much more challenging [24] and not required here as

we will show subsequently. With the DAE approach explicit differentiation of

the adsorption isotherm is avoided.

In the following, it is shown that the differential index of the PDAE system

(7, 8-10), or equivalently the DAE system resulting from its discretization, is

always equal to one if the Jacobian ∂q/∂c has N real, positive eigenvalues. For

thermodynamic reasons this should always be the case as shown by Kvaalen et

al. [25] using displacement theory. Explicit proofs for Langmuir isotherms were

given in [25], for Bi-Langmuir isotherms in [26] and for the IAS theory for a large

class of pure component isotherms in [14]. In the Appendix these results are

extended in two directions. First, it is shown that this spectral property holds

for any thermodynamically consistent adsorption isotherm for mixtures of two

adsorbable components. Second, it is shown that it may fail for multicomponent

mixtures that are not in the class defined by [14].

The PDAE system (7, 8-10), or equivalently the DAE system resulting from

its discretization, has differential index one if the matrix of the derivatives of the

algebraic equations (8-10) with respect to the algebraic variables c0, c is non-

singular. From differentiation of Eqs. (8-10) and some elementary calculations

we find
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det(J) = det





(

∂f
∂c0

)

c

(

∂f
∂c

)

c0
(

∂g
∂c0

)

c,v

(

∂g
∂c

)

c0,v





= det





(

∂f
∂c0

)

c

(

∂f
∂c

)

c0

0
(

∂g
∂c

)

c0,v
−
(

∂g
∂c0

)

c,v

(

∂f
∂c0

)−1

c

(

∂f
∂c

)

c0





= det

(

∂f

∂c0

)

c

det

(

(

∂g

∂c

)

c0,v

−
(

∂g

∂c0

)

c,v

(

∂f

∂c0

)−1

c

(

∂f

∂c

)

c0

)

.

(11)

The indices at the brackets indicate which variable is constant during differen-

tiation. From this equation, we find that regularity of matrix J requires both

determinants in the last row of this equation to be nonzero. The first deter-

minant can be calculated explicitly using Gaussian elimination without row

switching (see also [13])

det

((

∂f

∂c0

)

c

)

=

N−1
∏

j=1

q0j
c0j






− cN
(c0N )2

−
N−1
∑

j=1

− cj
(c0j)

2

q0j
c0
j

(

−q0N
c0N

)







= −q−1
tot

N−1
∏

j=1

q0j
c0j

.

(12)

It is nonzero for nonzero concentrations.

The matrix in the second determinant is equal to
(

∂g
∂c

)

v
, which is obtained

by differentiation of (10), when c0 is interpreted as a function of c according to

Eqs. (8,9)

(

∂g

∂c

)

v

=

(

∂g

∂c

)

c0,v

+

(

∂g

∂c0

)

c,v

∂c0

∂c
. (13)

The derivative of c0 with respect to c is obtained by implicit differentiation of

Eqs. (8,9) according to

∂c0

∂c
= −

(

∂f

∂c0

)−1

c

(

∂f

∂c

)

c0

. (14)

7



Alternatively,
(

∂g
∂c

)

v
can be calculated by differentiation of the first line of Eq.

(10)

(

∂g

∂c

)

v

= F
∂q

∂c
+ I. (15)

Hence, the second determinant in Eq. (11) yields

det

(

∂g

∂c

)

v

=

N
∏

i=1

(Fλi + 1) , (16)

where the λi’s are the eigenvalues of the matrix ∂q
∂c

. Consequently, the second

determinant is also nonzero if these eigenvalues are positive, which completes

the proof.

Remarks:

1. A crucial aspect of the DAE formulations are consistent initial values

v0(z), c00(z). They can be easily calculated by solving (8-10) offline for

given initial conditions c0(z).

2. So far, explicit SCIs have been assumed according to equation (2). How-

ever, it is worth noting that also implicit SCIs according to

0 = hi(c
0
i , q

0
i ), i = 1, ..., N, (17)

can be handled with the new method. For implicit SCI, equations (17)

have to be solved for every s ∈ [0, c0i ], in order evaluate the integral expres-

sions in (3). Since the hypothetical fluid phase concentrations c0i depend

on z and t, this can be done in two different ways. Either the SCIs are re-

evaluated at every point in space and time according to the present values

of c0i , or they are calculated a priori only once for estimated upper bounds

on c0i , which is of course much more efficient. Using these function values,

the integral expressions in (3) are then evaluated using some numerical

quadrature.

