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A long-standing prediction of quantum electrodynamics, yet to be experimentally observed, is
the interaction between real photons in vacuum. As a consequence of this interaction, the vacuum
is expected to become birefringent and dichroic if a strong laser field polarizes its virtual particle–
antiparticle dipoles. Here, we derive how a generally polarized probe photon beam is influenced
by both vacuum birefringence and dichroism in a strong linearly polarized plane-wave laser field.
Furthermore, we consider an experimental scheme to measure these effects in the nonperturbative
high-energy regime, where the Euler-Heisenberg approximation breaks down. By employing cir-
cularly polarized high-energy probe photons, as opposed to the conventionally considered linearly
polarized ones, the feasibility of quantitatively confirming the prediction of nonlinear QED for vac-
uum birefringence at the 5σ confidence level on the time scale of a few days is demonstrated for
upcoming 10PW laser systems. Finally, dichroism and anomalous dispersion in vacuum are shown
to be accessible at these facilities.

In the realm of classical electrodynamics, the elec-
tromagnetic field experiences no self-interaction in vac-
uum [1]. According to quantum electrodynamics (QED),
however, a finite photon-photon coupling is induced by
the presence of virtual charged particles in the vacuum
[2]. For low-frequency electromagnetic fields Fµν , such
vacuum polarization effects are described by the Euler-
Heisenberg Lagrangian density [3–6]. Below the QED
critical field Ecr = m2/|e| ≈ 1.3 × 1018V/m, low-
frequency vacuum polarization effects are suppressed [7–
12] and the density is given by

LEM = −F +
α

90πE2
cr

(4F2 + 7G2) + · · · , (1)

where F = FµνF
µν/4 and G = F̃µνF

µν/4 are the elec-
tromagnetic field invariants [13].
The Euler-Heisenberg Lagrangian predicts that the

vacuum resembles a birefringent medium [14–17]. The
smallness of the QED prediction for the light-by-light
scattering cross section in the low-energy regime opens
up the possibility to search for physics beyond the Stan-
dard Model, e.g., axionlike or minicharged particles and
paraphotons, by measuring optical vacuum polarization
effects [18–22], see also [23, 24].
Recent astronomical observations hint at the existence

of vacuum birefringence [25] (see also the remarks in
[26, 27]). However, a direct laboratory-based verifica-
tion of this fundamental property of the vacuum is still
missing. Laboratory experiments like BFRT [28], BMV
[29], PVLAS [30], and Q&A [31] have so far employed
magnetic fields to polarize the vacuum and optical pho-
tons to probe it, though without reaching the required
sensitivity.
The strongest electromagnetic fields of macroscopic ex-

tent are nowadays produced by lasers. However, even the
intensities I ∼ 1023W/cm2 envisaged for future 10PW-
class optical lasers [32, 33] are still well below the critical
intensity Icr = E2

cr ≈ 4.6 × 1029W/cm2. Therefore, the
leading-order correction given in Eq. (1) is sufficient to

describe low-frequency vacuum polarization effects. Re-
cently, various setups have been considered to measure
them [34–52], but all suggested experiments will remain
challenging in the foreseeable future.
As the light-by-light scattering cross section attains

its maximum at the pair-production threshold [2], it is
natural to consider high-energy photons to probe vac-
uum birefringence [53–58]. A photon four-momentum qµ

(q0 = ω, q2 = 0) allows us to construct a third invariant,
the quantum nonlinearity parameter (see [2], § 101)

χ =

√

−(fµνqν)2

Ecrm
≈ 0.5741

ω

GeV

√

I

1022W/cm2
(2)

[for a plane-wave background field with amplitude fµν

and phase-dependent pulse shape ψ′(φ), i.e., Fµν =
fµνψ′(φ), details are given below; the last relation in
Eq. (2) assumes a head-on collision]. As gamma photons
with energies ω & 1GeV are obtainable from Compton
backscattering [2, 59–62], the regime χ ∼ 1 is attainable
in future laser-based vacuum birefringence experiments.
In the nonperturbative regime χ & 1 the Euler-

Heisenberg approximation is no longer applicable, as it
neglects the contribution of the probe photon momentum
which flows in the electron-positron loop (see Fig. 1a).
Instead, the polarization operator in the background field
must be employed (see Fig. 1b). For low-energy photons,
both objects in Fig. 1 are related by functional deriva-
tives [14]. The regime χ & 1 is qualitatively different
from the one where the Euler-Heisenberg approximation
is valid, in particular, due to the following two reasons: 1)
electron-positron photoproduction becomes sizable, and
thus, the vacuum acquires dichroic properties; 2) the vac-
uum exhibits anomalous dispersion [11, 56, 63–65].
In this Letter, we put forward an experimental scheme

to measure high-energy vacuum birefringence and dichro-
ism in the nontrivial regime χ & 1. It is based on Comp-
ton backscattering to produce polarized gamma photons
and exploits pair production in matter to determine the
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(a) Euler-Heisenberg (b) Polarization operator

Figure 1. The Euler-Heisenberg effective action is only valid
for approximately constant fields (denoted by a wiggly line
with a cross). The polarization operator must be considered
if the momentum of the probe photon (wiggly line) becomes
influential (χ & 1). Here, a solid double line denotes the exact
electron propagator inside a classical background field.

