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Abstract
Individual alpha frequency (IAF) is a promising electrophysiological marker of inter-
individual differences in cognitive function. IAF has been linked with trait-like
differences in information processing and general intelligence, and provides an empir-
ical basis for the definition of individualized frequency bands. Despite its widespread
application, however, there is little consensus on the optimal method for estimating
IAF, and many common approaches are prone to bias and inconsistency. Here, we
describe an automated strategy for deriving two of the most prevalent IAF estimators
in the literature: peak alpha frequency (PAF) and center of gravity (CoG). These indi-
ces are calculated from resting-state power spectra that have been smoothed using a
Savitzky-Golay filter (SGF). We evaluate the performance characteristics of this anal-
ysis procedure in both empirical and simulated EEG data sets. Applying the SGF
technique to resting-state data from n5 63 healthy adults furnished 61 PAF and 62
CoG estimates. The statistical properties of these estimates were consistent with pre-
vious reports. Simulation analyses revealed that the SGF routine was able to reliably
extract target alpha components, even under relatively noisy spectral conditions. The
routine consistently outperformed a simpler method of automated peak detection that
did not involve spectral smoothing. The SGF technique is fast, open source, and
available in two popular programming languages (MATLAB, Python), and thus can
easily be integrated within the most popular M/EEG toolsets (EEGLAB, FieldTrip,
MNE-Python). As such, it affords a convenient tool for improving the reliability and
replicability of future IAF-related research.

KEYWORD S

alpha rhythm, EEG, individual alpha frequency, oscillation/time frequency analyses, posterior dominant

rhythm, Savitzky-Golay filter

1 | INTRODUCTION

Alpha is the dominant rhythm in the human EEG, and its
importance for cognitive processing has been recognized
since Hans Berger’s seminal work in the early 20th century
(Berger, 1929; cf. Adrian & Matthews, 1934). Interindividual
differences in the predominant frequency of alpha-band
oscillations (i.e., individual alpha frequency; IAF) have been
linked with variability in cognitive performance since the
1930s (see Vogel & Broverman, 1964; for a more recent

review, see Klimesch, 1999). More recent research has
revealed that IAF predicts performance on a variety of per-
ceptual (e.g., Cecere, Rees, & Romei, 2015; Samaha &
Postle, 2015) and cognitive (e.g., Bornkessel, Fiebach, Frie-
derici, & Schlesewsky, 2004; Klimesch, Doppelmayr, &
Hanslmayr, 2006) tasks. Individuals with a low IAF process
information more slowly (Klimesch, Doppelmayr, Schimke,
& Pachinger, 1996; Surwillo, 1961, 1963), and show reduced
performance on memory tasks (Klimesch, 1999) and general
intelligence measures (Grandy, Werkle-Bergner, Chicherio,
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L€ovd�en et al., 2013), in comparison to their high-IAF coun-
terparts. IAF is a trait-like characteristic of the human EEG
(Grandy, Werkle-Bergner, Chicherio, Schmiedek et al.,
2013), which shows high heritability (Lykken, Tellegen, &
Thorkelson, 1974; Malone et al., 2014; Smit, Wright, Han-
sell, Geffen, & Martin, 2006) and test-retest reliability
(Gasser, Bächer, & Steinberg, 1985; Kondacs & Szabo,
1999; Näpflin, Wildi, & Sarnthein, 2007). However, IAF
tends to decrease with age from young adulthood onward
(Chiang, Rennie, Robinson, van Albada, & Kerr, 2011;
K€opruner, Pfurtscheller, & Auer, 1984); hence, lifelong
changes in IAF accompany the decline of many cognitive
abilities in older adulthood (e.g., Hedden & Gabrieli, 2004;
Salthouse, 2011). Taken together, this evidence highlights
the utility of the IAF as a neurophysiological marker of gen-
eral brain functioning (Grandy, Werkle-Bergner, Chicherio,
L€ovd�en et al., 2013; Grandy, Werkle-Bergner, Chicherio,
Schmiedek et al., 2013).

In addition to quantifying individual differences in the
properties of the dominant alpha rhythm, IAF can also be
used to derive individualized estimates of the canonical fre-
quency bands beyond the alpha range (Klimesch, 2012).
Such empirically driven approaches to frequency band defi-
nition have been proposed to sharpen the precision of
frequency-domain analyses more generally (Klimesch,
2012). Indeed, using the IAF to distinguish subregions of the
alpha band has revealed functional dissociations between
lower- and higher-frequency alpha rhythms (e.g., Klimesch,
1997). However, despite the potential advantages of deploy-
ing the IAF as a reference point for various kinds of individ-
ualized spectral analysis, no clear consensus on the optimal
method for quantifying IAF currently exists. This paper thus
sets out to develop a rigorous, automated strategy for esti-
mating two of the most widely reported indices of IAF: peak
alpha frequency (PAF) and alpha frequency center of gravity
(CoG). We begin by briefly describing some of the most
common strategies for extracting these estimators and some
of their attendant problems.

1.1 | Peak alpha frequency

IAF estimation typically depends on the delineation of a sin-
gular, prominent spectral peak within the alpha bandwidth
(standardly defined as 8–13 Hz; Noachtar et al., 2004). In
many cases, the PAF can be easily discerned upon visual
inspection of the power spectral density (PSD) from eyes-
closed resting-state EEG recorded over parieto-occipital sites.
However, this strategy can be complicated by the presence of
two (or more) alpha-band peaks (so-called split peaks;
Chiang et al., 2011) or the lack of any obvious peak-like
deviation from the characteristic 1=f scaling of background
M/EEG spectral activity (the “inverse power law,” Pritchard,
1992; see Figure 1). Under such circumstances, subjective

PAF estimation may be prone to bias and inconsistency
(Chiang et al., 2008), thus posing a significant challenge to
replicability. While conservative approaches to PAF identifi-
cation in the context of ambiguous spectral conditions may
help to reduce bias, this may result in high rates of attrition
(see, e.g., Bornkessel-Schlesewsky et al., 2015).

One approach for improving the objectivity, replicability,
and (for larger data sets) practicality of PAF estimation is to
implement an automated peak-detection algorithm. While
this strategy does not solve the basic problem of deciding the
criteria by which valid PAF estimates are discriminated from
split peaks or spurious background fluctuations, it at least
applies such criteria consistently across all subjects. Simple
algorithms may, however, introduce new sources of bias. For
instance, a basic routine that searches for local maxima
within the alpha band may arbitrarily assign the PAF to the
lower bound of the search window in the absence of any
notable deviation from the inverse power law (since the high-
est power estimate will be the supremum found at the lowest
frequency bin spanned by the window). A more sophisticated
approach such as the first-derivative test (in which the first
derivative of the PSD is searched for downward-going zero
crossings; cf. Grandy, Werkle-Bergner, Chicherio, Schniedek
et al., 2013) avoids this problem, but is still incapable of dis-
tinguishing substantive peaks from split peaks or arbitrarily
small deviations from background spectral activity. Such
routines may therefore be too liberal with regard to the spec-
tral features they classify as alpha peaks.

1.2 | Alpha-band center of gravity
and reactivity

The alpha mean or CoG frequency (Klimesch, Schimke,
Ladurner, & Pfurtscheller, 1990) has been proposed as an
alternative method of IAF estimation that circumvents some
of the difficulties posed by the absence of a dominant alpha
peak (Klimesch, 1997; Klimesch, Schimke, & Pfurtscheller,
1993). This estimator computes a weighted average of the
power contained within the alpha band, thus rendering a
summary measure that is sensitive to the spectral distribution
of alpha components. Given that the span and location of
alpha-rhythm activity vary across individuals (Bazanova &
Vernon, 2014), Klimesch and colleagues (1990) recom-
mended computing the CoG using bespoke frequency win-
dows designed to capture such variation. However, the
definition of such individualized alpha-band windows
(IAWs) poses a nontrivial challenge, and may rely on subjec-
tive assessments or arbitrary criteria (Bazanova & Vernon,
2014). One principled solution to this problem is to derive
the IAW from reactivity-based contrasts between two condi-
tions (e.g., eyes-closed vs. eyes-open resting states, Kli-
mesch, 1999; pre- vs. peristimulus presentation, Goljahani
et al., 2012). This approach is not immune to bias, however,
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since alpha rhythms are not always substantially attenuated
by opening the eyes (Ga�al, Boha, Stam, & Moln�ar, 2010;
Kreitman & Shaw, 1965), and may only be partially attenu-
ated (e.g., Klimesch et al., 2006)—or even enhanced (e.g.,
Rihs, Michel, & Thut, 2007)—during experimental tasks.