The iterative calculation of the implicit SCIs requires good starting values,

which are often not available. Therefore, the following approach based
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on integration according to Davidenko’s method [27] with trivial initial

conditions is used in this paper

dq0i
dsi

= −
(

∂hi

∂q0i

)−1
∂hi

∂si
, q0i (0) = 0, i ∈ {1, . . . , N}. (18)

3. In the limit of vanishing axial dispersion, an alternative reformulation of

the partial differential equation (1) can be found. For this purpose Eqs. (2)

and (5) are inserted into the partial differential equation (1) with Da = 0

leading to

∂c

∂z
+ u−1 ∂

∂t



c+ F





N
∑

j=1

1

q0j (c
0
j)

cj
c0j



 c ∗ c̃0


 = 0,

c(0, z) = c0(z), c(t, 0) = cinj(t).

(19)

In this equation the ’∗’ symbol denotes the element-wise multiplication of

c and c̃0 =
[

1
c0
1

, . . . , 1
c0
N

]T

. System (19) together with (8) and (9) forms a

PDAE system that is equivalent to the previous system (7), and (8-10). It

can be solved efficiently using Rothe’s Method [28] instead of a methods

of lines (MOL) approach. In the Rothe method, first the temporal instead

of the spatial coordinate is discretized leading to a system of ordinary

differential equations in space, which are then integrated together with the

algebraic equations using a DAE method. In this case, c is the dynamic

variable and c0 is the only algebraic variable. This reformulation seems

attractive because it requires only N additional algebraic variables per

grid point. In view of Eq. (12) the differential index of this alternative

reformulation is also always equal to one. Hence, the Rothe-based DAE

formulation is applicable to any SCIs, especially also to those resulting in

non-hyperbolic systems. This allows to retain the advantages of a DAE

formulation (numerical stability, usage of flow-sheet simulation) also for

cases where the MOL-based DAE formulation is not applicable.
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3. Applications

In this section, the methods introduced in the previous section are evaluated

and compared to established solution approaches for two different benchmark

problems with explicit and implicit SCIs, respectively. For a simple and efficient

validation with the equilibrium theory, binary examples are considered. How-

ever, based on the formulation and results in the previous chapter, application

of the developed numerical solution approaches to multicomponent systems is

straight forward.

The numerical results in this section were obtained using a standard desk-

top computer with intel R© coreTMi7-4790 3.6 GHz and 16 GB RAM. Matlab R©

[29] was used to perform the numerical simulations. In particular, ODE15s was

used to solve the DAEs resulting from the discretization of the partial differen-

tial equations using first order backward differences, ODE45 to solve the ODEs

resulting from Davidenko’s method in Eq. (18) and the Matlab function ’trapz’

for numerical evaluation of the integrals in Eq. (3). In addition to ODE15s the

open source solver IDAS was tested as an alternative. This solver was incorpo-

rated into the Matlab R© environment using SUNDIALS: Suite of nonlinear and

differential/algebraic equation solvers [30].

3.1. Example with explicit SCIs

The first example was taken from [14]. It is concerned with the adsorption

of phenyl-n-decane (abbreviation ’C10’) and phenyl-n-undecane (abbreviation

’C11’) in acetonitrile on graphitized carbon. Adsorption of individual compo-

nents is described by explicit SCIs using a combined quadratic plus Langmuir

model

q0i = qsati1

c0i (bi1 + 2bi2c
0
i )

1 + bi1c0i + bi2(c0i )
2
+ qsati2

c0i bi3
1 + bi3c0i

, i = 1, ...N. (20)

Parameter values were taken from [14] and can be found in Tab. 1. The SCIs

are shown in Fig. 1. Since this is a system with two adsorbable components,
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requirements for a differential index of 1 as discussed in the previous section

and the Appendix are satisfied.