= + + + ... 

Figure 2. A background field changes the photon dispersion
relation via radiative corrections induced by virtual particles
[2]. Here, we neglect higher-order radiative corrections to the

electron-positron loop as αχ2/3 ≪ 1 [11].

polarization state of the probe photon after it has inter-
acted with a linearly polarized strong laser pulse. By
analyzing the consecutive stages of this type of exper-
iment, we show that for vacuum birefringence, the re-
quired measurement time is reduced by two orders of
magnitude if a circularly polarized probe photon beam is
employed (hitherto, only linearly polarized probe gamma
photons have been considered for setups similar to ours
[53–56],[66]).
Assuming conservative experimental parameters, we

demonstrate that with this type of setup and the observ-
ables we introduce [see Eq. (13)], the quantitative ver-
ification of the strong-field QED prediction for vacuum
birefringence and dichroism is feasible with an average
statistical significance of 5σ on the time scale of a few
days at upcoming 10PW laser facilities.
In the following, we consider a linearly polarized

plane-wave laser pulse, described by the four-potential
Aµ(kx) = aµψ(kx). Here, xµ is the position four-vector,
kµ is a characteristic laser photon four-momentum (k0 =
ωL, k

2 = 0), aµ characterizes the amplitude of the field
(a2 < 0, ka = 0, fµν = kµaν − kνaµ), and ψ(kx) defines
its pulse shape (|ψ(kx)|, |ψ′(kx)| . 1; a prime denotes
the derivative of a function with respect to its argument).
A gauge- and Lorentz-invariant measure of the laser

field strength is the classical intensity parameter [11]

ξ =
|e|

√
−a2
m

≈ 0.7495
eV

ωL

√

I

1018W/cm2
. (3)

Here, we focus on high-intensity optical lasers (I &

1020W/cm2, ωL ∼ 1 eV), i.e., the regime ξ ≫ 1.
Inside a plane-wave background field an incoming ex-

ternal photon line (see Fig. 2) in a Feynman diagram
corresponds (up to normalization) to the function Φµ

q (x),
which is a solution of the Dyson equation [2, 67] with

initial condition Φµ
q (x) → Φ

(0)µ
q (x) = ǫ(0)µe−iqx as kx→

−∞ (ǫ(0)ǫ(0)∗ = −1, qǫ(0) = 0). After applying the local
constant field approximation (valid if ξ ≫ 1) and follow-
ing [67], we find that to leading order, Φµ

q (x) is given by
(see also [18, 56, 64, 65])

Φµ
q (x) = ǫµ(kx)e−iqx, ǫµ(kx) =

∑

i=1,2

ci(kx)Λ
µ
i , (4)

where

ǫµ(kx→ −∞) = ǫ(0)µ =
∑

i=1,2

c
(0)
i Λµ

i , (5)

and Λµ
1 = fµνqν/

√

qf2q, Λµ
2 = −f̃µνqν/

√

qf2q (qΛi =
kΛi = 0, ΛiΛj = −δij ; note that Λµ

2 is actually a pseudo

four-vector) [67–69]. The coefficients ci(kx) and c
(0)
i are

connected via

ci(kx) = c
(0)
i exp [iφi(kx) − λi(kx)], (6)

where

[

φi(kx)
λi(kx)

]

= − 1

2kq

kx
∫

−∞

dφ

[

Re [pi(φ, χ)]
Im [pi(φ, χ)]

]

, (7)

[we refer to φi = φi(kx → ∞) as phase shifts and to
λi = λi(kx→ ∞) as decay parameters] with

[

p1(kx, χ)
p2(kx, χ)

]

=
αm2

3π

+1
∫

−1

dv

[

(w − 1)
(w + 2)

]

f ′(u)

u
, (8)

w = 4/(1 − v2), u = [w/χ(kx)]2/3, χ(kx) = χ|ψ′(kx)|,
and f(u) = π [Gi(u) + iAi(u)] [11, 70].
In order to extend the above result from a single pho-

ton to a photon beam (which is, in general, not in a pure
polarization state), we introduce the following density
tensors, which describe the initial (̺(0)µν) and the final
(̺µν) polarization state of the beam [2, 71, 72]

̺(0)µν =
∑

a

waǫ
(0)µ
a ǫ(0)∗νa =

∑

i,j=1,2

ρ
(0)
ij Λµ

i Λ
ν
j ,

̺µν =
∑

a

waǫ
µ
aǫ

∗ν
a =

∑

i,j=1,2

ρijΛ
µ
i Λ

ν
j .