1.3 | Curve-fitting approaches
to alpha-rhythm quantification

One promising approach to spectral peak quantification that
avoids many of the issues highlighted above applies iterative
curve-fitting techniques to parameterize the statistical proper-
ties of the PSD (e.g., Chiang et al., 2008; Lodder & van Put-
ten, 2011). The practical utility of such methods is clearly
apparent from their application to large n data sets (e.g.,
Chiang et al., 2011; van Albada & Robinson, 2013), while
comparison of Lodder and van Putten’s (2011) algorithm
with human scorers revealed a high degree of estimator
agreement. It is thus puzzling why such methods have not
been taken up more broadly within the IAF literature (cf.
Haegens, Cousijn, Wallis, Harrison, & Nobre, 2014, for a
notable exception). One possibility is that investigators are
generally unaware of these approaches, given that they have
mostly been applied in the context of spectral modeling
rather than IAF-focused research (indeed, neither Goljahani
et al., 2012, nor Bazanova & Vernon, 2014, mention the
existence of curve-fitting methods in their reviews of IAF
estimation techniques). Alternatively, investigators may be
put off by the perceived burden involved in accessing these
programs (which we have been unable to locate online) and
integrating them within existing analysis pipelines (which
may not be compatible with such algorithms). We suggest
then that one of the critical steps toward achieving a more

widespread adoption of automated IAF estimation techniques
is to make these tools openly available in formats that can
be easily assimilated within popular methods of M/EEG
analysis.

1.4 | Aims of the present study

In sum, common methodological approaches to IAF estima-
tion are either (a) time consuming and vulnerable to inconsis-
tencies arising from subjective evaluation, or (b) at risk of
producing spurious or biased estimates under certain plausi-
ble spectral conditions. More recent innovations that address
these problems via the application of sophisticated curve-
fitting algorithms have so far found limited uptake within the
broader IAF literature, perhaps on account of practical bar-
riers pertaining to software access and implementation. Con-
sequently, we sought to develop an automated method of
alpha-band spectral quantification that provides fast, reliable,
and easily replicated estimates of the resting-state IAF in two
major programming languages: MATLAB (The MathWorks,
Inc., Natick, MA) and Python. This goal is consistent with
recent proposals to make the analysis of electrophysiological
data as open, transparent, and amenable to replication as pos-
sible (Cohen, 2017).

2 | METHOD

Our approach aims to emulate Klimesch and colleagues’
(1990) original attempt to characterize individual profiles of
resting-state alpha-band activity by means of a relatively sim-
ple, nonparametric curve-fitting technique—the Savitzky-
Golay filter (SGF). The basic strategy runs as follows:
First we extract PSD estimates from preprocessed, fast

FIGURE 1 Empirical examples of problematic cases for peak alpha frequency identification. Standard alpha-band interval (8–13Hz; Noachtar et al.,
2004) indicated by shaded column. Left: Multiple peaks resolvedwithin the alpha-band interval. Center: Split (bimodal) alpha peak. Right: No discernable
alpha peak. Note differences in y axis scaling
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Fourier-transformed EEG signals. Second, we apply the SGF
to smooth the PSD function and estimate its first- and
second-order derivatives. Third, these derivatives are ana-
lyzed for evidence of a distinct spectral peak within the
alpha-band region. Finally, the first derivative of the PSD is
reanalyzed to locate the bounds of the IAW, from which the
CoG is estimated. Our main focus here will be to assess the
efficacy of this approach in the context of both empirical and
simulated data. For a more rigorous account of the calcula-
tions implemented in the algorithm, see the Appendix.

It should be noted from the outset that our approach does
not set out to discriminate fine-grained differences in alpha-
band activity at the source level. Although recent research
(e.g., Barzegaran, Vildavski, & Knyazeva, 2017; Haegens
et al., 2014; van der Meij, van Ede, & Maris, 2016) has borne
out earlier intuitions that alpha rhythms detected over posterior
scalp regions comprise a mixture of overlapping oscillatory
components (see Başar, 2012; Klimesch, 1999), our main con-
cern here was to develop a method for deriving reliable sum-
mary estimates of the dominant alpha rhythm for analyses of
interindividual differences in cognition (see Section 4.3 Limi-
tations and Future Developments for further discussion).

2.1 | Savitzky-Golay smoothing
and differentiation

The SGF is a least-squares polynomial curve-fitting procedure
specifically designed to aid the detection of spectral peaks
amid noisy conditions (Savitzky & Golay, 1964). The SGF
has a number of properties that make it well suited to the task
of smoothing PSD functions, not least of which is its capacity
to render smoothed curves that conserve the height, width,
position, area, and center of gravity of the underlying spectral
structure (see Ziegler, 1981). SGFs work by centering a sam-
pling window of length Fw on a portion of the input signal and
computing the least-squares fit of a specified polynomial to
each ith data point spanned by Fw. The window is then shifted
one point along the input signal, and the polynomial fit recal-
culated accordingly. The center value of the polynomial fit is
taken as the filter output at each iteration of the sliding window
calculation, and these values are concatenated to render the
smoothed estimate of the input function. For a more detailed
treatment of the SGF and its technical performance properties,
the interested reader is referred to Schafer (2011).

We propose using the SGF in order to attenuate random
fluctuations in the PSD (and thus improve signal-to-noise
ratio, SNR) without substantially distorting the spectral
parameters of interest in IAF analysis. Eliminating such fluc-
tuations should reduce the number of spurious local optima in
the derivatives of the PSD, thus improving the overall accu-
racy and reliability of the first-derivative test. Conveniently,
SGFs constitute optimal (or near optimal) differentiators
(Luo, Ying, He, & Bai, 2005), and hence can be deployed to

simultaneously estimate both the smoothed PSD and its deriv-
ative functions.

2.2 | Implementation

All functions developed in order to conduct the analyses
reported here are open source and available (along with sam-
ple data sets, tutorial, and simulation materials) from <https://
github.com/corcorana/restingIAF>. The following report
focuses on the MATLAB implementation of the algorithm,
which is dependent on the Signal Processing Toolbox. The
pipeline (Figure 2) relies on MATLAB’s pwelch.m imple-
mentation of Welch’s modified periodogram method (Welch,
1967) to derive PSD estimates. This requires the selection of
a sliding window function of length x, which determines the
frequency resolution of the analysis. (Note that alternative
methods of PSD estimation could be coupled with the SGF
routine, but are not explored here.) The following parameters
must also be specified in order to execute the algorithm
(examples of what we consider to be reasonable values are
outlined in Section 2.3.4 IAF Analysis Parameters):

� Fw, SGF frame width (longer5more smoothing; Bromba
& Ziegler, 1981);

� k, SGF polynomial degree (higher5 less smoothing/peak
height attenuation; Press, Teukolsky, Vetterling, &
Flannery, 1992);

� Wa, the domain of the PSD searched for evidence of peak
activity;

� minP, the minimum power value that a local maximum
must exceed to qualify as a peak candidate (defined as 1
SD above the power estimate predicted by a regression
model of the log-transformed PSD);

� pDiff , the minimum proportion of peak height by which
the highest peak candidate within Wa must exceed any
competitors to be assigned as the PAF;

� cMin, the minimum number of channel estimates necessary
for computing cross-channel averages.

Since channel spectra may be differentially contaminated by
signal noise, our algorithm evaluates the relative “quality” of
channelwise PAF estimates prior to cross-channel averaging.
To this end, we extend the logic of the first-derivative test to
extract second derivative estimates of the inflection points
bounding the PAF. These points are used to define the area
under the peak (in normalized power units), which is then
divided by the frequency span of this area. The resulting quan-
tity (Q value) thus affords an indication of the relative quality
of the resolved peak in terms of how well its distributional
characteristics conform to the ideal of a highly powered, less
variable (i.e., narrower) peak (as opposed to broader and/or
shallower counterparts). Within-subject channel estimates are
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scaled in proportion to the peak with the highest Q value, and
the (weighted) cross-channel average computed (hence, chan-
nels with the strongest evidence of PAF detection contribute
more information to the mean estimate of the PAF). We con-
sider this strategy (which only influences results when channel
estimates fail to converge) an acceptable trade-off between
loss of information (incurred by higher rates of channel exclu-
sion) versus loss of precision (incurred by treating all estimates
as equally indicative of the estimand).

2.3 | Empirical EEG data

2.3.1 | Participants

Sixty-three right-handed (Edinburgh Handedness Inventory;
Oldfield, 1971), native English-speaking adults (42 female,

mean age5 35 years, range5 18–74 years) with normal (or
corrected-to-normal) vision and audition, and no history of
psychiatric, neurological, or cognitive disorder, participated
in the study. All participants provided written, informed con-
sent, and were remunerated for their time. This study was
part of a larger research project investigating EEG responses
to complex, naturalistic stimuli, and was approved by the
University of South Australia Human Research Ethics Com-
mittee (Application ID: 0000035576).

