
Received –; Revised –; Accepted –
DOI: xxx/xxxx

ARTICLE TYPE

Frequency Scaling and Energy Efficiency regarding the
Gauss-Jordan Elimination Schemewith Application to the
Matrix-Sign-Function onOpenPOWER 8
Martin Köhler* | Jens Saak
1ComputationalMethods in Systems and
Control Theory, Max Planck Institute for
Dynamics of Complex Technical Systems,
D-39104Magdeburg, Germany
Correspondence
*Email: koehlerm@mpi-magdeburg.mpg.de

Summary
TheGauss-JordanElimination scheme is analternative to theLU decomposition for solving linear
systems or computing the inverse of a matrix.We develop a multi-GPU aware implementation of
this algorithmonanOpenPOWER8systemwith application to theMatrix SignFunction. Thereby,
we analyze the influence of the CPU clock frequency scaling on the overall energy consumption.
The results show possible energy saving of 14.2%without a noteworthy increase of the runtime.
KEYWORDS:
Gauss-Jordan-Elimination, Matrix Sign Function, GPUAcceleration, Energy Efficiency

1 INTRODUCTION
The solution of the linear system Ax = b, A ∈ Rm×m, is one of the most fundamental tasks in numerical linear algebra. It is usually performed
using theLU decomposition avoiding the explicit computation of the inverseA−1. However, some tasks, like Newton’s Method for computing the
Matrix Sign Function (1, 2, 3, 4) or the Polar Decomposition (5), require the explicit inverse, where our main focus lies on. In those cases, one can
either use the three step scheme implemented in LAPACK (6) on top of theLU decomposition, or the Gauss-Jordan Elimination (7) to obtainA−1.
The LAPACK approachworks in three steps:
1. compute the pivotedLU decomposition ofA using GETRF,
2. invert the upper triangular matrixU using TRTRI,
3. and solve the linear systemLA−1 = U−1 forA−1.

This procedure requires 2m3 flops and at least three sweeps over the memory location of A, if the algorithms work in-place as in LAPACK. Fur-
thermore, in this approach it is necessary to find optimal implementations for all three routines. Moreover, the two steps working on triangular
matrices are complicated to parallelize by their nature. Even inside theLU decomposition triangular operations are involved, but only on small sub-
structures of amatrix, such that they have no critical impact on distributed ormulti-GPU algorithms. On the other hand, we have the Gauss-Jordan
Elimination computing the inverseA−1 by rearranging the operations in the three step LAPACK scheme into one single algorithm (7) requiring the
same number of flops. Additionally, in (7) it was shown that this rearrangement can also be applied to positive definite matrices and the Cholesky
decomposition, where in the endmost operations are performedwith the triangular matrices, as well.
Comparing the performance of a triangular solve (TRSM) operation with a general matrix-matrix multiply (GEMM) of the same size on one GPU

in our system, described later in this section, we see that the general matrix reaches a 6% higher floprate than the triangular solves as show in
Figure1 for themaximumsizefitting into thememoryof oneGPU. Ifwe restrict to rank-k updates,we see (even formoderate sizek) that the rank-k
updates performbetter than the triangular solve. For smaller problem sizeswe see that theGEMMoperations reaches theirmaximumperformance
handling much smaller problems. Using the Gauss-Jordan Elimination, which is free of any operations dealing with triangular matrices and mainly
consists of general matrix-matrix products, we use this advantage to perform the 2m3 flops necessary to invert the matrixA. The straight forward



2 Martin Köhler and Jens Saak

4,000 8,000 12,000 16,000 20,000 24,000

2

3

4

5

Dimensionm = n

Pe
rfo
rm
anc
e[T
Flo
ps

·s
−

1
]

GEMM k = m GEMM k = 128 GEMM k = 256

GEMM k = 384 GEMM k = 512 TRSM

FIGURE 1 Performance of the GEMM, the TRSM and the rank k update on one P100 accelerator.

parallelization and data distribution of the general matrix-matrix product across many computational devices makes the algorithm preferable on
(massively) parallel architectures, likemulti-core ormulti-accelerator based systems. Furthermore, one can show that theGauss-JordanElimination
reduces the number ofmemory accesses (8) and by using generalmatrix-matrixmultiplies the data locality for the single operations of the algorithm
is improved.Moreover, when an architecture appears on themarket, thematrix-matrix is usually the first well optimized routine available.
In our contribution, we focus on the efficient implementation of the Gauss-Jordan matrix inversion and the Matrix Sign Function on the

OpenPOWER 8 platform. The system is equipped with two 10-core IBM POWER 8 CPUs and two nVidia Tesla P100 accelerators using NVLink
interconnect and256GBDDR4memory. TheCPUs’memory canbe accessedwith 230GB/s. TheCPU-GPU interconnect allows to transfer 40GB/s
between CPUs and each GPU. Thememory bandwidth on the accelerator boards is 750GB/s in theory and 500GB/s in practical measurements.
Themost important differences to previous, mostly x86-64 based, GPU accelerated systems and the named POWER 8 system are:
• The usage of NVLink as interconnect between CPU and GPU. This increases the transfer rate between their memories by a factor of 2 to 3
in comparison to the latest PCI-Express bus. In this way, data transfers between the CPU and theGPU are cheaper (with respect to runtime)
than on older systems.

• The ratio of the peak performances betweenbothCPUs andGPUs is a factor of 20. This constitutes an increase by a factor of 5 ifwe compare
it to an older system, like the 16 core Intel XeonHaswell with two nVidia K20 accelerators, which we used in our related work (8).

• While keeping the energy consumption for the GPUs in the same order of magnitude as for the old K20 GPUs the energy consumption of
the POWER 8 CPUs is 480Watts in idle state and 920Watts under full CPU load. In contrast a dual socket Intel Hasweel Xeon systemwith
similar CPU performance takes 145Watts in idle state and only 350Watts having load on all CPU cores. This is a factor of 3.3 in idle state
and a factor of 2.6 under full load.

The last pointmakes the difference from the energy point of view. For this reasonwewant to focus on reducing the power consumption of theCPUs
by changing their clock frequency and/or changing theCPU frequency governors that control the automatic adjustment of theCPUclock frequency.
The contribution is organized in the following way. First, we recall the Gauss-Jordan Elimination scheme based on Gauss-Transforms. On top

of this idea, we derive its level-3 formulation, which only requires a distributed multi-GPU implementation of the rank-k update. Furthermore,
we show how to avoid a direct level-2 fallback for the occurring smaller subproblems in the level-3 algorithm. The last part of Section 2 presents
efficiency improving details about a practical implementation of the Gauss-Jordan Elimination scheme. The third section presents our application
for the computation of the inverse of a matrix. We use a Newton approach to compute the sign function of a matrix, again using GPU accelera-
tion. The overall procedure extends the (repeated) inversion by a number of communication intensive operations. Beside the these mathematical
aspects, wewill show the energy consumption related aspects and frequency scaling issues beforewe validate our approachwith a set of numerical
experiments. The ecological and economical rating of the results uses the Energy-Delay-Product (EDP) (9, 10).



Martin Köhler and Jens Saak 3

2 GAUSS-JORDANELIMINATION
The Gauss-Jordan Elimination scheme can be interpreted as a combination of the LU decomposition and the computation of the inverse with
reordered operations (7). For a givenmatrixA = (aij)

m
i,j=1 ∈ Rwe consider the Gauss-TransformGi ∈ Rm×m:

Gi =



1 −a1i
aii. . . ...