For a rigorous evaluation, the new MOL-based and Rothe-based DAE ap-

proaches are compared to two different implementations of the modified FastIAS

by Do [13], which was originally developed by [12]. The modified FastIAS solves

efficiently the equilibrium equations (8,9) using Newton method. The first im-

plementation is a mixed DAE-FastIAS approach that uses the reformulation

(7), (10) in combination with a method of lines approach and the modified Fas-

tIAS for the calculation of the hypothetical fluid phase concentrations c0i . Thus,

solving simultaneously equations (7),(10) for v, c, while the equations (8,9) are

solved separately for each spatial grid point at any given time for c0. Again, in

light of Eq. (16) the differential index of this DAE approach is also equal to one.

It is worth pointing out that in the new DAE approaches, all algebraic equations

are solved simultaneously with the differential equations using DAE numerics,

whereas in the modified FastIAS approaches Eqs. (10) are solved separately by

iteration. Therefore the new MOLand Rothe-based approaches are expected to

be more efficient and stable.

For the second implementation of the modified FastIAS method, total dis-

cretization of the model (1) is applied using simple backward differences for the

spatial derivatives and forward differences for the time derivatives. Again the

modified FastIAS method is used at any point in time and space. In all cases

axial dispersion is neglected with Da = 0.

In the remainder, focus is on the following scenario. An empty column is

injected with a pulse feed of 5.4 [mmol
l

] phenyl-n-decane and 5.0 [mmol
l

] phenyl-

n-undecane starting at 0min and ending at 10min. The resulting breakthrough

curves at the end of the column obtained with the different approaches over a

time interval of [0, 20] min are shown in Fig. 2. Results are in good agreement

with Fig. 8.4 in [15]. Corresponding computation times are given in Tab. 2.

Numerical parameters of the different approaches were selected in such a

way that the accuracy of all approaches is similar and therefore allows a fair

comparison of computation times. For the MOL-based DAE approach backward
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differences with Nz = 100 equidistant space grid points were used. It was found

that a four times higher number of equidistant time grid points was required

for the Rothe-based DAE approach to achieve similar accuracy. Although the

Rothe-based PDAE formulation (19,8,9) has only 2N variables compared to 3N

variables for the MOL-based PDAE formulation (7,8-10), the computation time

reported in Tab. 2 is higher due to the increased number of grid points. Further

differences may be attributed to different structural properties of the different

formulations. It is concluded that the Rothe-based approach is less attractive

compared to the MOL approach and therefore not further considered in this

paper.

From Tab. 2 it is also confirmed that our MOL-based DAE approach is

much faster than the mixed DAE-FastIAS approach. The reasons have been

discussed above.

Despite minor differences in accuracy, the total discretization in combina-

tion with the modified FastIAS is almost as efficient as our MOL-based DAE

approach. For the total discretization, 400 time steps and 1250 space steps

were used. The high number of space steps was required to satisfy the CFL

condition for numerical stability [19], which is a crucial issue for the type of

total discretization applied here. Main advantage of the MOL-based DAE ap-

proach compared to the total discretization approach are seen in two facts: (i)

In the DAE approach, more sophisticated methods for time integration includ-

ing variable order, variable step size in combination with error control can be

applied without extra effort by using corresponding standard software. This

may lead to improved numerical accuracy and stability. In case of the used

IDAS solver, an improved efficiency is clearly visible, see Tab. 2. (ii) As stated

above, the MOL-based DAE approach is particular well suited for the simu-

lation of multicolumn processes using standard software for equation oriented

dynamic flow-sheet simulation. Such tools support flexible configuration of com-

plex plants from elementary modeling and/or process units and therefore reduce

the implementation effort.

For validation purposes, the numerical solution of the MOL-based method
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is finally compared to the predictions of equilibrium theory in Fig. 3 [31]. Fig.

3a represents the solution of the scenario in Fig. 2 in the hodograph space of

the eigenvectors of the Jacobian ∂q/∂c. Eigenvalues and eigenvectors have been

calculated with the formulas in the Appendix. The lower diagram represents

an improved simulation with an increased number of Nz = 1000 grid points to

reduce the numerical dispersion. Agreement between theoretical and numerical

results in Fig. 3a is excellent. The plateau values in Fig. 3b also coincide visibly

with the corners of the trajectory in Fig. 3a.

3.2. Example with implicit SCIs

Finally, application of the MOL-based DAE formulation is demonstrated for

a second benchmark problem with implicit SCIs. Since the modified FastIAS

needs integrable and explicit SCIs, it cannot be applied to this second example.