2.3.2 | Procedure

Participants were seated in a dimly lit, sound-attenuated
room for the duration of the session (2.5–3 hr). Two sets of
resting-state EEG recordings were acquired approximately
90 min apart at the beginning and end of an experimental

(a) (b)

FIGURE 2 Flow diagrams summarizing key steps of the analysis pipeline. (a) Processing of channel data. (b) Cross-channel averaging, assuming a
sufficient number of estimates from (a). See main text/Appendix for details.PSD5 power spectral density; f range5 frequency bins included in analysis;
P5 power estimate;minP5minimum power necessary to qualify as a candidate peak; pDiff5minimum power difference necessary to qualify as a PAF
estimate;Qweights5 quantification of relative peak quality (scaled Q value); cMin5minimum number of channel estimates required for cross-channel
averaging; IAW5 individualized alpha-band window; f1 and f25 lower and upper bounds of IAW; PAFM5mean PAF estimate;CoGM5mean CoG esti-
mate; IAFM5 PAFM or CoGM; IAFGA5 grand-averaged PAF/CoG estimate
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procedure. This experiment involved watching approxi-
mately 70 min of prerecorded television programming, fol-
lowed by an old/new cued recall task. As per our standard
laboratory protocol, both sets of resting-state recordings com-
prised approximately 2 min of eyes-open EEG followed by 2
min of eyes-closed EEG. Participants were instructed to sit
still, relax, and avoid excessive eye movements during this
time. Note that only data from the eyes-closed component of
the resting-state recordings are reported here (see online sup-
porting information for equivalent analysis of eyes-open
data). We favor eyes-closed resting-state data on the basis
that it demonstrates (a) greater interindividual variability in
alpha power (Chen, Feng, Zhao, Yin, & Wang, 2008), and
(b) higher within-session reliability and test-retest stability
of IAF estimates (Grandy, Werkle-Bergner, Chicherio,
Schniedek et al., 2013) than eyes-open data. Eyes-closed
recordings may also be advantageous in reducing ocular
artifact.

2.3.3 | EEG acquisition and preprocessing

EEG was recorded continuously from 64 cap-mounted Ag/
AgCl electrodes via Scan 4.5 software for the SynAmpsRT
amplifier (Compumedics Neuroscan, Charlotte, NC). The
online recording was digitized at a rate of 1000 Hz, band-
pass filtered (pass-band: 0.05–200 Hz), and referenced to the
vertex electrode (AFz served as the ground electrode). Eye
movements were recorded from bipolar channels above and
below the left eye and on the outer canthi of both eyes. Elec-
trode impedances were maintained below 12.5 kX.

EEG data acquired from eyes-closed resting-state record-
ings were preprocessed in MATLAB 2015a (v8.5.0.197613).
All EEG channels were imported into MATLAB via
EEGLAB, v13.6.5b (Delorme & Makeig, 2004) and rerefer-
enced to linked mastoids. Each data set was then trimmed to
retain only the electrooculogram (EOG) and the nine centro-
posterior electrodes constituting the region of interest for this
analysis: Pz, P1/2, POz, PO3/4, Oz, O1/2. These channels
were subjected to zero-phase, finite impulse response high-
pass (pass-band: 1 Hz, 26 dB cutoff: 0.5 Hz) and low-pass
(pass-band: 40 Hz, 26 dB cutoff: 45 Hz), Hamming-
windowed sinc filters (implemented via pop_eegfiltnew.m
from the firfilt v1.6.1 EEGLAB plugin). Automated artifact
detection routines were then applied to identify regions of
channel data (segmented into 2-s epochs) that contained
excessive deviations in the frequency domain (frequency
range: 15–40 Hz, spectral threshold: 10 dB). Channels that
exhibited an improbable signal distribution (kurtosis z score-
> 5) were excluded from analysis. EOG channels were
removed following artifact rejection, and remaining channels
were downsampled to 250 Hz in preparation for spectral
analysis. Data sets exceeding 120 s were trimmed to this

duration in order to reduce variability in the quantity of data
analyzed per participant.

2.3.4 | IAF analysis parameters

Initial parameters for the IAF analysis were determined on
the basis of preliminary testing on an independent data set
(collected as part of a separate EEG protocol). We imple-
mented pwelch.m with a 1,024-sample Hamming window
(i.e., four times the sampling rate raised to the next power of
2; window overlap5 50%), yielding a frequency resolution
of �0.24 Hz. SGF and peak detection parameters were
defined as follows: Fw 5 11 (corresponding to a frequency
span of �2.69 Hz); k5 5; Wa 5 [7, 13 Hz]; pDiff5:20
(meaning that the largest peak detected within Wa had to be
at least 20% higher than any other peak to qualify as the
PAF estimate); cMin5 3. minP was automatically deter-
mined for each channel spectrum according to its distribu-
tional characteristics.

2.4 | Simulated EEG data

2.4.1 | Single component simulations

As an initial proof of concept, we analyzed the performance
of the SGF routine in extracting target alpha frequency com-
ponents embedded within noisy time series. These composite
signals were created by combining a sine wave oscillating at
target frequency Fa with a 2-min “pink noise” signal (i.e., a
randomly sampled signal with a frequency distribution scaled
in accordance with the 1=f inverse power law). SNR was
manipulated by varying the length of the target signal
embedded in the composite time series (e.g., for SNR5 0.50,
the first half of the signal would comprise the convolution of
the alpha and noise signals, whereas the second half would
comprise only the noise signal).

We examined PAF estimation at SNR5 0.05, 0.10, 0.15,
0.20, 0.25, 0.30, 0.40, and 0.50, generating 1,000 simulated
signals for each SNR level. In addition, we ran a null simula-
tion (SNR5 0) with signals comprised of randomly sampled
pink noise only. These SNR levels were arbitrarily selected
to explore estimator performance characteristics across a rea-
sonably fine-grained range of relative signal strengths. The
target frequency was randomly sampled (with replacement)
from a vector ranging from 7.5 to 12.5 in iterations of 0.1.
We compared the SGF routine’s capacity to extract these tar-
get peaks with that of a simple peak detection routine
designed to locate the local maximum (LM) within Wa. To
avoid spurious estimates from suprema at the lower bound of
Wa, this routine evaluated whether the LM exceeded the
power estimates of adjacent frequency bins (thus making it
functionally equivalent to the first-derivative test). This
approach to peak detection—which we consider more robust

6 of 21 | CORCORAN ET AL.



than simply relying on the LM alone—was recently reported
by H€ulsd€unker, Mierau, and Str€uder (2016) and Milton and
Pleydell-Pearce (2017).

Since we are unaware of any automated procedure for
estimating the resting-state alpha CoG on the basis of indi-
vidualized frequency bounds, we were unable to compare
our implementation of this estimator to any previously
reported standard. All CoG results are therefore reported
alongside those of the PAF estimators.

2.4.2 | Mixture and multichannel simulations

Next, we investigated the performance of the SGF routine
under more ecologically valid spectral conditions. This
involved creating alpha signals that comprised a set of neigh-
boring frequency components from different channels. This
configuration was designed to emulate empirical evidence
that alpha peaks detected at surface sensors are the product
of a distributed network of alpha generators, each oscillating
at different frequencies (Barzegaran et al., 2017; Haegens
et al., 2014; van der Meij et al., 2016). We did this by sam-
pling an actual/measured alpha frequency per channel from a
truncated Gaussian distribution centered at the randomly
sampled target Fa (selected as for the single component sim-
ulation) for each simulated (sub)component (targets chosen
uniformly from the standard alpha band, as above). The tails
of the Gaussian were truncated6 2.5 Hz from its mean/target
frequency. Alpha signals were thus constructed by creating a
weighted average of frequencies within this distribution; in
other words, a Gaussian blur was applied to the frequency-
domain signal in order to generate a mixture of alpha waves
in the time domain.

The area of the Gaussian distribution used to sample the
mixed alpha component frequencies was systematically var-
ied by manipulating its a value (i.e., the reciprocal of the
standard deviation). Higher a values correspond to narrower
distributions, thus rendering composite signals with relatively
higher concentrations of frequencies proximal to Fa. We
stratified our simulations into three a levels: 1.0, 2.5, and 4.0.

Constructed alpha signals were again combined with
pink noise signals at a specified SNR. For these simulations,
however, each composite alpha signal was replicated nine
times and combined with an independently sampled pink
noise signal. This yielded a data set of nine synthetic “chan-
nels,” each comprising identical alpha signals embedded
within stochastically varying background noise. This enabled
us to examine how our algorithm’s channel exclusion and
averaging procedures performed under varying levels of
SNR and peak dispersal.

As per the preliminary analysis, we compared the accu-
racy of SGF-generated PAF estimates against those produced
by the LM procedure. For the latter, the optimization func-
tion was applied to the mean PSD calculated for each set of

simulated channel data. The simulation of broader alpha-
band components also afforded the opportunity to assess the
performance of our SGF-based CoG estimator.