1 −
a(i−1)i

aii
1
aii

−
a(i+1)i

aii
1

... . . .
−ami
aii

1


, (1)

which annihilates all off diagonal elements in the i-th column of the matrix GiA and sets the diagonal entry in this column to one. In order to
preserve numerical stability we have to introduce a pivoting strategy as known from the LU decomposition (11). Therefore, we apply the Gauss-
TransformGi to the permutedmatrixPiA, wherePi exchanges row iwith row k := argmaxk≥i |aki|. Together with the pivotingmatrix we denote
G̃i := GiPi as pivoted Gauss-Transform. SettingA(0) = A andA(k) = G̃kA

(k−1) yields
A(m) = I

and
G̃mG̃m−1 · · · G̃2G̃1 = A−1. (2)

Without loss of generality, we neglect the pivoting matricesPi for deriving the level-3 formulation of the algorithm. The integration of the pivoting
is straight forward as described in (7, 8). Note that the application of a Gauss-TransformGi from the left to a matrixA can be reformulated into a
rank-1 update

A := A−
1

aii

(
a1i, · · · , a(i−1)i, 0, a(i+1)i, . . . , ami

)T
︸ ︷︷ ︸

hT

Ai,· (3a)

with the subsequent row scaling
Ai,· :=

1

aii
Ai,·. (3b)

The partitioning of thematrixA into

A :=


A11 A12 A13

A21 A22 A23

A31 A32 A33

 , (4)

whereA22 is of dimensionNB ×NB turns the rank-1 update (3) into a rank-NB update. This leads us to the level-3 formulation:

A←


A11 0 A13

0 0 0

A31 0 A33

+


−A12A

−1
22

A−1
22

−A32A
−1
22


︸ ︷︷ ︸

H

[
A21 INB

A23

]
. (5)

Thereby, the matrix H ∈ Rm×NB is the matrix valued counterpart of the vector h in Equation (3). Depending on the architectures and their
properties, like cache hierarchies, parallelization features or the optimization of the BLAS/LAPACK library, different approaches to obtainH exist.
The first one computesH via using theLU decomposition of [AT22 AT32

], which leads to
P

[
A22

A32

]
=

[
L1

L2

]
U1,

withL1 ∈ RNB×NB and a pivotingmatrixP . ThenH can be computed using several triangular solves (i.e., TRSM operations):

H =


−A12U

−1
1 L−1

1

U−1
1 L−1

1

−L2L
−1
1

 =


H(1)

H(2)

H(3)

 .



4 Martin Köhler and Jens Saak

Algorithm 1Matrix Inversion using Gauss-Jordan-Elimination
1: procedureGAUSS-JORDAN-ELIMINATION(A,NB ) .A ∈ Rm×m,NB width of the block columns inA
2: for J := 1, 1 +NB , 1 + 2NB , . . . ,m do
3: JB := min (NB ,m− J + 1)

4: PartitionA :=


A11 A12 A13

A21 A22 A23

A31 A32 A33

 ,whereA11 ∈ RJ−1×J−1 andA22 ∈ RJB×JB .

5: ComputeH from [AT12 AT22 AT32
] usingLU decomposition or recursive Gauss-Jordan Elimination.

6: UpdateA usingA :=


A11 0 A13

0 0 0

A31 0 A33

+H
[
A21 INB

A23

]
.

7: end for
8: end procedure

Alternatively one can computeH from [AT12 AT22 AT32
] by applying Gauss-Transforms (1) again. This either can be done using rank-1 updates as

in Equation (3) or in a more advanced scheme, which does not directly fall back into the level-2 BLAS case immediately. Therefore, we introduce a
recursive strategy to increase the amount of level-3 BLAS operations, as well as the data locality. This idea introduced by Toledo (12) for the LU
decomposition is already used in LAPACK since version 3.6.0 and in a similar way also available for the QR decomposition (13). By partitioning
H ∈ Rm×n into two block columns

H =
[
H1 H2

]
,

whereH1 ∈ Rm×dn
2
e andH2 ∈ Rm×n−dn

2
e the problem of computingH rearranges to:

1. the computation of the Gauss-Jordan Elimination ofH1,
2. the update of the second block columnH2:

H2 =


H

(1)
2

H
(2)
2

H
(3)
2

←

H

(1)
2

0

H
(3)
2

+H1H
(2)
2 , (6)

3. the computation of the Gauss-Jordan Elimination ofH2,
4. and the final update of the block columnH1:

H1 =


H

(1)
1

H
(2)
1

H
(3)
1

←

H

(1)
1

0

H
(3)
1

+H2H
(2)
1 . (7)

Applying this strategy in steps 1 and 3 again, we obtain a recursive scheme to computeH . The original work of Toledo (12) and the current imple-
mentation of theLU decomposition in LAPACK stop this recursion if n

2
= 1. In our case that means thatH1 orH2 consists of a single column and

the computation of the Gauss-Jordan Elimination reduces to scaling a vector. Unfortunately, this also reduces the rank-n
2
, i.e. rank-1, update in (6)

or (7) to level-2 BLAS operations. The CPUs of modern computer architectures are mostly equipped with vector registers dealing with 2, 4, or 8
double precision values at once. In order to get the Updates (6) and (7) performed by a GEMM operation efficiently, n

2
should not get smaller than the

length of the vector registers. Consequently, we stop the recursion if n
2
gets smaller or equal to the length of the vector registers. The remaining

(small) block columnH1 orH2 is computed using the level-2 BLAS formulation of the Gauss-Transforms (3).
Algorithm 1 shows a sketch of the overall procedure to compute the matrix inverse based on level-3 BLAS operations. Thereby, the update in

Step 6 can be either implemented using six GEMM operations:

A←


A11 +H(1)A21 H(1) A13 +H(1)A23

H(2)A21A21 H(2) H(2)A23

A31 +H(3)A21 H(3) A33 +H(3)A23

 (8)

or as two large GEMM operations: 
A11

A21

A31

←

A11

0

A31

+HA21 and

A13

A23

A33

←

A13

0

A33

+HA23, (9)



Martin Köhler and Jens Saak 5
where the A21 and the A23 part of the matrix needs to be copied to a temporary memory location before the update in order to introduce the
necessary zeros. Although this approach needs more memory and some additional operations, we prefer this variant because the increased size of
the GEMM operations results in a higher performance due to an improved parallel execution inside the BLAS calls.
If pivoting is integrated into the algorithm, following (7), we invert Ã = PA instead of A, where P is the product of all row permutations

performed during the inversion. Hence, we have to apply the inverse permutationPT to the columns of Ã−1 to obtainA−1 := Ã−1PT .

