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Transient-absorption phases with strong probe and pump pulses
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The quantum dynamics of a system of Rb atoms, modeled by a V-type three-level system interact-
ing with intense probe and pump pulses, are studied. The time-delay-dependent transient-absorption
spectrum of an intense probe pulse is thus predicted, when this is preceded or followed by a strong
pump pulse. Numerical results are interpreted in terms of an analytical model, which allows us to
quantify the oscillating features of the resulting transient-absorption spectra in terms of the atomic
populations and phases generated by the intense pulses. Strong-field-induced phases and their in-
fluence on the resulting transient-absorption spectra are thereby investigated for different values of
pump and probe intensities and frequencies, focusing on the atomic properties which are encoded
in the absorption line shapes for positive and negative time delays.

PACS numbers: 32.80.Qk, 32.80.Wr, 42.65.Re

I. INTRODUCTION

Phases represent the essential feature of any wave-like
phenomena, lying at the heart of coherence and interfer-
ence effects in classical and quantum physics. In atoms
and molecules, phases define the shape of a wave packet
in a superposition of quantum states and hence deter-
mine its subsequent time evolution. Manipulating atomic
and molecular dynamics with external electromagnetic
fields [1-4], e.g., by using strong femto- or attosecond
pulses [5-9], requires full control of the generated quan-
tum phases. However, traditional spectroscopy methods
usually do not provide access to the phase information:
for instance, for nonautoionizing bound states, absorp-
tion spectra typically consist of Lorentzian lines, with
spectral intensities quantifying the atomic populations.

The manipulation of absorption line shapes in
transient-absorption-spectroscopy experiments [10-14]
has been recently identified as a key mechanism to gain
access to atomic and molecular phase dynamics. Absorp-
tion lines originate from the interference between a probe
pulse transmitting through the medium and the field
emitted by the system [15]. The dipole response of the
system and, consequently, the resulting absorption spec-
trum can be modified by applying an intense pump pulse,
preceding or following the probe pulse at variable time
delays [16-25]. Thereby, symmetric Lorentzian absorp-
tion lines are converted into Fano-like lines, with time-
delay-dependent features quantifying the population and
phase modification induced by the interaction with the
strong pump pulse.

When interpreting spectral line-shape changes in terms
of the underlying atomic dynamics, the action of the weak
probe pulse is usually assumed as a small, well under-
stood perturbation. The attention is thus focused on the
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characterization of the action of the pump pulse as a func-
tion of its parameters such as, e.g., intensity and laser fre-
quency, and the main line-shape modifications are exclu-
sively attributed to its nonlinear interaction with the sys-
tem. Recent investigations of transient-absorption spec-
tra in Rb atoms were based on this assumption [26, 27].

Here, in contrast, we fully account for the effect of
a potentially intense probe pulse, investigating how the
population and phase changes induced by both pulses are
encoded in its absorption spectrum. On the one hand,
this allows us to fully interpret transient-absorption spec-
tra in terms of the pump and probe parameters of in-
terest, without a priori assumptions, which may not
correspond to the conditions featured in an experiment
and, hence, could lead to an inappropriate or incomplete
reconstruction of the strong-field dynamics of the sys-
tem. On the other hand, by considering cases in which
pump and probe pulses exhibit the same intensities, we
can highlight the essential differences between spectra
where the probe, i.e., measured, pulse either precedes
or follows the pump pulse. A proper interpretation of
transient-absorption spectra is crucial for the extraction
of strong-field dynamical information from these spectra,
and the implementation of recently suggested determin-
istic strong-field quantum-control methods [28].

We use a V-type three-level scheme to model an en-
semble of Rb atoms, with the 5525’1/2 — 5p2P1/2
(794.76 nm) and 55251/2 — 5p2P3/2 (780.03nm) tran-
sitions excited by femtosecond pump and probe pulses
of variable intensities and time delays. In Sec. II, we
present the theoretical model used to describe the evolu-
tion of the system and to predict the associated transient-
absorption spectra. The numerical results are presented
in Sec. ITI. In particular, time-delay-dependent transient-
absorption spectra are shown in Subsec. III A for different
pump- and probe-pulse intensities. An analytical model
based on recently introduced interaction operators [28] is
used in Subsec. IIIB to interpret the numerical results,
focusing on the atomic-phase information which can be
extracted from the spectra for different intensities and
laser frequencies of the pump and probe pulses. Sec-
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Figure 1. V-type three-level scheme, with transitions en-
ergies wo1 = 1.56eV and ws1 = 1.59eV and decay rates
v2 = 3 = 1/(5001s), used to model Rb atoms interacting
with broadband laser pulses of frequency wr, and spectral in-
tensity Sin(w).
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Figure 2. Experimental setup for the detection of the optical-
density transient-absorption spectrum of a transmitted probe
pulse, delayed by 7 with respect to a pump pulse, in a non-
collinear geometry.