Finally, we repeated the multichannel simulations using a
set of alpha signals sampled via a bimodal Gaussian window.
This analysis was designed to replicate troublesome empirical
cases in which IAF calculation is complicated by the presence
of a split peak—either through poor resolution of a single
underlying component, or where dominant activity across mul-
tiple alpha generators results in the detection of distinct compo-
nent peaks at the scalp. This analysis likewise investigated the
effect of modulating the composition of the alpha signal, and
the SNR of the combined time series, on IAF estimation. As
the bimodal sampling window introduced the possibility of
more extreme peaks (since peaks necessarily fell either side of
the window center), the span of Wa was extended to [6, 14
Hz]. This exception aside, all simulation analyses were imple-
mented using the exact same set of parameters as those
described in Section 2.3.4 IAF Analysis Parameters.

3 | RESULTS

3.1 | Empirical EEG data

3.1.1 | Global performance
of the SGF routine

Postexperiment resting-state recordings were missing for
three participants. A total of 11 channels (all from separate
recordings) were excluded on the basis of excessive kurtosis.
This left a total 1,096 PSDs to estimate across the sample
(pre5 561, post5 535). Of these, a total of 944 PAF
(pre5 480, post5 464) and 1,003 CoG (pre5 507,
post5 496) estimates were extracted. As Figure 3 indicates,
the estimation routine extracted a high proportion of PAF
and CoG estimates across most individuals. Two participants
failed to surpass the cMin threshold for both recordings and
were therefore excluded from the PAF analysis. Visual
inspection of channel spectra confirmed the absence of any
consistent alpha peak. The CoG was, however, estimated for
one of these individuals.

3.1.2 | Statistical properties of IAF estimates

Mean IAF estimates were centered about 10 Hz, with the
majority falling in the range of 9 to 11 Hz. Both esti-
mators were similarly distributed in both sets of recordings
(see Figure 4a). Intraclass correlation coefficients (ICC3;k:
PAFM5:96; CoGM5:98) indicated that variance in PAFM
and CoGM estimates was predominantly attributable to inter-
individual differences across the sample, rather than intrain-
dividual differences between recordings (see Figure 4b).
These data are therefore in accord with previous reports of
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the IAF’s high temporal stability (at least within the same
recording session) and interindividual variability (at least in
the context of eyes-closed resting-state EEG).

Kernel density estimation of grand-averaged alpha peak
and gravity estimates (PAFGA and CoGGA, respectively) sug-
gested that the probability density function underlying both
estimators was well characterized by a Gaussian distribution,
although CoGGA was rather more heavy tailed. Despite this

difference, PAFGA and CoGGA produced remarkably consist-
ent results (ICC3;k5:97; R25:90). This finding, which
extends that reported in a smaller sample by Jann, Koenig,
Dierks, Boesch, and Federspiel (2010), lends weight to the
claim that these two estimators tap into the same fundamen-
tal oscillatory process(es).

As a final point of comparison with previous findings,
we examined the relation between age and IAF (Figure 4b).

FIGURE 3 Stacked bar chart displaying number of channels fromwhich PAF (lower) and CoG (upper) estimates were derived across participants.
Estimates are further divided according to EEG recording (pre/post). Totals normalized to account for excluded channels. Postexperiment data were miss-
ing for three participants (indicated by hatching)

FIGURE 4 Statistical properties of PAF and CoG estimates. (a) Histograms displaying distribution of mean PAF and CoG estimates across pre-/post-
experiment recordings. (b) Scatter plots showing correlations between pre-/postexperiment IAF estimates (left), and grand-averaged IAF estimates and age
(right). Broken line indicates perfect positive correlation; solid curve indicates 2nd-degree polynomial fit
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Both estimators showed a similar trend toward reduced IAF
as age increases beyond the fourth decade. However, this
association accounted for a rather small proportion of the
variance (R2 5 .05 and .04 for PAFGA and CoGGA, respec-
tively). This is consistent with previously reported findings
from much larger data sets (e.g., Chiang et al., 2011).

3.2 | Simulated EEG data

3.2.1 | PAF estimator performance
as a function of SNR

Preliminary analysis of synthetic EEG data focused on the
number of PAF estimates extracted at each SNR level, and
how well these estimates approximated the ground truth
stipulated by the frequency of the alpha signal embedded in
the synthetic time series. In the null simulation, the SGF
technique correctly rejected all 1,000 pink noise signals. Fol-
lowing exclusion of 134 peak estimates that failed the
suprema check, the LM routine erroneously returned 866
peak estimates on account of spurious fluctuations in the
pink noise distribution. For a summary of the results from all
other SNR levels, see Table 1.

The SGF technique failed to extract PAF estimates for
approximately one third of simulations at SNR5 0.05;
however, the proportion of estimated alpha peaks rapidly
approached ceiling as SNR increased beyond 0.10.

Average error (RMSE) was generally low for all levels of
SNR, suggesting that alpha peaks were consistently esti-
mated with a high degree of accuracy when detected by the
SGF analysis routine. One per cent of PAF estimates in the
SNR< 0.15 conditions deviated from their target frequen-
cies by> 0.24 Hz (the approximate frequency resolution of
the analysis). Given the general absence of such binShift
deviations in the higher SNR conditions, and the relatively
low magnitude of discrepancies when they did occur, it
seems that the SGF technique exhibited near-optimal per-
formance at SNR � 0.30.

The LM routine returned PAF estimates for all simulated
spectra; however, 15 estimates in the SNR5 0.05 condition
were discarded as lower bound suprema. Even with these esti-
mates removed, LM detection was associated with a 12-fold
increase in average estimate error in the SNR5 0.05 condition
as compared to the SGF method. Of the 224 estimates that
were shifted by more than one frequency bin from their corre-
sponding target frequency, 42 deviated by 1 to 2.5 Hz, while
a further 56 deviated by>2.5 Hz. All of these extreme errors
constituted underestimates of the target component. The LM
procedure was also markedly less accurate in the SNR5 0.10
condition, where it registered more than double the RMSE of
SGF-resolved peaks. Average LM estimation error converged
with that of the SGF technique in higher SNR conditions,
although the magnitude of worst errors (maxDiff) remained
elevated relative to SGF-generated PAF estimates.

TABLE 1 Summary statistics characterizing PAF estimation as a function of estimation method and SNR

SNR 0.05 0.10 0.15 0.20 0.25 0.30 0.40 0.50

n PAF

PAFLM 985 1,000 1,000 1,000 1,000 1,000 1,000 1,000

PAFSG 659 955 997 1,000 1,000 1,000 1,000 1,000

RMSE

PAFLM 1.06 0.22 0.10 0.08 0.07 0.07 0.07 0.07

PAFSG 0.09 0.09 0.08 0.07 0.07 0.07 0.07 0.07

maxDiff

PAFLM 5.42 4.83 0.70 0.50 0.50 0.23 0.22 0.14

PAFSG 0.62 0.75 0.75 0.31 0.26 0.18 0.13 0.13

binShift

PAFLM 224 70 29 8 4 0 0 0

PAFSG 7 14 3 2 1 0 0 0

Note. PAFLM5PAF estimated via the local maximum detection method; PAFSG5 PAF estimated via the Savitzky-Golay smoothing method; n PAF 5 total number
of PAF estimates extracted from 1,000 simulated time series; RMSE 5 root mean squared error; maxDiff 5 maximum absolute difference (Hz) between estimated
and target frequency; binShift5 number of estimates that diverged from their target frequency by> 0.24 Hz.
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To give a flavor of how smoothing may have influ-
enced the PSD estimates generated by pwelch.m at each
SNR level, a selection of simulated PSD functions is illus-
trated in Figure 5. Both techniques return identical PAF
estimates at the highest SNR levels. The SGF also tends to
attenuate peak height, as would be expected of a smooth-
ing procedure. The SNR5 0.30 panel reveals one instance
where the application of the smoothing procedure to a
somewhat blunted component structure results in the erro-
neous ascription of PAF to a neighboring frequency bin.
The advantages of the SGF technique are thrown into relief,
however, by two scenarios in which the LM estimator errs. In
the SNR5 0.05 panel, the LM routine identifies a spurious
fluctuation at 7.57 Hz as the PAF (Fa5 9.9 Hz). Here, the
LM technique is disadvantaged by its inability to evaluate
whether the detected LM constitutes a substantial deviation
from background noise. In contrast, the SGF routine finds
insufficient evidence of peak activity within the alpha search
window, and thus does not return any estimate of PAF. The
second scenario arises when the target component is subopti-
mally resolved by pwelch.m, resulting in either a broad struc-
ture featuring two maxima (SNR5 0.10) or a more clearly
defined split peak (SNR5 0.20). In both cases, smoothing

helps to recover the shape of the peak component underlying
the spectral data, thus culminating in more veridical PAF esti-
mates than those derived via the LM method.

In sum, this preliminary analysis provides compelling
evidence that the SGF method generally furnishes accurate
estimates of the PAF when a singular alpha component is
present within the PSD. Such accuracy is maintained even at
relatively low SNR levels, although the extraction of low-
powered peaks amid background noise becomes more chal-
lenging when SNR drops below 0.15. The more conservative
nature of the SGF method (as compared to LM detection) in
the context of low SNR may, however, be advantageous in
protecting against inaccurate PAF estimates issuing from
spurious background fluctuations.