(9)

Here, wa represents the probability to find a photon with

polarization four-vector ǫ
(0)µ
a (ǫµa) in the initial (final)

beam.
Using the identity matrix I and the Pauli matrices σ =

(σ1, σ2, σ3) [2], we expand the initial (ρ
(0)
ij ) and the final

(ρij) polarization density matrices as [2, 71, 72]

ρ(0) =
1

2

(

S
(0)
0 I + S(0)σ

)

, ρ =
1

2
(S0I + Sσ) (10)

[Tr(ρ(0)) = S
(0)
0 , Tr(ρ) = S0; S0 ≤ S

(0)
0 , in general, as

the photons can decay in the strong background field].
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Figure 3. (a) Experimental setup. Polarized highly energetic gamma photons (produced via Compton backscattering) propagate
through a strong laser field, which induces vacuum birefringence and dichroism. Afterward, the gamma photons are converted
into electron-positron pairs. From their azimuthal distribution, the polarization state is deduced. (b) Regions of the transverse
plane (gray), which are used to define the observables RB (left) and RD (right) [see Eq. (13)].

The real Stokes parameters S(0) = {S(0)
0 ,S(0)} [S(0) =

(S
(0)
1 , S

(0)
2 , S

(0)
3 )] and S = {S0,S} [S = (S1, S2, S3)] com-

pletely characterize the initial (final) polarization state of
the beam [72, 73]. Therefore, the following relations de-
scribe any possible vacuum birefringence and/or dichro-
ism experiment [see Eqs. (4), (6), (9), and (10)]

(

S0

S3

)

= e−(λ1+λ2)

(

cosh δλ sinh δλ
sinh δλ cosh δλ

)

(

S
(0)
0

S
(0)
3

)

,

(

S1

S2

)

= e−(λ1+λ2)

(

cos δφ − sin δφ
sin δφ cos δφ

)

(

S
(0)
1

S
(0)
2

)

.

(11)

Here, δφ = φ2 − φ1 is related to vacuum birefringence
and δλ = λ2 − λ1 to vacuum dichroism.
In the following, we discuss possible high-energy vac-

uum birefringence and/or dichroism experiments (see
Fig. 3a) at the Apollon facility (F1/F2 laser) [74], ELI-
NP (two 10PW lasers) [75, 76], and ELI-Beamlines (ELI-
BL; L3/L4 laser) [77]. At each facility, a 10 PW laser is
employed to polarize the vacuum and the second laser
is utilized to produce electron bunches via laser wake-
field acceleration [78, 79]. We also consider a possible
experiment (denoted as LINAC-L) at a conventional elec-
tron accelerator, e.g., the European XFEL [80], FACET-
II [81], or SACLA [82], combined with a high-repetition
(10 Hz) 1 PW laser. The parameters of the considered fa-
cilities are summarized in the Supplemental Material [83].
We assume that Ne = 108 monoenergetic few-GeV

electrons are used in one experimental cycle for the gen-
eration of probe gamma photons via Compton backscat-
tering.
For a rectangular pulse with N cycles {ψ′(kx) =

sin(kx) if kx ∈ [−Nπ,Nπ] and ψ′(kx) = 0 otherwise},
the relative phase shift δφ depends only on χ and ξN ; it is
plotted in Fig. 4. We conclude that |δφ| . 0.1 for upcom-
ing laser systems in the regime 0.1 . χ < 1, where a clean
vacuum birefringence measurement is feasible as pair pro-
duction is exponentially suppressed. Notably, the quan-
tity δφ decreases with the increase of the probe photon
energy for χ & 2.5, which characterizes the anomalous
dispersion of the vacuum in this regime [11, 56, 63–65].
For obtaining better estimates as those given in Fig. 4,

in the following, we employ a Gaussian pulse envelope

ψ′(kx) = exp[−(kx/∆φ)2] sin(kx), where ∆φ is related
to the duration of the pulse ∆t (FWHM of the inten-
sity) via ∆φ = ωL∆t/

√
2 ln 2. This pulse collides with

Nγ = Neσbs(Ibs/ωbs)∆tbs gamma photons, where σbs
is the cross section of Compton scattering [2], and the
index “bs” indicates the parameters characterizing the
backscattering process. To obtain a high degree of po-
larization, we consider only photons which are scattered
in the region θ ∈ (0, θmax ≪ 1), where θ denotes the po-
lar angle (θ = 0 corresponds to perfect backscattering)
[2, 59–62],[83].
Below, we employ ∆tbs = ∆t, ωbs = 1.55 eV, and Ibs =

