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“The greatest achievement

was at first and for a time

a dream.

The oak sleeps in the acorn;

the bird waits in the egg;

and in the highest vision of the soul

a waking angel stirs.

Dreams are

the seedlings of

reality."

James Allen
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Zusammenfassung

Magnetotaktische Bakterien besitzen eine intrazelluläre Struktur, die Magneto-
somenkette genannt wird. Magnetosomenketten enthalten Nanopartikel von Eisen-
kristallen, die von einer Membran umschlossen und entlang eines Zytoskelettfilaments
ausgerichtet sind. Dank der Magnetosomenkette ist es magnetotaktischen Bakte-
rien möglich sich in Magnetfeldern auszurichten und entlang magnetischer Feldlinien
zu schwimmen. Die ausführliche Untersuchung der strukturellen Eigenschaften der
Magnetosomenkette in magnetotaktischen Bakterien sind von grundlegendem wis-
senschaftlichen Interesse, weil sie Einblicke in die Anordnung des Zytoskeletts von
Bakterien erlauben. In dieser Studie haben wir ein neues theoretisches Modell en-
twickelt, dass sich dazu eignet, die strukturellen Eigenschaften der Magnetosomen-
ketten in magnetotaktischen Bakterien zu erforschen.

Zuerst wenden wir uns der Biegesteifigkeit von Magnetosomenketten zu, die von
zwei Faktoren beeinflusst wird: Die magnetische Wechselwirkung der Magnetosomen-
partikel und der Biegesteifigkeit des Zytoskelettfilaments auf welchem die Magneto-
some verankert sind. Unsere Analyse zeigt, dass sich die lineare Konfiguration von
Magnetosomenpartikeln ohne die Stabilisierung durch das Zytoskelett zu einer ringör-
migen Struktur biegen würde, die kein magnetisches Moment aufweist und daher
nicht die Funktion eines Kompass in der zellulären Navigation einnehmen könnte.
Wir schlussfolgern, dass das Zytoskelettfilament eine stabilisierende Wirkung auf die
lineare Konfiguration hat und eine ringförmige Anordnung verhindert.

Wir untersuchen weiter die Gleichgewichtskonfiguration der Magnetosomenpar-
tikel in einer linearen Kette und in einer geschlossenen ringförmigen Struktur. Dabei
beobachteten wir ebenfalls, dass für eine stabile lineare Anordnung eine Bindung an
ein Zytoskelettfilament notwendig ist. In einem externen magnetischen Feld wird die
Stabilität der Magnetosomenketten durch die Dipol-Dipol-Wechselwirkung, über die
Steifheit und die Bindungsenergie der Proteinstruktur, die die Partikel des Magne-
tosomen mit dem Filament verbinden, erreicht. Durch Beobachtungen während und
nach der Behandlung einer Magnetosomenkette mit einem externen magnetischen
Feld, lässt sich begründen, dass die Stabilisierung von Magnetosomenketten durch
Zytoskelettfilamente über proteinhaltige Bindeglieder und die dynamischen Eigen-
schaften dieser Strukturen realisiert wird.

Abschließend wenden wir unser Modell bei der Untersuchung von ferromagnetis-
chen Resonanz-Spektren von Magnetosomenketten in einzelnen Zellen von magneto-
taktischen Bakterien an. Wir erforschen den Effekt der magnetokristallinen Anistropie
in ihrer dreifach-Symmetrie, die in ferromagnetischen Ressonanz-Spektren beobachtet
wurden und die Besonderheit von verschiedenen Spektren, die bei Mutanten dieser
Bakterien auftreten.
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Abstract

Magnetotactic bacteria possess an intracellular structure called the magnetosome
chain. Magnetosome chains contain nano−particles of iron crystals enclosed by a
membrane and aligned on a cytoskeletal filament. Due to the presence of the magne-
tosome chains, magnetotactic bacteria are able to orient and swim along the magnetic
field lines. A detailed study of structural properties of magnetosome chains in magne-
totactic bacteria has primary scientific interests. It can provide more insight into the
formation of the cytoskeleton in bacteria. In this thesis, we develop a new framework
to study the structural properties of magnetosome chains in magnetotactic bacteria.

First, we address the bending stiffness of magnetosome chains resulting from two
main contributions: the magnetic interactions of magnetosome particles and the bend-
ing stiffness of the cytoskeletal filament to which the magnetosomes are anchored.
Our analysis indicates that the linear configuration of magnetosome particles with-
out the stabilisation to the cytoskeleton may close to ring-like structures, with no net
magnetic moment, which thus can not perform as a compass in cellular navigation.
As a result we think that one of the roles of the filament is to stabilize the linear
configuration against ring closure.

We then investigate the equilibrium configurations of magnetosome particles in-
cluding linear chain and closed−ring structures. We notably observe that for the
formation of a stable linear structure on the cytoskeletal filament, presence of a bind-
ing energy is needed. In the presence of external stimuli the stability of the mag-
netosome chain is due to the internal dipole−dipole interactions, the stiffness and
the binding energy of the protein structure connecting the magnetosome particles to
the filament. Our observations, during and after the treatment of the magnetosome
chain with the external magnetic field substantiates the stabilisation of magnetosome
chains to the cytoskeletal filament by proteinous linkers and the dynamic feature of
these structures.

Finally, we employ our model to study the FMR spectra of magnetosome chains
in a single cell of magnetotactic bacteria. We explore the effect of magnetocrystalline
anisotropy in three-fold symmetry observed in FMR spectra and the peculiarity of
different spectra arisen from different mutants of these bacteria.
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Abbreviations and Symbols

Abbreviations

∆mamj MAMJ protein deleted mutants of magnetotactic bacteria.
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MMP Many-Celled Magnetotactic Prokaryotes.

MTB Magnetotactic Bacteria.

NS North-Seeking Bacteria.

OAI Oxic−Anoxic Interface.

OATZ Oxic−Anoxic Transition Zone.

SD Single Magnetic Domain.

SS South-Seeking Bacteria.

Symbols

µ0 Vacuum permeability, 4π × 10−7N A−2.

Chapter 1

d Gap distance between the magnetic particles, 10 nm.

XI



ǫ The dipole-dipole interaction of neighboring dipoles in the chain, µ0

4π
2m2

l3
.

Efil Bending elasticity of the filament.

Elin Equilibrium energy of a straight chain of magnetic dipoles.

Emagn Dipole-dipole interactions between the magnetic dipoles.

Ering Equilibrium energy of a closed-ring of magnetic dipoles.
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κfil Elastic bending rigidity.

κmagn Magnetic bending rigidity.

l Distance between neighboring magnetosomes, 2r + d.

ℓp,magn Magnetic persistence length.

mi Dipole moment of magnetic dipole i.

r Magnetosome particle radius, 25 nm.

R Curvature radius of a bent chain of dipoles.

Chapter 2

B External magnetic field.

d Gap distance between the magnetic particles, 10 nm.

dn Distance between neighbouring magnetosomes, dn = 2R + d ≃ 50 nm.

Eelasticity Elastic energy of the spring-like linkers.

Eb Binding energy, −2kBT .
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EB External magnetic field−dipole interaction energy.

Edd Dipole-dipole interaction energy.

Ehc Hard-sphere potential.

Eunbound Unbound configuration energy.

kl Spring constant of the linkers, 0.106 pNnm−1.

l Length of the linkers.

l0 Rest length of the linkers, 5 nm.

mi Dipole moment of magnetic dipole i.

R Magnetosome particle radius, 20 nm.

Chapter 3

d Gap distance between the magnetic particles, 10 nm.

Bres Resonance field, External magnetic field at which resonance occurs.

E Total energy.

EB External magnetic field−dipole interaction energy.

Bext Applied field.

Ecrystal Magnetocrystalline anisotropy energy.

Edd Dipole−dipole interactions energy.

γ Gyromagnetic ratio, 1.76× 10+11 rad s−1T−1.
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θ Polar angle.
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s

.
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Chapter 1

Introduction

For decades, fundamental differences such as the absence of a cytoskeletal structure

and the lack of membrane bound organelles resulted in bacteria to be considered less

developed than eukaryotic cells with lower degree of sub−cellular compartmentali-

sation and domain specific functionality. Recent advances in biology of prokaryotes

changed this traditional view dramatically. It was demonstrated that bacteria, like

their eukaryotic counterparts, are actually highly organised and dynamic [1]. Until

the early 1990s, it was believed that one fundamental difference between eukaryotes

and bacteria is that bacteria do not have a cytoskeleton. But then a series of stagger-

ing discoveries overturned this view, identifying bacterial homologues of filamentous

actin, tubulin and intermediate filaments that organise the eukaryotic cytoskeleton

[2]. In addition to a dynamic cytoskeletal structure, it was also shown that remark-

ably some bacteria possess membrane bound organelles [3, 4].

Among the (few) bacteria with membranous organelles and cytoskeletal structure, are

fascinating magnetotactic bacteria. These bacteria possess an intracellular structure

called the magnetosome chain. Magnetosome chains contain nano−particles of iron

crystals wrapped in a lipid bilayer membrane aligned by a network of cytoskeletal

filaments mainly composed of a bacterial actin−like protein, called MamK [5]. The

distinct properties of magnetotactic bacteria make them an ideal system for the study

of bacterial cytoskeletal structure by means of both physics and biology.

In this thesis, we develop and apply a theoretical framework for the study of the struc-
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ture of magnetosome chains. We start with an introduction on the discovery, general

characteristics and structure of magnetotactic bacteria. The introductory chapter is

followed by two chapters on the mechanical properties of magnetosome chains. In the

first chapter, we address the bending stiffness of a magnetosome chain and we ask

whether the bending stiffness is mostly caused by the cytoskeletal structure or by the

magnetic interactions of magnetosome particles. In the second chapter, we develop

a detailed model of magnetosome chains and explore the equilibrium configurations

of magnetosome particles and investigate the sources stabilizing the magnetosome

particles into stable linear arrangements on the cytoskeletal filament. Employing the

model and the magnetic properties of magnetosome particles, we peer into the me-

chanical stability of magnetosome chain structure and analyse the chain responses

to the mechanical stimuli. In the last chapter, we use our model equipped with pa-

rameters obtained from FMR spectroscopy experiments on magnetotactic bacteria to

explore the resonance spectra of magnetosome chains in single cells of different strains

and mutants. Understanding the behaviour of different spectra obtained from single

cells of different mutants/strains can provide detailed information about the structure

of magnetosome chains available in the sample. We explain that the narrow spectral

linewidth is crucial for seeing structural features. In fact, the broad linewidth ob-

served in FMR spectroscopy on bulk samples may not be able to provide us with fine

details of the structure of the magnetosome chains. The potential of single cell FMR

analysis to distinguish the structural differences suggests that the FMR spectroscopy

could be used as an alternative tool to relate the spectrum with the structure of the

magnetosome chain and ultimately to the strain/mutant, from which the spectrum

was obtained meaning that we would be able to determine the strain available in the

sample by FMR spectroscopy analysis.
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1.1 Discovery of magnetotactic bacteria

Figure 1.1: Aquaspirillum magnetotacticum cell with one single chain of magnetite
particles and one single flagellum at each pole of the cell. Scale bar represent 1µm.
Drawn after fig. 1(b) of [6].

Magnetotactic bacteria were first discovered in early 1970s by Richard P Blake-

more. While studying microbial populations collected from the sediments of brackish

marshes, he observed highly motile bacteria with swimming speed of the order of 100

µm s−1. These bacteria were migrating persistently unidirectionally across the field of

view and accumulating at one edge of the drop of the sediments. Despite exercising

different controls over presumed stimuli of migration, the bacteria were swimming

toward the same geographic direction, indicating the fact that the pervasive stimulus

was possibly the Earth’s magnetic field. That the behaviour of cells was truely mag-

netically directed was demonstrated by a magnet brought close to the microscope;

astonishingly, the hundreds of swimming cells swerved in unison and swam toward

the north pole of the magnet and conversely, by rotating the magnet, cells instantly

turned and rushed away from the opposite end of the magnet [7, 8].

Blakemore’s observation was not the first discovery of magnetotactic bacteria. In
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1963, the observation of "magnetosensitivity" in aquatic bacteria has been docu-

mented by Salvatore Bellini while examining water samples for pathogens. But as

not published in any peer−reviewd scientifc journal, his dicovery was never recognised

till the latest discovery by Blakemore which introduced a whole new field of scientific

study [9, 10]. The unexpected discovery has been proven to be a fruitful subject

that crosses the established disciplines boundaries and requires thinking across them.

Study of magnetotactic bacteria seems to have roused the collaborations and dis-

cussions among microbiologists, evolutionary biologists, biochemists, physicists and

paleogeologist. It has been also offering thought−provoking possibilities for bionan-

otechnology applications.

1.2 General characteristics of magnetotactic

bacteria

Magnetotactic bacteria are predominantly found at the oxic−anoxic interface (OAI)

and the anoxic regions of water columns or sediments in natural aquatic habitats

with layered concentration of chemical elements including oxygen, nitrogen and sul-

phur [11, 12]. Magnetotactic bacteria are not characterised as a new taxonomic

classification, but are a diverse group of bacteria that show magnetotactic behaviour.

Magnetotactic bacteria seem to use magnetotaxis in combination with chemotaxis

in environments with chemical stratification along the magnetic field lines to find

and maintain their preferred habitat. This reduces their random three−dimensional

excursions to one dimension and presumably increases their efficiency in chemotaxis

[13]. Despite all the similarities that those examined magnetotactic bacteria share,

within the group they represent a copiousness of cellular morphologies including coc-

coid Magnetococcus marinus MC−1, Desulfovibrio magneticus RS−1, vibrioid marine

Magnetovibrio MV−1, spirilloid Magnetospirillum species and even the multicellular

many−celled magnetotactic prokaryotes (MMPs) [14, 13]. MMPs exhibit extraor-

dinary morphotypes. They comprise 20 cells in a roughly spherical arrangement
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Strain
Cell

morphology

Magnetosome

mineral

Typical dimension

of magnetosomes

(nm)

Morphology of

magnetosomes

Number of

magnetosomes

Arrangement of

magnetosomes

Arrangement of

Flagella

Swimming velocity

(µm × s
-1
)

Magnetospirillum

gryphiswaldense/MSR-1

Spirillum/

Spiral

Magnetite 30-50 Cuboctahedral 20-30 Single chain Amphitrichous 10 – 30

Desulfovibrio

magneticus /RS-1

Vibrioid/

Rod-shaped

Magnetite 30-70

Tooth- or

Bullet-shaped

5-15 Single chain Monotrichous 10 – 30

Magnetococcus marinus

/MC-1

Coccus /

Spherical
Magnetite 80-120

Truncated

hexaoctahedral

10-15

Single chain
Peritrichous /

Bilophotrichous
50 – 120

Magneto-ovoid/MO-1 Ovoid Magnetite 50-60
Elongated cubo-

octahedral
15-25 Single chain

Peritrichous /

Bilophotrichous
Up to 300

Magnetotactic

cocci (MC)/ARB-1

Coccus /

Spherical to

Ovoid

Magnetite 20 -133 Hexagonal 10-30

Cluster, chain,

or combination

of both

Peritrichous /

Bilophotrichous
1000

Magnetobacterium

bavaricum
Rod-shaped Magnetite 110–150

Tooth- or Bullet-

shaped
600-1000

Several parallel

chains

Lophotrichous/

One polar tuft
40

MMP
Spherical

assemblies

Greigite/

Magnetite
85–90

Bullet-shaped or

Equidimensional
300-1000 Several chains Peritrichous 170

Magnetic vibrio/MV-1

Vibrioid

/Curved rod

shape (comma

shape)

Magnetite 40-60
Truncated

hexaoctahedral
15 Single chain Monotrichous -

Figure 1.2: General features of selected magnetotactic bacteria. Each species is des-
ignated with an image in front of its name.

with intercellular connections between outer membranes of smaller cells [15]. MMPs

generally biomineralize crystals of iron sulphides. However, Lins et al., reported

MMPs which mineralize either crystals of magnetite or together with greigite crystals
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[16]. More examples on the morphology of magnetotactic bacteria are found in table

1.2. All magnetotactic bacteria studied to date possess flagella, usually positioned

Figure 1.3: Magnetococcus marinus MC−1 with a single chain of magnetite particles
and two tufts of flagella (bilophotrichous). Scale bar represents 0.5 µm.
Drawn after fig. 1(b) of [13].

at one side of the cell or at both poles. The arrangement of flagella varies between

species/strains. In some cells it is monotrichous (a single flagellum at only one pole)

as in coccoid cells with a single polar unsheathed flagellum [17]. In others, it can be

either amphitrichous (single flagellum at both poles) as in curved, rod−shaped cells

of Magnetospirillum with single bipolar flagella, or lophotrichous (a tuft of flagella

at one pole) as in ovoid, rod−shaped cells of the marine Magneto−ovoid bacterium

MO−1 with multiple sheathed flagella at one pole [18]. MMPs are peritrichously

flagellated with asymmetrical distribution of flagella on each constituent cell, pre-

sumably reflecting a spatial distribution required for coordinated motility [19]. Cells

of magnetotactic bacteria, like other flagellated organisms, swim by rotating their

helical flagella. In addition, due to the presence of the magnetosome chains, they

align with the local magnetic field lines, in natural environments the geomagnetic

field lines. Swimming speeds vary among species and strains from 20-65 µm s−1 in
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Figure 1.4: Magnetobacterium bavaricum with several parallel chains of magnetite
particles and one polar tuft of flagella. Scale bar represent 1 µm.
Drawn after fig. 1(b) of [20].