tion IV summarizes the results obtained. Atomic units
are used throughout unless otherwise stated.

II. THEORETICAL MODEL
A. Three-level model and equations of motion

We consider the V-type three-level system depicted in
Fig. 1, modeling fine-structure-split 5325’1/2 — 5p2P1/2
and 5s 251/2 — 5p2P3/2 transitions in Rb atoms [29-31].
In particular, we introduce the state

(7)) = ealt, i), (1)

i=1

written in terms of the ground state |1) = 55255 and
the excited states [2) = 5p? Py 5 and |3) = 5p? P35, with
associated quantum amplitudes ¢;(¢,7) and energies w,
i € {1, 2, 3}. The system interacts with a pump pulse,
centered on t = 0 and modeled by the classical field

Epu(t) = Epuo f(t) cos(wrt)é,, (2)

and a delayed probe pulse, centered on time delay ¢t = 7
and similarly described as

Epe(t) = Epro f(t —T) coslwr,(t —T)]é,, (3)

as shown in Fig. 2. Both pulses are aligned along the
polarization vector é,, have the same frequency wr,, van-
ishing carrier-envelope phases, and intensities I,/ =
&l jor0/ (8ma) related to the peak field strengths &y /pr0
via the fine-structure constant a. We model their enve-

lope functions as

2 : <
£(t) = {Ocos (wt/T) %f [t <T/2, )
if |t| > T/2,
with T' = nTpwmm /(2 arccos v/1/2) and Trwam = 301s,
defined as the full width at half maximum (FWHM) of
|£(#)]? [32]. Positive time delays correspond to a typical
pump-probe setup, in which the system is first excited
by the pump pulse and the resulting dynamics are mea-
sured by a probe pulse. In contrast, negative time delays
describe experiments in which the dipole response gen-
erated by the first arriving probe pulse is subsequently
modified by the pump pulse, resulting in an intensity- and
time-delay-dependent modulation of the line shape of the
absorption spectrum of the transmitted probe pulse.
The linearly polarized pulses excite electric-dipole-
(E1-)allowed transitions |1) — |k), & € {2, 3}, with
equal magnetic quantum number, AM = 0, and dipole-
moment matrix elements Dy, = Djpé,. The formulas
are written for general complex values of Dy, although
these are real and positive for our atomic implementation
with Rb atoms, with D1, = 1.75a.u. and D3 = 2.47 a.u.
[30]. For the intensities considered here, we neglect the
presence of higher excited states, to which states |2) and
|3) could also be coupled. The total Hamiltonian of the
system

H = Hy + Hinl(t, 7) (5)
then consists of the unperturbed atomic Hamiltonian

3

Hy = (wi — i%:/2)[i) il (6)

i=1

and the E1 light-matter interaction Hamiltonian in the
rotating-wave approximation [33-35]

3
~ 1 .
== 9) lwrt 1] H.c.
Hipg 2;;:2 R (t, 7)€" [1) (k[ + H.c (7)



In Eq. (6), the complex eigenvalues (w; —i7;/2) of Hy are
given by the energies w; and the decay rates -;, included
in order to effectively account for broadening effects in
the experiment and defining an effective time scale for the
dipole decay [16, 20]. Transition energies w;; = w; — w;
are equal to wy; = 1.56eV and ws; = 1.59eV [29-31],
whereas we set 1 = 0 and 2 = v3 = 1/(500fs). In
Eq. (7), the time- and time-delay-dependent Rabi fre-
quencies have been introduced [33]:

= le[gpryof(t - T)e_iwLT + gpu’of(t)]. (8)
The equations of motion (EOMs) satisfied by the vector
dt,7) = (a(t,7), ca(t,7), es(t, T))Ta 9)

of components given by the amplitudes of the state vector
|t(¢, 7)), are determined by the Schrodinger equation

QRk (t, T)

AT g, ), (10)
which leads to
& 0 i9p2 giwnt  jfms glwrt
e L i R S A0
i=ha emiwnt 0 - —iws

The system is assumed to be initially in its ground state
|’(/)0> = ‘1>, i.e., Ci70 = 51‘1.