4.3×1016W/cm2 [considering linear Compton scattering
is sufficient as ξbs = 0.1 for this laser; see Eq. (3)].
One of the main experimental challenges is to analyze

the final polarization state of the gamma photons. Here,
we consider pair production in a screened Coulomb field
of charge Z|e| [91–94]. The spin-summed pair production
cross section is given by

dσpp =
dϕ

2π

{

S0σ0 + [S1 sin(2ϕ) + S3 cos(2ϕ)]σ1
}

, (12)

where ϕ denotes the azimuth angle of the electron mo-
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Figure 4. Plot of δφ as a function of χ and ξN for a
rectangular pulse profile. For each of the three laser facili-
ties, gamma photons with energy ω = 0.1GeV (left point),
ω = 0.5GeV (central point), and ω = 1GeV (right point) are
indicated. Note that |δφ| & 0.1 is also achievable by employ-
ing a longer PW laser pulse (e.g., National Ignition Facility
with ∆t = 3ns [32]) and probe photons with ω & 0.1GeV.
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1− S0 S1 〈RB〉 NB
γ τ

Apollon 1.9× 10−5 0.06 3.4 × 10−3 3.0× 108 45 d
ELI-NP 3.1× 10−5 0.09 5.6 × 10−3 1.1× 108 10 d
ELI-BL 6.3× 10−5 0.18 1.1 × 10−2 2.6× 107 11 h
LINAC-L 3.8× 10−6 0.01 6.8 × 10−4 7.4× 109 2 d

Table I. Duration of the experiment τ at different facilities
(χ = 0.25). S0 and S1, 〈RB〉, and NB

γ follow from Eq. (11),

Eq. (14) and Eq. (15), respectively (S(0) = {1, 0,−1, 0}; 5σ
confidence level, i.e., n = 5). Note that the pair production
probability in the strong laser field is much smaller than the
conversion efficiency in the detector [(1− S0) ≪ η = 10−2].

mentum in the transverse plane. For σ0, σ1, we use
expressions exact in Zα and valid for ultrarelativistic
particles [93, 94],[83]. In the following, we assume a
head-on collision [qµ = ω(1, 0, 0, 1), kµ = ωL(1, 0, 0,−1),
Λµ
1 = (0, 1, 0, 0), Λµ

2 = (0, 0, 1, 0)], and tungsten (Z = 74)
as conversion material.
As the pair-production cross section is only sensitive to

linear polarization [S1 and S3, see Eq. (12)], we conclude
from Eq. (11) that we need to utilize circularly polar-
ized probe photons (e.g., S(0) = {1, 0,−1, 0}) in order
to obtain probabilities which depend on δφ [rather than
(δφ)2] if |δφ| ≪ 1 (see also [57, 58]). Therefore, inverting
the standard scheme by using circularly instead of lin-
early polarized probe photons is highly beneficial in the
regime |δφ| . 0.1.
From Eq. (11), we conclude that S1 is sensitive to vac-

uum birefringence (δφ), whereas S3 depends on vacuum
dichroism (δλ). To disentangle both effects, we introduce
the following asymmetries:

RB =
(Nπ/4 +N5π/4)− (N3π/4 +N7π/4)

(Nπ/4 +N5π/4) + (N3π/4 +N7π/4)
,

RD =
(N0 +Nπ)− (Nπ/2 +N3π/2)

(N0 +Nπ) + (Nπ/2 +N3π/2)
,

(13)

where Nβ0
denotes the number of pairs detected in the

azimuth angle range ϕ ∈ (β0−β, β0+β) of the transverse
plane, with β being specified below (see Fig. 3b). The
expectation values of RB and RD are given by [see Eq.
(12)]

〈RB〉 =
sin(2β)

2β

σ1
σ0

S1

S0
, 〈RD〉 =

sin(2β)

2β

σ1
σ0

S3

S0
. (14)

In order to detect vacuum birefringence (dichroism)
at the nσ confidence level on average, we require that
the expectation value 〈RB〉 (〈RD〉) differs from zero by n
standard deviations. Therefore, we obtain the following
expressions for the number of required incoming gamma
photons (see Supplemental Material [83]):

NB
γ =

πn2

4ηβS0〈RB〉2
, ND

γ =
πn2

4ηβS0〈RD〉2
(15)
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Figure 5. Final Stokes parameters [see Eq. (11)] for gamma
photons propagating through an ELI-NP 10PW laser pulse
(S(0) = {1, 0,−1, 0}). The strongest effect is obtained around
χ = 1 (note that pair production becomes sizable for χ &
1). As we consider the tunneling regime 1/ξ ≪ 1, cusplike
structures – characteristic for multiphoton pair production
[18, 65] – are absent.

[by minimizing NB
γ (ND

γ ), we find the optimal angle
β = βopt ≈ 0.58 ≈ 33◦ for both observables]. Here,
η = nzlσ0 denotes the photon to pair conversion effi-
ciency (nz and l are the number density and the thick-
ness of the conversion material, respectively). The thick-
ness of a conversion foil should be . 1 milliradiation
length (mRL), otherwise multiple Coulomb scattering af-
fects the measured angle [91, 93]. Supposing that several
conversion foils alternating with silicon detectors are cas-
caded [95–97], we assume here η = 10−2 (i.e., an effective
thickness of ∼ 10mRL).