3.2.2 | Multichannel data set simulations

Given that the PAF estimators approached ceiling per-
formance at moderate levels of SNR in the previous analy-
sis, we limited multichannel simulations to a low (0.15)
and a moderate (0.40) SNR condition. A total of 100 data
sets, each comprising nine synthetic EEG channels, were
simulated for each level of alpha component dispersal in

FIGURE 5 Channel spectra randomly sampled from each SNR condition. Solid blue functions represent PSD estimates generated by pwelch.m. Bro-
ken red functions indicate the effect of smoothing these estimates with the Savitzky-Golay filter. Target alpha component frequency Fa indicated by verti-
cal line. a.u.5 arbitrary unit
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both SNR conditions (yielding a total of 5,400 PSD esti-
mates). The results of this analysis are summarized in Fig-
ure 6 and Table 2.

Across all Distribution 3 SNR conditions, the SGF rou-
tine failed to generate average PAF estimates for 11 data
sets. Eight of these instances occurred in the low SNR condi-
tion (7 a5 1.0; 1 a5 2.5), while the remainder occurred
when attempting to recover broad component structures
(a5 1.0) in the moderate SNR condition. By contrast, both
the LM and the CoG estimators rendered estimates for all
600 simulated data sets.

All three estimators demonstrated consistent reductions
in error as alpha component dispersal diminished (i.e., as
target peaks became narrower). This finding is congruent
with the intuition that, irrespective of SNR, recovery of
broader component structures poses a greater challenge for
automated estimation procedures than the recovery of nar-
rower, sharper peaks. Further, there was some indication
of a Distribution 3 SNR interaction effect, such that error
indices for a given a level were more elevated in the low
(as compared to the moderate) SNR condition. Although
this effect was somewhat marginal (and not entirely con-
sistent) for the PAF estimators, it was more clearly appa-
rent for the CoG estimator. These general trends (i.e.,

improved estimation accuracy with decreased component
dispersal and increased SNR) were mirrored by both the
average (median) number of channels that contributed to
PAFSG estimation, and the degree of variability (SD) in the
number of channels retained by the SGF procedure for
IAF estimation in each set of simulations. This is to say
that a higher proportion of channels rendered PAF esti-
mates as SNR increased and peak dispersal decreased,
while volatility in the number of channels selected for
mean PAF/IAW estimation correspondingly declined.

As per the single component analysis, PAF estimates
from low SNR simulations were more accurate on average
when estimated with the SGF procedure. Unlike the prior
analysis, however, the RMSE of PAFLM failed to converge
with that of PAFSG in the moderate SNR condition (indeed,
RMSE of the former was more than double that of the latter
for both intermediate and narrow peak estimates). The magni-
tude of worst estimate errors (maxDiff) was likewise consis-
tently elevated for PAFLM as compared to PAFSG-generated
estimates. Perhaps most notably, PAFLM produced consider-
ably more estimate errors in excess of6 0.5 Hz than PAFSG
(27% vs. 11%). This contrast was most stark at a � 2.5,
where the error rate associated with PAFLM was 14% (com-
pared to< 1% for PAFSG).

FIGURE 6 Box plots summarizing spread of estimator error across simulation conditions. Center marks indicate median error, edges indicate inter-
quartile range (IQR), whiskers indicate approximately 1.53 IQR. Zero estimate error (broken horizontal line) corresponds to extraction of the target alpha
peak frequency. Negative error indicates underestimation of the target frequency, positive error indicates overestimation. SNR set to 0.15 in (a), 0.40 in (b).
Dispersal of the target alpha component broadest in the left column (a5 1.0) and narrowest in the right (a5 4.0). LM and SG5 PAF estimated via the
local maximum and Savitzky-Golay routines, respectively.CoG5CoG estimated via the Savitzky-Golay routine. Y axis scaling varied acrossa levels to
aid visualization
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Comparison of SGF-generated estimates of PAF and
CoG discloses an interesting interaction between estimator
performance and SNR. While the PAF estimator resulted in
diminished RMSEs, lower maximal deviations, and fewer
estimation errors6 0.5 Hz in the low SNR simulations, this
pattern was inverted (with the exception of one RMSE value)
in the moderate SNR condition. This latter result provides
encouraging evidence in favor of our method’s capacity to
accurately localize the beginning and end of the IAW (at least
when the embedded alpha signal is not too weak). Interest-
ingly, even though the CoG performed less consistently when
SNR was low, it still tended to be more reliable than the
PAFLM estimator. For instance, the CoG method resulted in a
16% reduction in substantial estimate errors compared to the
LM method. While CoG may therefore be more susceptible to
bias than its PAFSG counterpart when channel spectra contain
relatively high degrees of background noise, it may still offer
tangible advantages over LM-based peak detection strategies.

3.2.3 | Split-peak simulations

Finally, we repeated the multichannel data set simulations
with composite signals constructed using a bimodal sampling
window. This window comprised two overlapping Gaussians
(a5 2.5), the right-most of which was scaled equal to, 0.25,
or 0.50 times larger than its counterpart. The frequency offset
between the two Gaussian peaks was equivalent to 1.6 Hz.
The results of this analysis are summarized in Figure 7 and
Table 3.

PAFSG failed to find evidence of a distinct peak in 11% of
low SNR data sets (equal5 14, 10.255 7, 10.505 11), and
2% of moderate SNR data sets (equal5 3, 10.255 4,
10.505 0). Median number of channel PAF estimates
was also reduced as compared to the corresponding SNR con-
ditions in the single-peak, multichannel simulations. PAFLM
and CoG returned estimates for all 600 simulated data sets.

Across all conditions, PAFLM returned more variable and
extreme results than PAFSG, although interpretation of this
observation is complicated by the presence of a (somewhat)
dominant peak in the 10.25 and 10.50 conditions. As SNR
and peak differences increase, PAFLM shows stronger migra-
tion toward the higher frequency peak than either of the SGF
estimators, although note that it is still more prone to errone-
ously ascribing the PAF to the secondary (lower frequency)
peak (see Figure 7). On the other hand, PAFSG is less liable
to spurious fluctuations in the PSD, tending instead to curb
PAF estimation toward the center mass of the double compo-
nent. This might suggest that marginal local maxima are
absorbed within the recapitulation of a broader peak structure
as a consequence of spectral smoothing. As SNR and peak
inequality increase, PAFSG estimates cluster in closer prox-
imity to the dominant peak. This explains why RMSE
increases relative to the center frequency: as SNR improves
and the split peak becomes more asymmetrical (and hence,
one peak more dominant over its competitor), more evidence
accrues in favor of an underlying PAF.

The CoG estimator demonstrates an intermediate level of
variability compared to the PAF estimators under low SNR
conditions, but is markedly less variable under moderate
SNR conditions. The box plots in Figure 7 also indicate that
the CoG estimator performed similarly across the different
degrees of peak inequality within each SNR level. Irrespec-
tive of peak scaling, CoG estimates were substantially more
precise when SNR5 0.40. Indeed, compared to the other
two estimators, CoG is both remarkably stable and closely
centered around the center frequency of the window function
(which coincides with the true CoG in the context of equal
peaks, and closely approximates it in the unequal condi-
tions). As such, this finding provides compelling evidence
that our implementation of the CoG estimator renders an
accurate summary of the underlying alpha component
distribution.

TABLE 2 Estimator performance as a function of SNR and alpha
component distribution

SNR 0.15 0.40

a 1.0 2.5 4.0 1.0 2.5 4.0

RMSE

PAFLM 0.72 0.38 0.30 0.63 0.38 0.26

PAFSG 0.47 0.21 0.15 0.48 0.17 0.10

CoG 0.57 0.45 0.27 0.34 0.16 0.12

maxDiff

PAFLM 1.53 0.90 0.73 1.84 0.86 0.62

PAFSG 1.24 0.59 0.38 1.29 0.68 0.31

CoG 1.45 1.21 0.73 0.86 0.46 0.27

% Dev

PAFLM 63 17 14 42 22 3

PAFSG 30 2 0 33 1 0

CoG 42 30 7 18 0 0

n chans

PAFSG 5 (1.81) 6 (1.53) 8 (1.23) 5 (1.52) 7 (1.27) 9 (0.70)

CoG 9 (0.79) 9 (0.36) 9 (0.10) 9 (0) 9 (0) 9 (0)

Note. a5 1.0 corresponds to a broad peak, a5 4.0 a narrow peak.
PAFLM5 local maximum PAF estimator; PAFSG5Savitzky-Golay filter (SGF)
PAF estimator; CoG 5 SGF CoG estimator; RMSE 5 root mean squared
error; maxDiff5maximum absolute difference (Hz) between estimated and tar-
get frequency; % Dev 5 percentage of estimates that diverged from the target
frequency by> 0.5 Hz; n chans 5 median (SD) number of channels furnishing
PAF/IAW estimates per simulated data set.
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4 | DISCUSSION

We have proposed a novel method for estimating the two
most prevalent indices of IAF in the literature. This method
pairs a common approach to the automated detection of local
maxima (i.e., searching for first-derivative zero crossings)
with a well-established method of resolving spectral peaks
(i.e., Savitzky-Golay filtering) to derive an estimate of PAF.
It also extends the logic of the first-derivative test to estimate
the bounds of the alpha peak component, thus enabling cal-
culation of the (individualized) alpha-band CoG. Like other
automated curve-fitting algorithms reported in the literature
(e.g., Chiang et al., 2008; Lodder & van Putten, 2011), this
method addresses key limitations of visual PSD analysis
(e.g., proneness to subjective bias, inefficiency, poor replica-
bility), while improving upon alternative automated app-
roaches that may be prone to various artifacts (e.g., failure to
differentiate a single dominant peak from competing spectral
peaks or spurious fluctuations, reliance on alpha-band reac-
tivity). Unlike these algorithms, however, our method is
openly accessible and easy to integrate within existing MAT-
LAB and Python-based analysis pipelines.