The example system was taken from [32]. It is concerned with the ad-

sorption of 2-phenylethanol (component ’1’) and 3-phenylpropanol (component

’2’) in methanol-water on octadecyl-silica, where an implicit multicomponent

Fowler-Guggenheim isotherm is used. In this paper we use the IAST based on

the implicit SCIs obtained as limiting cases from the multicomponent Fowler-

Guggenheim isotherm

0 = hi(c
0
i , q

0
i ) = bic

0
i exp

(

−χi

q0i
qsati

)

+
q0i

q0i − qsati

, i = 1, 2. (21)

Therefore, only a qualitative comparison with [32] is possible. Using the Davi-

denko procedure [27], equations (21) are replaced by the equivalent initial value

problem

dq0i
ds

=

(

χibi
s

qsati

exp

(

−χi

q0i
qsati

)

+
qsati

(q0i − qsati )2

)−1

bi exp

(

−χi

q0i
qsati

)

,

qi(0) = 0, i = 1, 2,

(22)

to calculate the SCIs. The parameters for this example can be found in Tab.

3 and are taken from [32]. Results are shown in Fig. 4. Since the calculation
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of the SCIs can be separated from the simulation, the same arguments for the

differential index can be applied as in the previous section and the Appendix.

Again, the differential index is equal to one for the present system with two

adsorbable components and the MOL-based DAE approach can be applied. For

demonstration purposes axial dispersion is again neglected corresponding to

Da = 0.

A similar set-up like the previous example is considered, where an empty

column is injected with a feed pulse of 6.0 mg
ml

2-phenylethanol and 6.0 mg
ml

3-

phenylpropanol starting at t = 0.0 s and ending at t = 10.0 s. Corresponding

breakthrough curves are shown in Fig. 5 for the time interval [0, 300] s. Due

to the different multicomponent isotherms, the results in Fig. 5 are only in

qualitative agreement with Fig. 4 in [32]. Main difference is a shift of profiles

by 25 s. Nevertheless, the example in Fig. 5 demonstrates the applicability of

the new MOL-based DAE approach also for non integrable and implicit single

component adsorption isotherms.

In a second step, the numerical solution is also validated with the semi-

analytical solution obtained from equilibrium theory. For this purpose a chro-

matographic cycle consisting of the loading of an empty bed followed by the

regeneration is considered. The solution trajectory in the hodograph space ob-

tained from equilibrium theory is shown in Fig. 6a. Corresponding concentra-

tion profiles calculated numerically with the MOL-based DAE approach using

an increased number of Nz = 1000 grid points is shown in Fig. 6b. Additionally,

the injection interval is increased to [0, 100] s for an improved visibility of the

plateau values. Again, agreement between theoretical and numerical results in

Fig. 6a is excellent. In the concentration range considered in this figure, the

system is almost linear decoupled. This is reflected by the almost orthogonal

patch grid of the eigenvectors in Fig. 6a and by the decoupled transitions as

well as the ’symmetry’ between adsorption and desorption fronts in Fig. 6b.
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4. Conclusion

Two different DAE-based methods were developed for the numerical solution

of equilibrium models of fixed bed adsorbers for an arbritrary number of involved

components, namely an MOL- and a Rothe-based approach. It was shown that

the first is clearly superior to the second. Further, the efficiency of the MOL-

based approach was verified by comparison with different implementations of

the popular modified FastIAS method. Restrictions of (modified) FastIAS con-

cerning the single component isotherms could be relaxed. It was shown that

the DAE methods can be applied to a large class of SCIs including non inte-

grable and even implicit equations. Applicability of the DAE approaches was

justified by proving a differential index of one for all types of isotherms leading

to a Jacobian of the derivatives of the adsorption isotherms with only real and

positive eigenvalues. This applies to all binary and a large class of multicompo-

nent mixtures. However, for multicomponent mixtures also cases with complex

eigenvalues can be found, which are not suitable from the thermodynamic as

well as the numerical point of view and need revision.