To obtain a clean vacuum birefringence experiment
without real electron-positron pair production, we con-
sider the case χ = 0.25. The results for the four facilities
under consideration are summarized in Table I. As ex-
pected from Fig. 4, ELI-Beamlines is the most suitable
facility for carrying out the measurement in this regime
(the expected measurement time is less than one day).

As the number of required gamma photons NB
γ scales

as 〈RB〉−2 [see Eq. (15)], the use of circularly polarized
probe photons instead of linearly polarized ones reduces
the measurement time by a factor ≈ 100 (δφ ≈ 0.1, see
Fig. 4).

Finally, we consider the case χ = 2.5 (attainable, e.g.,
at ELI-NP by utilizing 8.4GeV electrons for backscat-
tering; θmax = 7.6 × 10−6, σbs = 0.135r2e, ω = 1.4 GeV,
σ1/σ0 = 0.077; re = α/m = 2.818× 10−13 cm is the clas-
sical electron radius). In this regime, vacuum dichroism
and anomalous dispersion come into play and the Euler-
Heisenberg approximation breaks down completely (see
Fig. 4), whereas the production of particles, heavier than
electrons and positrons, and QCD corrections are still
suppressed [98]. As the produced pairs radiate gamma
photons, a discrimination of primary from secondary
photons is necessary, e.g., via determination of the pho-
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ton energy. For S(0) = {1, 0,−1, 0}, we obtain that
S = {0.18, 0.11,−0.12, 0.09} at ELI-NP (see Fig. 5). Cor-
respondingly, 〈RB〉 = 3.6× 10−2 and 〈RD〉 = 3.0× 10−2,
implying a measurement time of 3-4 days [5σ confidence
level, see Eq. (15)].
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The supplemental material is organized as follows: in
Sec. (I) the laser parameters are summarized, in Sec. (II)
Compton backscattering is discussed, in Sec. (III) pair
production in a Coulomb field is reviewed, the statistical
analysis is presented in Sec. (IV), and, finally, the tech-
nical parameters of a potential linear accelerator based
experiment are considered in Sec. (V) [note that in Sec.
(II), including Table II, the notation differs partly from
the one in the rest of the supplemental material and the
main text of the paper]. Even though all given expres-
sions are easily obtainable from those published in the
cited literature, we provide them here for the convenience
of the reader.

I. LASER PARAMETERS

In Table I the parameters of the ultrahigh-intensity
lasers, which are considered in the numerical calculations,
are shown [photon energy ωL, pulse energy E , pulse du-
ration ∆t, peak focused intensity I, and pulse repetition
rate (PRR)]. From them we deduce ξ, χ, the number of
cycles N and the pulse width ∆φ used for the Gaussian
envelope.

II. COMPTON BACKSCATTERING

Our discussion of linear Compton scattering closely fol-
lows [1] § 86/87 (see also [2] and [3]).
The four vectors pµ = (ǫ,p) and kµ = (ωbs,k) [p′µ =

(ǫ′,p′) and qµ = (ω, q)] denote the four-momenta of
the initial [final] electron and photon, respectively. We
assume a head-on collision and direct the z-axis along
the initial electron momentum p [pµ = (ǫ, 0, 0, pz), k

µ =
ωbs(1, 0, 0,−1)].
We consider an unpolarized incoming electron beam

and sum over the polarization of the outgoing electrons.
The polarization state of the initial photon beam and the
state selected by the detector, which measures the final
photon polarization, are described by the density tensors
̺µν and ̺′µν , respectively (see [1], § 65):

̺µν =
∑

i,j=1,2

ρije
µ
i e

ν
j , ̺′µν =

∑

i,j=1,2

ρ′ije
µ
i e

ν
j , (S1)

where

eµ1 =
Nµ

√
−N2

, eµ2 =
Pµ

√
−P 2

, (S2)

Pµ = (gµν −KµKν/K2)(p+ p′)ν ,

Nµ = ǫµνρσPνQρKσ,
(S3)

with Kµ = kµ + qµ and Qµ = qµ − kµ. We introduce the
Stokes vectors ξ = (ξ1, ξ2, ξ3) and ξ′ = (ξ′1, ξ

′
2, ξ

′
3) via

ρ =
1

2
(I + ξσ), ρ′ =

1

2
(I + ξ′σ), (S4)

where the following representation for the Pauli matrices
is used [1]:

σ1 =

(

0 1
1 0

)

, σ2 =

(

0 −i
i 0

)

, σ3 =

(

1 0
0 −1

)

. (S5)

Note that ξ1 and ξ3 correspond to linear polarization
as ̺µν = eµe∗ν with eµ = cos(ϕγ)e

µ
1 + sin(ϕγ)e

µ
2 implies

ξ1 = sin(2ϕγ), ξ2 = 0, and ξ3 = cos(2ϕγ) {ϕγ is an ar-
bitrary azimuth angle ∈ [0, 2π)}; whereas ξ2 corresponds

to circular polarization as eµ = (eµ1 ± ieµ2 )/
√
2 implies

ξ1 = 0, ξ2 = ±1, and ξ3 = 0.
Using the above notation, the differential cross section

for Compton scattering reads [1]

dσC =
1

16π2
|Mfi|2

ω2dΩ

m4x2
, (S6)

where

|Mfi|2 = 16π2r2em
2
[

F0 + F3 (ξ3 + ξ′3) + F11ξ1ξ
′
1

+ F22ξ2ξ
′
2 + F33ξ3ξ

′
3

]