M. gryphiswaldense [21] to 1000 µm s−1 in the coccus ARB−1 [22]. This is up to

500 times faster than Escherichia coli [23]. More examples of swimming speeds of

different magnetotactic bacteria are found in table 1.2.

1.3 Detection and natural abundance of mag-

netotactic bacteria

Magnetotactic bacteria are ubiquitous, they have been found in a wide range of differ-

ent aquatic habitats: in the Arctic, in Baltic Sea sediments, in South America (Brazil)

[8, 24], Tasmania, in Australia and New Zealand [25], Germany [26], Mediterranean

Sea, France [27] and throughout North America [7, 8, 28].
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Figure 1.5: A bar magnet is placed close to the drop. The bacteria swim towards the
magnet and accumulate at the edge of the drop.

Because of their magnetic behaviour, the bacteria can be easily collected from

natural environments. Using their magnetically directed motility and applying a

magnetic field, one can redirect them to swim out of the sediments and accumu-

late where they could be sampled. To detect bacteria in samples taken from muds

and waters for further studies, light microscopy in combination with the standard

hanging−drop technique are used [13, 29, 30, 18]: a drop of the sample is pipetted on

a microscope slide placed on a rubber o−ring with the drop on the underside. A bar

magnet is placed on the microscope stage near the drop. The magnetic axis is parallel

to the plane of the slide and passes the drop radially. The bacteria will swim towards

or away from the bar magnet to the edge of the drop close to the near pole of the

bar magnet or to the other side of the drop to the edge farthest away from this pole

and accumulate there. If the magnet is rotated by 180◦, the bacteria will turn and

swim in opposite direction, on the same axis relative to the external magnetic field

lines. Another 180◦ rotation of the bar magnet will bring the bacteria back to the

initial edge of the drop [18, 31]. In the absence of any experimental equipment and

for samples with a high abundance of magnetotactic bacteria, one can easily detect

the bacteria by bringing a bar magnet close to the bottle filled with the sample. A

8



small dark brown−gray accumulation consisting of MTB appears inside the sample

bottle close to the magnet. The geomagnetic field is oriented in south−north direc-

Figure 1.6: Schematic drawing of how polar magneto−aerotaxis directs cells to the
preferred oxygen concentration at the oxic−anoxic interface (OATZ). NH, Northern
hemisphere; SH, Southern hemisphere; Bgeo, geomagnetic field.

tion. It also has a component normal to the surface of the globe, which is directed

upward on the Southern Hemisphere, decreasing to a value of zero at the geomag-

netic equator, and is inclined downward on the Northern Hemisphere, with a value

increasing with latitude. Because of this inclination, bacteria found in the Northern

Hemisphere swim downward toward the south magnetic pole and parallel to B. These

Bacteria which swim parallel to B are called North−seeking (NS). Bacteria found

in the Southern Hemisphere swim downward toward the north magnetic field and

therefore antiparallel to B, South−seeking (SS) bacteria [17, 7, 8]. As a consequence

of downward directed motion, which is an advantage for survival of these bacteria,

in either hemisphere there is a prevalence of magnetotactic bacteria in sediments and
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absence of them from surface waters. If the sole vertical component of the geomag-

netic field selects the dominant cell polarity in nature then neither of the swimming

polarities should exit at the geomagnetic equator at which the geomagnetic inclina-

tion is zero. However, Frankel et al., [24], reported the observation of magnetotactic

bacteria in sediments at the equator and not in the surface waters, therefore there

should be other chemotactic responses to oxygen which assists the bacteria in finding

their right habitat.

1.4 Magnetosomes

One of the most striking features of magnetotactic bacteria is their capability to flaw-

lessly produce and organise magnetosome crystals. Magnetosome chains, the unique

organelles responsible for magnetic behaviour, are intracellular structures consisting of

a well ordered linear structure [32] of single domain iron crystals [33, 34] enclosed by a

lipid bilayer membrane [35], called the magnetosome vesicle. This vesicle is most likely

an invagination of the cell membrane anchored by a proteinous linker to a network of

cytoskeletal filaments [36]. It is also a compartment where highly controlled biomin-

eralization of well ordered iron crystals proceeds [3]. The magnetosome iron crystals

consist of magnetite (Fe3O4) [37], greigite (Fe3S4) or iron pyrite (FeS2) [38, 11]. The

crystals are typically 35-120 nm long, within the stable, single−magnetic−domain

(SD) size range [39, 40, 41], however, metastable, single−magnetic domain magneto-

some crystals with length up to 250 nm were also observed [42, 43, 44]. In general,

homogeneously magnetized single domain magnetosome particles have the maximal

magnetic moment (per volume) because of the formation of magnetic domain walls

in magnetic particles within the size range larger than SD size range and the effect

of thermal fluctuations in particles within the size range smaller than SD size range.

Therefore it seems that magnetotactic bacteria optimize their magnetic dipole by

controlling the size of the magnetosome particles [45, 46]. Another example of the

control over the magnetosome particles is the morphology of the crystals. Magneto-

some crystal morphology varies between bacterial strains and species while remaining
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consistent within each strain and species. Examples of different morphology include

the most widespread cuboctahedral and equidimensional elongated crystals in Mag-

netospirillum species, truncated hexaoctahedral crystals in the magnetic vibrio and

finally the tooth−shaped (bullet− or arrowhead−shaped) crystals found in Desul-

foVibrio magneticus [31, 47].

In most magnetotactic bacteria, the magnetosomes are arranged in single or multiple

chains. Magnetic interactions between the magnetosome particles in a chain orient

their magnetic dipole moment parallel to each other and parallel to the axis of the

chain. As a result, the magnitude of the total magnetic dipole moment of the cell is

the sum of the permanent magnetic dipole moments of the individual magnetosome

particles and the magnetosome chain functions as a single magnetic dipole. Stud-

ies of magnetotactic bacteria employing magnetic force microscopy [48] and electron

holography [49] confirm this conclusion.

1.5 Stability of magnetosome chain linear struc-

ture

The linear arrangement of magnetic moments in the magnetosome chain maximizes

the magnetic dipole of the cell. The simplest model for magnetotaxis assumes pas-

sive orientation of the swimming bacterium along the magnetic field lines due to the

torque exerted by the field on the magnetic moment. Thermal energy, on the other

hand, tends to disorient the bacterium during swimming. The magnetic moment of

a chain of 20 magnetite particles with the length extension of 50 nm, similar to the

magnetosome particles in the strain MSR−1, is 6.02 × 10−16 JT−1, using the mag-

netite magnetization per volume, 0.48 × 10+6 JT−1 m−3. Since the magnetosome

chain is fixed in the cell, this value is effectively the magnetic moment of the bac-

terium. Therefore the total magnetic energy of the cell in the geomagnetic field of

50 µT is 3.0× 10−20 J. The time average of orientation of such a single dipole under

thermal fluctuations, given by replacing the time average with ensemble average, is

11



〈cos(θ)〉 = L(mB
kT

) ≃ 0.9, L(mB
kT

) is the Langevin function. This means, despite the

thermal fluctuation, the magnetic interaction of the magnetosome chain with the geo-

magnetic field is enough to align the bacterium with the field [50, 46]. Recently, some

evidence for much larger non−thermal noise in the environment has been reported.

The observed effect may be explained by an effective temperature larger than the

actual temperature [51, 52].

As discussed, the maximal magnetic moment in magnetotactic bacteria is due to the

linear arrangement of the magnetic moments in the magnetosome chain. The linear

arrangement of any system of magnetic nano particles has the maximum magnetic

moment. However, this configuration is a metastable state and it may fold into a

closed−ring structure or collapse into a cluster [53].

Along with the magnetosome chain, extends a network of cytoskeletal filaments com-

posed of mainly the bacterial actin−like protein MamK [5]. Magnetotactic bacteria

recruit these cytoskeletal filaments to, beside actively transporting the magnetosome

particles, control the position of particles in the cell and therefore to maintain the

cell magnetic orientation [54]. Further evidence of the stabilization of magnetosome

particles to the filament by macromolecular complexes was recently shown in an in

vivo experiment by Koernig et al., [55]. In their study, Koernig et al., examine the

stability of magnetosome chains by causing structural changes in magnetosome chains

of immoblized bacteria, using the magnetic interaction between magnetosome parti-

cles and an external magnetic field.

1.6 A model for magnetosome chains

In the course of this work, we develop a framework for the magnetosome chain struc-

ture that enables us to discuss the energetics, stability and mechanical properties of

magnetosome chains.

Previously published works on systems of this type with the chain as either a chain

of discrete particles or as continuous magnetic rod have some limitations. In most
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of the discrete magnetosome chain models, the magnetostatic interactions between

magnetic particles in their self−assembly [56] or in the fusion of two chains [53], have

been discussed with no discussion on the elastic properties of the magnetosome chain.

Elastic properties have been addressed by Scherbakov et al. In their study, the mag-

netosome chain is regarded as a long rod with interacting alternating elastic (organic

substance) and non−elastic (magnetite particles) elements, far from the magneto-

some chain structure that is known to date [57]. Continuous magnetic rod models

are in part extensions of the Kirchhoff model of elastic rods by either including the

orienting effect of the magnetic field on the filament or including permanent magnetic

particles on the free end of an elastic cantilevered rod [58, 59]. The obtained bending

rigidity in these models is without any correction due to the discrete distribution of

magnetosome particles on the filament which is fixed at both its ends.

The presence of actin−like filaments, to which the particles are linked by organic link-

ers are known now. In addition, imaging reveals the connections between membranes

of some of the magnetosome particles. Nevertheless, none of the aforementioned works

is based on this current knowledge of magnetosome chain structure. At the same

time, the discussion on the energetics of such a system is limited and recent progress

in the field of magnetotactic bacteria focuses more on elucidating the microbiological

aspects or biomineralization−biochemistry process in magnetotactic bacteria. As a

result, there is a paucity of research that provides more information concerning the

physics involved in the cytoskeletal structure of magnetotactic bacteria.

Our theoretical model for magnetosome chains takes into account all the mentioned

issues that influence the equilibrium configurations, stability and mechanical proper-

ties of magnetosome chains.

1.7 List of publications

Part of the research carried out in the course of this thesis was published in the

following articles:

• Bahareh Kiani, Damien Faivre, Stefan Klumpp (2017) A theoretical framework for
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magnetosome chains structure, Manuscript in preparation

• Sara Ghaisari, Bahareh Kiani, Stefan Klumpp, Damien Faivre (2017) Study of

resonance spectra in magnetosome chains, Manuscript in preparation

• B. Kiani, D. Faivre, and S. Klumpp, New J. Phys. 17 (2015).

• S. Klumpp, B. Kiani, P. Vach, and D. Faivre, Phys. Scr. T165 (2015).
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Chapter 2

Elastic properties of magnetosome

chains

1

2.1 Introduction

All magnetotactic bacteria contain single or multiple magnetosome chains and in the

majority of them, magnetosome chains are organised into linear structures. The lin-

ear arrangement of magnetosome chains ensures the maximal magnetic moment of

the chain and the maximal torque exerted by the earth magnetic field on the chain.

Otherwise stated, the linear arrangement of magnetosome particles optimises the ori-

entation of the cells and their migration along the field. Consequently, the linear

arrangement of the magnetic particles in magnetotactic bacteria is crucial as it pro-

vides a sufficiently large magnetic moment for navigation of the cells.

However, in general chains of magnetic nanoparticles are typically rather fragile and

may collapse into folded chains, closed−ring structures or clusters. In magnetotactic

bacteria, it is suggested that along with the dynamic roles of the cytoskeletal filament

in assembling and positioning the magnetosome particles [54, 60], the cytoskeletal fil-

1This chapter is an extended version of the results pubished in the following article:
B. Kiani, D. Faivre, and S. Klumpp, New J. Phys. 17 (2015).
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ament provides further stabilisation of the linear structure of magnetic particles, [5],

which goes beyond the stabilising effect of magnetic interactions between magneto-

some particles [55].

In this chapter, we address a related problem, namely the bending stiffness of mag-

netosome chains. We specifically ask whether the bending stiffness is mostly due to

the cytoskeletal structure or to the magnetic interactions, as magnetic particles are

known to form linear structures [53, 57] without a stabilizing filament and (short)

chains have been seen in cells lacking the MamK protein [61, 62]. To that end, we

consider a model of (permanent) magnetic dipoles fixed on a semiflexible filament.

We calculate the magnetic contribution to the bending rigidity and the persistence

length and compare it with the contribution due to the filament. For chains of mag-

netic particles, it is also known that magnetic particles form closed ring structures,

so called flux−closure rings [63, 64, 65], thus we consider whether an actin−like semi-

flexible filament can stabilize a linear chain of magnetosomes against ring formation

either thermodynamically or kinetically.

2.2 A model for the elasticity of magneto-

some chains

To investigate the flexibility of a magnetosome chain, we describe it as a chain of per-

manent magnetic dipoles fixed along a semiflexible filament (Fig. 2.1). This magnetic

and elastic energy is given by the dipole−dipole interactions between the magnetic

dipoles and the bending elasticity of the filament,

E = Emagn + Efil. (2.1)

The magnetic contribution to the energy is given by

Emagn = −
N∑

i=1

N∑

j>i

µ0

4π

1

r3ij

(
3(mi · rij)(mj · rij)

r2ij
− mi · mj

)

, (2.2)
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Figure 2.1: a) Sketch of the magnetosome chain in magnetotactic bacterium: mag-
netic nanoparticles (gray circles) are attached to a cytoskeletal filament (green line),
enveloped in membrane (red lines). b) Geometric parameters of magnetosome parti-
cles with radius r and magnetic moment m.

where µ0 = 4π × 10−7N A−2 is the vacuum permeability, the mi are the dipole

moments of magnetic dipoles and the rij are the distance vectors between them, with

rij = |rij |. In the following, we will assume that all dipoles have equal absolute

value, |mi| = m. We will also take the distance between nearest neighbor dipoles

as constant, ri,i+1 = l, due to either the stiffness of the filament or due to steric

constraints such as touching magnetosomes (Fig. 2.1(b)). We want to emphasize that

mature magnetosomes are in the single−domain regime, i.e. they have permanent

magnetic dipoles with rather large magnetization due to the absence of magnetic

domains [66]. As a consequence, our model is considerably simpler than models for

chains of superparamagnetic particles [67, 68], where the magnetization and thus the

magnetic interactions depend on the external field experienced by the particle.

The elastic properties of the filament are described by a bending energy which is

a quadratic function of the local curvature [69],

Efil =
κfil

2

∫ Lfil

0

(
∂t

∂s

)2

ds. (2.3)
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Here s is a coordinate along the contour of the filament, t(s) is the unit vector along

the tangent of the filament, and κfil is the bending rigidity. Lfil is the filament length,

which we take to be equal to Lfil = Nl.

2.3 Magnetic contribution to the elasticity

In this section, we consider the magnetic part of the energy function given by Eq. (3.3)

separately, i.e. we omit the elastic contribution due to the filament and determine the

sole contribution of the magnetic interactions to the elasticity of the chain.

2.3.1 Straight chain

We start by briefly considering the limiting case of a linear chain of magnetic dipoles.

In the equilibrium state of such a chain, the dipoles orient parallel to each other and

to the chain axis, thus the magnetic interaction energy is

Elin = −
N∑

i=1

N∑

j>i

µ0

4π

2m2

r3ij
= −Nǫ

N−1∑

n=1

(1− n
N
)

n3
. (2.4)

In the last expression, we have introduced a characteristic energy scale ǫ = µ0

4π
2m2

l3
,

which represents the dipole−dipole interaction of neighboring dipoles in the chain.