Our results demonstrate that the SGF technique can
extract a high proportion of IAF estimates from an empirical

data set, and that the samplewide properties of these esti-
mates (intraindividual stability, interindividual variance, age-
related trends, etc.) are consonant with prior reports in the lit-
erature. Furthermore, application of the technique to simu-
lated data sets verified its ability to render accurate estimates
of peak location, even under highly degraded SNR condi-
tions. When extended to more complex simulations, the SGF
technique was shown to recover target values with greater
precision than an alternative peak detection method. We
begin by considering the key findings of our analyses, before
reflecting on present limitations and potential directions for
future research.

4.1 | Estimating IAFs from an empirical
EEG data set

Savitzky-Golay filtering of pwelch.m-generated PSD func-
tions resulted in the extraction of a rather impressive number
of IAF estimates from a moderate-sized data set. This sug-
gests our technique offers substantive benefits in terms of
data retention in comparison to subjective analysis, which
can result in high rates of attrition if dominant peaks cannot
be confidently distinguished from background noise (e.g.,
Bornkessel-Schlesewsky et al., 2015). We note also that our

FIGURE 7 Box plots summarizing spread of estimate deviation from the center frequency of the sampling window. Center marks indicate median
deviation, edges indicate interquartile range (IQR), whiskers indicate approximately 1.53 IQR. Zero deviation (broken horizontal line) corresponds to esti-
mating the midpoint between the two components. Peak locations indicated by dotted horizontal lines. Left: Schematic of the sampling window used to
construct composite alpha signals simulated in corresponding row. Discrepancy between simulated peaks (higher relative to lower frequency bins) ranges
from 0 (top to10.50 bottom). LM and SG5 local maximum and Savitzky-Golay PAF estimates, respectively.CoG5 Savitzky-Golay CoG estimates
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SGF method furnished a higher proportion of PAF estimates
than that produced by the Gaussian curve-fitting procedure
implemented by Haegens and colleagues (2014). It may be
the case that our nonparametric approach, which attempts to
smooth the PSD rather than fit a specified function to it,
retains more data by virtue of its capacity to accommodate a
broader range of alpha-band distributions.

By the same token, it is reassuring that neither of the two
cases in which the technique failed to extract PAF estimates
demonstrated compelling evidence of any concerted alpha
peak activity on visual inspection of their respective PSD
plots. It is also worth pointing out that the diverse age range
of participants within this study is likely to have posed a
nontrivial challenge to any automated alpha-band quantifica-
tion routine, given the typically reported changes in both
spectral power and distribution associated with older adult-
hood (e.g., Dustman, Shearer, & Emmerson, 1999). That our
technique was able to extract estimates from the vast major-
ity of sampled individuals, and that it did so using a fixed set
of parameters defined a priori on the basis of preliminary
testing in an independent data set, speaks to its capacity to
derive resting-state IAF estimates across a broad spectrum of
the healthy population.

Comparison of grand-averaged PAF and CoG estimates
revealed a high degree of intercorrelation, despite certain

differences in their distribution. Although this might prompt
concerns of redundancy, we interpret this finding positively:
the CoG seems to tap into a similar underlying neural pro-
cess (or set of processes) as the PAF. Although not necessary
in the present analysis on account of the high proportion of
PAFs that were extracted across participants, this finding
suggests that the CoG estimator might warrant deployment
as an alternative marker of IAF in cases where the PAF can-
not be obtained. In any case, given the dearth of research
directly comparing these two measures (most IAF-related
research involves some variant of the PAF, perhaps on
account of the additional complexities involved in calculating
the CoG), we suggest it would be informative if investigators
adopted the policy of reporting both indices in parallel.
Should it be the case that PAF and CoG track one another
almost identically, then only one of these measures need be
selected for the remaining analysis (see, e.g., Jann et al.,
2010). However, if it turns out that PAF and CoG diverge
under certain circumstances, delineating such cases might
help improve our understanding of the IAF (and alpha-band
dynamics more generally). It is, of course, a notable advant-
age of our method that it enables investigators to rapidly
derive samplewide estimates of PAF and CoG simultane-
ously, thus furnishing a convenient means of estimator
comparison. To the best of our knowledge, no previously re-
ported automated technique provides this functionality.

Although the analysis parameters we implemented in the
SGF routine worked well for this data set, we do not insist
that these settings ought to be the default standard in all
future analyses. Rather, parameters should be thoughtfully
defined in accordance with expectations about the general
characteristics of alpha-band activity under study-specific
conditions. For instance, filter settings (Fw and k) will
depend on the anticipated noisiness and dispersal of alpha
component activity, while peak detection (minP and pDiff)
and channel averaging (cMin) criteria will depend on the
amount of available data and the trade-off between liberal
and conservative detection thresholds (a problem that is
intrinsic to traditional methods of PAF estimation). Some
degree of exploratory analysis may therefore be necessary in
order to tune analysis parameters to the data at hand. We do
not see this as inherently problematic so long as the distinc-
tion between exploratory and confirmatory modes of analysis
is respected. As with any form of data processing, we urge
investigators to be transparent about the rationale motivating
their choice of parameter settings, and to apply such settings
consistently across the data set prior to inferential statistical
analysis.

4.2 | Estimation of simulated IAFs

Our preliminary simulation analyses indicated that the SGF
technique approached an optimal level of performance when

TABLE 3 Estimator performance as a function of SNR and rela-
tive weighting of bimodal peaks

SNR 0.15 0.40

PeakDiff 0 10.25 10.50 0 10.25 10.50

RMSE

PAFLM 0.69 0.69 0.75 0.84 0.79 0.76

PAFSG 0.40 0.44 0.51 0.38 0.45 0.55

CoG 0.62 0.56 0.51 0.14 0.12 0.15

maxDiff

PAFLM 1.40 1.62 1.40 1.47 1.25 1.30

PAFSG 0.93 1.03 1.04 1.10 1.03 1.03

CoG 1.77 1.17 1.47 0.33 0.29 0.32

n chans

PAFSG 4 (1.52) 5 (1.49) 5 (1.68) 5 (1.36) 6 (1.64) 6 (1.31)

CoG 9 (0.46) 9 (0.48) 9 (0.51) 9 (0) 9 (0) 9 (0)

Note. Right-most Gaussian function was either 0, 0.25, or 0.50 times larger
than the left (PeakDiff). PAFLM5 local maximum PAF estimator;
PAFSG5 Savitzky-Golay filter (SGF) PAF estimator; CoG5SGF CoG estima-
tor; RMSE5 root mean squared error (relative to center frequency of sampled
components); maxDiff5maximum absolute difference between estimates and
center frequency of sampled components; n chans5median (SD) number of
channels furnishing PAF/IAW estimates per data set.

14 of 21 | CORCORAN ET AL.



2-min synthetic signals consisted of approximately 36 s of
alpha-band oscillations (SNR5 0.30). Indeed, the peak de-
tection routine performed reasonably well when signals con-
tained as little as 12 s of alpha-band activity, with fewer than
6% of simulated alpha components going undetected or erro-
neously estimated by the equivalent of more than one fre-
quency bin (i.e., > 0.24 Hz).

Interestingly, our analysis shows that less sophisticated
approaches to peak estimation can result in substantial error
at relatively low levels of SNR. It is likely that most of these
inaccurate estimates derived from spurious local maxima
occurring due to random fluctuations in background spectral
activity (indeed, this is the only possible explanation for false
positives in the SNR5 0 simulation). The LM method’s pro-
pensity to underestimate PAF in low SNR conditions sup-
ports this interpretation, since the inverse power law (which
is not generally taken into account by LM detection meth-
ods) increases the probability of spurious local maxima at
lower frequencies within the search window. Such artifacts
are undesirable not only for the obvious reason that they
introduce additional noise into IAF-related analyses, but also
because such errors diminish confidence in automated analy-
sis methods more generally (after all, such errors would pre-
sumably have been avoided had spectral data been subjected
to visual inspection). Indeed, we consider it preferable that
an automated peak detection routine should reject spectra
showing inconclusive evidence of any concerted alpha-band
activity, rather than generate highly deviant estimates of the
underlying (albeit weak) signal. Thus, it is a strength of
the SGF technique that it applies more stringent criteria in
the evaluation of candidate peaks.