Validation was done for elementary single column operation and for mixtures

with relatively simple thermodynamic behavior. Future work will focus on more

complex processes and/or more complex thermodynamic patterns of behavior.
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Notation

bij specific linear isotherm parameter [.]

ci fluid phase concentration of component i [mol
m3 ]

c0i hypothetical fluid phase concentration of component i [mol
m3 ]

Da apparent dispersion coefficient [m
2

s
]

F volumetric phase ratio [−]

fi i-th algebraic function of the IAST [−]

gi i-th artificially algebraic function [−]

hi i-th implicit SCI [−]

I identity matrix of size N ×N [−]

Jij i-th row, j-th column of the adsorption related Jacobian [−]

Lc column length [m]

N number of components [−]

Nz number of grid points [−]

qi solid phase concentration of component i [mol
m3 ]

qtot total solid phase concentration [mol
m3 ]

q0i hypothetical solid phase concentration of component i [mol
m3 ]

qsati specific saturation isotherm parameter [.]

ri specific exponential isotherm parameter [−]

s integration/differentiation variable [mol
m3 ]

t time coordinate [s]

u mobile phase velocity [m
s
]

vi joint capacity of fluid and solid phase of component i [mol
m3 ]

xi molar fraction of component i [−]

z space coordinate [m]

ǫ void fraction [−]

λi i-th eigenvalue of the Jacobian [−]

χi specific mixed linear-exponential isotherm parameter [−]

ω denominator function of specific SCIs [.]
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Appendix. Spectral properties of the IAST approach

The results for the differential index in Section 2 depend on the eigenval-

ues λi of the Jacobian matrix ∂q/∂c. It has been shown in [14] that these

eigenvalues are always real and positive for IAST isotherms provided the sin-

gle component isotherms (SCI) q0i (c
0
i ) are strictly monotonically increasing and

have the following structure

q0i (c
0
i ) =

c0iω
′(c0i )

ω(c0i )
. (A.1)

This structural requirement is met by many but not all SCIs. A counter example

is the Tóth isotherm, to be considered at the end of this appendix.

The monotonicity requirement

dq0i (c
0
i )

dc0i
> 0, c0i 6= 0 ∀i ∈ {1, . . . , N}, (A.2)

is a direct consequence of phase stability. Any non monotonic SCI will give

rise to two different fluid concentrations in equilibrium with the same adsorbed

phase concentration indicating a phase split of the fluid phase.

It is worth noting that the above eigenvalue result implies hyperbolicity of

the ideal equilibrium model without axial dispersion if the corresponding eigen-

vectors are linearly independent. Hyperbolicity is the basic requirement for the

so called equilibrium theory [33], which allows a semi-analytical solution for

piecewise constant initial and boundary conditions using the method of charac-

teristics.

In this appendix the results from [14] will be extended in two directions.

First, the result will be generalized to mixtures with two adsorbable components

with any strictly monotonically increasing SCIs, no matter whether explicit or

implicit. Therefore the structural requirement (A.1) is relaxed. Afterwards, it

is shown that such general statement is not possible in the multicomponent case

with more than two adsorbable components.

First focus is on binary mixtures. The Jacobian of the IAST approach takes
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with c being the only independent variable, i.e. q = q(c, c
0
(c),q

0
(c0(c))), the

generalized form

∂q

∂c
=

(

∂q

∂c

)

c0

+

(

∂q

∂c0

)

c

∂c0

∂c
,

(

∂q

∂c0

)

c

=

(

∂q

∂c0

)

c,q0

+

(

∂q

∂q0

)

c,c0

∂q0

∂c0
,

∂c0

∂c
= −

(

∂f

∂c0

)−1

c

(

∂f

∂c

)

c0

.

(A.3)

Note, in (A.3) we require the values of q0i to be explicitly available for each c0i ,

but no further information on the functional structure of the q0i is required, i.e.

it does not matter if q0i = q0i (c
0
i ) or 0 = h(q0i , c

0
i ) is solved intermediately. A

unique solution of the latter is guaranteed due to the strict monotonicity of the

SCIs.