Operation Count
Before focusing on a GPU accelerated implementation, we briefly discuss the operation count inside Algorithm 1. Especially, we want to show that
the number of flops for each iteration J in Algorithm 1 is independent of J and hence each update ofA in Step 6 needs the same amount of time.
Without loss of generality we assume the two-GEMM variant described above and m = k · NB , where k ∈ N. The derivation for the six GEMM
variant (8) is straight forward. A general observation is that each update in (9) is of rankNB . Regarding the left block column in the matrix A the
update modifies J − 1 columns, which costs 2mNB(J − 1) flops. The update of the right block column of Amodifiesm − J − NB + 1 columns
and costs 2m(m − J − NB + 1)NB flops. Summing up gives us an overall cost of 2mNB(m − NB) = 2m2NB − 2mN2

B flops for each iteration
independent of J . Having k = m

NB
iterations we obtain

k
(
2m2NB − 2mN2

B

)
= 2m3 − 2m2NB (10)

flops for all updates in Step 6 of Algorithm 1. The computation ofH using the rank-1 updates from Equation (3) costsmNB + 2mN2
B flops for each

iteration J . Performing this k = m
NB

times yieldsN + 2m2NB flops. Together with Equation (10) this gives 2m3 +N flops, which is asymptotically
equivalent to the number of flops required by theLU decomposition approach stated in the Introduction.

2.1 GPU Implementation
The previous section showed how to obtain a level-3 BLAS enabled version of the Gauss-Jordan Elimination scheme from the Gauss-Transform
based idea.Wehave seen that the algorithmdecomposes into twoparts. Thefirst one is the computation ofH which is done inside a block columnof
thematrix. The second one is the update of thematrixA, which is not affected by the computation ofH . Using a classic hybrid CPU-GPU approach
we compute the matrixH on the CPU and perform the update on the remaining parts of the matrix A on the GPUs. Due to the fact that we only
have a small number of GPUs inside one system, we chose the Column Block Cyclic (CBC) distribution ofA across the available GPUs (8, 14). The
structure of the rank-NB updates (9) then allows an easy parallel execution by only distributing the matrixH to all GPUs in each iteration. Putting
these ideas together one obtains an easy CPU-GPU variant of Algorithm 1. The CPU computes the matrixH and copies it into the memory of all
participating GPUs. Now, the GPUs compute the update (9) or (8). This naive approach is improved using a tailored data layout together with a
lookahead strategy and asynchronous operations, as described in the following paragraphs.

Look-Ahead and AsynchronousOperation
The basic CPU-GPU scheme has the main disadvantage that only the CPU or the GPUwill work at the same time. This causes a huge performance
loss due to the fact the fast GPUs are idlewhile theCPU is computing and vice versa. The ability of theGPUs to transfer data between theirmemory
and the CPU’s memory while they computing can be used to hide the communication between host and accelerator behind the computations. By
implementing a look-ahead strategy we can get the CPUs and GPUs working in parallel. To this end, we partition the rightmost block column ofA
from (4) into 

A13

A23

A33

 :=


Â13 Ā13

Â23 Ā23

Â33 Ā33

 , (11)

where Â13, Â23, and Â33 haveNB columns. The GPUs now compute
Â13

Â13

Â23

←

Â13

0

Â23

+HÂ23 (12)

first before they perform the remaining parts of the update from (9). After finishing the computation of (12) the block column [ÂT13 ÂT13 ÂT23]T
is moved back to the host and the CPU computesH for the next iterate J + NB . Due to the fact that all function calls to the GPUs can be done
asynchronous, i.e. they do not interrupt the CPU program flow, the CPUs can work in parallel here. On the other hand, this behavior of the GPUs
function requires synchronization to ensure that the operations on the GPUs are finished before the data is overwritten by the data requires for



6 Martin Köhler and Jens Saak

the next step. Here, this synchronization takes part after the next panel is copied to the GPUs again before the next look-ahead (12) starts on the
GPUs. The dynamic block size adjustment as described by Catalán et. al. in (15) for theLU decomposition is not applicable here, since theworkload
(in terms of necessary flops) is independent of the iteration index J in Algorithm 1. This allows an a-priori tuning to select the a single optimal block
sizeNB for the whole algorithm. The optimal block size, on the one hand, minimizes the waiting time for the CPU at the synchronization point in
the algorithm and, on the other hand, increases the performance of the rank-NB update on the GPUs. Algorithm 2 shows how this technique is
integrated into a hybrid CPU-GPU algorithm. The different parallel execution paths on theGPU are referred as “stream 1” and “stream 2” following
the NVidia CUDA terminology. Although current accelerators allow at least three streams running in parallel (one for computational tasks, one
copying data to the device and one copying data back to the host) we can restrict ourselves to two of them in our implementation. All work done
inside one stream is executed in order but independent from computations or data transfers performed in other streams or on the CPU. If a stream
only contains data transfersmostGPUs can handle themparallel to computationalwork. This allows us to perform computations on theGPUswhile
copying data back and forth to the host memory. This property is used in the formulation of Algorithm 2 to hide the data transfers between GPUs
and host behind the computations on the accelerators.

Data Layout Observations
Beside the CBC data distribution to obtain a multi-GPU aware algorithm, we have to fit the data layout on each GPU to the operations we have to
perform. TheGPUversionsofBLAS, namelynVidia cuBLASandclBLAS, aredesigned touse the samecolumn-major (i.e., Fortran-like)matrix storage
schemeas inBLAS and LAPACKon the host. As long as nopivoting is integrated in the algorithmwecanuse this storage schemeon theGPUs aswell.
When integrating the pivoting, i.e. adding the necessity to swap rows on theGPUs, this becomes a crucial point in the algorithm. Previouswork on a
Gauss-Jordan Elimination based linear solver on the nVidia Kepler architecture (see (8)) showed that between 20% and 37.5% of the total runtime
are spent in exchanging the rows on an nVidia K20 accelerator. Because the basic design properties between the Kepler and the Pascal basedGPUs
did not change, we expect the same problem here.
The design of the GPUs and their memory access only allows to fetch and store data in chunks. This so called cache-line is typically 128 or

256 bytes long and is the smallest amount of data which can be read/written from/to the memory. That means, even if we only want to access a
single double precision value, which takes 8 bytes in the memory, we have to fetch a whole cache-line. If we now assume a cache-line length of 128
bytes, we have 16 double precision value in there. Then, the column-major matrix storage scheme the row swap operation will results in one of the
following two cases:

1. Both row entries in one column are inside the same cache-line. In this case two out of sixteen double precision entries of the cache-line are
used in the swap operation.→ 87.5% of the fetched and stored data are not used.

2. The row entries are in different cache-lines. That means for exchanging these two elements two cache-lines need to be fetched and stored.
→ 93.5% of the transferred data is not used.

This overhead in thedata transfer during thepivotingwastes timeandenergy andultimately slowsdown the algorithm.Changing thematrix storage
scheme to row-major, we can use all 16 double precision entries of all cache-lines during the row exchange. In this way swapping two arbitrary
rows of length 16 requires only the transfer of 256 bytes instead of 4kB in the worst case. Thus, we have to change the matrix storage scheme on
the GPUs to row-major in contrast to the column-major scheme used by LAPACK on the host. The previous studies on the Kepler architecture (8)
already show that the overhead of combining the CPU to GPU transfers (as well as the GPU to CPU transfers) with a transpose operation can be
neglected.
By changing the storage scheme on the GPUs, we have to adjust the GEMM operation. Typically the call to GEMM(α,A,B,β,C), as implemented in

cuBLAS or clBLAS, computes:C := αAB + βC , whereA ∈ Rm×k ,B ∈ Rk×n, andC ∈ Rm×n are stored in column-major storage. Observing
thatAT in column-major storage has the same memory layout asA in row-major storage, we see that calling GEMM(α,B,A,β,C) computesCT :=