Nearest neighbor interactions alone (given by the first term fo the sum, with n = 1)

lead to Elin = −Nǫ(1 − 1/N). Due to the rapid decay (∼ r−3) of the magnetic

interactions, these nearest neighbor interactions dominate the total energy. Indeed,

for long chains (N → ∞), the sum can be evaluated in terms of Riemann’s zeta

function as
∑∞

n=1 n
−3 = ζ(3) ≃ 1.2, thus one finds that the full energy is only 20

percent larger than the nearest−neighbor contributions alone. We note that the

parameter ǫ is related to the dipolar coupling parameter λ defined in earlier work

[53] via 2λ = ǫ/kBT with the thermal energy kBT , provided that the distance l is

the minimal distance (i.e. when the magnetic particles or their non−magnetic coating

touch each other).
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Next, we give an estimate of the characteristic energy ǫ. For magnetite nanopar-

ticles, the saturation magnetization (per volume) is 0.48 × 106 Jm−3 T−1 [47]. For

a particle of radius r = 25 nm, a typical value for magnetosomes in the well studied

Magnetospirilla species [70], the magnetic moment is thus m = 3.14 × 10−17 JT−1.

The distance between neighboring magnetosomes can be estimated as l = 2r+d ≃ 60

nm, where d ≃ 10 nm is a gap distance between the magnetic particles account-

ing for the surrounding membranes. The characteristic energy ǫ is then estimated

as ǫ ≃ 9.14 × 10−19 J = 221kBT . This implies that the energy of a chain of 20

magnetosomes is ≃ −2.0× 10−17 J or −4900kBT .

2.3.2 Bent chain

Figure 2.2: Bent magnetosome chain: (a) Sketch of the geometry: The chain is bent
onto a circle with radius R and a corresponding bending angle ϕ. The magnetic
moments are oriented in an angle θ with respect to the line connecting neighboring
magnetosomes. (b) In the equilibrium configuration, θ = −ϕ/2, i.e., the magnetic
moments align tangentially on the bending circle.

Next, we consider a bent chain and determine its bending rigidity and the corre-

sponding persistence length. To that end, we consider a chain of dipoles on a (planar)

circle with radius R. Thus two neighboring dipoles span a sector of the circle char-

acterized by the bending angle ϕ = 2 arcsin( l
2R
).
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In addition to the assumption of equal magnetic moments, we now also assume

that all dipoles have the same orientation with respect to the distance vector con-

necting them to their neighbor and characterize their orientation by the angle θ (Fig.

2.2). Since the magnetostatic interactions are short−ranged and dominated by the

nearest−neighbor interactions, this assumption can be expected to be quite accurate

except for the dipoles at the two ends of the chain. Minimization of the interaction

energy with respect to θ leads to a tangential orientation of the magnetic moments,

θ = −ϕ/2. Energy minimization is detailed in Appendix A.1.2.

The magnetic bending energy and thus the persistence lengths are obtained from

a Taylor expansion of the energy in powers of l/R, i.e., for small curvature, which

is described in the Appendix A.1.2 and A.1.3. This calculation is similar to the

calculation of the electrostatic persistence length of a polyelectrolyte [71]. If only

nearest neighbor interactions are included, the Taylor expansion leads to

Enn ≈ −Nǫ

(

1− 1

N

)

+
1

8
Nǫ

(

1− 1

N

)(
l

R

)2

. (2.5)

Here the first term is the linear chain energy and the second term represents the

contribution from bending with a magnetic bending rigidity of

κnn
magn =

ǫl

4

(

1− 1

N

)

. (2.6)

The same calculation can be done when including all magnetic interactions, see

the Appendix A.1.2. In this case, we obtain the magnetic bending rigidity as

κmagn =
ǫl

4

N−1∑

n=1

(1− n
N
)

n3
≈ ǫl

4
ζ(3) ≃ 0.3ǫl. (2.7)

As the sum in this expression is the same as in the expression for the energy of a linear

chain, the bending energy is also dominated by the nearest neighbor interactions, with

all other interactions contributing about 20 percent to the bending energy. We notice

that our expression for the bending rigidity differs slightly, ≃ 14%, from a result

20



reported in a recent study [72]. The two results show the same scaling behavior

(κmagn ∼ ǫl, but different numerical prefactors, ζ(3)/4 ≃ 0.30 and (ζ(3) + 1/6)/4 ≃
0.34). In that study, the bending rigidity was derived from the energy difference

between a straight chain and a closed ring. We will therefore come back to that

discrepancy in the next section, where we discuss the closed ring configuration.

Using a relation from polymer theory for semiflexible polymers [73], the bending

rigidity can be converted into a persistence length,

ℓp,magn =
κmagn

kT
=

ǫl

4kT

N−1∑

n=1

(1− n
N
)

n3
. (2.8)

This parameter characterizes the length scale over which such a chain is straight

under the influence of thermal fluctuations. Thus for the chain of magnetosomes

considered above, we obtain a bending rigidity of 1.5 × 10−20 J µm or 3.7kBT µm.

The corresponding magnetic persistence length at room temperature is 3.7µm, which

is comparable to the cell size (and longer than the typical chain length). Thus even

due to the magnetic interactions alone, magnetosome chains in magnetotatic bacteria

can be expected to be essentially straight. We note however that several studies have

shown that the alignment of magnetotactic bacteria in external fields is subject to

non−thermal fluctuations described by a substantially higher effective temperature

[52, 51], likely induced by the motility of the cells. If bending of the magnetosome

chain is subject to similar fluctuations, the thermal persistence length may overesti-

mate the length over which magnetosome chains are straight in cells.

The magnetic energy scale ǫ is strongly dependent on the particle size, at least for

particles in the single−domain size range (15-120 nm for magnetite [74]), where the

magnetization is directly proportional to the volume and thus ǫ ∼ r6/(2r + d)3. As

a consequence, the magnetic persistence length also increases strongly with particle

size, as plotted in Fig. 2.3. We have plotted two cases in this figure: The circles are

for magnetite particles that touch each other without gaps (d = 0), i.e. the distance

between nearest neighbors is l = 2r. For the squares, we have taken the gap size

d = 10 nm as constant to account for the presence of the magnetosome membrane
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around the magnetic particles. For example, a doubling of the particle size, compared

to the case considered above, leads to an increase of the magnetic persistence length

to 65 µm. Particles of such size are found in some magnetotactic bacteria including

in extraordinarily large cell of Magnetobacterium bavaricum (cell size ∼10 µm and

particles size 110-140 nm)[20]. On the other end of the size spectrum, for small

magnetosomes with radius 15-20 nm, persistence length is about 1 µm, which is

comparable with the chain length.

Figure 2.3: Persistence length as a function of particle size: Values are calculated
for a magnetosome chain of 20 spherical magnetite particles at minimal distances
(ℓ = 2r + d) with or without an enclosing membrane. Squares are for the case with
a membrane of thickness 5 nm (d = 10nm), circles for the case without a membrane
(d = 0).
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Figure 2.4: Magnetic energy of a chain as a function of the bending curvature given
by the inverse of the ratio of the distance between nearst neighbors and the curvature
radius (ℓ/R) or equivalently, the curvature angle ϕ (normalized to the angle for the
closed ring configuration). The larger circle at the highest curvature shown indicates
the closed ring configuration. The dashed line indicates the harmonic approximation,
the arrows marks the barrier between the linear and close−ring configuration. The
results shown here are for a chain of 20 particles.

2.3.3 Closed−ring configuration

Fig. 2.4 shows the full expression for energy as well as the harmonic approximation

given by Eq. (A.8), as a function of chain curvature. Good agreement is seen for

small curvatures, but for large l/R, the energy decreases again. In fact, the linear

chain is not the configuration corresponding to the global energy minimum. The

global energy minimum is found for a closed−ring configuration (also know as flux

closure ring [75]), which has the maximal curvature possible. Assuming that the

distance between neighboring magnetic dipoles is defined by steric constraints on

the magnetosomes that the dipoles represent, the distance between the first and last
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particle (i.e. the dipoles with i = 1 and i = N) in the ring configuration will be l,

i.e. the same as the distance of nearest neighbors in the interior of the chain. Thus,

the closed ring is a configuration with the maximal bending angle ϕ = 2π/N , see

Fig. 2.5 (larger angles would result in overlap of the first and last particle), and its

equilibrium energy is given by

Ering = − Nǫ

N−1∑

n=1

(1− n
N
)

4
(

sin(nπ/N)
sin(π/N)

)3

(

3 + cos
2πn

N

)

. (2.9)

That the closed ring is energetically favorable can be seen by the following es-

timate: The closed ring is stabilized by the additional nearest neighbor interaction

between the first and last particle, which can be estimated as ǫ, but needs to overcome

the bending energy, ∼ ǫ/(8N) × (Nl/R)2 ∼ ǫπ2/(2N). Thus, for sufficiently large

N the interaction between the dipoles with i = 1 and i = N overcompensates the

effect of bending. This crude estimate indicates that the closed ring is the minimal

energy configuration for chains of 5 or more particles, while a comparison of the exact

energies for the linear chain and the closed ring (plotted in Fig. 2.5) shows that this is

true for chains with 4 or more particles, as has already been shown in several earlier

studies [76, 77, 78, 53, 79]. We also note that the closed ring configuration with tan-

gential orientation of the magnetization has been demonstrated experimentally using

electron holography for cobalt nanoparticles [80]. For large N , the energy difference

between straight chain and closed ring is small, as it decays as

Ering − Elin ≈ −π2ǫ

2N

N−1∑

n=1

1− n
N

n
, (2.10)

For detail calculation, see Appendix A.1.4. These considerations show that the

relative stability of the straight chain and closed ring configuration depends not only

on bending, but also on the additional interaction energies due to bringing the ends

of the chain together. In a finite straight chain, the outermost particles contribute

less to the total interaction energy than the particles in the chain interior, because

of the smaller number of nearest neighbors, next nearest neighbors etc. In the recent

24



paper by Vella et al. [72], the bending rigidity was calculated by identifying the

bending energy with the energy difference between a closed ring of N particles and a

straight chain of the same length, embedded within an infinitely long chain (and thus

without finite size corrections to the energy). The rationale for this approach is that

embedding has the same effect on the energy as ring closure and that in this way the

contributions due to bending and due to ring closure can be separated. This approach

is exact for the dominant nearest neighbor interactions, and a good approximation

for the full set of interactions. As mentioned, it leads to the same scaling behavior

of the bending rigidity, but a slightly higher numerical prefactor. We note that, as

the energy difference between ring and embedded chain reflects only bending and not

ring closure, it cannot be used to determine the relative stability of these structures.

Figure 2.5: Linear and closed ring configurations of a chain of magnetic nanoparticles
interacting only magnetically (no filament): (a) Sketch of the closed ring geometry.
(b) Magnetic energy for the linear and the closed−ring configurations as functions of
the number of particles. The closed ring configuration has lower energy for chains
with four and more particles.

2.4 Including the filament

Now we include the elasticity of the filament and consider the full model with the

energy given by Eq. (3.2). For the magnetosome chain on a circle with radius R,
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we can write the filament bending energy as Efil = κfilNl/(2R2). The total bending

rigidity is obtained as the sum of the magnetic and elastic contributions,

κ = κmagn + κfil. (2.11)

Likewise the persistence length of the magnetosome chain is also obtained by summing

the two contributions, ℓp = ℓp,magn + ℓp,fil, and is thus essentially determined by the

larger contribution. Above, we have estimated the magnetic persistence length for

a typical magnetosome chain to be in the range of a few microns, with a strong

dependence on particle sizes. The persistence length of a MamK filament is not

known, but since MamK is a homolog of actin, we can compare this value with

the persistence length of actin filaments, which has been measured to be 15-17 µm

[81, 82, 83]. If we take this value as an estimate for the persistence lengths of the

MamK filament, we can conclude that both contributions to the bending rigidity

are of the same order of magnitude, but the filament contribution is the dominant

one with κfil/κmagn ≃ 3–5. However, this estimate is subject to some uncertainty, as

the magnetosome filament may be a bundle of MamK filaments rather than a single

filament and the details of its structure are unknown. Filament bundles can have even

higher bending rigidities and persistence lengths; for example up to 100−fold larger

bending rigidities have been reported for actin bundles, depending on the number of

filaments in a bundle and the type of crosslinker [84]. Likewise, due to the strong

dependence of the magnetic contribution part on size, the magnetic bending rigidity

could be dominant in species with large particles.

As mentioned before, for chains with more than four magnetic particles the closed−ring

configuration is more stable than a straight chain. Ring closure, however, does not

confer any energetic advantage to the filament, only the cost due to bending, so the

presence of the filament can be expected to stabilize the linear chain against ring

closure. We thus ask, whether the bending rigidity of an actin−like filament is suf-

ficient to stabilize a linear magnetosome chain either thermodynamically, by making

the linear configuration the global energy minimum, or kinetically, by increasing the
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energy barrier between the linear and the ring configuration. Fig. 2.6(a) shows the

total energy of the magnetosome chain as a function of curvature for different values

of κfil. One can see that both the energy of the closed ring and the height increase as

the bending rigidity of the filament is increased. The dashed line on top shows the

case, where κfil is chosen such that the energy of the straight chain and of the closed

ring are the same. This critical value κ∗
fil is given by

κ∗
fil =

lǫ

4 sin2(π/N)

(sin3(π/N)

2

N−1∑

n=1

1− n
N

sin3(nπ/N)
(3+cos(2π

n

N
))−2

N−1∑

n=1

1− n
N

n3

)

(2.12)

For a chain of 20 magnetosomes, this condition is met for κ∗
fil/κmagn ≃ 4.68.

Calculating this critical value of κfil for different numbers of particles allows us to

determine a morphological diagram as a function of the ratio of bending rigidities

κfil/κmagn and the particle number. This diagram (Fig. 2.6(b)) exhibits two regimes,

one in which the ring configuration is the globally most stable one and another where

the straight chain is the most stable configuration. Not surprisingly, an increasing κfil

extends the linear chain region.

Assuming a bending rigidity of the filament similar to a single actin filament will

bring the system close to the transition, but typically the closed ring will still be

the most stable configuration (for κfil/κmagn ≃ 4 and N ≃ 20). Thus, a bending

rigidity only slightly higher than actin’s (about 1.6−fold) or a small bundle of a few

actin−like filament would stabilize the straight chain thermodynamically, i.e. making

it the globally stable configuration. However, even lower values of the filament stiffness

than for a single actin filament may have an important impact in the cell, as they are

sufficient to destabilize small rings. Within the spatial confinement of the cell, small

rings and clusters containing small rings may be the dominant competing assemblies

as the confinement makes large rings are rather unlikely.

In addition, a ratio of the bending rigidities of κfil/κmagn ≃ 4 leads to an increase

in the barrier height of almost an order of magnitude (Fig. 2.6(a)), so that even lower

filament bending rigidities should be sufficient to stabilize the linear configuration

kinetically. In the cell, additional stabilization is provided by the confinement due to
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Figure 2.6: Bending of a magnetosome chain: (a) Magnetic and elastic bending energy
as a function of the curvature ℓ/R for different values of the filament bending stiffness
κfil. The uppermost curve is for the critical value of κfil, for which the linear and the
closed−ring configuration have the same energy. (b) State diagram indicating the
lowest−energy configuration as a funciton of the ratio of the elastic and magnetic
bending rigidities, κfil/κmagn, and the number of magnetic particles. (c) Height of the
energy barrier separating the linear−chain and closed−ring configuration as a function
of the ratio of the bending rigidities. The vertical red line indicates the critical bending
rigidity, κ∗

fil, above which the linear chain is the most stable configuration.

the cell’s membrane, which will prevent large ring structures.

To summarize these considerations, Fig. 2.7 shows three possible structures of

the magnetosome filament, a single filament spanning the whole cell, a bundle of

filaments individually spanning the whole cell, and a bundle of shorter filaments.

In the first case, the filament stabilizes the linear chain kinetically by increasing the

barrier to ring closure, but most likely, the closed ring is still the configuration with the

globally lowest energy. In the second case, the linear chain corresponds to the global

energy minimum, and the third case remains somewhat unclear. As thermodynamic
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Figure 2.7: Schematic picture for possible structures of magnetosome filaments: a)
A single long filament extending from one cell pole to the other, b) a bundle of long
filaments, c) a long bundle consisting of shorter filaments.

stabilization requires a filament stiffness only 1.6−fold larger than actin’s, such a

bundle may be strong enough if the bundle consists of at least two filaments along its

full length. On the other hand, such a structure may be locally less stiff and thus be

prone to bending at specific points.

2.5 Concluding remarks

In this chapter, we have address the bending stiffness of magnetosome chains, which

results from two main contributions, a magnetic one due to the magnetic interactions

between magnetosomes that favor straight chain orientation, and an elastic contri-

bution due to the bending stiffness of the actin−like cytoskeletal filament to which
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the magnetosomes are attached. Our analysis shows that while both contributions

are relevant, the bending stiffness of the filament can usually be expected to be the

dominant part, with an about 4−fold longer persistence length than due to magnetic

interactions alone. However, even the magnetic interactions alone can be expected

to result in a straight chain, as the persistence length exceeds the chain length. This

conclusion should however be taken with the caveat that it relies on the assumption

of thermal fluctuations of the magnetosome chain, while at least for the alignment of

the bacteria in external fields there is some evidence for non−thermal fluctuations,

as the alignment could be described by an elevated effective temperature [51, 52].