,
(S7)

F0 = V − F3, F3 = −(U2 + 2U),

F11 = 2(1 + U), F22 = V (1 + U),

F33 = 2− F3,

(S8)

dΩ = sin θdθdϕ is the solid angle for the scattered
photon, i.e., qµ = ω(1, cosϕ sin θ, sinϕ sin θ, cos θ), U =
2/x− 2/y, V = x/y + y/x, and

x =
2pk

m2
=

2ǫωbs

m2
(1 + β), y =

2pq

m2
=

2ǫω

m2
(1 + β cos θ).

(S9)
The energy ω of the final photon is determined via four-
momentum conservation pµ + kµ = p′µ + qµ and is given
by

ω =
(1 + β)ǫωbs

ǫ + ωbs − (ǫβ − ωbs) cos θ
, (S10)

where β = |p|/ǫ. Correspondingly, the highest energy is
obtained for perfect backscattering (θ = 0):

ωmax =
(1 + β)2ǫ2ωbs

m2 + 2(1 + β)ǫωbs
≈ 4ǫ2ωbs

m2 + 4ǫωbs
(S11)

http://arxiv.org/abs/1704.05234v3
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ωL [eV] E [J] ∆t [fs] I [W/cm2] PRR [Hz] ξ χ ξN ∆φ

Apollon F1 [4] 1.55∗ 150 15 1023∗ 1/60 150 1.8× ω[GeV] 860 30
ELI-NP (x2) [5, 6] 1.55 250 25 1023 1/60 150 1.8× ω[GeV] 1400 50

ELI-Beamlines L4 [7–9] 1.55∗ 1500 150 1022 1/60 50 0.57 × ω[GeV] 2700 300

TABLE I. Laser parameters which are considered in the numerical calculations (parameters with a star are not explicitly confirmed in
the cited references). Note that ELI-NP hosts two lasers with the designated parameters.

(the last relation holds for ultrelativistic electrons). We
assume that in the experiment the monochromator se-
lects photons scattered by angles ϕ ∈ (0, 2π) and θ ∈
(0, θmax), where θmax ≪ 1. The total cross section (aver-
aged over the initial and summed over the final photon
polarization) for those photons is

σbs =
4πr2e
m2x2

θmax
∫

0

dθ ω2F0 sin θ. (S12)

In order to consider polarization effects we first note
that [see Eq. (S2)]

eµ1 = (0, sinϕ,− cosϕ, 0),

eµ2 = −[tan(θ/2), cosϕ, sinϕ,− tan(θ/2)].
(S13)

Therefore, the Stokes parameters ξi and ξ
′
i [see Eq. (S4)]

implicitly depend on ϕ. We eliminate this dependence
(to leading order in θ ≪ 1) by introducing another basis
ẽµi (i = 1, 2) which is given by

ẽµi =
∑

j=1,2

Rij(ϕ)e
µ
j , R(ϕ) =

(

cosϕ sinϕ
− sinϕ cosϕ

)

, (S14)

such that

ẽµ1 (θ = 0) = −Λµ
2 = (0, 0,−1, 0),

ẽµ2 (θ = 0) = −Λµ
1 = (0,−1, 0, 0).

(S15)

We denote the Stokes parameters for the initial beam
and the state selected by the detector in the new basis
by Sbs,i and S′

bs,i, respectively. They are related to ξi
and ξ′i via
(

ξ1
ξ3

)

= R(2ϕ)

(

Sbs,1

Sbs,3

)

,

(

ξ′1
ξ′3

)

= R(2ϕ)

(

S′
bs,1

S′
bs,3

)

, (S16)

and ξ2 = Sbs,2, ξ
′
2 = S′

bs,2.

In order to determine the Stokes parameters S
(0)
i of

the photon beam, which enters the strong laser pulse, we
set θ = 0 in the basis ẽµi [i = 1, 2; see Eq. (S15)] as θ ≪ 1
for all selected photons, and integrate the cross section
[see Eq. (S6)] over ϕ. Finally, we obtain that (see [1],
§ 65, 87)

S
(0)
1 =

F11 + F33

2F0
Sbs,1, S

(0)
2 =

F22

F0
Sbs,2,

S
(0)
3 =

F11 + F33

2F0
Sbs,3.

(S17)

Note that for θ = 0 we obtain (F11 + F33)/2F0 = 0 and
F22/F0 = −1. In the calculations we assume that the
laser beam, employed for backscattering, is right-handed
circularly polarized, i.e., Sbs,1 = Sbs,3 = 0, Sbs,2 = 1.