B. Transient-absorption spectrum

We solve the EOMs in Eq. (11) in order to simulate
experimental optical-density (OD) absorption spectra

S rout(va):|
Sexp(w, ) = —lo Zprouti ™ J , 12
J(,7) g[ ol (12)

where Sy, in(w, 7) is the spectral intensity of the incom-
ing probe pulse, whereas Sy, out(w, T) is that of the trans-
mitted probe pulse, explicitly dependent upon the time
delay between pump and probe pulses. For low densities
and small medium lengths, where propagation effects can
be neglected, the time-delay-dependent absorption spec-
trum Sexp(w, 7) can be calculated in terms of the single-
particle dipole response of the system [15]

S1(w) x
— wIm Zi 2 1kf T) it m) e dt
I €pr e~iwt dt ’
(13)
where
— 1 iw -7
Epu(t) = 5 Epro f(t —7) 77 (14)

is the negative-frequency complex electric field [32] and
c1(t, 7) ¢ (t, 7) here represents the dipole response of the

kth transition. In the following calculations, the denom-
inator in Eq. (16) is approximated by

/_OO En(t)e @ dt

— e iwT gp;() / flt—1) e~ Hw—wr)(t=7) g4 (15)
g [ .
~ e iwr P00 / f@) dt = e Ky,
2 — 00

which is valid for an incoming probe pulse much broader
than the transition energy between the two excited states,
such that its spectral intensity can be approximately
considered constant in the frequency range of interest.
Spectra associated with different probe-pulse intensities,
therefore, need to be properly normalized via the multi-
plication factor K, for comparison. Equation (16) can
then be rewritten as

S1(w) x

Lt T) g (t,7) e wlT) dt

Ky ’
(16)

with the Fourier transform in the numerator centered

around the arrival time of the probe pulse.

For the noncollinear geometry depicted in Fig. 2, fast
oscillations of the measured transient-absorption spec-
trum as a function of time delay 7 cannot be distin-
guished and are averaged out [26, 27]. Here, this is taken
into account by convolving S (w,7) with a normalized

Gaussian function G(r, A7) of width A7 = 5 X 27/wy,,
which leads to

Zk QDka

—wlm

S(w,7) = /_00 G(r —7,A7) 81 (w,7") d7". (17)

C. Analytical model in terms of interaction
operators

In order to interpret numerical results from the simula-
tion of S(w, 7), we employ the recently introduced strong-
field interaction operators U(I) to model the effect of a
pulse of intensity I on the atomic system [28].

The time evolution of the system | (¢)) from an initial
time tg, given by the solution of the EOMs (11), can be
written in terms of the evolution operator U/ (t,to),

[(8)) = U(t, o) [¥(to))- (18)

In the absence of external fields, this reduces to the free-
evolution operator

V(t) = e ot (19)

which describes the dynamics of the unperturbed atomic
system. The evolution of the system in the presence of a
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Figure 3. Schematic illustration of the interaction opera-
tors U (I), used to describe the action of an intense pulse
on the state of the system, its amplitudes c¢;, populations
|ci|2, and coherences cic;, in terms of an effectively instan-
taneous interaction. The product of matrix elements Uii/U;j,
describes how the action of the pulse connects the initial pop-

ulation/coherence ci/c;f, to the final one ¢;cj.

single pulse of intensity I = £2/(87ma), peak field strength
&y, centered around t. = 0 and with the same envelope
f(t) and pulse duration T we introduced in Sec. ITA,
is then associated with the evolution operator Z/?o(t,to),
solution of

AU (t,to)
dat
0 jfn2 giwrt  jfma glwrnt (20)
lﬂiﬁ2 e*i“’Lt 7% — iwgy 0 ao(t, to) s
P omiwnt 0 ~B —wy

with initial conditions Uo(to,to) = I and the identity
matrix I. In Eq. (20), the single-pulse Rabi frequencies
0ri(t) = D1y & f(t) are used. For the scheme discussed
in this paper, where pump and probe pulses of equal
femtosecond duration are employed, the time information
related to the continuous evolution of the system in the
presence of the pulse can be difficultly extracted. For
our purposes, it is therefore beneficial to focus on the
total action of the pulse, i.e., on the state reached by the
system at the conclusion of the interaction with a pulse.
Equation (20) can be used to calculate Uy(T'/2,—T'/2)
and thus connect the initial state |¢(—T7/2)) with the
final state [)(T/2)) at the end of the pulse:

[W(T/2)) = Uo(T/2,~T/2)l¥(=T/2)).  (21)

However, one can also introduce effective initial (|¢v7))
and final (]1)1)) states

W) = V(FT/2)[(£T/2)) = T2y (£T/2)) (22)

and thus define the unique, intensity-dependent interac-
tion operators

UI) = V(=T/2)Uy(T/2,-T/2) V(~T/2) (23)

connecting them,
) = U(D)), (24)

thus capturing the essential features of the action of the
pulse in terms of an effectively instantaneous interaction,
as schematically represented in Fig. 3. An analytical
model can then be derived to describe the associated
S(w, 7), which enables one to quantify how pulse-induced
changes in the population and phase of the atomic states
are encoded in observable time-delay-dependent spectra.

For a weak and ultrashort pulse of peak field strength
& and envelope f(t), we can introduce approximated
Rabi frequencies

Qrie(t) = Dy 6(8), (25)

with the Dirac ¢ and the pulse areas
Oy = / Dy & (1) dt. (26)
The solution of Eq. (20) and the use of the definition (23)

allow one to calculate the associated interaction operator
which, up to second order, reads

921241932 sy ;s
N 1 528 ! 2 13
Uweak = i 1-— | ;‘ _19;193 : (27)
i% —0y 1 2l
2 2V3 3

In the following, we interpret intensity-dependent
transient-absorption spectra in terms of the matrix ele-
ments of pump- and probe-pulse interaction operators for
a probe-pump and pump-probe setup. In contrast to pre-
vious results [26, 28], population and phase changes due
to the interaction with intense probe and pump pulses
are both explicitly addressed. Since we are interested
in atomic phases, and in particular in their connection
with the phase of the time-delay-dependent oscillations
displayed by transient-absorption spectra for positive and
negative time delays, we do not focus on the case of over-
lapping pulses. We are therefore allowed to develop an
analytical model in which the dynamics of the system
are described in terms of well defined sequences of free
evolution and interaction with a pump or a probe pulse
of given intensity.

1. Probe-pump setup

In a probe-pump setup (7 < 0), for nonoverlapping
pulses and neglecting the details of the continuous atomic
dynamics in the presence of a pulse, the time evolution
of the system can be written in terms of the state

[p(t, 7)) =
|¢0>7 t <,
V(t — 7)0pe ) ), ret<o, P
V(t)Upu(IPU)V(*T) Apr(Ipr)W}O% t>0,



with |¢o) = |1) and where we have introduced the
pump- and probe-pulse interaction operators, Upu(lpu)
and Upr(Ipr), dependent upon the respective pulse in-
tensities. This can be included into Eq. (16) in order
to model the probe-pump spectrum Si(w,7), 7 < 0, in
terms of interaction-operator matrix elements. This re-
sults in a sum of terms, each of which oscillates as a
function of 7 at a given frequency. Thereby, one can
recognize, for the frequencies w &~ wy; in which we are
interested, those terms responsible for fast oscillations of
S1(w, 7) as a function of time delay which would not be
exhibited by a spectrum measured in a noncollinear ge-
ometry. After neglecting these fast oscillating terms, the
time-delay-average probe-pump spectrum reads

3 *
w
S rpulW,T) X — Im —lk
prp ( ) Kpr {kzﬂl(w_wkl)‘F’Y;
% [Upe 11Uy (1 — eilomorr )

* * i(w—woy)T 22T
+ Upu11Upu k2Upr 11Uy 21€ e?