More importantly, for a chain of magnetic particles without a stabilizing filament, the

linear configuration is not the configuration of lowest energy. Rather such a chain can

be closed to a ring configuration, as seen experimentally [53]. Such rings have lower

energy than straight chains for chains of 4 or more particles, so one can imagine them

forming even despite the confinement in an elongated cell which should provide some

stabilization to the linear configuration. Of course, closure of a ring is detrimental

for the function of the chain, as the ring has no net magnetic moment. As a result of

our analysis, we think that one of the roles of the filament is to stabilize the linear

configuration against ring closure. That such stabilization is needed is suggested by

observations of clusters of magnetosomes in mutants lacking the MamJ protein that

links the magnetosomes to the filament (the situation is less clear for mutants lacking

the filament protein MamK, as these cells exhibits multiple short linear chains). For

a single actin−like filament, such stabilization is likely kinetic, i.e. by the increase of

the barrier between the straight and ring configurations. For small bundles of such

filaments, we expect the stabilization to be thermodynamic, i.e., in these cases, the

linear configuration corresponds to the global energy minimum. Unfortunately, the

finer internal structure of the magnetosome filament remains to be resolved and it

also remains a possibility that some aspects of chain stability are different in different

species of magnetotactic bacteria.
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Chapter 3

A theoretical framework for

magnetosome chains

3.1 Introduction

In eukaryotic cells, the cytoskeleton provides the cell with stiffness and structure and

it is a key player in organising the cellular component during cell division [85]. It is

no exception in magnetotactic bacteria with the cytoskeleton being at the helm of

structuring the magnetosome chain and reorganising it, while duplicated, during cell

division in emerging daughter cells. As an example, we showed in chapter 2, how

the cytoskeleton filament in magnetotactic bacteria stabilises the chain against ring

closure which is detrimental for the function of the cell. In other words, how the

mechanics and structure of the cytoskeleton in magnetotactic bacteria is tied to the

functionality of the magnetosome chain in these bacteria. Moreover, as discussed in

the last chapter, in the case of magnetotactic bacteria, along with the cytoskeleton,

the internal dipole−dipole interactions are also stabilising the magnetosome chain

structure. This stabilisation of the magnetosome chain upon the cytoskeleton struc-

ture has been long a source of curiosity. In a study, Koernig et al., investigated the

magnetosome chain stabilisation in magnetotactic bacteria in vivo. They use the

magnetic properties of the magnetosomes to apply a force on the linkers of the par-
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ticles to the filament in the immobilised living bacteria [55].

In this chapter, we develop and apply a framework for the study of the structure

of magnetosome chains. Our model includes the magnetostatic interactions between

magnetosome particles which are enclosed in a membrane and are allowed for binding

to the cytoskeletal filament. We also take into consideration the presence of an ex-

ternal magnetic field as an external stimulus which acts upon the magnetic particles.

In the first part of this chapter, we explore the equilibrium configurations of magne-

tosome particles and investigate whether the assembly of magnetosome particles into

stable linear arrangements is due to the dipole−dipole interactions between particles

or to the presence of the binding potential between membrane of magnetosome parti-

cles and the cytoskeletal filament which anchors the particles to the filament. In the

second part, we employ the magnetic properties of magnetosome particles to study

the mechanical stability of the magnetosome chains. We gain more insight into the

chain’s responses to the mechanical stimuli and try to understand the dynamics of

chain rupture seen in the aforementioned work [55]. In the last part of this chapter,

we give close attention to the activity of magnetosome chain after rupture and explore

its dynamic constitution.

3.2 Models and methods

3.2.1 Model

In our modelling approach, the magnetosome chain is described by a linear chain

of N spherical magnetic particles which are connected to a rigid filament by elastic

connections. The magnetic nano−particles are taken to consist of magnetite with the

saturation magnetisation (per volume) at room temperature of 0.48× 106 Jm−3 T−1

[47]. For a particle of radius R = 20 nm, a typical value for magnetosomes in the well

studied Magnetospirilla species [70], the magnetic moment is thus m = 1.61× 10−17

JT−1. Magnetosome particles in this size domain are in the single−domain regime, i.e.

they have permanent magnetic dipoles with rather a large magnetisation due to the
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absence of magnetic domains [66]. The distance between neighbouring magnetosomes

can be estimated as dn = 2R+d ≃ 50 nm, where d ≃ 10 nm is a gap distance between

the magnetic particles accounting for the surrounding membranes. Two particles i

and j interact through the potential

E = Edd + Ehc, (3.1)

where Ehc is the hard−sphere potential given by

Ehc =







0 if rij > dn,

∞ if rij < dn.
(3.2)

where rij is the inter−particle distance. Edd is the dipole−dipole interaction, defined

as follows:

Edd = −µ0

4π

1

r3ij

(
3(mi · rij)(mj · rij)

r2ij
− mi · mj

)

, (3.3)

where µ0 = 4π × 10−7NA−2 is the vacuum permeability, the mi and mj are the

magnetic moments of the dipoles and the rij are the distance vectors between them,

with rij = |rij|. In the following, we will assume that all dipoles have equal absolute

value, |mi| = m. They are linked to the filament through cable−like, semi−linear

springs with elastic energy

Eelasticity =







+1
2
kl(l − l0)

2 if l > l0,

0 if l ≤ l0.
(3.4)

The rest length l0 is taken to be 5 nm throughout this work and the spring constant is

set to kl = 0.106 pNnm−1. In addition, the linkers have a discrete degree of freedom

indicating their bound or unbound state. At any position in the cell, particles can thus

be in two states, bound to the filament or unbound. Switching to the bound state,

a particle gains a negative binding energy Eb (with a default value of −2kBT ) plus

the (typically positive) elastic energy of the cable at length l, given by the distance

of the particle surface to the filament. And finally, l is the distance between the
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attachment points of the linker on the surface of the particle and on the filament. In

addition, the magnetosome particles may interact with an external magnetic field, B,

with interaction energy

EB = −
i=N∑

i=1

mi · B

= −
i=N∑

i=1

mB cos(θB − θi), (3.5)

where the second expression is valid for a field under an angle θB with the axis of the

magnetosome chain.

3.2.2 Computer simulation

We carry out Monte Carlo simulation for N = 20 magnetosome particles in a cylindri-

cal simulation box, in which the filament extends along the main axis of the cylinder.

At every time step of the simulation, we perform a Monte Carlo move for a randomly

chosen magnetosome particle. Three types of moves are possible: a spatial move,

a change in orientation of its magnetic moment or a change in its attachment state

(bound to unbound or vice versa). The moves are accepted according to a Metropolis

criterion [86].

The spatial movements of magnetosome particles are performed by changing the

position of magnetosome particles with a random vector whose x, y, z components

attain random values between −dn to dn. To simulate the magnetic moment, we

attribute to each magnetosome particle a vector with the fixed absolute value m and

an orientation which undergoes random polar and azimuthal changes between −5

and 5 degrees. We assume that the dipole moment of a magnetosome has a fixed

orientation with respect to the inner coordinate system of the particle, any change in

the orientation of the dipole causes a rotation of the corresponding particle.
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3.3 Equilibrium configurations of magneto-

some particles

We first consider magnetic particles in the absence of an external magnetic field. We

start with the case where magnetosome particles are randomly distributed and parti-

cles are not allowed to bind to the cytoskeletal filament, similar to the case of ∆mamJ

mutants. One of the difficulties in the simulation of self−assembly of magnetic parti-

cles is the fact that the structures that are formed are located in the local minima of

the energy landscape and once these structures are formed, the breaking of their mag-

netic bonds becomes very unlikely, which prevents the finding of the global minimum

structure. This problem is most cumbersome when we are looking for structures at

low temperature for which the thermal fluctuations are several orders of magnitude

weaker than the magnetic interactions (in our case, typically 1000−fold) so that at

this temperature a structure in the local minimum could become frozen. To overcome

this difficulty, we apply simulated annealing, a simulation method in which, starting

from a large value, the temperature is slowly reduced during the course of a simulation

in order to reach the global minimum [87]. Simulated annealing is not guaranteed to

converge to the exact minimum of the energy and if we want to extend the algorithm

to finite temperature different runs will give different results [88], but it can be used to

overcome the problem of frozen structures. At the same time, by moving the system

into and out of different regions of the phase space, more diverse configurations are

sampled, increasing the probability of finding the true minimum. We apply simulated

annealing to systems of 20 magnetosome particles, initially randomly distributed in

the simulation box without a magnetic field and without binding to the filament.

The local minima found in this way exhibit a variety of structures, such as linear

chains, closed rings and handle like structures, as shown in Fig. 3.1(a−f). Among

those, chains and rings are the most common structures found in our simulations.

A transition between these two types of structures is characterised by an interplay

between the energetic gain of closing the rings, the energetic cost of chain bending
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[89] and the higher entropy of the linear structures (a minor contribution because of

the low temperature). However, the energy difference between the two structures is

rather small. Our results suggest that the handle like structures are a combination

of a linear chain and a ring sharing one of the particles at the end of the linear chain.

Other combinations such as two chains or a chain and a ring are also found (Fig. 3.1).

To quantify the frequency of the different structures, we performed 100 runs of

the Monte Carlo simulation with simulated annealing. The results are shown in

Fig. 3.2 and confirm the predominance of the formation of chain and ring structures

with nearly the same frequencies while handle−like structures cover only 3% of the

structures observed.

Somewhat surprisingly, we do not obtain random clusters of magnetosomes, as

seen for the ∆mamJ mutant [36]. It is possible that these clusters form because of

a combination of magnetic interactions and direct contact interactions between the

membranes (or mediated by proteins in the membranes). Indeed, our simulations

show cluster when such additional interactions are included.

Now we take the binding of particles to the filament into account. In that case,

we predominantly obtain one single linear chain of magnetosome particles formed

along the filament with magnetic moments in the direction of the chain. Some rep-

resentative examples are shown in Fig. 3.1(f−h). We quantify the frequency of the

different structures in Fig. 3.2 for different values of the particle−filament binding

energy. Chains and rings are found to be the dominant structures formed. With

increasing binding energy, more chains (up to about 2/3 of the cases) and fewer

rings are observed. For the highest binding energies we simulated, Eb = 8.0kBT and

Eb = 16.0kBT , all the ring and handle−like structures are assembled around the fil-

ament. In the case of Eb = 16.0kBT , these structures are typically formed by two

antiparallel chains which are bound to two sides of the filament and converge at their

ends into a ring or handle−like structure.

Next, we consider the effect of an external magnetic field. If the external field has a

non−zero angle relative to the direction of the filament, alignment of the dipoles with

the field competes with the alignment with other dipoles bound to the filament. The
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Figure 3.1: Local minimum structures observed in the Monte Carlo computer sim-
ulation of 20 randomly distributed magnetosome particles with no binding energy
to the filament (a−e). Observed structures include chains (b, c), rings (a, b and d)
and handle (e). In the presence of the binding energy to the filament, particles form
semi−linear structures along the filament (f−h).

binding energy favours configurations with all particles close to the filament, while the

external magnetic field−dipole interaction favours alignment of the magnetic dipoles

with the external field, rotating them and increasing their elastic energy. For strong

fields or strong magnetic interactions, one may even expect chains of particles in

the direction of the field and detached from the filament. Thus, dependent on the

strength and angle of the external field, and on the binding energy and stiffness of

the linkers, the magnetosomes will adopt new configurations. In fact, we mostly

observed configurations with multiple chains that are tilted away from the filament in

the direction of the field but are attached to the filament via their middle particles.

Focusing on the competition between the binding energy and the external field,
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Figure 3.2: Fraction of configurations observed in the Monte Carlo computer simu-
lations in the absence and presence of different values of the binding potential to the
filament.
In each case configurations were extracted from 100 runs of the simulations. Sim-
ulations classified as Other structures include open rings (observed in the case of
Eb = 0kBT ) and a single ring accompanied by two chains (in the case of Eb = 4.0kBT ).

we performed systematic Monte Carlo simulations for different values of the binding

energy and the external magnetic field strength under a fixed angle of 90◦ relative

to the direction of the filament. For each combination of the binding energy and

the external magnetic field strength, we measured the number of chains formed and

the number of magnetosome particles that are bound to the filament. The results of

these simulations are presented in Fig. 3.3. For low external field (B = 1 mT) we

typically observe a single chain. The average number of bound particles (that connect

the chain to the filament) increases with increasing binding energy to the point that

for Eb = 16kBT all the particles of the chain are bound to the filament. For the

opposite limit of the high external field (B = 125 mT), we always observe multiple

chains, oriented in the direction of the field and either not attached to the filament

or attached via particle(s) in the middle of the chains, depending on the binding

energy. The latter configuration reflects a competition between several energy contri-

butions: The presence of multiple chains is favored by the additional binding energy

of their middle particles to the filament and the alignment of the magnetic moments

with the external field, but a single chain configuration is favoured by the additional

nearest neighbour interactions (≃ 100kBT ). In fact, parallel magnetic moments of

the chains (in the multiple chain configuration) result in repulsive interactions be-
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tween chains and build an energy barrier between two configurations which stabilises

the multiple chain configuration kinetically. For weaker external fields, The nearest

neighbor interactions become dominant over the alignment with the field, resulting in

the formation of the single chain configuration. At the same time, it is less difficult to

disorient the parallel magnetic moments resulting in a lower energy barrier to single

chain formation.

Figure 3.3: Final configuration of magnetosome particles for different values of the
binding energy to the filament and the external magnetic field strength. The external
field is fixed to an angle 90◦, relative to the direction of the filament. The color
coding indicates the magnetosome configuration quantified by the number of chains
(average of 5 simulations, rounded to integers). The number in each circle indicates
the number of particles bound to the filament (also averaged over 5 simulations and
rounded to integers.)

3.4 Probing magnetosome mechanics by ro-

tating an external field

3.4.1 Mechanical properties of the linkers

The mechanical stability of the magnetosome chain was probed in living magnetotac-

tic bacteria by Koernig et al. [55] using a magnetic field rotated away from the chain

axis. The experiment was done at the population level showing the average behaviour
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of a large number of cells. With our simulations, we can perform the corresponding

in silico probe for individual magnetosome chains. Thus we consider a magnetosome

chain in an external magnetic field at an angle θB relative to the direction of the fila-

ment. This angle is rotated from 0◦ to 90◦ about an axis perpendicular to the plane

of the magnetosome chain. By rotating the magnetosome chain, an external field at

a non−zero angle with respect to the direction of the filament exerts a mechanical

force on the linkers of the particles to the filament. This is illustrated in Fig. 3.4

for the case of two magnetosomes. Considering this simple scenario, we can obtain

an estimate for the critical angle at which magnetosomes are pulled away from the

filament and the links break. To that end, we compare the energy of one unbinding

particle in the bound and unbound configuration as indicated in Fig. 3.4 (the other

particle is considered as a provider of the dipole−dipole interactions). In the bound

configuration, the energy is given by

Ebound = EB + Edd + Eelasticity + Ebinding. (3.6)

After unbinding the energy includes only the external magnetic field−dipole and

dipole−dipole interactions,

Eunbound = Edd + EB. (3.7)

We take the two magnetic moments to be parallel and aligned with the field and

calculate both energies. Assuming that the linker breaks, when the bound energy

exceeds the unbound one, we obtain the condition that the particle unbinds, when

Ebinding > Eelasticity. For the geometry shown in Fig. 3.4 this results in

cos θ ≥ R + d
2

2(R + d
2
+ l0)

+
R + d

2
+ l0

2(R + d
2
)

−
(
√

−2Ebinding

kl
+ l0)

2

2(R+ d
2
)× (R + d

2
+ l0)

(3.8)

Using the values from section 3.2.1, this leads to θ & 27◦. We present the detailed

calculation of the Eq. (A.6) in Appendix B.1.
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Figure 3.4: Schematic view of a magnetosome particle (shown in blue frame) con-
nected to the filament in the presence of dipole−dipole interaction and an external
magnetic field with the angle θB relative to the direction of the filament. At the
threshold angle of θB ≃ 27◦, the binding energy rises higher than the elastic energy
and therefore the binding to the filament is not anymore an advantage.

3.4.2 Dynamics of rupture

For more detailed study of the chain stability, we performed Monte Carlo simulations

for different field strengths (20 mT, 50 mT, 150 mT) and changed the orientation of

the field (angle θB) in a stepwise manner, increasing the angle by 1◦ every 10+7 Monte

Carlo steps, from 0◦ to 90◦ relative to the direction of the filament. We measured

the orientation of the magnetic moment (angle θm) of the magnetosome chain, the

number of bound particles as a function of the angle.