Therefore, S
(0)
1 = S

(0)
3 = 0, S

(0)
2 ≈ −1 for small θmax.

In order to obtain a highly polarized beam we choose
θmax such that |F22/F0| > 0.999 for all selected photons.
The parameters and cross sections for the three facili-
ties, which are considered in the main text, are shown in
Table II.

III. PAIR PRODUCTION IN A COULOMB

FIELD

The cross section of electron-positron photoproduction
by a photon with energy ω ≫ m colliding with an atom
(charge number Z) is given by [see Eq. (10.3) of [10]]

dσpp =
dϕ

2π
[σ0 + σ1(2|ûeγ |2 − 1)], (S18)

where

σ0 = 2
Z2αr2e
ω3

ω−m
∫

m

dǫ

1
∫

m2/ǫ2

dζ

{

(ǫ2 + ǫ′2)(3 + 2Γ) + 2ǫǫ′
[

1 + 4u2ζ2Γ
]

}

(S19)

and

σ1 = 2
Z2αr2e
ω3

ω−m
∫

m

dǫ

1
∫

m2/ǫ2

dζ 8ǫǫ′u2ζ2Γ (S20)

(we have summed over the spin states of the produced
electron-positron pair). Here, p denotes the electron mo-

mentum, ǫ =
√

m2 + p2 and ǫ′ = ω − ǫ are the energy
of the produced electron and positron, respectively; q =
|q|ez (|q| = ω) and eγ denote the momentum and the
polarization vector of the incoming photon, respectively,
and u is the component of p (scaled by m) perpendicular
to q, it is defined as u = [p − q̂(q̂p)]/m (q̂ = q/ω). In
the frame we consider, u = {ux,uy} = |u|{cosϕ, sinϕ}
(û = u/|u|). Furthermore, ζ = 1/(1 + u2) and

Γ = ln(1/δ)− 2− f(Z) + F(δ/ζ), (S21)
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ǫ [GeV] θmax [rad] σbs[r
2
e ] ω [MeV]

Apollon/ELI-NP 2.5 3.0× 10−5 0.232 140
ELI-Beamlines 4.5 1.6× 10−5 0.197 430

TABLE II. Parameters for Compton backscattering at the three
considered facilities for measuring vacuum birefringence. Here, ǫ
denotes the electron energy, θmax is the selected maximal scattering
angle [chosen such that |F22/F0| > 0.999], σbs is the cross section
[see Eq. (S12)], and ω is the final photon energy [see Eq. (S10)].
We choose ǫ such that χ = 0.25. The final photon energy ω differs
by less than 2% from the given value in the range 0 6 θ 6 θmax.

where δ = mω/(2ǫǫ′),

f(Z) = (Zα)2
∞
∑

n=1

1

n[n2 + (Zα)2]
. (S22)

Here, we employ the Thomas-Fermi model with Molière
parametrization, i.e., the screening term is given by

F(δ/ζ) = −1

2

3
∑

i=1

α2
i ln(1 +Bi)

+

3
∑

i, j = 1
i 6= j

αiαj

[ 1 +Bj

Bi −Bj
ln(1 +Bj) +

1

2

]

(S23)

with Bi = (βiζ/δ)
2, βi = (Z1/3/121)bi and

α1 = 0.1, α2 = 0.55, α3 = 0.35,

b1 = 6.0, b2 = 1.2, b3 = 0.3.
(S24)

We rewrite the cross section given in Eq. (S18) as

dσpp =
dϕ

2π

3
∑

i,j=1

[σ0δ
ij + σ1(2û

iûj − δij)]eiγe
∗j
γ . (S25)

Furthermore, we introduce the density matrix ρ and the
Stokes vector S = {S0,S} for the incoming photons as

eiγe
∗j
γ →

∑

a,b=1,2

eiae
j
bρab, ρ =

1

2
(S0I + Sσ), (S26)

where e1 = ex = (1, 0, 0), e2 = ey = (0, 1, 0) [Λ µ
1 =

(0, ex), Λ
µ

2 = (0, ey)]. Combining Eqs. (S25) and (S26)
we obtain for the pair production cross section [11]:

dσpp =
dϕ

2π

{

σ0S0 + σ1[S1 sin(2ϕ) + S3 cos(2ϕ)]
}

.

(S27)

Note that the cross section given by Eqs. (S19), (S20),
and (S27) neglects electron-induced pair production and
inelastic contributions. In the numerical calculations we
assume tungsten (Z = 74) as conversion material, there-
fore both effects are subdominant (Z vs. Z2 scaling) [12].
Moreover, most of the pairs are produced near the for-
ward direction such that we can neglect the nuclear form
factors [12].
The cross sections of pair production for the parame-

ters considered in the main text are shown in Table III.

ω [MeV] σ0[r
2
e ] σ1[r

2
e ] σ1/σ0

Apollon/ELI-NP 140 344 26.7 0.078
ELI-Beamlines 430 393 31.0 0.079

TABLE III. Pair production cross sections in tungsten (Z = 74)
for the probe photon energies shown in Table II. The cross sec-
tion σ0 represents the unpolarized part [see Eq. (S19)], whereas σ1

determines the significance of polarization effects [see Eq. (S20)].
Note that the observables (see the main text of the paper) depend
only on the ratio σ1/σ0.