αBTAT + βCT , ifA,B, andC are stored in row-major storage, although the operation works on column-major storage. That means, exchanging
the the roles ofA andB (and the corresponding dimension arguments) in the call to the GEMM routine allows us to use the optimized implementation,
also for the row-major storage, without reimplementing this routine.
Before returning the inverted matrix, the pivoting needs extra attention also when recoveringA−1 = Ã−1PT . On the one hand, we now have

the same problemwith the matrix storage scheme as in the application of the row permutation but in the opposite direction. The column permuta-
tion is only efficient on the GPUs if the matrix is stored in column-major storage. Otherwise the previously described cache-line problem appears.
On the other hand, in case of a multi-GPU implementation, the matrix is distributed in a column block cyclic way. That means that swapping two
columns might cause lots of communications between the GPUs. Although the OpenPOWER 8 system uses the NVLink interconnect between the
GPUsweonly have a limitedbandwidthof 40GB/s available for this operation. Furthermore, for each transfer ofO(m)data the latency for initiating
the transfermust be taken into account. Thiswill slowdown thematrix inversion in itsfinal step.On the other hand theCPUs on theOpenPOWER8



Martin Köhler and Jens Saak 7

Algorithm 2Matrix Inversion using Gauss-Jordan-Elimination on GPUs
1: procedureMULTI-GPUGAUSS-JORDAN-ELIMINATION(A,NB ) .A ∈ Rm×m,NB width of the block columns inA
2: Asynchronous distribution and row-major storage conversion ofA across all GPUswith panel widthNB .
3: for J := 1, 1 +NB , 1 + 2NB , . . . ,m do
4: JB := min (NB ,m− J + 1)

5: if J = 1 then
6: CPU:ComputeH and pivoting fromA(1 : m, 1 : JB)

7: else
8: CPU:Wait for the download of Â13, Â23, and Â33 in stream 1 and computeH and pivoting from them.
9: end if
10: CPU:UploadH to all GPUs in stream 1.
11: GPU:ConvertH to row-major storage in stream 1 and apply the pivoting toA in stream 2.
12: GPU: Synchronize stream 1 and stream 2.

13: GPU: PartitionA :=


A11 A12 Â13 Ā13

A21 A22 Â23 Ā23

A31 A32 Â33 Ā33

 ,whereA11 ∈ RJ−1×J−1,A22 ∈ RJB×JB , and Â∗3 hasm− (J + JB) + 1 columns.

14: GPU: Perform Look-ahead update

Â13

Â13

Â23

←

Â13

0

Â23

+HÂ23 and convert the result to column-major storage in stream 2.

15: CPU: Synchronize stream 2 and download Â13, Â23, and Â33 in stream 1.

16: GPU:Compute

A11

A21

A31

←

A11

0

A31

+HA21,

A12

A22

A32

← H , and

Ā13

Ā23

Ā33

←

Ā13

0

Ā33

+HĀ23 in stream 2.

17: end for
18: GPU: Synchronize all streams and convertA to column-major storage.
19: CPU:DownloadA and revert the column pivoting.
20: end procedure

architecture reach amemory bandwidth of up to 230GB/s. So our strategy is tomove theMatrix from theGPU’s memory to the CPUmemorywith
40 GB/s per GPU and apply the permutation on the host where wemostly need the result as well. In this way we utilize all GPU-CPU interconnects
instead of using only one GPU-GPU interconnect.

3 NEWTON’SMETHODFOR THEMATRIX SIGN FUNCTION
As already stated in the introduction, there are only few applications where the inverse of a matrix needs to be setup. One of these application is
the computation of the Matrix Sign Function. The matrix sign function sign(A) is defined as follows. Let A ∈ Rm×m be a matrix with no purely
imaginary eigenvalues andY JY −1 = A its Jordan canonical form. The Jordanblocks inJ =

[
J1

J2

]
areordered such thatJ1 ∈ Cp×p contains all

Jordan blocks for eigenvalues in the left half-plane and J2 ∈ C(m−p)×(m−p) contains all Jordan blocks for the eigenvalues in the right half-plane.
Then, we define

sign (A) := Y

[
−Ip 0

0 Im−p

]
Y −1 (13)

to be the sign of thematrixA. This can be regarded as the generalization of the scalar sign function to thematrix valued case.
The property (sign(A))2 = I , see (1), can be used to compute thematrix sign function efficiently via aNewton-typemethod. Therefore,we apply

Newton’s method to the equationX2 = I with the initial valueX0 = A. The resulting scheme can bewritten as the following iteration:
Xk+1 :=

1

2

(
ckXk + c−1

k X−1
k

) and X0 = A, (14)
where ck is a scaling factor. Typically, three scaling strategies are used (see, e.g. (1, 3)):

1. determinantal scaling: ck = |det (XK)|−
1
n ,

2. spectral scaling: ck =

√
ρ
(
X−1

k

)
ρ(Xk)

, where ρ(X) denotes the spectral radius ofX ,



8 Martin Köhler and Jens Saak

Algorithm 3GPU accelerated Newton Iteration for theMatrix Sign Function
1: procedureNETWON’SMETHOD(A, τ , maxit) .A ∈ Rm×m, τ stopping tolerance, maxitmaximum iteration number.
2: GPU:Allocation Y ∈ Rm×m andW ∈ Rm×m.
3: CPU:Upload ofA to Y andW .
4: for k = 1, . . . , maxit do
5: CPU/GPU: InvertW using Algorithm 1. .W−1 is assembled on the CPU.
6: CPU/GPUDetermine the scaling factor ck or set ck = 1.
7: CPU:UploadW−1 intoW on the GPU.
8: GPU:Compute the next iterate inW and determineFD andFY using (16).
9: if√FD

Fy
< τ then . convergence check.

10: break
11: end if
12: GPU:CopyW to Y .
13: end for
14: CPU:DownloadW containing sign(A) on convergence.
15: end procedure

3. and norm scaling: ck =

√
||X−1

k ||
||Xk||

, where || · || is an arbitrarymatrix norm.
Upon convergence sign(A) = X∞ holds. In practical implementation mostly the determinantal scaling or the norm scaling are used due to their
cheap evaluation. The determinantal scaling is obtained from the Gauss-Jordan Elimination of thematrixA as follows:

|det (A)|−
1
n =

m∏
i=1

∣∣∣A(i−1)
ii

∣∣∣− 1
n
,

whereA(i−1) is thematrix in the i-th step of the Gauss-Jordan Elimination as in (2). It can be proven that the iteration (14) converges quadratically
to sign(A) ifA has no purely imaginary eigenvalues. Beside amaximum iteration number we use

||Xk −Xk+1||F
||Xk||F

< τ, (15)
as convergence criterion, where τ > 0 is a given tolerance.
The GPU implementation of this algorithm is nearly straight forward since we have Gauss-Jordan Elimination available on the GPUs. Beside

that, we obtain the scaling factor for determinantal scaling directly from the Gauss-Jordan Elimination. Finally, the update of the iterate and the
computation of the convergence criterion are bandwidth limited operations. They require at least 2m2 elements additional memory to backup the
previous iterate. Choosing the identical data layout for both memory locations, the previous iterate and the inversion process, the update (14) and
the convergence criterion (15) are performed on all GPUs in parallel.
Because both additional steps are bandwidth limited, we investigate them in more detail. The update (14) fetches 4m2 elements from themem-

ory andwrites 2m2 elements back to thememory. If the convergence criterion is evaluated afterwards 4m2 elements are read again. This gives 8m2

elements read and 2m2 elements written. Evenwith amemory bandwidth of 732GB/s on each P100 card this gets a communication intensive, and
in this way time and energy consuming, process. Amore efficient schemeworks as follows: Let Y = Xk be thememory location of the current iter-
ate andW = X−1

k the location of its inverse, computed by the Gauss-Jordan Elimination. Furthermore, let FY be the squared Frobenius norm of
Xk andFD the squared Frobenius norm of the difference in (15). Then the update (14) and the convergence criterion (15) are evaluated in a single
step using:

Wij ←
1

2

(
ckYij +

1

ck
Wij

)
, FY ← FY + Y 2

ij , FD ← FD + (Yij −Wij)
2 ∀i, j ∈ {1, . . . ,m}, (16)

with FD = FY = 0 at the begin of the update. This saves 4m2 (= 40%) data transfers in each step of the Newton iteration. Finally, the values
contained inW need to be duplicated in Y to create the backup of the current iterate for the next step. Because all data necessary for the next
iteration resides in the GPUmemory the initial data movement to the GPU in Algorithm 2 is not required any longer. Together with Algorithm 2we
obtain Algorithm 3 as GPU accelerated procedure to compute theMatrix Sign Function.



Martin Köhler and Jens Saak 9

TABLE 1 Maxium PerformanceMeasures for theOpenPower 822LC Systemwith two nVidia P100 accelerators.

CPUs GPUs
Pelec 540W (TDP) 610W ( TDP)
Pcomp 643GFlops/s 10.6 TFlops/s

4 ENERGYCONSUMPTIONANDFREQUENCY SCALING
Regarding the hardware aspects of hybrid CPU-GPU accelerated systems we have to take several performance measures into accout. For both,
CPUs andGPUs,we have the computational performancePcomp (in terms of double precisionflops per second) and (electrical) power consumption
Pelec. For our OpenPOWER 8 system described in the introduction we obtain the values shown in Table 1 .
A simplified connection between the performance values and the clock frequency of a CPU (or a GPU) is described by the following equations

(see, e.g., (16)):
Pcomp = wflop · f (17)

and
Pelec = w0 + w1 · f + w2 · f2, (18)

where f is the clock frequency of the computational unit andwflop,w0,w1, andw2 are weights to fit the CPUs’ or the GPUs’ parameters. Thereby,
w0 represents the clock frequency invariant power consumption, like peripheral components. The factors w1 and w2 represent the frequency
dependent power consumption.Due tomissing accuratemeasurements of the single components in the considered hardware setup,we cannot give
concrete values forw0,w1,w2 here. However, themodel shows that the clock frequency has a quadratic influence on the power consumption.
Regarding the ratio between theoretical computational performance and the maximum electrical power we see that the CPUs only provide

approximately 6%of the overall compute power,while consuming 47%of the total energy. Thismakes it preferable to reduce their energy consump-
tion by modifying the CPU part of the algorithm. Our implementation of the Gauss-Jordan Elimination shown in Section 2 and the extension to the
Newton scheme in Section 3 only needs the CPU to compute the next panel matrixH and to apply the column permutation after the Gauss-Jordan
Elimination. All remaining operations are performed on theGPUs, which have amuch better ratio between energy consumption and computational
performance as already shown in Table 1 . Observing the quadratic influence of the clock frequency on the power consumption (18), on the one
hand, but only a linear impact on the computational performance, on the other hand, we see that halving the clock frequency of the POWER8 CPU
from 4GHz to 2GHzwill only reduce the overall performance from 11.2 TFlops/s to 10.9 TFlops. However, the linearly influenced power consump-
tion of the CPU is reduced by a factor of 2 and the quadratically influenced one is consequently reduced by a factor of 4. This suggests to slow down
the CPU as much as possible to maximize the energy savings. Regarding the hybrid algorithm to computeA−1 the operations on the GPU depend
on the results of the CPU. If we reduce clock frequency of theCPU toomuch the panelmatrixH will not be ready before theGPU finishes the ongo-
ing computations. That means that the GPU has to wait until the CPU finishes and during this time wastes energy being idle. On the one hand, the
selection of an optimal block sizeNB in Algorithm 2 is used to match a point where the GPU does not have to wait for the CPU. On the other hand,
this block size does not necessarily have to be the one for achieving the best performance for the rank-k update on the GPU. Especially, for large
problems the block size giving the optimal performance on the GPUs is optimal on the CPU. In many cases the CPU finishes the preparation of the
next panelH earlier than theGPUs are ready for the next step. Here, we are able to slow down theCPU such that its computational workload takes
as long as the GPUs are busy. We see in the experiments that this enables us to reduce the clock frequency of the CPU by up to 1 GHz without a
noteworthy performance loss for large problems.
The IBM POWER 8 CPU allows a fine grained frequency selection using the Linux kernel frequency governors. At the moment Linux supports

four automatic governors and onemanual one, which are listed in Table 2 . Out of those, only the userspace governor allows to fix the frequency to
a desired value. The settings done by the Linux kernel are directly transferred to the hardware for each individual physical CPU core but a separate
hardware controller can supersede them. This is the case if, e.g. the temperature of the CPU package reaches its maximum safe-operating tempera-
ture, or the energy supply can no longer be guaranteed. Especially, this happens if the CPUworks close to its maximum frequency (4.023 GHz) and
cannot be superseded by the userspace governor. Typically, the frequency is scaled down to≈ 3.9 GHz, for a short time, until the power capabil-
ities and the temperature are in the allowed operation range again. Due to the fact that we use all available CPU cores for the BLAS and LAPACK
operations, we set the frequency of all available CPU cores at once.
In contrast, the default behavior of Intel CPUs, since the Sandybridge generation, is to implement a race-to-idle strategies to adjust the clock

frequency, where the user can only switch between the powersave or the performance governor. Both are implemented by the intel_pstate driver



10 Martin Köhler and Jens Saak

TABLE 2 Available Frequency Governors in Linux 4.8 for theOpenPOWER 8 (S822LC) platform.

CPU Frequency Governor Description
performance The performance governor sets the clock frequency statically to the highest possible value. In

our case 4.023GHz.
powersave The powersave governor sets the clock frequency statically to the lowest possible value. In our

case 2.061GHz.
ondemand The ondemand governor sets the clock frequency depending on the system load obtained by

the kernel’s process scheduler. Thereby, it switches directly between lowest and highest possi-
ble frequencies. This governor can be regarded as software implementation of the race-to-idle
strategy.

conservative The conservative governors works similar to the ondemand governor setting the frequency
with respect to the system load. However it does a graceful step-by-step frequency adjustment
rather than jumping between the both extreme states as in the ondemand case.

userspace The clock frequency is set to a user supplied value. In case of our system this allow frequencies
from 2.061GHz to 4.026GHz in steps of 33.3MHz.

inside the Linux Kernel. In performance mode this results in running the CPU cores as fast as possible at the TDP (thermal design power) limit,
to get the work done as fast as possible. The driver can be disabled and replaced by an older driver1 similar to the one used on the OpenPOWER
platform but this leads to several problems. On the one hand, the intel_pstate driver is deeply integrated into the Linux kernel to deal with the
different power states. On the other hand, the highest clock frequencies, also know as turbo-mode, are not available if the old driver is used. In
the Linux AdministratorManual2 it says that “themaximum supported frequency reported by acpi-cpufreq [the old driver] is higher by 1MHz than
the frequency of the highest supported non-turbo P-state”. This makes turning off the new driver for frequency scaling experiments uninteresting
because one can not check the full frequency range, especially the turbomode is not accessible.
Selecting a lower clock frequency for the CPUs will also limit their maximum computational performance as a direct result from Formula (17).