In our simulations, rupture of particles from the filament is seen for the field strength

of 50 mT and higher. For weak field strength (20 mT), the magnetic moment of the

chain follows the external field only weakly, reaching a maximal deflection of θm ∼ 20◦.

This change in the angle results mostly from the particles at both ends of the chain.

These are pulled away from the filament by the rotation of the field, detach from the

filament and orient in the direction of the field. Unbinding of the particles at the end

occurs at the critical angle, θB ∼ 20◦. Other than that, the linear arrangement of the

particles on the filament is not disrupted.

For the field strength of 50 mT and higher, rupture occurs through two discrete

events at different critical values of the angle between the field and the filament. At
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the first critical angle, ∼ 10◦ for the field strength of 50 mT, the two ends of the chain

unbind from the cytoskeletal filament and tilt away from the chain axis toward the

direction of the external field as seen for the case of 20 mT. At the second critical

angle, ∼ 77◦ for the field strength of 50 mT, the chain fragments into smaller pieces

that are oriented in the direction of the field and are bound to the filament through

their two middle particles. When a stronger field is used the magnetosome particles

are rotated to larger angles which increases their linkage pull in early steps. Therefore

rupture occurs at smaller angles of the external field (smaller critical angles) and at

the rupture point the transition in the angle of the chain magnetic moment is smaller.

The shift of the two critical angles as a function of the field strength is shown in Fig.

3.6. While the first (lower) critical angle is present for all field strengths we simulated,

the second critical angle is only seen for fields of 50 mT and higher.

The rupture process is stochastic and shows some variation between different runs

of the simulation, in particular for the intermediate field strength of 50 mT, where

the second rupture step occurs in a window of approximately 7◦. We tested whether

this variability is due to dynamic competition between the rate at which the angle

θB increases and the rate of the rupture process, but simulations in which the angle

was varied two−fold faster or slower showed very similar results. The key role in the

chain rupture is played by the competition between the dipole−dipole interactions

and the interactions of the dipoles with the external field. If the field direction is par-

allel to the chain, both these interactions will have the minimum energy. By rotating

the external field, relative to the direction of the filament, the interaction with the

external field drives the dipoles toward an alignment with the external field, while the

dipole−dipole interactions favour a dipole orientation along the chain axis. Rotating

the dipoles, thus increases the dipole−dipole energy, up to the point, where the at-

tractive dipole−dipole force becomes repulsive. At this point, the magnetosome chain

breaks into pieces. The conversion of the dipole−dipole interactions from attraction

to repulsion for two fixed dipoles at zero temperature are detailed in Appendix B.3.

However, the two particles at the two ends, due to the weaker dipole−dipole stabili-

sation, follow the external field more freely, giving rise to the first critical angle. As
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Figure 3.5: Response of the chain magnetisation to a rotation of the external field: a1,
b1 and c1 show the change in the orientation of the chain magnetic moment in different
angles and strengths of the external field. How the average number of magnetosome
particles bound to the filament changes during the rupture is presented for each field
strength in a2, b2 and c2. In each plot, different colours represent 10 trajectories
extracted from Monte Carlo simulations.

Fig. 3.6(b), indicates the angle of the chain magnetic moment at the critical angles

of the external field is independent of the external field strength and it arises from

the dipole−dipole interactions. Losing the linkers of the particles to the filament can

be followed more closely at each state of the rupture by looking at the change in the
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Figure 3.6: (a) The external field critical angles for chain rupture: As field strength
increases, the magnetosome chain ruptures at lower values of the external field angle.
(b) Chain magnetic moment angle at first and second critical angles of the external
field as a function of the field strength. The figure shows the independence of this
angle from the field strength.

number of bound particles to the filament. Steep changes in the number of bound

particles at critical angles are observed, Fig. 3.5(a2, b2 and c2).

Fig. 3.8 shows how the individual energy contributions change during the rupture

process. After rupture, the dipoles in each smaller chain are aligned with each other,

but from one chain to the other they are parallel. Therefore the dipole−dipole inter-

action decreases but not to the initial minimum, as shown in Fig. 3.8(a). However,

as the dipoles in the smaller pieces are all aligned with the external field, their inter-

actions with external magnetic field decreases to its minimum value, see Fig. 3.8(b).

The non−zero values of binding and elastic energies are due to the attachments of

particles in the middle of the chains to the filament (Fig. 3.8(c,d)). The observation

of a slowdown in the sharpness of the binding and elastic energy after the first critical

point is explained by the fact that the detached particles do not contribute any longer

to the binding and elastic energies.

In case the dipole−dipole interactions are too weak to preserve the linear arrangement

of dipoles, the dipoles follow the external field after the first critical point without

restraint. This starts from both ends of the magnetosome chain and leads to a single

chain along the external field than multiple fragmented chains. Fig. 3.7, presents the

chain rupture for a magnetosome chain with N = 20 particles with the saturation
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magnetisation (per volume) of greigite particles at room temperature of 0.24 × 106

Jm−3 T−1 [90]. By reducing the magnetic moment of the particles, the dipole−dipole

interactions are weakened (∝ m2) more than the magnetic field−dipole interactions

(∝ m). In fact, the field−dipole interactions are similar to the interactions of the mag-

netite particles with a stronger field while the internal interactions between particles

are weaker than those between magnetite particles. More details on the disruption of

the chain of greigite particles are reported in Appendix B.4.

Figure 3.7: Figure shows the change in the orientation of the magnetic moment of a
magnetosome chain with N = 20 greigite particles in different angles of an external
magnetic field of 50mT.

3.4.3 Recovery: Chain reassembly after disruption

Finally, we consider the chain dynamics after rupture. As above, we perform simula-

tions in which the angle of the external field with respect to the filament is increased

from 0◦ to 90◦. After reaching 90◦, the external magnetic field is turned off. The re-

sults of these simulations are plotted in Fig. 3.9. This figure shows that after the chain

rupture and removal of the magnetic field, the small magnetosome chains reassem-

ble on the filament. Eventually, the magnetosome chain regains its linear structure

along the filament.The full recovery of the magnetosome chain takes about 50× 10+7

Monte Carlo steps. If we transform this to the unit of the relaxation time for a free

magnetosome particle, we obtain 75× 10+7.
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Figure 3.8: Behaviour of the dipole−dipole interactions energy between magnetosome
particles (a), the external magnetic field−dipole interaction energy (b) interaction
energies of magnetosome particles, the binding (c) and elastic energies (d) of the
linkers of the particles to the filament in the magnetosome chain under an external
magnetic field of 50mT for different angles of the external magnetic field relative to
the direction of the filament.

The reassembled structure of magnetosome chain ensues as well under the condition

that after chain disrupture the external field is set back to zero, so that it is aligned

with the direction of the filament, see Fig. 3.10. In this case, the chain reforms very

rapidly, within 10+7 Monte Carlo Steps, which is much faster than the previous case.

This observation can be tested experimentally.

These observations together with the results of the electron microscopy images af-

ter chain rupture, [55], showing wild−type−like chains rather than fragmented ones

when the cells were after rupture, provide support for the rather dynamic nature of

the magnetosome chain.
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Figure 3.9: Plots represent the change in the behaviour of the magnetosome chain
during the disruption with an external magnetic field, from 0 to 90× 10+7 MCS, and
after elimination of the external field, from 90×10+7 MCS to 180×10+7 MCS. While
the magnetosome chain regains its linear structure on the filament, the magnetic
moments of the particles align to the direction of the filament (a) and particles rebind
to the filament therefore the number of particles bound to the filament increases again
(b) and the binding energy falls to its minimum values (c). Decrease in the elastic
energy to the initial value (d) indicates that the linkers of the particles to the filaments
reform with their relaxed length.
MCS refers to Monte Carlo Steps.

3.5 Concluding remarks

We have developed a theoretical framework to study the structure of magnetosome

chains in magnetotactic bacteria which enables us to discuss the energetics, stability
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Figure 3.10: The plot depicts the recovery of the magnetosome chain after treatment
with an external field aligned with the direction of the filament.
MCS refers to Monte Carlo Steps.

and mechanical properties of magnetosome chains. Our model has taken into account

magnetostatic interactions between magnetosome particles and between magnetosome

particles and an external magnetic field. Also, magnetosome particles in our model

were allowed to bind to the cytoskeletal filament via elastic linkers.

First, we investigated the equilibrium configurations and assembly of randomly dis-

tributed magnetosome particles. Our results presented a variety of different equilib-

rium configurations including linear chains, closed−rings and handle-like structures

with chain and ring structures most widely occurring. We showed that in the tran-

sition from a chain structure to a ring structure, there is an energy cost due to the

bending of the linear chain. However, in closing into a ring, the structure loses en-

tropy and also gains an additional dipole−dipole interaction.

We observed that in the presence of the binding potential to the filament, as the

binding energy rises more chains and fewer rings form and at highest binding energies

(Eb = 8KBT, Eb = 16KBT) the structures assemble around the filament with all their

particles bound to it. Most importantly, our simulation shows that for assembly of

magnetosome particles into a stable linear structure, presence of a binding energy to

the cytoskeletal filament is needed.

We looked at the effect of the external field. Dependent on the strength of the ex-

ternal field and binding energy, single or multiple chains attached to the filament in
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the middle of the chain were observed. For the multiple chain structure, we found

the repulsive dipole−dipole interactions between smaller chains as a source which is

kinetically stabilising this configuration.

In the next step, we employed our model to explore the mechanical structure of mag-

netosome chains. Our analysis indicates that in the presence of external stimuli the

stability of the magnetosome chain is due to the internal dipole−dipole interactions,

the stiffness and the binding energy of the protein structure connecting the mag-

netosome particles to the filament. Nevertheless, the cardinal element of the chain

stability is the dipole−dipole interaction. We elucidated that, after a threshold of the

magnetic field strength, the rotation of the dipoles alter the attraction dipole−dipole

interactions with the repulsion interactions and this leads to the rupture of the magne-

tosome chain into the fragmented pieces. In contrary to that, in the case of inadequate

dipole−dipole interactions, external field−dipole interactions play the major role and

rotates the dipoles to a single chain aligned with the direction of the external field.

Comparing our observations, during and after the treatment of the magnetosome

chain with the external magnetic field, with the results of the experimental work

carried out by Koernig et al., [55] substantiates the stabilisation of magnetosome

chains to the cytoskeletal filament by MamJ linkers and the dynamic feature of these

structures in magnetotactic bacteria.
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Chapter 4

Application of the magnetosome

chain model to FMR spectroscopy

4.1 Introduction

The total magnetic moment of ferromagnetic materials subjected to a static external

magnetic field is quantized which results in discrete energy states. This effect is

known as Zeeman effect. The difference between energy levels is equal to the energy

of a photon absorbed or emitted for a transition from one energy level to the other

meaning that it is proportional to the frequency of the photon. This frequency is

known as the precessional frequency. In the presence of a radio−frequency (RF)

transverse field, if the frequency of the RF field is equal to the precessional frequency

the energy absorption occurs. In this case, the RF field frequency is the resonance

frequency [91]. The magnetic resonance frequency, ω, is connected to the free energy

of the system and its general form for anisotropic ferromagnets with magnetisation

per volume, M, is

(
ω

γ

)2

=
1

M2

[

∂θθE

(
∂ϕϕE

sin2(θ)
+

cos(θ)

sin(θ)
∂θE

)

−
(
∂θϕE

sin(θ)
− cos(θ)

sin(θ)

∂ϕE

sin(θ)

)2
]

, (4.1)

51



where ∂θE, ∂ϕE and ∂θθE, ∂ϕϕE are the first and second derivatives of the energy E

with respect to the polar (θ) and azimuthal (ϕ) angles of magnetic moment, see Fig.

4.1. γ = 1.76× 10+11 rad s−1T−1 is the gyromagnetic ratio [92].

Ferromagnetic resonance (FMR) represents this response of ferromagnetic materials

Figure 4.1: Schematic view of (a) the magnetosome chain and (b) the cartesian
coordinate system.

to excitations caused by electromagnetic radiation in the GHz range. As the exci-

tation by microwave radiation has low energy, it allows for the study of the ground

state properties of ferromagnetic materials such as magnetisation, g factor [93] and

magnetic anisotropy [94]. FMR offers a polar and angular investigation of the speci-

men in nanoscale and therefore the spectra obtained can be employed to extrapolate

the features such as shape and anisotropy of the magnetic crystals. While other tech-

niques to determine these quantities are limited. For example, coercivity analysis is

time−consuming and becomes unstable with increasing numbers of magnetic compo-

nents [95].

The FMR spectroscopy has attracted interest in studying magnetic properties of

magnetosome particles produced in magnetotactic bacteria. The FMR spectra of

magnetotactic bacteria have been widely investigated for the effect of magnetosome

chains structure and crystal morphology. In 2006, Kopp et al. showed that sediments

containing bacterial magnetite, as well as those containing magnetofossils, exhibit

characteristic FMR spectra that provide a useful tool in the search for samples likely
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to comprise these materials [96]. In samples containing bacterial magnetite, their

FMR measurements allowed for rapid assessment of the degree of disruption of the

magnetosome chains in the sample. In another study, FMR spectroscopy of different

strains and mutants of magnetotactic bacteria was used to show that the positive

magnetic anisotropy observed in these bacteria is a product of chain alignment and

particle elongation [97]. FMR measurements on different strains of magnetotactic

bacteria demonstrated that the spectrum obtained from each strain has a form which

is distinct from the spectra of all the other strains and results from the unique arrange-

ments of magnetosome particles in that strain [98]. Charilaou et al. [99] presented a

computer model to simulate the FMR spectra of magnetosome chains. In their mod-

elling approach, they approximate the linear arrangement of the magnetosome chain

with a prolate ellipsoid. This approximation is valuable for long intact magnetosome

chains but it is limited in some cases such as magnetosomes structure in ∆mamJ

mutant where the linear assembly of particles on the filament is disrupted.

All the aforementioned measurements were carried out on bulk samples. Very recently

people have started to develop techniques to obtain FMR spectra from individual sin-

gle cell of magnetotactic bacteria. In one experiment, Terwey et al. could distinguish

different spin excitations in nanoparticles of a chain within a single bacterium [100].

In general, FMR measurements on a single chain are expected to convey more infor-

mation on the magnetic characteristics of magnetosome particles. It also allows the

investigation of the shape (morphology) and the arrangement of particles in the chain

and their effect on the observed spectra.

In this chapter, we employ our theoretical model for magnetosome chains that was

introduced in chapter 3 to simulate FMR spectra for a single cell of magnetotactic

bacteria. We explain how the spectra obtained from FMR measurements on single

cells provide details about the structure of the magnetosome chains which can not

be differentiated in FMR analysis of bulk samples. In addition, we propose the ap-

plication of the FMR spectroscopy as an additional tool for probing the type of the

magnetosome chain contained in unidentified samples.
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4.2 Models and methods

4.2.1 Model

We employ the model developed in chapter 3 for magnetosome chains. In our model,

a magnetosome chain has been described as a linear chain of N spherical magnetosome

particles connected to the rigid filament by elastic connections. The full energy of the

system includes the dipole−dipole interactions energy Edd and the external magnetic

field−dipole interaction energy EB.

E =Edd + EB

=− µ0

4π

N∑

i,j=1,j>i

1

r3ij

(
3(mi · rij)(mj · rij)

r2ij
− mi ·mj

)

−
i=N∑

i=1

mi.B,

(4.2)

µ0 = 4π × 10−7NA−2 is the vacuum permeability, the mi and mj are the magnetic

moments of the dipoles and the rij is the distance vector between them, with rij =

|rij |. In the following, we will assume that all dipoles have equal absolute value

|mi| = m. Since frozen bacteria are used in the experiment, we assume that the

magnetosome particles are fixed in their location in the bacteria and also the linkers

connecting the particles are fixed resulting in the absence of the binding energy, elastic

energy and hard−core potential in the energy Eq. (4.2).

To obtain the resonance frequency of the magnetosome chain, we use Eq. (4.1) to

calculate the resonance frequency for each particle i. Derivatives of the total energy

of the particle i in respect to its polar and azimuthal angles θi and ϕi are found in

the Appendix C.1.