+ UpuvllU;ll7k3Upr711U;r7316i(w7‘*)31)7'e’y737'] }
(29)

2. Pump-probe setup

When a pump-probe setup is utilized (= > 0), for
nonoverlapping pulses and neglecting the details of the
continuous atomic dynamics in the presence of a pulse,
the atomic state can be modeled as

l(t, 7)) =
[%0), t<0,
V() Upu(Ipu)[th0), 0<t<r,
V(t - T)Upr(lpr)V(T)Upu(Ipu)|7/’0>» t>,
(30)

with |¢g) = |1). By neglecting fast oscillating terms ap-
pearing in the resulting single-particle absorption spec-
trum (16) at frequencies w = wy1, the time-delay-average
pump-probe spectrum can be written in terms of the ma-
trix elements of the interaction operators Upy(Ipy) and

Upr(lpr) as

Spupr(w, T) o< —

K,

pr

3 *
I 1k
m{z (w—wr) + 5

k=2
X (Upr 11U gt [Upu, 112

* 2 =T
+Upr,12Upr7k2|Upu,21| e 2

: Y2473
* * iwsaT — T
+ Upr,12Up; 13Upu,21 Uy 31 € e

: y2+73
* * —1lw32T — —45—>T
+ Upr 13U k2Upu,s1 Uy 21 € e 2

+ Upr,lBU;r,k3|Upu,31|2 e Y.

(31)

III. RESULTS AND DISCUSSION

A. Transient-absorption spectra for intense probe
and pump pulses

Here, we apply our three-level model to study Rb
atoms excited by intense femtosecond probe and pump
pulses. Simulated time-delay dependent transient-
absorption spectra, obtained by numerically solving
Eq. (11) and then using this solution in Egs. (16) and
(17), are displayed in Fig. 4 for representative values of
pump- and probe-pulse intensities and for a laser fre-
quency of wy, = 1.59eV. For all sets of intensities investi-
gated, two absorption lines can be distinguished, respec-
tively centered on the transition energies wo; = 1.56eV
and ws; = 1.59eV. The shape and amplitude of these
lines is modulated as a function of time delay, featuring
oscillations whose period of 27 /w3y = 140fs is given by
the beating frequency wso. This is stressed by the black
lines, showing the spectra evaluated at the two transition
energies wo; and wsy as a function of 7.

Figures 4(a), 4(b), and 4(c) show transient-absorption
spectra for a weak pump intensity of I, = 1x10° W /cm?
and three different values of probe intensity. Firstly, we
notice that the amplitude of the time-delay-dependent os-
cillations displayed by the spectra is very small for these
weak values of the pump intensity. The shape and ampli-
tude of the absorption lines remain almost completely un-
changed throughout the range of 7 displayed, with no sig-
nificant features distinguishing between positive and neg-
ative time delays. By modifying the probe intensity, we
notice a variation in the strength of the lines, going from
absorption for a weak intensity of I, =1 x 109 W/cm?
to emission at higher values of intensity.

When higher values of pump-pulse intensity are em-
ployed, clear time-delay-dependent features can be dis-
tinguished. The amplitude and the phase of these oscil-
lations in 7 varies differently, for positive and negative
time delays, as a function of pump and probe intensi-
ties. Figures 4(a), 4(d), and 4(g) show spectra evalu-
ated for a weak probe intensity of I,,, = 1 x 10° W/cm?
and increasing values of I,,. For intermediate values of
the pump-pulse intensity (I, = 1 x 10'® W/cm?) and
for both positive and negative time delays, the phase of
the exhibited time-delay-dependent spectra is the same
for the two transition energies, as evinced by the red
dashed lines which highlight the position of the minima
of §(we1, 7) and S(ws1, 7). However, as already discussed
in Ref. [26], a shift can be recognized for a higher pump
intensity of I, = 2.8 x 10! W/cm?: while the spectra
evaluated at wo1 and wsy shift in opposite directions for
7 < 0 as a clear and distinguishable signature of the onset
of strong-field effects, a common shift in the same direc-
tion takes place at 7 > 0 when the pump-pulse intensity
is increased.