For N = 2, the analytical formula of the Jacobian reads accordingly

J =
∂q

∂c
= q2tot





x2

c0
1
q0
2

+M1 − x1

c0
2
q0
2

+
c0
1

c0
2

M1

− x2

c0
1
q0
1

+
c0
2

c0
1

M2
x1

c0
2
q0
1

+M2



 ,

M1 = x1
qtot
c01q

0
1

(

x1

q01

c01
q01

dq01
dc01

+
q01
q02

x2

q02

c02
q02

dq02
dc02

+
q01
q02

x2

q02
− x2

q02

)

,

M2 = x2
qtot
c02q

0
2

(

x2

q02

c02
q02

dq02
dc02

+
q02
q01

x1

q01

c01
q01

dq01
dc01

+
q02
q01

x1

q01
− x1

q01

)

,

(A.4)

with molar fractions xi = ci/c
0
i . The eigenvalues of Jacobian in (A.4) can be

derived from the characteristic equation det(J − λI) resulting in the following

quadratic equation

aλ2 − bλ+ c = 0,

a = q−4
tot ,

b = q−2
tot

(

1

c01

1

q02
x2 +

1

c02

1

q01
x1 +M1 +M2

)

,

c =
1

c02

1

q01
M1 +

1

c01

1

q02
M2,

(A.5)
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where the two possible eigenvalues can be readily derived

λi =
b±

√
b2 − 4ac

2a
. (A.6)

In order to have a suitable spectral property that guarantees a differential of

one for any pair monotonic increasing SCIs, both eigenvalues have to be real

and positive. In (A.5), the inequality a > 0 is obviously satisfied since all

concentrations are positive. Based on (A.6), the inequalities

b > 0,

c > 0,

b2 − 4ac ≥ 0,

(A.7)

have to be additionally verified to realize the spectral property above.

Using relation (A.2), one can derive for both coefficients a, b lower limits

al, bl from their definition in (A.5) by applying
dq0i
dc0

i

= 0 to M1 and M2 resulting

in

bl = q−1
tot

(

1

c01q
0
2

x2

q02
+

1

c02q
0
1

x1

q01

)

> 0,

b > bl > 0,

cl =
qtot
c01c

0
2

(

x1x2

q01q
0
2

− x1x2

(q01)
2q02

+
x1x2

(q01)
2q02

− x1x2

q01q
0
2

)

= 0,

c > cl = 0.

(A.8)

The term b2 − 4ac can be reformulated such that it readily satisfies the last

inequality in (A.7)
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b2 − 4ac = q−2
tot((γ − α− β)2 + 4(µ− ν)2ξ) ≥ 0,

α =
1

c01

x1

q01

(

x1

q01

c01
q01

dq01
dc01

+
q01
q02

x2

q02

c02
q02

dq02
dc02

)

> 0,

β =
1

c02

x2

q02

(

x2

q02

c02
q02

dq02
dc02

+
q02
q01

x1

q01

c01
q01

dq01
dc01

)

> 0,

γ =
1

c01q
0
2

x2

q02
+

1

c02q
0
1

x1

q01
> 0,

µ =
1

c02q
0
1

> 0,

ν =
1

c01q
0
2

> 0,

ξ =
x1

q01

x2

q02

(

x1
c01
q01

q02
q01

dq01
dc01

+ x2
c02
q02

q01
q02

dq02
dc02

)

> 0,

(A.9)

thus concluding the proof of λi ∈ R+ with i ∈ {1, 2} for binary mixtures. If

additionally the following is satisfied

∫ c0
1

0

q01(s)

s
ds =

∫ c0
2

0

q02(s)

s
ds → q01

c01
6= q02

c02
, (A.10)

which is a negligible restriction for the choice of the SCIs, the last relations

in (A.7) becomes a strict inequality since (µ − ν)2 > 0 holds. Hence, both

eigenvalues are also distinct and the Jacobian is strictly hyperbolic for non-

vanishing concentrations.

The previous result of real and positive eigenvalues using only the assumption

(A.2) cannot be extended to systems with more than two components, which is

similar to the spectral results in [26]. For this purpose, a simple three component

counter example using the Tóth isotherm

q0i = qsati bic
0
i (1 + (bic

0
i )

ri)
− 1

ri , i ∈ {1, 2, 3}, (A.11)

which satisfies (A.2) for all physically relevant concentrations, see also Fig. 7a,

is considered. Parameter values in Tab. 4 are taken from [34]. A reasonable

range of [0.1 : 0.1 : 10] mmol
g

for the concentrations ci of all three components
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allows for 1003 different concentration vectors c = [c1, c2, c3]
T . Exploiting the

general definition (A.3) of the Jacobian, every eigenvalue that corresponds to a

particular vector c can be calculated numerically using standard software, e.g.