IV. STATISTICAL ANALYSIS

The observables introduced in the main text are asym-
metries of the type

R =
NA −NB

NA +NB
, (S28)

where NA and NB are experimentally measured numbers
of events.
We describe the experiment in the following way: with

probabilities pA and pB a probe photon decays inside
the detector such that the produced pair contributes
to NA and NB, respectively, and the probability pC =
1− pA − pB accounts for all other possibilities (the pho-
ton decays inside the strong laser pulse, passes through
the detector, or the produced pair is detected out of the
range corresponding to NA and NB). Therefore, the two
random variables NA and NB are distributed according
to a multinomial distribution [13, 14]. Their expectation
values are given by 〈NA〉 = pANγ and 〈NB〉 = pBNγ , re-
spectively, where Nγ denotes the number of gamma pho-
tons generated via Compton backscattering. The stan-
dard deviations are given by ∆NA =

√

NγpA(1− pA)

and ∆NB =
√

NγpB(1− pB), respectively.
Assuming that the number of events counted is large

we approximate the expectation value of the asymmetry
defined in Eq. (S28) by [13–15]

〈R〉 = 〈NA〉 − 〈NB〉
〈NA〉+ 〈NB〉

(S29)

and the variance by [13–15]

(∆R)2 =

(

∂R

∂〈NA〉
∆NA

)2

+

(

∂R

∂〈NB〉
∆NB

)2

+ 2

(

∂R

∂〈NA〉

)(

∂R

∂〈NB〉

)

Cov[NA, NB], (S30)

where

∂R

∂〈Ni〉
=

∂R

∂Ni

∣

∣

∣

∣

Nj=〈Nj〉

(i, j = A,B) (S31)

and Cov[NA, NB] = −pApBNγ . Using Eqs. (S29) and
(S30) we find that

〈R〉 = pA − pB
pA + pB

, (∆R)2 =
1− 〈R〉2

Nγ(pA + pB)
. (S32)
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Assuming 〈R〉2 ≪ 1 we conclude that the stan-
dard deviation of the asymmetry is given by ∆R ≈
1/

√

Nγ(pA + pB). The number of required incoming
gamma photons is now obtained from the condition 〈R〉−
〈R0〉 = n∆R, where 〈R0〉 = 0 is the expectation value
of the asymmetry if vacuum birefringence/dichroism is
absent. We conclude that

Nγ =
n2

〈R〉2(pA + pB)
. (S33)

In order to obtain the expressions presented in the
main text we take into account that for the consid-
ered setup the probabilities pA and pB are given by
pA/B = nzlσA/B, where

σA/B =
2β

π
S0σ0 ±

sin(2β)

π
Siσ1 (S34)

with Si = S1 and Si = S3 for the measurement of vacuum
birefringence and dichroism, respectively.

V. LINAC-BASED EXPERIMENT

In the main text we also consider a potential vacuum
birefringence experiment which could be performed at
a conventional linear accelerator (LINAC) if combined

with a 1 PW laser (intensity I = 1021W/cm2). In or-
der to achieve χ = 0.25 probe photons with an energy
of ω = 1.4GeV are required. They are obtainable via
Compton backscattering off an 8.4GeV electron beam
(θmax = 7.6 × 10−6 rad, σbs = 0.135r2e, σ1/σ0 = 0.077).
Such electron energies are/will be available, e.g., at the
European XFEL (up to 17.5GeV) [16], FACET-II (up
to 10GeV) [17], and SACLA (up to 8.5GeV) [18]. All
these accelerators operate with a repetition rate of at
least 10Hz, therefore, we assume that they are combined
with a 10Hz laser having the same parameters as the L3
laser being installed at ELI-Beamlines (ωL = 1.55 eV,
E = 30 J, ∆t = 30 fs) [9]. Furthermore, we assume
Ne = 108. Note that electron bunches with Ne = 109

electrons and a beam spot area ∼ 30µm2 are envisaged
for FACET-II [17]. If, instead, only gamma photons from
Ne = 107 electrons hit the high-intensity region of the
optical laser, the required measurement time is increased
from 2 to 20 days.
Note that for FACET-II a hundred-TW-class laser

(ωL = 1.55 eV, PRR = 10 Hz) and η = 10−3 could
be sufficient. Assuming 10-GeV electrons, Ne = 109,
θmax = 6 × 10−6 rad (i.e., ω = 1.9GeV, σbs = 0.113r2e,
σ1/σ0 = 0.077) the measurement time is 3 hours if using
a 200 TW laser (20 J in 100 fs, I = 5 × 1020 W/cm2)
and 12 days if using a 100 TW laser (4 J in 35 fs,
I = 2.3× 1020W/cm2).
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