This performance loss may increase the runtime of the algorithm if large parts of the CPUs workload are in the critical path of the algorithm. This
is the case in our application where the CPUs have to prepare the data for the updates performed on the GPUs one step in advance. Considering
the case, where we selected a clock frequency which minimizes the energy consumption, on the one hand, but results in a too slow execution of
the overall process, we have to introduce a combined measure which rates the ecological aspects as well as the economical ones. Therefore, the
Energy-Delay-Product (EDP) (9, 10) defined by

EDP(p) = E · T p (19)
is used. Thereby,E is the energy-to-solution, T is the time-to-solution and p aweight factor to penalize the runtime. This allows to compare several
configurations of an algorithm and to select the optimal onewith respect to the chosen importance of the runtime. The optimality used in this sense
is that as well runtime and energy needs to minimized or if the energy consumption increases the runtime needs to be reduced in order to stay on
the save optimality level. In order to avoid such cases, where the energy consumption is reduced by increasing the runtime to a not acceptable value
the penalty value p is used to avoid this. A larger penalty value moves the focus more on the runtime, i.e. the economic measure “time” gets more
important than the ecological measure “energy”. Typical values of p are 1 to obtain an equal weighting between runtime and energy and p = 2 and
p = 3 to focusmore on the runtime. In general other value for p are possible but usually not used (9, 10).

5 EXPERIMENTAL RESULTS
Thehardwareused for the experiments is alreadydescribed in the introduction.Due to thenovelty of the architectureweuse a customLinuxKernel
version 4.8 with the frequency governors described in Section 4. The software ecosystem consists of CentOS 7 together with IBM XLC 13.1.5 as C
compiler and IBM XLF 15.1.5 as Fortran Compiler. The IBM ESSL library 5.5 is used as BLAS and LAPACK library on the host. Due to the fact that
the ESSL library does not provide a full featured LAPACK interface missing routines are included from the reference LAPACK in version 3.7.0. The
GPUcode uses nVidiaCUDA8.0 togetherwith the cuBLAS library. The powermeasurements are taken using aZESZimmer LMG450at both power
supplies of the systemwith a sampling rate of 20Hz.

1Actually, this driver wasmarked deprecated by the kernel developers andmay thus dissapear any time now.
2https://www.kernel.org/doc/html/v4.13/admin-guide/pm/intel_pstate.html, accessed January 15th, 2018

https://www.kernel.org/doc/html/v4.13/admin-guide/pm/intel_pstate.html


Martin Köhler and Jens Saak 11

2.5 3 3.5 4

20

25

30

GPUClock Frequency [GHz]

Ru
nti
me
[s]

NB = 64 NB = 128 NB = 192

NB = 256 NB = 320 NB = 384

NB = 448 NB = 512

2.5 3 3.5 4

20

25

30

35

GPUClock Frequency [GHz]

En
erg
yC
on
sum

pti
on
[kW

s
]

NB = 64 NB = 128 NB = 192

NB = 256 NB = 320 NB = 384

NB = 448 NB = 512

FIGURE 2 Matrix Inversion: Influence of the block-sizeNB on runtime and energy consumption,m = 40, 960, userspace governor

2.5 3 3.5 4

3.5

4

4.5

5

GPUClock Frequency [GHz]

Ru
nti
me
[s]

3.5

4

4.5

En
erg
yC
on
sum

pti
on
[kW

s
]

Energy Runtime

FIGURE 3 Matrix inversion:m = 20, 480, userspace governor

2.5 3 3.5 4

70

80

90

100

GPUClock Frequency [GHz]

Ru
nti
me
[s]

75

80

85

90

En
erg
yC
on
sum

pti
on
[kW

s
]

Energy Runtime

FIGURE 4 Matrix sign function:m = 20, 480, userspace governor

Weanalyzeboth thematrix inversionand the computationof thematrix sign function inorder to checkwhether theadditional operations and the
increased data transfers will influence the results. The inputmatrixA ∈ Rm×m,m ∈ {20, 480, 40, 960, 61, 440}, is a uniformly-(−1, 1) distributed
random matrix generated using DLARNV from LAPACK with an initial seed of (1, 1, 1, 1). The iteration to compute the matrix sign function is fixed
to maxit = 20without any further convergence criterion to guarantee the equivalent behavior in each test. The 20 iterations are chosen because
most problems converge within this range (17).
The optimal block sizeNB for Algorithm 2was chosen such that it minimizes the runtime of thematrix inversion. For themedium sized problem

Figure 2 shows the block size which minimizes the runtime for a desired CPU clock frequency. This block size coincides with the block size which
minimizes the energy consumption. The figure also shows that with increasing clock frequency of the CPU the block size can be increased as well.
Obviously, the CPU can then prepare larger panel matricesH while the GPU is performing its operations.
First, we regard the userspace frequency governor because this is the only one which allows us to analyze the connection between the clock

frequencyof theCPUand the runtime, aswell as the energy consumption. In theFigures 3 and4 we showboth relations for computing the inverse
and the matrix sign function for the smallest casem = 20, 480. From both plots we see that operating with higher clock frequencies the runtime
will decrease but the energy consumptionwill increase. Regarding the step from running at 3 GHz to 4GHz for inverting thematrix we need 16.6%
more energy by saving 4.5% in the runtime. The complete process of computing the matrix sign takes 7.6% less time by consuming 11.5% more
energy in the same setup. This means that the runtime benefit does not increase as much as the energy consumption rises when we increase the



12 Martin Köhler and Jens Saak

2.5 3 3.5 4
16

18

20

22

24

26

GPUClock Frequency [GHz]

Ru
nti
me
[s]

20

21

22

23

En
erg
yC
on
sum

pti
on
[kW

s
]

Energy Runtime

FIGURE 5 Matrix Inversion:m = 40, 960, userspace governor

2.5 3 3.5 4

350

400

450

500

GPUClock Frequency [GHz]

Ru
nti
me
[s]

420

440

460

480

En
erg
yC
on
sum

pti
on
[kW

s
]

Energy Runtime

FIGURE 6 Matrix sign function:m = 40, 960, userspace governor

TABLE 3 Matrix inversion: CPU Clock Frequency (in [GHz]) and Run-
time (in [s]) minimizing theEDP(w).

Dimension m = 20, 480 m = 40, 960 m = 61, 440

Freq. Time Freq. Time Freq. Time
EDP(1) 3.258 3.562 3.092 18.82 2.959 54.73
EDP(2) 3.258 3.562 3.690 17.36 2.959 54.73
EDP(3) 3.923 3.415 3.790 17.25 3.092 54.15

TABLE 4 Matrix Sign Function: CPU Clock Frequency (in [GHz]) and
Runtime (in [s]) minimizing theEDP(w).