In addition to demonstrating that the SGF technique con-
sistently outperforms the LM approach in low-to-moderate
SNR conditions, our analysis also confirmed that the app-
lication of this smoothing procedure did not cause excessive
distortion of PAF estimates. Furthermore, our analysis high-
lighted that discrete Fourier analysis methods (such as
Welch’s modified periodogram) might precipitate artifactual
split peaks, and that such cases can be ameliorated by means
of a smoothing procedure. Consequently, the single compo-
nent simulation analysis stands as a basic proof of concept
that the SGF method is capable of (a) extracting a high pro-
portion of underlying peak frequencies without introducing
systematic bias, and (b) improving upon existing techniques
of peak resolution and estimation, thus helping to maximize
the number of IAF estimates that can be obtained from a
given data set. We acknowledge, however, that the estima-
tion of sharply defined, single-frequency alpha components
may well be unrepresentative of genuine electrophysiological
data in many contexts. While it is encouraging that the SGF
technique performed well under these reasonably favorable
conditions, it was necessary to demonstrate its capabilities

when confronted with more complex, ecologically valid
signals.

The multichannel simulation analyses were designed to
be more faithful to empirical resting-state EEG data, in as
much as each target signal comprised a range of alpha com-
ponents embedded within a variety of nonidentical (but
highly correlated) time series. These simulations also enabled
us to examine the performance characteristics of the SGF
routine’s CoG estimator, which was expected to closely
approximate the PAF in the context of Gaussian-distributed
alpha components. The critical finding across all simulation
conditions was that the SGF technique rendered PAF and
CoG estimates that almost always improved upon LM-
derived PAF estimates from averaged channel spectra. This
finding held irrespective of whether estimator deficits were
quantified in terms of the average error across simulated data
sets, magnitude of worst (i.e., most deviant) estimate errors,
or percentage of estimates in the data set that deviated from
the ground truth by more than6 0.5 Hz (a threshold previ-
ously used by Lodder & van Putten, 2011, to evaluate the
performance of their peak detection algorithm).

Leaving aside the superiority of the SGF over the LM
detection routine, one might still raise the concern that its
performance falls somewhat short when applied to broadly
dispersed alpha component structures. Indeed, the RMSE of
the PAF estimator in both SNR conditions of the single-peak
analysis approaches the6 0.5 Hz threshold demarcating sub-
stantial estimate deviation, while the CoG exceeds this limit
when SNR is low. Correspondingly, low-a multichannel
simulations returned a much higher proportion of estimates
exceeding the6 0.5 Hz error threshold (as compared to sim-
ulations involving higher a levels), especially in the case of
the PAF estimator. It ought to be borne in mind, however,
that all simulation analyses were performed using SGF
parameters identical to those used in the empirical analysis.
This is pertinent because it is likely that the filter frame width
(Fw511) was suboptimally narrow for the purpose of
smoothing such broad peak structures. Indeed, post hoc anal-
ysis (not reported) revealed that simply doubling the length
of the filter frame can halve the number of simulations that
failed to produce PAF estimates, as well as reduce substantial
estimate deviation by one third under moderate SNR condi-
tions. Corresponding improvements were not realized, how-
ever, in the context of low SNR; hence, the recovery of
broadly dispersed, relatively weak alpha signals remains
technically challenging.

Of the three IAF estimators examined in these simulations,
the CoG was most sensitive to manipulation of the SNR. That
low SNR simulations should inflict notable performance dec-
rements is hardly surprising, however, given that CoG calcula-
tion depends upon the spectral characteristics of the entire
(individualized) alpha-band interval across all available chan-
nels. Not only does low SNR pose nontrivial difficulties in
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defining the bounds of the alpha interval (thus threatening to
introduce noise by either including extraneous data from
beyond the alpha interval, or excluding portions of the alpha
band from analysis), the relative weakness of the alpha signal
means that a higher proportion of background noise contrib-
utes to CoG calculation. This scenario may be compounded
by the fact that the traditional method of computing CoG esti-
mates averages across all available channels, not just those
that contributed to calculation of the IAW (although note that
the average number of channels selected to infer this band-
width remained high even in the doubly challenging condi-
tions posed by the low SNR 3 broad component dispersal
combination of the single-peak analysis). It might be the case
then that the central tendency-like properties of the CoG,
which may have underpinned its strong performance in the
moderate SNR simulations (where, of the three estimators, it
was the least prone to substantial estimate deviation), render it
more vulnerable to error when alpha-band activity is relatively
sparse. Consequently, it could be useful to investigate whether
the performance of the CoG estimator in relatively noisy con-
ditions can be augmented through the development of more
robust methods of calculation.

Taking the results of the single- and split-peak simula-
tions together, it is tempting to conclude that the PAF estima-
tor outperforms its CoG counterpart in the former scenario,
while the opposite is true in the latter. Even under relatively
favorable spectral conditions, the CoG estimator tended to
underestimate the target frequency in the single-peak simula-
tions. Indeed, CoG estimates increasingly deviated from the
center frequency of the target component as the latter became
narrower, which seems counterintuitive if such peaks ought
to be less difficult to resolve and parameterize. We suggest,
however, that this tendency derived from the skewness intro-
duced into the Gaussian-distributed target components when
they were combined with the pink noise signal. This observa-
tion thus reinforces the point that PAF and CoG estimators
summarize different features of the spectral distribution, and
that they need not always converge. Analysis of the split-
peak simulations suggests, however, that the SGF method
may still be somewhat prone to PAF estimate distortion
when the underlying pwelch.m routine fails to consistently
resolve dual subcomponents across channel spectra. This
finding suggests a more stringent cMin criterion may be
advisable to avoid PAF estimates that might in fact reflect a
more CoG-like average across channels that, due to random
noise fluctuations, resolve only one of two (or more) under-
lying components. In our view, the fact that the SGF
approach to PAF estimation does not fully eliminate the
methodological and conceptual challenges posed by split
peaks is not so much an intrinsic shortcoming of our tech-
nique in particular, but reflects rather a problematic attribute
of the PAF in general. These data thus lend weight to the

argument that the CoG, insofar as it avoids these difficulties,
might be preferable to the PAF.

4.3 | Limitations and future developments

We aimed to design an accessible, fast, automated routine
that calculates reliable PAF and CoG estimates from posterior
channel EEG data recorded during short periods of relaxed,
eyes-closed wakefulness. Although limited in its current
scope, we believe that the algorithm could be adapted for
application across a broader range of empirical contexts (e.g.,
quantifying spectral dynamics across various frequency bands
during task-related activity; quantifying peak characteristics
across different topographical regions). It may prove more
challenging, however, to accurately resolve estimates of IAF
under conditions that are less conducive to the manifestation
of a dominant alpha peak (or indeed, in populations known to
manifest spectral characteristics that differ from those of neu-
rotypical adults). Further research would therefore be required
to establish the utility of the SGF technique for applications
beyond the rather circumscribed conditions examined here.

Notably, any attempt to extend the SGF technique
beyond its current scope must acknowledge the simplifying
assumption (shared by many conventional approaches to IAF
estimation) that alpha activity is meaningfully characterized
by a single summary statistic (moreover, one that is biased
toward the strongest alpha generator). This approach dis-
counts the possibility that the neuronal sources that contrib-
ute to the posterior alpha rhythm possess functionally
distinct properties. For instance, Gulbinaite, Ilhan, and Van-
Rullen (2017) recently showed that the modulation of an illu-
sory percept is strongly predicted by prestimulus activity in
parietal (but not occipital) alpha components. This finding
suggests that IAF-related analysis of individual differences in
task performance might benefit from strategies that are sensi-
tive to potential disparities across distinct sources of alpha
activity. One promising possibility would be to combine our
spectral smoothing approach with a method of sensor-level
component decomposition, such as independent component
(e.g., Gulbinaite, Ilhan, & VanRullen, 2017; Gulbinaite, van
Viegen, Wieling, Cohen, & VanRullen, 2017), parallel factor
(e.g., Barzegaran et al., 2017), or phase coupling-based (e.g.,
van der Meij et al., 2016) analysis.

One aspect of performance that was not investigated in
our analysis was whether the accuracy and precision of IAF
estimates depend upon the method used to derive underlying
PSD estimates. In its present implementation, our algorithm
relies upon Welch’s method to estimate the PSD that is ulti-
mately subjected to the SGF’s smoothing and differentiation
operations. It may therefore be worthwhile to investigate
whether alternative methods of PSD estimation (e.g., the
multitaper method, continuous wavelet transform) can be
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exploited in conjunction with the SGF technique in order to
further improve IAF estimation.