Using the first and second derivatives of the energy E, we obtain the resonance
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equation for each magnetosome particle in our model,

(

ωi

γ

)2

=
1

M2

[
(

− µ0

4π

N∑

j=1

m2

r3ij
(−2 cos(θi) cos(θj) + cos(ϕiϕj) sin(θi) sin(θj))

−mB (− cos(θB) cos(θi)− cos(ϕB − ϕi) sin(θB) sin(θi))
)

×
(

1

sin2(θi)
×
(

− µ0

4π
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j=1

m2

r3ij
(cos(ϕi − ϕj) sin(θi) sin(θj))

+mB (cos(ϕi − ϕj) sin(θB) sin(θi))
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+
cos(θi)

sin(θi)
×
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4π
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j=1

m2

r3ij
(−2 cos(θj) sin(θi)− cos(θi) cos(ϕi − ϕj) sin(θj))

−mB (cos(θi) cos(ϕB − ϕi) sin(θB)− cos(θB) sin(θi))
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−
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×
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(cos(θi) sin(θj) sin(ϕi − ϕj))

−mB (cos(θi) sin(θB) sin(ϕB − ϕi))
)

− cos(θi)
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− µ0

4π
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(sin(θi) sin(θj) sin(ϕi − ϕj))

−mB (sin(θB) sin(θi) sin(ϕB − ϕi))
)
)2]

.

(4.3)

4.2.2 Computer simulation

We carry out the Monte Carlo simulation for N = 20 magnetosome particles in a

cylindrical box in which magnetosome particles are fixed on the filament and are

under an external magnetic field with fixed strength value and orientation at room

temperature. Since we assume that particles are fixed in their location, each Monte

Carlo step includes only a random change between −5 to +5 degree in the polar

and azimuthal orientation of the magnetic moment for a random particle. The total

number of steps in the simulation is 10+5. For more detail on the simulation approach

see section 3.2.2.
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Obtaining the equilibrium orientation of the magnetic moments of the particles from

Monte Carlo simulation, we calculate the resonance frequency of the magnetosome

particles given by Eq. (4.3). In this way, the equilibrium orientations of the magnetic

moments and the resonance frequency of magnetosome particles, ωi, are obtained for

different values of the external field strength and orientation.

In experiments, often the frequency is kept constant and the field strength is varied.

This leads to a resonance field which is obtained by solving Eq. (4.3) for the external

field strength. Therefore, in the next step, for each orientation of the external field

we search among all field strengths and extract the angles of magnetic moments

which for their corresponding resonance frequency ωi − ωexp < 0.01ωexp and ωi −
ωexp is the smallest among all the frequencies obtained for this field orientation, we

call this value ωres. ωexp = 5.8936 × 10+10 Hz is the resonance frequency obtained

from the experimental study [101]. Next, we place the extracted orientations of

magnetic moments of particles, the orientation of the external field and the value of

the experimental frequency in the Eq. (4.3) and we solve the equation again but for

the field values and derive the field strength which fits in this equation, these values

are called Bres. By performing the same procedure for all the azimuthal and polar

orientations, we obtain the resonance field value, Bres, at all the directions.

4.2.3 Resonance spectrum

The absorption spectra are then determined by assuming a gaussian line shape around

the resonance field,

Fi(Bext) = a1e
−

|Bext−B
(i)
res|

2

a2 . (4.4)

Here a1 is a measure of the absorption intensity. For the rest of our discussion we

use a1 = 1. The parameter a2 characterises the width of the gaussian function. The

gaussian function describes the absorption observed for one magnetosome particle.

The full spectrum for a chain of magnetosome particles is obtained as a sum of these
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peaks,

F (Bext) =

i=N∑

i=i

Fi(Bext). (4.5)

In experiments, the first−order derivative of this absorption is determined.

4.3 Resonance field of magnetosome parti-

cles

We perform our simulations and calculate the resonance field at room temperature

T = 300◦K for the middle particle in a linear arrangement of spherical magnetosome

particles with radius R = 20 nm, the gap distance of d = 10 nm between adjacent

particles and saturation magnetisation of M = 0.48 × 10+6JT−1m−3. The map of

the resonance field, Bres, for different orientations of the external field relative to the

direction of the chain, z−axis is shown in Fig. 4.2. The resonance field for magneto-

some particles in a chain along the z−axis shows an uniaxial symmetry around the

z−axis.

Figure 4.2: Map of resonance field for 0◦ < θBext < 90◦ and 0◦ < ϕBext < 360◦

for a magnetosome particle in the middle of a magnetosome chain with N = 20
particles. θBext and ϕBext are polar and azimuthal angles of the applied field relative
to the direction of the chain, z−axis. The resonance field shows an uniaxial symmetry
around the z−axis.
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Fig. 4.3 shows the absorption spectrum of the magnetosome chain for two widths of

the gaussian function, 5 mT and 30 mT. The peaks in the absorption plot present

the value of the applied field, at fixed orientation of θBext = 45◦ and ϕBext = 45◦,

where the resonance occurs. The values of the applied field at which the absorption

peaks are detected originate in the resonance of all the magnetosome particles in the

chain. In fact, the resonance for two particles at two ends of the chain takes place at

the applied field of Bext = 350 mT and for the particles in the middle of the chain

at Bext = 366 mT. We elaborate on the emergence of resonance at two different field

values for particles at two ends and for particles in the middle of the chain in Ap-

pendix C.3.

If the difference between field values is smaller than the width of the absorption func-

tion, the resonance of the particles at two ends is not detected. In fact, the right

choice of linewidth can reveal structural details about the magnetosome chain. The

results of Alexandra shows that the random orientations of chains in bulk samples

give rise to a broad spectrum which can be greatly improved in FMR measurements

on single cells of bacteria.

4.4 Magnetocrystalline anisotropy effect

In ferromagnetic materials, the orbits of the electrons are tied to the structure of the

crystal therefore due to the spin−orbit interaction the spins favour to align along the

well−defined crystallographic axis called the easy axis of the magnetisation [45]. As

a result, it is easier to magnetise the crystal in the direction of its easy axis than

in other directions. The difference between energies of different directions can be

expressed in an energy term called magnetocrystalline anisotropy energy which for a

cubic lattice oriented with the [111] axis in the direction of the easy−axis is given by

Ecrystal = K1

(1

4
sin4(θ) +

1

4
cos4(θ) +

√
2

3
sin3(θ) cos(θ) cos(3ϕ)

)
, (4.6)
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Figure 4.3: Calculated FMR spectra for magnetosome chains: (a, c) show the absorp-
tion spectra. (b, d) Derivatives of the absorption spectra as measured experimentally.
Upper and lower plots show the same spectra but with different linewidth.
Y axis in both plots has an arbitrary unit.

K1 is the first−order anisotropy constant which is −1.1 × 10+5Jm−3 for magnetite

at room temperature [102]. The direction dependence of the magnetocrystalline

anisotropy energy can be seen in the angles θ and ϕ between magnetic moment

and the direction of the easy magnetisation axis. For magnetite the direction of the

easy magnetisation is indeed the body diagonal [111]. In magnetotactic bacteria, the

direction of the chain axis (filament) overlaps with the easy axis for most crystals

[103].

To investigate the effect of magnetocrystalline anisotropy on the resonance spectra,

the magnetocrystalline anisotropy energy term is added to the full energy equation of

the system, Eq. (4.2). With the approach presented before, we derive the resonance
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field values for all the orientations of the external field. The resonance field map

Figure 4.4: (a) The map of the resonance field for 0◦ < θBext < 90◦ and 0◦ < ϕBext <
360◦ for a magnetosome particle with magnetocrystalline anisotropy. The map shows
the formation of a three−fold symmetry after incorporating the magnetocrystalline
anisotropy energy into the system. The plot present the data for the particle in the
middle of a magnetosome chain with N = 20 particles. (b, c) Applying the gaussian
function, absorption peaks at Bext = 380 mT and at Bext = 392 mT are observed.

shows a three−fold symmetry with maximum resonance field values at θBext = 45◦

and ϕBext = 60◦, 180◦ and 300◦. This observation of the three−fold symmetry was re-

ported before in [99, 104]. To illustrate the origin of the three−fold symmetry, which

arises due to the magnetocrystalline anisotropy, we show in Fig. 4.5 the individual en-

ergy contributions in equilibrium for a magnetosome chain under an external field of

Bext = 280 mT with and without the anisotropy term. (The field value of Bext = 280

mT was chosen with no preference.) The comparison between the behaviours of the

energies and of the resonance field in different orientations of the external field relative
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Figure 4.5: On top: (a) External magnetic field−dipole interactions energy, (b)
dipole−dipole interactions energy and (c) magnetocrystalline anisotropy energy for a
chain 20 magnetosome particles under an external field of 280 mT. On bottom: (d)
External magnetic field−dipole interactions energy and (e) dipole−dipole interac-
tions energy for a chain of 20 magnetosome particles without the magnetocrystalline
anisotropy and under an external field of 280 mT.
In the presence of the magnetocrystalline anisotropy, the uniaxiality observed in the
energies converts into a three−fold symmetry.

to the easy axis of the magnetosome particles suggests a direct relationship between

the maximum and minimum values of the resonance field and the magnetocrystalline

anisotropy energy.
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We monitor the effect of magnetocrystalline anisotropy by comparing the behaviour of

the resonance field with (Fig. 4.6(a)) and without (Fig. 4.6(b)) the magnetocrystalline

anisotropy term in the energy of the system. Our results demonstrate the periodic

(symmetrical) behaviour of the resonance field in the presence of the magnetocrys-

talline anisotropy. While, in the absence of the magnetocrystalline, no particular

trend in the behaviour of the resonance field in connection to the azimuthal angle

is observed. We can also demonstrate this effect in the behaviour of the resonance

field in different polar angles, θBext. The shift in the resonance field values with the

azimuthal angle is evident in Fig. 4.6(d). As the figure demonstrates, the change in

the resonance field with polar angle is also more pronounced with magnetocrystalline

energy taken into account.

4.5 Effect of the magnetosome chain config-

uration on the resonance field

Recent progress in isolating individual cells for FMR studies allows us to study prop-

erties of a single chain of magnetosome particles in a particular bacterium and without

the adverse effects of magnetosome chains of other cells as in bulk samples. One char-

acteristic of magnetosome chains which might be misrepresented in bulk level studies

is the arrangements of particles within the chain. Single cell measurements can help

us to have a new insight into the impact of this characteristic on resonance spectra. In

this section, we address a similar case and investigate the behaviour of the resonance

field in two different arrangements of magnetosome particles: a linear magnetosome

chain with vacant spaces between particles, similar to a magnetosome chain with

defects in the arrangement of particles, and a cluster of magnetosome particles.
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Figure 4.6: On top: Resonance field as a function of the azimuthal angle ϕBext with
(a) and without (b) the magnetocrystalline anisotropy.
On bottom: Resonance field at different polar angles with (c) and without (d) mag-
netocrystalline anisotropy. Due to numerical limitations, Resonance field values at 0◦

and 180◦ are not calculated.

4.5.1 Linear magnetosome chain with defects

First, we study a linear arrangement of magnetosome particles with four particles left

out in two different locations on the chain, Fig. 4.7(b). In the same manner, we calcu-

late the resonance field in different orientations for particles with magnetocrystalline

anisotropy. Fig. 4.7 shows the resonance field map for the particle in the middle of the

lower piece in Fig. 4.7(b). The three−fold symmetry is due to the magnetocrystalline

anisotropy.

The resonance appeared at applied fields of Bext = 380 mT and Bext = 392 mT

for both intact magnetosome chain and the magnetosome chain with defects. The
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Figure 4.7: FMR spectra of a magnetosome chain with gaps in the arrangement of
magnetosome particles: (a) Map of the resonance field for a magnetosome particle in
a chain with gaps between particles. The corresponding arrangment is shown in (b).
(c, d) Resonance spectra. For Comparison, the resonance spectra for a chain without
gaps is also shown.

resonance absorptions, Fig. 4.7, show a clear difference between the spectra of the

two structures. For the chain with defects, absorption intensities are the same but

lower than the intensity of the major absorption peak in the intact chain. In fact, the

comparison between spectra obtained from intact magnetosome chain and from the

chain with defects indicates the capacity of the resonance spectra with sufficiently

narrow linewidth to detect magnetosome chains with different structural properties.
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4.5.2 A Cluster of magnetosome particles

We also look at the resonance field behaviour for a cluster of magnetosome particles,

similar to the arrangement of magnetosome particles in ∆mamJ mutants of magneto-

tactic bacteria, Fig. 4.8(b). We notice that the directional behaviour of the resonance

field recurs. Particles interact via dipole−dipole interactions yet because of their ran-

dom positions in the cluster these interactions differ from one particle to the other.

We note that in the calculation of the crystalline anisotropy energy for particles in

the cluster we take a simplifying assumption that the crystalline structure in all the

magnetosome particles in the cluster is oriented along the z−axis. The differences

in the absorption spectra of the three cases, an intact magnetosome chain, a magne-

tosome chain with a defect and a cluster of magnetosome particles, suggest specific

footprints for each magnetosome chain which can be used to assess the structure of

the chain under investigation.

4.6 Concluding remarks

In this chapter, we employed our theoretical model of magnetosome chains to study

the FMR spectra of magnetosome chains in magnetotactic bacteria. For spherical

magnetosome particles without the crystalline anisotropy, the uniaxial symmetry of

the resonance field about the axis of the magnetosome chain was observed. We ex-

amined the effect of the crystalline anisotropy in ferromagnetic materials by taking

into account the magnetocrystalline energy term and explored the relation between

crystalline anisotropy and the three−fold symmetry identified in the resonance field

under the presence of magnetocrystalline anisotropy. Absorption spectra were de-

termined by assuming a gaussian line shape. The results of our analysis indicated

that the resonance takes place at lower field values for directions where crystalline

anisotropy energy is weaker. The shift observed in the value of the resonance field for

individual particles is due to the exact calculation of the inter−particle dipole−dipole

interactions in our model. The explicit consideration of individual particles in our
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Figure 4.8: (a) The map of the resonance field for a random magnetosome particle in
a cluster of N = 20 magnetosome particles with magnetocrystalline anisotropy.
(b) Resonance spectra for 20 magnetosome particles in a cluster configuration. The
resonance occurs at Bext = 376 and Bext = 384 mT for the cluster configuration of
magnetosome particle.

model is beneficial for the study of FMR resonance of magnetosome chains. It allows

the investigation of the structural characteristics of magnetosome chains such as the

shape and the arrangement of the particles in the chain. Moreover, it can be applied

in cases, such as the ∆mamJ mutant, where the previous models, including the el-

lipsoid model, are limited.

Single cell FMR analysis of magnetotactic bacteria promises to offer finer details of

magnetosome chains which could not be distinguished in bulk−level FMR studies.

With our model, we can investigate the spectra of magnetosome particles in single

cells of magnetotactic bacteria. Therefore, we are able to interpret the peculiarity of
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different spectra arisen from different mutants of these bacteria. For the observation

of such features, a narrow linewidth is crucial which can indeed be achieved in FMR

measurements on single cells. We analysed the effect of structural differences on FMR

spectra by comparing spectra obtained from a magnetosome chain with defects and

from a cluster of magnetosome particles, similar to those in ∆mamJ mutants, with the

spectrum obtained from a linear arrangement of magnetosome particles resembling

their arrangement in wild−type magnetotactic bacteria. The resonance appeared at

applied fields of Bext = 380 mT and Bext = 392 mT for the chain with defects and

at Bext = 376 mT and Bext = 384 mT for the cluster configuration of magnetosome

particles. In addition, for both configurations, the intensity of absorption was found

to be lower than the intensity of the major absorption peak in the intact chain of

magnetosome particles. These observations imply the sensitivity of the obtained fer-

romagnetic resonance to the structure of the chain. This capacity of our model to

discriminate between different structures of magnetosome chains might also suggest

that it might be used as a supplementary method for detection of the type of mag-

netosome chains present in obscure samples. In continuation of the project discussed

in this chapter, we intend to combine our results with the FMR data obtained from

experiments on in vivo bacteria to gain more understanding of the absorption spectra

of different strains and mutants of magnetotactic bacteria.

67



68



Chapter 5

Summary, Conclusion and Outlook

Magnetotactic bacteria possess an intracellular magnetic dipole called the magneto-

some chain. Magnetosome chains contain membrane−enclosed magnetic nanoparti-

cles which are delicately organised into a linear structure on the cytoskeleton of the

bacteria. As a result of the response to the external magnetic field, the torque ex-

erted on the fixed magnetosome particles within the cell of magnetitactic bacteria

orients the cell along the magnetic field. By reason of magnetostatic interactions the

arrangement of magnetic particles in these “self−propelled compass needles" deter-

mines directly the cellular magnetic dipole and in case of majority of magnetotactic

bacteria the fine arrangement of magnetosome particles into linear structure max-

imises the efficiency of the dipole and therefore it is of great relevance to study the

stability and mechanical properties of magnetosome chains. With our theoretical

framework based on the energetics of magnetosome chains, we investigated the bend-

ing rigidity, equilibrium structures and mechanical properties of magnetosome chains.