Dimension m = 20, 480 m = 40, 960 m = 61, 440

Freq. Time Freq. Time Freq. Time
EDP(1) 3.092 75.87 3.158 361.07 2.826 1161.98
EDP(2) 3.790 70.07 3.158 361.07 2.826 1161.98
EDP(3) 3.790 70.07 3.757 349.10 3.325 1123.71

CPU’s clock frequency. On the other hand the power consumption nearly stagnates between 2 and 3 GHz but the algorithm work 20.5% faster in
the case of the sign function. This difference is also covered by the EDP comparison in Tables 3 and 4 , where for them = 20, 480 case the EDP
is minimized by choosing a clock frequency next to the middle of the allowed spectra for equal weighting of runtime and energy. Another effect is
that for too small clock frequencies the energy consumption of the overall processes increases again. In them = 20 480 case this effect is only
marginal butwith increasing problem size this effect getsmore andmore visible as it can be seen in Figures 5 , 6 , 7 , and 8 . Thereby, the low clock
frequencies yields a longer runtime such that the frequency independent part of the energy consumption increases its influence on the total power
consumption. This coincides with the definition of the electrical energy in combination with the powermodel from Equation (18):

Eelec :=

t∫
0

Pelec dt =

t∫
0

w0 + w1f + w2f
2 dt, (20)

where the influence of the frequency independent part w0 increases with the runtime t. Furthermore, the operations like the reordering of the
columns which are influence by the speed of the CPU and its connection to the main memory are slowed down too much by the low clock fre-
quencies. Computing the matrix sign function shows a similar behavior and will require a higher frequency to perform optimally in the sense of the
EDP.
For themedium sized problemm = 40, 960weobtain a similar behaviour.We see in Figures 5 and6 that in the interval between2.5GHz and3

GHz the energy consumption isminimized. However, increasing the clock frequency of the CPU accelerates the algorithm. Beginning at 3.1GHzwe
have a notable increase of the energy consumption but, in contrast, we only have small runtime savings. The jump from3GHz to 4GHz costs 13.5%
more energy but only saves 5% in terms of runtime. Here, the problem size reaches a critical point such that the GPU’s workload is large enough to
take longer than the CPU’s preparation of the next panel matrixH . This means, we can slow down the CPUs clock frequency until CPU and GPU
are ready, for the next step, at the same time. The evaluation of the EDP(1) in Tables 3 and 4 shows this behavior and the EDP(1) minimizes at a
clock frequency a bit bigger than the middle of the operation range. Only if we penalize the runtime by a weight of 2 or 3 we should increase the
clock frequencymore to the fastest operationmode but the runtime savings staymarginal. By integrating the additional operations to compute the
matrix sign function iteration behaves similar.
The largest test case,m = 61, 440, fills up the memory of both GPUs completely during the inversion. Thereby, we see in Figures 7 and 8 that

the point where the fast increase of the energy consumption begins, moves to a lower clock frequency again. The jump from 2.8 GHz to 4 GHz in



Martin Köhler and Jens Saak 13

2.5 3 3.5 4

55

60

65

70

GPUClock Frequency [GHz]

Ru
nti
me
[s]

60

65

70

En
erg
yC
on
sum

pti
on
[kW

s
]

Energy Runtime

FIGURE 7 Matrix inversion:m = 61, 440, userspace governor

2.5 3 3.5 4
1,100

1,200

1,300

1,400

1,500

GPUClock Frequency [GHz]

Ru
nti
me
[s]

1.3

1.4

1.5

En
erg
yC
on
sum

pti
on
[M

W
s
]

Energy Runtime

FIGURE 8 Matrix sign function:m = 61, 440, userspace governor

2.5 3 3.5 4

2

4

6

8

GPUClock Frequency [GHz]

Pe
rfo
rm
anc
e[T
Flo
ps

·s
−

1
]

m = 20, 480 m = 40, 960 m = 61, 440

FIGURE 9 Performance comparison of thematrix inversion.

2.5 3 3.5 4

2

4

6

8

GPUClock Frequency [GHz]

Pe
rfo
rm
anc
e[T
Flo
ps

·s
−

1
]

m = 20, 480 m = 40, 960 m = 61, 440

FIGURE10 Newton’sMethod for thematrix sign function,m = 40, 960

case of thematrix sign functionwill only give us a 4% faster result while using 17.8%more energy. Again, the EDP detects this situation as shown in
Tables 3 and 4 . Even if we increase the influence of the runtime by choosingw = 3 the suggested clock frequency is still close to 3 GHz. Due to
the fact that form = 61, 440 only one copy of thematrix could be held in the GPU’s memory, the update of the Newton iteration (14) is completely
moved to the host, here. The fact that this operation is bandwidth limited the CPU’s clock frequency has only a small impact on this operation and
the influence on thematrix inversion still dominates.
In general we see that the userspace frequency governor will give energy optimal results when operating with a clock frequency around 3

GHz. Even for the smallest problem,m = 20, 480, the curve for the matrix sign function shows that beginning at 3 GHz the energy consumption
increases. But there we still obtain a higher gain in the runtime. The Figures 9 and 10 show the achieved performance of the inversion and the
matrix sign function computation. We see that for both large problems the floprate nearly stagnates once the EDP(1) optimal clock frequency is
reached. Independent of the problem size we see that for low frequencies the the power consumption increases. The reason for this is that at this
point the time spent to prepare the next panel on CPUs take longer than theGPUs areworking. The design of the power supplies at theGPUsmove
the power consumption slowly to the idle state in order to react fast enough when the GPUs get in full operation mode again. This short period of
time consuming energy without participating at the computation increases the overall energy consumption. Furthermore, as shown by the energy
consumption model (18) and (20), the influence of the clock frequency independent part increases linearly with the runtime. So the a high base
power consumptionw0 will influence long running configurations significantly more than the fast ones.



14 Martin Köhler and Jens Saak

TABLE 5 Martix Sign Function: Runtime (in [s]) and Energy Consumption (in [kWs]) for automatic frequency governors.

m = 20, 480 m = 40, 960 m = 61, 440

Governor Time Energy Time Energy Time Energy
Conservative 75.09 85.13 364.20 471.92 1112.53 1503.28
Ondemand 74.45 85.92 358.00 495.50 1130.85 1502.99
Performance 71.13 86.96 350.20 467.40 1122.10 1512.08
Powersave 101.20 97.08 495.60 443.10 1447.95 1342.56

Userspace – Runtime 3 71.00 86.31 350.73 450.58 1116.34 1478.98
Frequency 3.823GHz 3.657GHz 3.790GHz

Userspace – Energy 4 71.76 85.11 362.08 442.55 1150.71 1346.51
Frequency 3.690GHz 3.424GHz 3.125GHz

TABLE 6 Matrix Sign Function: Comparison of the Energy-Delay-Product for different Frequency-Governors

m = 20, 480 m = 40, 960 m = 61, 440

Governor EDP(1) EDP(2) EDP(3) EDP(1) EDP(2) EDP(3) EDP(1) EDP(2) EDP(3)

Conservative 6.392e+06 4.800e+08 3.604e+10 1.719e+08 6.259e+10 2.279e+13 1.672e+09 1.861e+12 2.070e+15
Ondemand 6.397e+06 4.762e+08 3.546e+10 1.645e+08 5.889e+10 2.108e+13 1.700e+09 1.922e+12 2.174e+15
Performance 6.185e+06 4.399e+08 3.129e+10 1.637e+08 5.733e+10 2.008e+13 1.697e+09 1.904e+12 2.136e+15
Powersave 9.830e+06 9.952e+08 1.008e+11 2.196e+08 1.088e+11 5.393e+13 1.944e+09 2.815e+12 4.076e+15