Another potential opportunity for optimizing the per-
formance of the SGF routine would be to develop a function
that automatically adapts the Fw (filter width) and k (polyno-
mial degree) parameters in accordance with the approximate
span of the dominant frequency component located within
the search window Wa. This could be achieved via an itera-
tive fitting procedure, where the empirical features of the
alpha-band component are initially parameterized in order to
scale Fw and k. Once these parameters have been determined
for the data at hand, smoothing and estimation procedures
could proceed as described above. Not only would this pro-
cess potentially increase the number of IAF estimates that
can be accurately obtained from a given data set, it would
reduce the number of free parameters that must be defined in
order to implement the algorithm.

Finally, it would be desirable to create a package that
incorporates the MATLAB implementation of the SGF rou-
tine within the EEGLAB graphic user interface. Not only
would this help to make the procedure accessible to the
broadest possible range of EEGLAB users, it would also pro-
vide a convenient platform for integrating visualizations of
the spectral analysis that may (for instance) assist in the diag-
nosis of suboptimal parameter settings. We intend to explore
a number of these possibilities in future work.

4.4 | Conclusion

We have developed a free, open-source program for auto-
matically estimating individual alpha frequency in resting-
state EEG data. This program has been shown to perform
more accurately than a common approach to automated peak
detection, and may return a higher proportion of empirical
IAF estimates than techniques relying on parametric curve-
fitting procedures. Furthermore, this method is not dependent
on phasic changes in alpha-band reactivity, which may pro-
duce biased IAF estimates. In addition to its obvious advan-
tages in terms of efficiency and replicability, our simulations
indicate that this method could help to improve the accuracy
and precision of future IAF-related research. This technique
may also open up new lines of methodological inquiry, inso-
far as it facilitates the direct comparison of two prevalent
indices of IAF that have, for the most part, been investigated
in isolation of one another.
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APPENDIX

This appendix gives a more formal account of the estimators
implemented in the algorithm.

Peak alpha frequency

Peak alpha frequency (PAF) can be formalized in terms of
the local maximum within the alpha band:

PAF5
arg max

f2alpha band
PSD fð Þ; PSD fð Þ2PSD f 'ð Þ � u 8f 0 6¼ f

undefined; otherwise

8<
: (1)

where argmax returns the frequency bin (or subset of bins) f
containing the maximal power value maxPSD fð Þ registered
within the set of frequency bins spanning the alpha band.
Note that, for the output of arg max to qualify as an estimate
of PAF, it must return a single frequency bin f with a corre-
sponding power spectral density � u, where u defines the
minimum threshold value differentiating a substantive spec-
tral peak from background noise.

First- and second-derivative tests

Derivatives describe the relative rate of change in the depend-
ent variable or function g xð Þ given some value of the inde-
pendent variable x. The first derivative of a vector of PSD
estimates thus provides point estimates of the (instantaneous)
rate of change in the amount of spectral power estimated for
each frequency bin resolved in the analysis. This relationship
can be formalized as

g0 xð Þ5 lim
Dx!0

Dg xð Þ
Dx

; (2)

where g' xð Þ is the first derivative of the relative change in the
power estimate g xð Þ at frequency bin x.

Another way to conceptualize this relationship is to construe
the derivative as describing the slope of the tangent line to the
PSD function g xð Þ at any given frequency bin x. From this per-
spective, it becomes clear that the first derivative will be zero
(i.e., the slope of the tangent will be horizontal) at any point in
the function corresponding to a peak or trough. In the case
of the former, the derivative will change from a positive value
(as the function ascends toward its peak) to a negative value
(once the function begins to descend) as the tangent traverses
the local maximum. As such, positive-to-negative sign changes
(i.e., downward-going zero crossings) within the first derivative
offer a convenient index of local maxima. Conversely, sign
changes in the opposite direction (i.e., upward-going zero cross-
ings) can likewise be used to identify local minima.1

The second derivative of the PSD is derived by differenti-
ating the first derivative:

g00 xð Þ5 lim
Dx!0

Dg0 xð Þ
Dx

; (3)

where g00 xð Þ is the derivative of the first derivative g' xð Þ at
frequency bin x. In other words, the second derivative is sim-
ply the rate of change of the first derivative of some function
g xð Þ. Second derivatives are useful for evaluating whether the
curvature of a function is concave up (i.e., convex) or con-
cave down at any given value of x. The transition of a curve’s
direction between concave up and concave down is character-
ized by an inflection point, which registers a second deriva-
tive value of zero. Consequently, inflection points can be
identified by applying the same zero-crossing procedure
described for locating optima in the first derivative.

Quantifying peak quality

Having defined both the height and width of the putative
alpha peak by means of the first- and second-derivative test,
relative peak quality is quantified as

Q5

Ð i2
i1
PSD fð Þ df
i22i1

; (4)

where Q is the scaled average power within the peak interval
i1; i2½ �.2 (In a very strict sense, Q is the mean value of the
power spectral density function on the peak interval as given
by the mean value theorem.) Note that the inclusion of the
denominator ensures that spectral width is taken into account
when calculating Q.

Center of gravity

The center of gravity (CoG) is the PSD-weighted mean alpha
frequency, which can be expressed as

CoG5

Ð f2
f1
PSD fð Þ � f df

Ð f2
f1
PSD fð Þ df

; (5)

where f1 and f2 index the frequency bins bounding the alpha-
band interval.

1A lack of sign change (e.g., a positive derivative going to zero and then
becoming strictly positive again) corresponds to a plateau.

2Notice that the interval bounded by i1; i2½ � is distinct from that bounded
by f1; f2½ �, the estimated span of the individualized alpha-band window.
The former yields a narrower frequency range than the latter, and does
not take into account secondary peaks within the alpha band.
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CoG calculation follows the standard procedure described
by Klimesch and colleagues (1990, 1993), with the exception
that the bounds of each channel’s alpha interval are detected
automatically. The analysis routine derives these bounds by
taking the left- and right-most peaks within Wa (i.e., those
peaks in the lowest and highest frequency bins, respectively;
these may coincide with the PAF), and searching the first
derivative for evidence of the nearest local minimum (a) prior
to the left-most peak (f1), and (b) following the right-most
peak (f2).

3 Since some spectra show a relatively shallow roll-
off as the edges of the alpha peak diminish, and thus do not
culminate in a local minimum for several frequency bins
away from the main body of the component structure, we
relaxed the requirement for an upward-going zero crossing
(i.e., evidence of a local minimum) such that the transition
into a prolonged shallow gradient is taken as sufficient evi-
dence of the individual alpha bounds f1 or f2. This criterion
was formalized as

f15arg max
f<PAF

jPSD0 fð Þj < 1; (6)

f25arg min
f>PAF

jPSD0 fð Þj < 1: (7)

f1 and f2 estimates from each eligible channel are averaged to
yield the individualized alpha-band window. This window
defines the index of summation (i.e., frequency band cover-
age) used to calculate the CoG across all available channels.

Summary statistics

If a sufficient number of channels (as stipulated by cMin) fur-
nish PAF and individualized alpha window estimates, channel
PAF and CoG estimates are averaged to generate IAF

summary statistics. Mean PAF (PAFM) is a weighted average
that takes into account the Q values associated with each
peak estimate:

PAFM5
PC

c51 PAFc � kcPC
c51 kc

; (8)

where c identifies the channel drawn from the set of all avail-
able channels C, and kc is the channel weighting derived by
dividing Qc by the maximum Qc in C (such that

P
kc51).

In contrast to PAFM , all CoG channel estimates contribute
equally to the calculation of mean CoG (CoGM). If there are
an insufficient number of channel estimates to satisfy cMin,
no PAFM or CoGM estimates are returned (in some cases,
cMin will be satisfied for CoGM , but not PAFM , on account
of the latter’s more stringent criteria).

Since pre-/postexperiment recordings may not be equiva-
lent in terms of quantity of information rendered, grand-
averaged IAF estimates (IAFGA) are calculated using a
weighted mean that takes into account the proportion of chan-
nels that contributed to each constituent summary statistic:

IAFGA5
IAF1b11IAF2b2

b11b2
; (9)

where either PAF or CoG are substituted in place of IAF, b
constitutes the weighting afforded to the channelwise mean
estimates derived from each recording, and subscript indices
indicate the identity of the EEG recording. For PAF esti-
mates, b is the number of channels used to estimate PAFM

divided by total number of channels included in the analysis.
For CoG estimates, b is the number of channels used to esti-
mate the mean individualized alpha-band window divided by
total number of channels included in the analysis.

3This contingency allows for the individualized alpha-band window, and
thus the CoG, to be estimated even in cases where there is no clear PAF
(e.g., in the presence of split peaks).
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