First, we addressed the bending stiffness of magnetosome chains. The bending stiff-

ness stems from magnetic interactions of magnetosome particles which drive the for-

mation of linear chains and from the elastic stiffness of the cytoskeletal filament to

which magnetosome particles are anchored. Our analysis indicated that whilst the

bending stiffness of the filament can dominate the stiffness due to magnetic interac-

tions, these interactions alone can form straight structures with a persistence length

which exceeds the chain length. More crucially, our results showed that in case of a
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chain of magnetosomes with four particles or more, the linear arrangement of particles

is not the most stable configuration and despite the cellular confinement, without the

attachment of particles to the cytoskeleton, such configurations may close to ring−like

structures which have no net magnetic moment and thus can not perform the func-

tion of a compass in cellular navigation. From this analysis along with observations of

clusters of magnetosome particles in magnetotactic bacteria, we reasoned that one of

the roles of the filament is to stabilise the straight structure of magnetosome particles.

We then investigated the equilibrium configuration of magnetosome particles. The

structure formation in magnetic nano−particles has been the subject of numerous

studies in other fields including colloidal fluids [105, 106], nanomechanics [58], ma-

terials chemistry [107], and micro−swimmers [108]. Our results presented a variety

of structures such as linear chains, closed rings and handle−like structures. Among

those, chains and rings were the most observed structures in our simulation. Despite

the minor energy difference between the two structures, the transition from one to

the other could be characterised by the interplay between energy gain and entropy

loss of closing to a ring and the energy cost of bending the linear chain.

We allowed for binding of the particles to the cytoskeletal filament and notably we

observed that for the assembly of magnetosome particles into linear structures on the

filament, a binding potential to the filament is essential, further supporting our con-

clusion from the bending rigidity calculation. In the presence of an external magnetic

field, dependent on the strength of the external field and of the binding energy, single

or multiple straight chains linked to the filament through the particles in the middle

of the chains were observed. Interestingly, we observed that due to the repulsive

dipole−dipole interactions between smaller chains these configurations are kinetically

more stable than the configuration of a single chain.

Next, we aimed at probing the mechanical structure of magnetosome chain. We re-

alised that the stability of the magnetosome chain in the presence of external stimuli

is a consequence of the interplay between the internal dipole−dipole interactions, the

stiffness and the binding energy of the connectors of the particles to the cytoskeletal

filament. Notwithstanding, the foremost role is played by dipole−dipole interactions.
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As a main result, our analysis of the magnetosome chain rupture under an external

magnetic field and of its recovery after disruption entail the stabilisation of the mag-

netosome chain structure to the cytoskeletal filament by the proteinous connectors

and the dynamic nature of this structure. These conclusions are further supported

by the results of the in vivo investigation of the magnetosome chain stability [55].

Finally, we applied our model to study the FMR spectra of magnetosome chains

in magnetotactic bacteria. We simulated the spectra of magnetosome particles in

a single magnetotactic bacterium which allowed us to study the distinctive features

of individual spectra that arise from different structural properties of magnetosome

chains in wild type and in mutants of magnetotactic bacteria. To distinguish the

structural features, the right choice of the spectral linewidth is crucial. We explained

how the spectra with narrow linewidth enable us to distinguish details which are not

noticed in spectra with broad linewidth. Recent results on single cell FMR analysis

hold out hope that in contrast to FMR measurements of bulk samples, the narrow

linewidth is achievable in FMR measurements of single cells [100].

Magnetotactic bacteria construct a cellular magnetic dipole by exquisitely organis-

ing magnetic particles into linear structures on the filament. In this study, we laid a

groundwork for studying the equilibrium configurations of magnetosome particles and

the mechanical structure of magnetosome chains based on the current knowledge of

the magnetosome chain structure: specifically, we have taken into consideration the

presence of MamJ protein which interacts with the magnetosome membrane as well

as cytoskeletal filament and connects the magnetosome particles to the filament [36].

We analysed the energetics involved in the magnetosome chain stability and tried to

explain the dynamics of the in vivo chain rupture seen in experiments.

Experiments which can shed some light on the finer structure of the filament and of

the connectors of the magnetosome particles to the filament can lead us to improve

our model to a more elaborate model of magnetosome chain structure and amend our

knowledge of the mechanics and stability of this structure. We hope that our model

opens the way for more sophisticated models of the magnetosome chain in magneto-

tactic bacteria.
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In addition, we aim to use the simulated spectra of magnetosome chains along with

the spectra obtained from FMR spectroscopy experiments on bacteria in vivo to un-

derstand the origin of the ferromagnetic resonance spectra of magnetosome chains.

The nano−size magnetosome particles can be extracted from disrupted cells of mag-

netotactic bacteria by application of an external magnetic field and because of their

organic membrane, the magnetosome particles can be easily dispersed in aqueous solu-

tions [109]. This quality along with their magnetic characteristic have been exploited

in various biotechnological applications such as cell separation, immunoassays and

drug delivery [110, 111]. We hope our study of magnetostatic interactions between

magnetosome particles and between magnetosome particles and applied magnetic field

facilitates the application of bacterial magnetic particles.
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Appendix A

supplementary discussions of chapter

2

A.1 Derivations of the equations discussed

in chapter 2

A.1.1 Straight chain energy

We presented the equilibrium energy for a straight chain of magnetic dipoles in Eq.

(3.4). Here, we obtain this equation in more detail.

Elin = −
N∑

i=1

N∑

j>i

µ0

4π

m2

r3ij

(
3cos2(θ)− 1)

)
∣
∣
∣
θ=0

= −
N∑

i=1

N∑

j>i

µ0

4π

2m2

r3ij

= −
N∑

i=1

N∑

j>i

µ0

4π

2m2

| j − i |3 l3
∣
∣
∣
|j−i|=n

= −Nǫ
N−1∑

n=1

(1− n
N
)

n3
.

(A.1)
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A.1.2 Magnetic bending rigidity

In this appendix, we describe the calculation of the magnetic bending rigidity in more

details. To evaluate the interaction energy, we express the angles between the dipole

moments and between dipoles and their distance in terms of φ and θ,

∠(mi, mj) = |i− j|ϕ,

∠(mi, rij) = θ − (|i− j| − 1)

2
ϕ,

∠(mj , rij) = θ +
(|i− j|+ 1)

2
ϕ. (A.2)

Likewise, the distances rij are expressed as

rij = 2R sin
|i− j|ϕ

2
. (A.3)
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Emagn = −
N∑

i=1

N∑

j>i

µ0

4π

1

r3ij

(
3(mi · rij)(mj · rij)

r2ij
− mi · mj

)

= −µ0

4π

N∑

i=1

N∑

j>i

mimj

(2R sin |i−j|ϕ
2

)3

(

+ 3 cos(θ − (|i− j| − 1)

2
ϕ) cos(θ +

(|i− j|+ 1)

2
ϕ)

− cos(|i− j|ϕ
)

= −µ0

4π

m2

(2R)3

(

+
1

sin3(ϕ
2
)
(3 cos(θ) cos(θ + ϕ)− cos(ϕ))

︸ ︷︷ ︸

(N−1) times

+
1

sin3(2ϕ
2
)
(3 cos(θ − ϕ

2
) cos(θ +

3ϕ

2
)− cos(2ϕ))

︸ ︷︷ ︸

(N−2) times

+ · · ·

+
1

sin3( (N−1)ϕ
2

)
(3 cos(θ − (N − 2)ϕ

2
) cos(θ +

Nϕ

2
)− cos((N − 1)ϕ))

︸ ︷︷ ︸

(N−(N−1)) times

)

= −µ0

4π

m2

(2R)3

(N−1∑

n

N − n

sin3(nϕ
2
)

(
3 cos(θ − (n− 1)

2
ϕ) cos(θ +

(n+ 1)

2
ϕ)− cos(nϕ)

))

⇒ Emagn(θ, ϕ) = −Nǫ

N−1∑

n=1

(1− n
N
)

4
(

sin(nϕ/2)
sin(ϕ/2)

)3

(

3 cos(2θ + ϕ) + cos(nϕ)
)

,

(A.4)

In the equilibrium state, the orientation of the dipoles is such that the energy is

minimal, thus we determine θ as a function of ϕ and thus of the chain curvature, by

minimizing the energy,

Emagn(θ, ϕ) = −Nǫ
N−1∑

n=1

(1− n
N
)

4
(

sin(nϕ/2)
sin(ϕ/2)

)3

(

3 cos(2θ + ϕ) + cos(nϕ)
)
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∂

∂θ
Emagn(θ, ϕ) = −Nǫ

N−1∑

n=1

(1− n
N
)

4
(

sin(nϕ/2)
sin(ϕ/2)

)3

(

− 6 sin(2θ + ϕ)
)

= 0

⇒
N−1∑

n=1

(1− n
N
)

4
(

sin(nϕ/2)
sin(ϕ/2)

)3 × sin(2θ + ϕ) = 0

⇒ sin(2θ + ϕ) = 0 ⇒ θ =
kπ

2
− ϕ

2

To ensure that at this angle the energy is minimum, we look at the second derivative

of the energy,

∂2

∂θ2
Emagn(θ =

kπ

2
− ϕ

2
) = −Nǫ

N−1∑

n=1

(1− n
N
)

4
(

sin(nϕ/2)
sin(ϕ/2)

)3 ×
(

− 12 cos(2kπ)
)

> 0

⇒ θmin =
kπ

2
− ϕ

2
,

(A.5)

this leads to θ = −ϕ
2
, i.e. the magnetic dipoles orient in tangential direction with

respect to the curvature circle, the tangential orientation is also valid for more general

shapes of chains of magnetic dipoles as shown recently in [112]. In this case, the energy

is given by

Emagn = −Nǫ
N−1∑

n=1

(1− n
N
)

4
(

sin(nϕ/2)
sin(ϕ/2)

)3

(

3 + cos(nϕ)
)

. (A.6)
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Next, we use the Taylor expansion for small curvature,

Emagn = −Nǫ

N−1∑

n=1

(1− n
N
)

4
(

sin(nϕ

2
))

sin(ϕ
2
)

)3

(

3 + cos(nϕ)
)

= −Nǫ

N−1∑

n=1

(1− n/N)

4 sin3(nϕ
2
)
sin3(

ϕ

2
)
(

3 + cos(nϕ)
)

≈ −Nǫ

4

N−1∑

n=1

(1− n
N
)

(
(nϕ

2
)3 − 1

2
(nϕ

2
)5
) ×

(
(
ϕ

2
)3 − 1

2
(
ϕ

2
)5
)
×
(
3 + 1− (nϕ)2

2

)
+ ...

≈ −Nǫ

4

N−1∑

n=1

(1− n
N
)

n3
×
(
1 +

1

2
(
nϕ

2
)2 + (

1

2
(
nϕ

2
)2)2
)
×
(
1− 1

2
(
ϕ

2
)2
)
×
(
4− (nϕ)2

2

)
+ ...

≈ −Nǫ

4

N−1∑

n=1

(1− n
N
)

n3
×
(
4− 2(

ϕ

2
)2
)

= −Nǫ
N−1∑

n=1

(1− n
N
)

n3
×
(
1− 1

2
(
ϕ

2
)2
)
.

(A.7)

In this equation, ϕ is a function of the curvature, l/R,

sin(
ϕ

2
) =

l

R
⇒ ϕ = 2 arcsin(

l

2R
) ≈ l

R
+

1

3
(
l

R
)3 + ...,

Emagn ≈ −Nǫ
N−1∑

n=1

(1− n
N
)

n3
×
(
1− 1

2
(
l

2R
)2
)

= Elin

(
1− 1

2
(
l

2R
)2
)
,

(A.8)

Here the first term is the linear chain energy and the second term represents the

contribution from bending with a magnetic bending rigidity of

κmagn =
ǫl

4

N−1∑

n=1

(1− n
N
)

n3
≈ ǫl

4
ζ(3) ≃ 0.3ǫl. (A.9)
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A.1.3 Nearest−neighbor Interactions

If we consider only nearest−neighbor interactions, only the term with n = 1 remains

in Eq. (A.8). This leads to

Enn ≈ −Nǫ

(

1− 1

N

)

+
1

8
Nǫ

(

1− 1

N

)(
l

R

)2

. (A.10)

with the energy Elin of the linear chain given by Eq. (3.4) and the magnetic bending

rigidity

κnn
magn =

ǫl

4

(

1− 1

N

)

. (A.11)

A.1.4 Energy difference between linear chain and closed

ring

In section 2.3.3, we discussed the energy difference between a straight chain and a

closed ring. Here, we elaborate on the derivation of the Eq. (A.10) which demonstrates

the decay of the difference between energies of these two configurations with the

increase in the number of particles.

Elin = −Nǫ
N−1∑

n=1

(1− n/N)

n3
,

Ering = −Nǫ

N−1∑

n=1

(1− n/N)

4(
sin(nπ

N
)

sin( π
N
)
)3

(

3 + cos(
2

N
) + 3

)

.

Using the Taylor expansions for cos(2πn
N

) and (
sin(nπ

N
)

sin( π
N
)
)3, we obtain

Ering − Elin ≈ −Nǫ

n=N−1∑

n=1

(1− n/N)

n3

(

(1− n2π2

2N2
)− 1

)

= −π2ǫ

2N

N−1∑

n=1

1− n/N

n
.

(A.12)
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A.2 Effect of the temperature on the rigidity

of magnetosome chains

In chapter 2, we studied the bending stiffness of magnetosome chains. We calcu-

lated analytically the contribution of magnetic interactions to the bending rigidity at

T = 0◦K. In this appendix, we look at the effect of the temperature on the bending

rigidity and on the persistence length of magnetosome chains.

To that end, we apply the model of linear and bent magnetosome chain structures,

introduced in chapter 2, and combine this model with Monte Carlo simulations at dif-

ferent temperatures 30◦K, 300◦K and 3000◦K. As results of our simulation, we obtain

for each temperature the magnetic interaction energies of linear and bent structures of

the magnetosome chain. Placing these energies into the Eq. (A.8), the bending energy

contribution and the corresponding bending rigidity are calulated. Subsequently, we

use the Eq. (2.8) to obtain the persistence length for each temperature.

Fig. A.1 presents the results of our simulations for bending rigidity and persistence

length of a magnetosome chain at different temperatures as a function of the bending

curvature, l
R
. In our simulations, we consider a magnetosome chain of 20 magnetite

particles with radius r = 25 nm and the membrane thickness 5 nm. l is the distance

between neighbouring magnetosome particles and R is the radius of the curve on

which magnetosome particles are fixed.

Our results indicate that the bending rigidity is not strongly affected by the tempera-

ture. However, as expected, the persistence length increases with the decrease of the

temperature. In other words, the magnetosome chain becomes more straight under

decreasing the temperature (cooling).

Negative values in Fig. A.1 arise due to the thermal fluctuations of magnetic mo-

ments at higher temperatures. At these temperatures, thermal fluctuations oppose

the alignment of magnetic dipoles to the axis of the linear chain and as a result, the

energy of the linear chain structure may not be the minimum energy and lower than

the energy of the bent chain structure and the negative bending energy and bending
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Figure A.1: Bending rigidity (left) and persistence length (right) of the magnetosome
chain as a function of l

R
for temperatures 30◦K, 300◦K and 3000◦K. The dashed lines

demonstrate the values of the bending rigidity and the persistence length at T=0◦

derived from analytical calculations in chapter 2.

rigidity emerge.
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Appendix B

Supplementary discussions of chapter

3

B.1 Critical angle of rupture

In section , we obtained at the critical angle where Ebinding > Eelasticity and as a result,

the particle unbinds. In this appendix, we derive this critical angle in more detail.

Figure B.1: The torque exerted by the external field pulls the linker of the particle
to the filament with relaxed length l0 to the length l.

Eelasticity = +
1

2
kl(l − l0)

2

l2 = (R +
d

2
)2 + (l0 +R +

d

2
)2 + 2l0(R +

d

2
) cos(θ)
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Ebinding > Eelasticity leads to,

(
((R +

d

2
)2 + (l0 +R +

d

2
)2 + 2l0(R +

d

2
) cos(θ))

1
2 − l0

)2 ≥ (−2Ebinding

kl
)

⇒ cos(θ) ≥ R + d
2

2(R + d
2
+ l0)

+
R + d

2
+ l0

2(R + d
2
)

−
(
√

−2Ebinding

kl
+ l0)

2

2(R + d
2
)× (R + d

2
+ l0)

B.2 Magnetosome chains under weak exter-

nal fields

In this appendix, we present the behaviour of different energy contributions in mag-

netosome chain during application of an external field with the strength B = 35

mT which is lower than the threshold needed for the chain disruption. In this case,

the strength of the magnetic field−dipole interaction is not sufficient to rotate the

dipoles to the angle where the particles begin to repel each other and therefore the

magnetosome chain does not break into smaller pieces.