Userspace (optimal) 5.928e+06 4.166e+08 2.919e+10 1.515e+08 5.469e+10 1.944e+13 1.489e+09 1.729e+12 1.961e+15
Frequency in [GHz] 3.092 3.790 3.790 3.158 3.158 3.757 2.826 2.826 3.325

After evaluating the user supplied frequency settings we benchmark the four automatic frequency governors implemented in the Linux kernel.
Due to the fact that the results for the matrix inversion nearly coincides with the one from the matrix sign function, we only regard the later one
here. Table 5 shows themeasured runtime and energy.
Comparing the runtime shows, we get a similar behavior for the conservative, the ondemand, and the performance governors. Each of them

results in a comparable runtime with a similar energy consumption. Only the powersave governor results in much longer runtimes, on the one
hand, but also in considerable energy savings for the two large problems. On the one hand the influence of the CPU performance on the overall
performance is still too high and on the other hand the long runtime causes a high influence of the frequency independent power consumption.
Additionally, the behavior of the GPU’s power supplies when switching to idle consumes energy without performing operations. All together this
leads to the high power consumption for the powersave governor in the small example.
The selection of comparable results from the userspace governor shows that we can obtain the same nearly the same runtime as with one of

the automatic governors with reduced the energy consumption. For them = 20, 480 case we save 0.8% energy, for the medium sized problem we
save 3.7% energy and for the largest case need 1.6% less energy. The other way around, selecting the userspace governor results, with respect to
approximately the same energy consumption, we get a 4.4% faster solution in them = 20, 480 case, a 37.3% faster solution in them = 40, 960 case
andwe need 25.9% less time in the largest problem setting. Thatmeans, by using the userspace governorwe are able to achieve a higher numerical
performance for the same amount of energy. Although the powersave governor tries to save energy by setting the clock speed as lowas possible the
Figures 4 , 6 , and 8 show that this is not the minimizer for the energy consumption and the systematic usage of the userspace governor allows
larger energy savings.
Recapitulating all presented benchmarks, Table 6 compares the EDP values for all test cases computing the matrix sign function. Again, the

userspace governor can achieved the best tradeoff between the ecological measurement in terms of energy and the economical rating which is
reflected by the runtime. Even higher weights on the runtimewill not alter this result.

3Userspace result selected tomatch the approximately match theminimal runtime of the other governors.
4Userspace result selected tomatch the approximately match theminimal energy consumption the other governors.



Martin Köhler and Jens Saak 15

6 CONCLUSIONS
In our contribution we showed that the frequency scaling of the CPU has a large impact on the runtime as well as on the energy consumption of
computing the matrix sign function on the OpenPower 8 platform. We have seen that the automatic frequency scaling governors provided by the
Linux kernel are not able to fulfill an ecological and an economical goal at the same time. The usage of the userspace governor, which allows a
fine grained adjustment of the clock frequency, enables us to save up to 37% in the runtime by using the same amount of energy as the powersave
governor and in general the best tradeoff between ecological and economical aspects. Beside the experimental evaluation we showed a hybrid
implementation of the Gauss-Jordan Elimination and its extension to Newton’s method for thematrix sign function.
Similar frequency scaling techniques also exist for the GPUs. Due to the large performance gap and the good floprate-power-ratio, shown in

Section 4, we only focused on the CPU frequency scaling here. The combination of CPU andGPU frequency scaling will be part of future research.

References
[1] Kenney C., Laub A. J.. TheMatrix Sign Function. IEEE Trans. Autom. Control. 1995;40(8):1330–1348.
[2] Denman E. D., Beavers A. N.. TheMatrix Sign Function and Computations in Systems. Appl. Math. Comput.. 1976;2:63–94.
[3] Byers R., He C., Mehrmann V.. The Matrix Sign Function Method and the Computation of Invariant Subspaces. SIAM J. Matrix Anal. Appl..

1997;18(3):615–632.
[4] Benner P., Ezzatti P., Quintana-Ortí E. S., RemónA.. Matrix Inversion on CPU-GPUPlatformswith Applications in Control Theory. Concurrency

and Comput.: Pract. Exper.. 2013;25(8):1170–1182.
[5] HighamN. J.. Computing the Polar Decomposition—with Applications. SIAM J. Sci. Statist. Comput.. 1986;7:1160–1174.
[6] Anderson E., Bai Z., Bischof C., et al. LAPACKUsers’ Guide. SIAMPhiladelphia, PAthird ed.1999.
[7] Quintana-Ortí E. S., Quintana-Ortí G., Sun X., Geijn R.. A NoteOn Parallel Matrix Inversion. SIAM J. Sci. Comput.. 2001;22(5):1762–1771.
[8] Köhler M., Penke C., Saak J., Ezzatti P.. Energy-Aware Solution of Linear Systems with Many Right Hand Sides. Comput. Sci. Res. Dev..

2016;31(4):215-223.
[9] Freeh Vincent W., Lowenthal David K., Pan Feng, et al. Analyzing the Energy-Time Trade-Off in High-Performance Computing Applications.

IEEE Trans. Parallel Distrib. Syst.. 2007;18(6):835–848.
[10] HorowitzM., Indermaur T., Gonzalez R.. Low-power digital design. Proceedings of 1994 IEEE Symposium on Low Power Electronics. 1994;:8–11.
[11] Golub G. H., Van Loan C. F..Matrix Computations. Johns Hopkins Studies in the Mathematical SciencesBaltimore: Johns Hopkins University

Press; fourth ed.2013.
[12] Toledo S.. Locality of Reference in LUDecompositionwith Partial Pivoting. SIAM Journal onMatrix Analysis and Applications. 1997;18(4):1065–

1081.
[13] Elmroth E., Gustavson F. G.. Applying recursion to serial and parallel QR factorization leads to better performance. IBM Journal of Research and

Development. 2000;44(4):605–624.
[14] Yamazaki I., Tomov S., Dongarra J.. One-sidedDenseMatrix Factorizations on aMulticorewithMultiple GPUAccelerators. Procedia Computer

Science. 2012;9:37–46.
[15] Catalán S., Herrero J. R., Quintana-Ortí E. S., Rodríguez-Sánchez R., Geijn R.. A Case for Malleable Thread-Level Linear Algebra Libraries: The LU

Factorization with Partial Pivoting. e-print 1611.06365: arXiv; 2016. cs.DS.
[16] HagerG., Treibig J., Habich J.,WelleinG.. Exploring performance and power properties ofmodernmulti-core chips via simplemachinemodels.

Concurrency and Comput.: Pract. Exper.. 2016;28(2):189–210.
[17] Kenney C., Laub A. J.. On Scaling Newton’s Method for Polar Decomposition and the Matrix Sign Function. SIAM J. Matrix Anal. Appl..

1992;13:688–706.

How cite this article: Köhler M. and Saak, J. Frequency Scaling and Energy Efficiency regarding the Gauss-Jordan Elimination Scheme with
Application to theMatrix-Sign-Function onOpenPOWER 8, , .


	Frequency Scaling and Energy Efficiency regarding the Gauss-Jordan Elimination Scheme with Application to the Matrix-Sign-Function on OpenPOWER 8
	Abstract
	Introduction
	Gauss-Jordan Elimination
	GPU Implementation

	Newton's Method for the Matrix Sign Function
	Energy Consumption and Frequency Scaling
	Experimental Results
	Conclusions
	References