MATLAB R© [29]. The results are shown in Fig. 7b, where the location of the

eigenvalues λi(c) in the complex right half-plane is shown. Since the existence of

complex eigenvalues can be easily concluded from Fig. 7b, the Jacobian of this

counter example is indeed not hyperbolic. Thus, also ruling out the stronger

properties of the Jacobian to be strictly hyperbolic or having exclusively real,

positive eigenvalues.
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parameter value description

Lc [cm] 5 column length

Nz [−] 100 number of grid points

u [ cm
min

] 7.9556 interstitial velocity

ǫ [−] 0.745 void fraction

qsat11 [mmol
l

] 147.2 isotherm parameter

qsat12 [mmol
l

] 6.0 isotherm parameter

b11 [ l
mmol

] 0.087 isotherm parameter

b12 [ l2

mmol2
] 0.01 isotherm parameter

b13 [ l
mmol

] 1.69 isotherm parameter

qsat21 [mmol
l

] 122.4 isotherm parameter

qsat22 [mmol
l

] 17.0 isotherm parameter

b21 [ l
mmol

] 0.103 isotherm parameter

b22 [ l2

mmol2
] 0.032 isotherm parameter

b23 [ l
mmol

] 1.78 isotherm parameter

Table 1: Parameters of the first example with explicit combined quadratic plus Langmuir

SCIs.
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formulation solver average execution time

MOL-based DAE IDAS 5.2 s

ODE15s 11.0 s

full discretization Newton-Raphson [13] 12.0 s

&modified FastIAS

mixed DAE-FastIAS ODE15s & 36.0 s

Newton-Raphson [13]

Rothe-based DAE ODE15s 92.1 s

Table 2: Comparison of the execution times of the different numerical approaches for the first

application example.
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parameter value description

Lc [m] 0.1 column length

Nz [−] 100 number of grid points

u [m
s
] 0.0012 interstitial velocity

ǫ [−] 0.8 void fraction

qsat1 [mg
ml

] 75.0 isotherm parameter

qsat2 [mg
ml

] 316.0 isotherm parameter

b1 [ml
mg

] 0.03047 isotherm parameter

b2 [ml
mg

] 0.0153 isotherm parameter

χ1 [−] 0.6434 isotherm parameter

χ2 [−] −2.037 isotherm parameter

Table 3: Parameters of the second example with implicit Fowler-Guggenheim SCIs.
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parameter i = 1 i = 2 i = 3

qsati [mmol
g

] 82.135 51.683 307.89

bi [−] 22.476 6.894 307.89

ri [−] 0.98 0.509 0.675

Table 4: Parameters for the Tóth isotherm in the Appendix.
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Figure 1: SCIs of phenyl-n-decane (C10) and phenyl-n-undecane (C11) computed with the

combined quadratic plus Langmuir model.
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Figure 2: Calculated breakthrough curves for the first example. Solid lines - MOL-based

(ODE15s and IDAS) and Rothe-Based DAE approach (ODE15s), circles - mixed DAE-FastIAS

approach(Ode15s with Newton), dashed lines - modified FastIAS with total discretization

(Newton).
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Figure 3: Validation of numerical results for the first example: (a) Trajectories in the hodo-

graph space calculated with equilibrium theory (bold lines) overlaid with the numerical solu-

tion (dashed line). (b) Elution profiles of the numerical solution for Nz = 1000 grid points.
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Figure 4: SCIs of 2-phenylethanol (C1) and 3-phenylpropanol (C2) computed with the Fowler-

Guggenheim model.
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Figure 5: Calculated eluted peaks for the second example.
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Figure 6: Validation of numerical results for the second example: (a) Trajectories in the

hodograph space calculated with equilibrium theory (bold lines) overlaid with the numerical

solution (dashed line). (b) Elution profiles of the numerical solution for Nz = 1000 grid points

and an injection interval of [0, 100] s.
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Figure 7: (a) SCIs of toluene (component ’1’), dichloromethane (component ’2’) and

trichloroethylene (component ’3’) computed with the Tóth model. (b) Complex right half-

plane of all three eigenvalues for 1003 concentration combinations ci ∈ [0, 10] mmol
g

.
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