Figure B.2: Figure (a) shows the orientation of the chain magnetic moment in different
angles of the external field. Figure (b) presents the change in the average number of
magnetosome particles bound to the filament during the application of the external.
In each plot, different colours represent 10 trajectories extracted from Monte Carlo
simulations.
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Figure B.3: The external field of 35mT disorients the dipoles from their initial linear
orientation along the filament and therefore the dipole−dipole interaction increases.
Changing the angle of the external field to higher angles increases the elasticity of
the attached particles. As the strength of the external field is bellow the threshold
needed to rotate the dipoles to the critical point of rupture where dipoles begin to
repel each other, in contrast to the case of higher external field strengths, the chain is
not disrupted and dipole−dipole interactions, the external field−dipole interactions
and the elastic energy of the linkers do not decrease back to the lower values.

B.3 Dipole−dipole magnetic force

The force emanating from dipole−dipole interactions between two magnetic dipoles

mi and mj is

Fdd =
3µ0

4πr5ij

(

(mi · rij)mj) + (mj · rij)mi + (mi · mj)rij −
5(mi · rij)(mj · rij)

r2ij
rij

)

,

(B.1)
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where µ0 = 4π × 10−7NA−2 is the vacuum permeability and the rij is the distance

vector between dipoles, with rij = |rij|.
For two fixed dipoles with angle θ relative to the direction of the vector rij and

mi = mj = m, the Eq. (B.1) takes the form bellow,

Fdd =
3µ0

4π

m2

r4ij

(
2cos(θ) + 1− 5cos2(θ)

)
r̂ij . (B.2)

Fig. B.4 shows the behaviour of the dipole−dipole force in different orientations of

the dipoles relative to the direction of the vector connecting them. From 0◦ to ∼ 46◦,

the two dipoles attract each other but as the angle rises to higher values dipoles begin

to repel each other.

Figure B.4: Plot presents the change in the force between two dipoles from repulsion
to attraction with increasing the angles of the dipoles relative to the direction of the
vector connecting them.
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B.4 Energy contributions in a magnetosome

chain of greigite particles

In section 3.4.2, we explained how the process of chain disruption and the resulting

structure differ in the case of lower dipole−dipole interactions. We presented the

change in the behaviour of the chain magnetic moment in different angles of the

external field of B = 50mT relative to the direction of the filament.

Here, we show how the number of bound particles to the filament and different energy

contributions alter during the application of the external field, B = 50mT, in different

angles of the field relative to the direction of the filament. Fig. B.6 indicates that early

after the critical point the dipoles follow the external field freely and consequently

the external field−dipole interaction energy and the dipole−dipole interaction energy

fall and do not change anymore.

Figure B.5: Due to feeble dipole−dipole interactions, early after the critical point,
dipoles align with the external field (a), the elasticity of linkers to the filament in-
creases and as a result they break and the number of bound particles (b) drops.
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Figure B.6: The behaviour of dipole−dipole interactions (a), external magnetic
field−dipole interactions (b), binding (c) and elastic (d) energies for a chain with
N = 20 greigite particles in different angles of the external magnetic field of
B = 50mT relative to the direction of the filament.
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Appendix C

Supplementary discussions of chapter

4

C.1 Derivatives of the total energy

Derivatives of the total energy of the particle i in respect to its polar and azimuthal

angles θi and ϕi

• First derivative with respect to θi :

∂θiE
i = ∂θiE

i
dd + ∂θiE

i
B,

∂θiE
i
dd = −µ0

4π

N∑

j=1

m2

r3ij
(−2 cos(θj) sin(θi)− cos(θi) cos(ϕi − ϕj) sin(θj)) ,

∂θiE
i
B = −mB (cos(θi) cos(ϕB − ϕi) sin(θB)− cos(θB) sin(θi)) .

(C.1)

• First derivative with respect to ϕi :

∂ϕi
Ei = ∂ϕi

Ei
dd + ∂ϕi

Ei
B,

∂ϕi
Ei

dd = −µ0

4π

N∑

j=1

m2

r3ij
(sin(θi) sin(θj) sin(ϕi − ϕj)) ,

∂ϕi
Ei

B = −mB (sin(θB) sin(θi) sin(ϕB − ϕi)) .

(C.2)
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• Second derivatives with respect to θi :

∂θiθiE
i = ∂θiθiE

i
dd + ∂θiθiE

i
B,

∂θiθiE
i
dd = −µ0

4π

N∑

j=1

m2

r3ij
(−2 cos(θi) cos(θj) + cos(ϕi − ϕj) sin(θi) sin(θj)) ,

∂θiθiE
i
B = −mB (− cos(θB) cos(θi)− cos(ϕB − ϕi) sin(θB) sin(θi)) ,

(C.3)

∂θiϕi
Ei = ∂θiiϕE

i
dd + ∂θiϕi

Ei
B,

∂θiϕi
Ei

dd = −µ0

4π

N∑

j=1

m2

r3ij
(cos(θi) sin(θj) sin(ϕi − ϕj)) ,

∂θiϕi
Ei

B = −mB (cos(θi) sin(θB) sin(ϕB − ϕi)) .

(C.4)

• Second derivatives with respect to ϕi :

∂ϕiϕi
Ei = ∂ϕiϕi

Ei
dd + ∂ϕiϕi

Ei
B,

∂ϕiϕi
Ei

dd = −µ0

4π

N∑

j=1

m2

r3ij
(cos(ϕi − ϕj) sin(θi) sin(θj)) ,

∂ϕiϕi
Ei

B = +mB (cos(ϕi − ϕj) sin(θB) sin(θi)) .

(C.5)

C.2 Resonance field at different orientations

of the applied field

Due to the dependence of the magnetocrystalline anisotropy on orientation, resonance

takes place in different field strength for different orientations of the applied field. Fig.

C.1 shows the absorption for (a) ϕBext = 45◦ and (b) ϕBext = 120◦ for different polar

angles θBext = 45◦, θBext = 60◦ and θBext = 90◦. Considering the corresponding

magnetocrystalline energy for each orientation (see Fig. 4.5(c)), resonance occurs at

lower field values for orientations with lower magnetocrystalline energy.
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Figure C.1: Resonance spectrum for different orientation of the external field, relative
to the direction of the magnetosome chain, emerges at different field strength.

C.3 Effect of dipole−dipole interactions on

the resonance field

If we look at the absorption of magnetosome chain, we observe two major peaks,

Fig. 4.4(b, c). The first peak, at Bext = 380 mT, represents the resonance field for

particles at two ends of the chain while the second peak, at Bext = 392 mT represents

the one for the particles in the middle of the chain. The ground for the occurrence

of the resonance at lower applied field for particles at two ends is that due to having

one neighbour less than the particles in the middle of the chain, these particles are

constrained to weaker dipole−dipole interactions. This effect of dipole−dipole inter-

actions is also detected in the resonance field map of particles with different positions

89



within the chain, see Fig. C.2. In FMR simulations based on the ellipsoid model for

magnetosome chains, these interactions are represented by a shape anisotropy func-

tion. This description can not account for the differences in magnetic orientations

between particles, as the magnetisation is taken to be homogeneous throughout the

ellipsoid [99].
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Figure C.2: The maps of the resonance field for the first five magnetosome par-
ticles at one end of a magnetosome chain of N = 20 particles. The dissimilarity
between the resonance field of the first particle and the rest of the particles owing to
weaker dipole−dipole interactions is already noticeable between the map of two first
particles. As the dipole−dipole interactions are fast decaying, there is no distinct
difference between the behaviour of the resonance field of the particles in the middle.
In other words, the dominant role in dipole−dipole interactions is played by two first
neighbours, for more detail see chapter 2.
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bundle of long filaments, c) a long bundle consisting of shorter filaments. 29

3.1 Local minimum structures observed in the Monte Carlo computer simu-

lation of 20 randomly distributed magnetosome particles with no bind-

ing energy to the filament (a−e). Observed structures include chains

(b, c), rings (a, b and d) and handle (e). In the presence of the binding

energy to the filament, particles form semi−linear structures along the

filament (f−h). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

3.2 Fraction of configurations observed in the Monte Carlo computer sim-

ulations in the absence and presence of different values of the binding

potential to the filament. In each case configurations were extracted

from 100 runs of the simulations. Simulations classified as Other struc-

tures include open rings (observed in the case of Eb = 0kBT ) and a

single ring accompanied by two chains (in the case of Eb = 4.0kBT ). . 38
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3.3 Final configuration of magnetosome particles for different values of the

binding energy to the filament and the external magnetic field strength.

The external field is fixed to an angle 90◦, relative to the direction of

the filament. The color coding indicates the magnetosome configu-

ration quantified by the number of chains (average of 5 simulations,

rounded to integers). The number in each circle indicates the number

of particles bound to the filament (also averaged over 5 simulations

and rounded to integers.) . . . . . . . . . . . . . . . . . . . . . . . . . 39

3.4 Schematic view of a magnetosome particle (shown in blue frame) con-

nected to the filament in the presence of dipole−dipole interaction and

an external magnetic field with the angle θB relative to the direction

of the filament. At the threshold angle of θB ≃ 27◦, the binding energy

rises higher than the elastic energy and therefore the binding to the

filament is not anymore an advantage. . . . . . . . . . . . . . . . . . 41

3.5 Response of the chain magnetisation to a rotation of the external field:

a1, b1 and c1 show the change in the orientation of the chain magnetic

moment in different angles and strengths of the external field. How

the average number of magnetosome particles bound to the filament

changes during the rupture is presented for each field strength in a2,

b2 and c2. In each plot, different colours represent 10 trajectories

extracted from Monte Carlo simulations. . . . . . . . . . . . . . . . . 43

3.6 (a) The external field critical angles for chain rupture: As field strength

increases, the magnetosome chain ruptures at lower values of the exter-

nal field angle. (b) Chain magnetic moment angle at first and second

critical angles of the external field as a function of the field strength.

The figure shows the independence of this angle from the field strength. 44

3.7 Figure shows the change in the orientation of the magnetic moment of

a magnetosome chain with N = 20 greigite particles in different angles

of an external magnetic field of 50mT. . . . . . . . . . . . . . . . . . 45
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3.8 Behaviour of the dipole−dipole interactions energy between magneto-

some particles (a), the external magnetic field−dipole interaction en-

ergy (b) interaction energies of magnetosome particles, the binding (c)

and elastic energies (d) of the linkers of the particles to the filament in

the magnetosome chain under an external magnetic field of 50mT for

different angles of the external magnetic field relative to the direction

of the filament. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

3.9 Plots represent the change in the behaviour of the magnetosome chain

during the disruption with an external magnetic field, from 0 to 90 ×
10+7 MCS, and after elimination of the external field, from 90 × 10+7

MCS to 180 × 10+7 MCS. While the magnetosome chain regains its

linear structure on the filament, the magnetic moments of the parti-

cles align to the direction of the filament (a) and particles rebind to

the filament therefore the number of particles bound to the filament

increases again (b) and the binding energy falls to its minimum values

(c). Decrease in the elastic energy to the initial value (d) indicates that

the linkers of the particles to the filaments reform with their relaxed

length. MCS refers to Monte Carlo Steps. . . . . . . . . . . . . . . . 47

3.10 The plot depicts the recovery of the magnetosome chain after treatment

with an external field aligned with the direction of the filament. MCS

refers to Monte Carlo Steps. . . . . . . . . . . . . . . . . . . . . . . . 48

4.1 Schematic view of (a) the magnetosome chain and (b) the cartesian

coordinate system. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

4.2 Map of resonance field for 0◦ < θBext < 90◦ and 0◦ < ϕBext < 360◦ for

a magnetosome particle in the middle of a magnetosome chain with

N = 20 particles. θBext and ϕBext are polar and azimuthal angles of

the applied field relative to the direction of the chain, z−axis. The

resonance field shows an uniaxial symmetry around the z−axis. . . . 57
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4.3 Calculated FMR spectra for magnetosome chains: (a, c) show the ab-

sorption spectra. (b, d) Derivatives of the absorption spectra as mea-

sured experimentally. Upper and lower plots show the same spectra

but with different linewidth. Y axis in both plots has an arbitrary unit. 59

4.4 (a) The map of the resonance field for 0◦ < θBext < 90◦ and 0◦ <

ϕBext < 360◦ for a magnetosome particle with magnetocrystalline anisotropy.

The map shows the formation of a three−fold symmetry after incorpo-

rating the magnetocrystalline anisotropy energy into the system. The

plot present the data for the particle in the middle of a magnetosome

chain with N = 20 particles. (b, c) Applying the gaussian function,

absorption peaks at Bext = 380 mT and at Bext = 392 mT are observed. 60

4.5 On top: (a) External magnetic field−dipole interactions energy, (b)

dipole−dipole interactions energy and (c) magnetocrystalline anisotropy

energy for a chain 20 magnetosome particles under an external field

of 280 mT. On bottom: (d) External magnetic field−dipole interac-

tions energy and (e) dipole−dipole interactions energy for a chain of 20

magnetosome particles without the magnetocrystalline anisotropy and

under an external field of 280 mT. In the presence of the magnetocrys-

talline anisotropy, the uniaxiality observed in the energies converts into

a three−fold symmetry. . . . . . . . . . . . . . . . . . . . . . . . . . . 61

4.6 On top: Resonance field as a function of the azimuthal angle ϕBext

with (a) and without (b) the magnetocrystalline anisotropy. On bot-

tom: Resonance field at different polar angles with (c) and without

(d) magnetocrystalline anisotropy. Due to numerical limitations, Res-

onance field values at 0◦ and 180◦ are not calculated. . . . . . . . . . 63
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4.7 FMR spectra of a magnetosome chain with gaps in the arrangement

of magnetosome particles: (a) Map of the resonance field for a mag-

netosome particle in a chain with gaps between particles. The corre-

sponding arrangment is shown in (b). (c, d) Resonance spectra. For

Comparison, the resonance spectra for a chain without gaps is also

shown. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

4.8 (a) The map of the resonance field for a random magnetosome particle

in a cluster of N = 20 magnetosome particles with magnetocrystalline

anisotropy. (b) Resonance spectra for 20 magnetosome particles in a

cluster configuration. The resonance occurs at Bext = 376 and Bext =

384 mT for the cluster configuration of magnetosome particle. . . . . 66

A.1 Bending rigidity (left) and persistence length (right) of the magne-

tosome chain as a function of l
R

for temperatures 30◦K, 300◦K and

3000◦K. The dashed lines demonstrate the values of the bending rigid-

ity and the persistence length at T=0◦ derived from analytical calcu-

lations in chapter 2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

B.1 The torque exerted by the external field pulls the linker of the particle

to the filament with relaxed length l0 to the length l. . . . . . . . . . 81

B.2 Figure (a) shows the orientation of the chain magnetic moment in

different angles of the external field. Figure (b) presents the change in

the average number of magnetosome particles bound to the filament

during the application of the external. In each plot, different colours

represent 10 trajectories extracted from Monte Carlo simulations. . . 82
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B.3 The external field of 35mT disorients the dipoles from their initial

linear orientation along the filament and therefore the dipole−dipole

interaction increases. Changing the angle of the external field to higher

angles increases the elasticity of the attached particles. As the strength

of the external field is bellow the threshold needed to rotate the dipoles

to the critical point of rupture where dipoles begin to repel each other,

in contrast to the case of higher external field strengths, the chain is

not disrupted and dipole−dipole interactions, the external field−dipole

interactions and the elastic energy of the linkers do not decrease back

to the lower values. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

B.4 Plot presents the change in the force between two dipoles from repul-

sion to attraction with increasing the angles of the dipoles relative to

the direction of the vector connecting them. . . . . . . . . . . . . . . 84

B.5 Due to feeble dipole−dipole interactions, early after the critical point,

dipoles align with the external field (a), the elasticity of linkers to the

filament increases and as a result they break and the number of bound

particles (b) drops. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

B.6 The behaviour of dipole−dipole interactions (a), external magnetic

field−dipole interactions (b), binding (c) and elastic (d) energies for a

chain with N = 20 greigite particles in different angles of the external

magnetic field of B = 50mT relative to the direction of the filament. . 86

C.1 Resonance spectrum for different orientation of the external field, rel-

ative to the direction of the magnetosome chain, emerges at different

field strength. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89
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C.2 The maps of the resonance field for the first five magnetosome particles

at one end of a magnetosome chain of N = 20 particles. The dissim-

ilarity between the resonance field of the first particle and the rest of

the particles owing to weaker dipole−dipole interactions is already no-

ticeable between the map of two first particles. As the dipole−dipole

interactions are fast decaying, there is no distinct difference between

the behaviour of the resonance field of the particles in the middle. In

other words, the dominant role in dipole−dipole interactions is played

by two first neighbours, for more detail see chapter 2. . . . . . . . . . 91
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