Recognizing these strong-field-induced features and
understanding them in terms of intensity-dependent
atomic phases becomes more complex when a probe pulse
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Figure 4. Absorption spectra for laser frequencies of wr, = 1.59eV, pump intensities of [(a), (b), (c)] Ipu = 1 x 10° W/cm?,
[(d), (e), ()] Ipu = 1 x 10**W/em?, and [(g), (h), (I)] Ipu = 2.8 x 10’ W/cm?, and probe intensities of [(a), (d), (g)]
Ipe = 1 x 10°W/em?, [(b), (e), (h)] Ipr = 1 x 10 W/cm?, and [(c), (f), (i)] Ipu = 2.8 x 10" W/cm?. In each panel, the top
(bottom) black lines represent the absorption spectra evaluated at the transition energy wsi (w21) in arbitrary units. All black
lines are on the same scale, with the 0 aligned on the corresponding transition energy. The red dashed lines correspond to local

minima of the spectra evaluated at w = w21 and w = wass.

is used which is not sufficiently weak. This appears
clearly when one compares Figs. 4(d), 4(e), and 4(f),
where results are shown for an intermediately strong
pump pulse and different values of the probe intensity.
Both at positive and negative time delays, absorption
lines evaluated at wsy and w3y feature a shift in opposite
directions, which becomes larger at high probe intensi-
ties. Similarly, spectra displayed in Figs. 4(g), 4(h), and
4(i) for a pump intensity of I,,, = 2.8 x 101 W /cm? show
that a probe-pulse-induced shift of the spectra evaluated
at woy and wa; arises for growing values of I,:: at negative
time delays, this enlarges the already existent shift due
to the strong pump pulse; for positive time delays, where
the increase in Iy, causes an aligned, common shift of
S(wo1,7) and S(ws1, 7), the presence of an intense probe
pulse is reflected in additional shifts, analogous to those
already recognized for I, =1 x 101 W /cm?.

Tt should be noticed that the spectra in Figs. 4(a), 4(e),
and 4(i) are calculated for equal pump- and probe-pulse
intensities. The dynamics of the system are, therefore,
perfectly symmetric with respect to 7, and the system
features the same time evolution when equally delayed

pump and probe pulses are used, independent of their
arriving order. Nevertheless, the spectra exhibited in the
above listed figures are clearly not symmetric with re-
spect to 7, and different amplitudes and phases of the
time-delay-dependent features of S(w,7) can be recog-
nized at 7 > 0 or 7 < 0, in spite of identical underlying
dynamics. This can be understood by noticing that the
spectrum arises from the interference between the elec-
tric dipole response of the atomic system with the probe
pulse: even when the quantum dynamics are identical,
the spectrum still reveals how these influence the first-
(second-)arriving probe pulse for 7 < 0 (7 > 0). This is
also evident from the definition of the absorption spec-
trum (16), where the Fourier transform is always centered
on the central time 7 of the probe pulse, and then from
the analytic models in Egs. (29) and (31), respectively
describing time-delay-averaged probe-pump and pump-
probe spectra from a noncollinear geometry. Even when
identical pump and probe pulses are used (Upr = Upu),
the spectra evaluated at positive and negative time delays
are determined by different interaction-operator matrix
elements and hence differ.
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Figure 5. Probe-pump transient-absorption spectra evaluated
as a function of frequency at two different time delays 721
(blue, continuous) and 731 (red, dashed), for laser frequencies
of wr, = 1.59eV, pump intensities of [(a), (b), (¢)] Ipu =
1x10*° W/cm? and [(d), (e), (f)] Ipu = 2.8x10"*° W/cm?, and
probe intensities of [(a), (d)] Ipr = 1 x 10° W/cm?, [(b), (e)]
Ipe = 1 x 10" W/cm?, and [(c), (f)] Tpr = 2.8 x 10'° W/cm?.
For each panel, the time delay 721 (731) at which the spectrum
is evaluated is associated with the local-minimum point of
S(w21,T) [S(ws1, )] highlighted in Fig. 4 by a red, dashed
line for 7 < 0.

In the previous discussion we have focused on the time-
delay-dependent properties of the spectra S(wg1, 7), eval-
uated at the transition energies wyi. However, the iden-
tification of ws; and ws; may not be straightforward
experimentally, affecting the properties of the observed
time-delay-dependent features and the quantification of
the associated phases. In order to better discuss this
point and describe the line-shape changes ensuing from
the presence of intense pump and probe pulses, in Figs. 5
and 6, for a probe-pump and pump-probe setup, respec-
tively, we present transient-absorption spectra S(w, x1),
k € {2, 3}, evaluated as a function of frequency for fixed
values of the time delay, 71 and 73;. Here, the time
delay 721 (731) is the one for which S(wa1,7) [S(ws1,7)]
has a local minimum, as identified in Fig. 4 by the red,
dashed lines. The pictures show that the identified local-
minimum points are not necessarily associated with emis-
sion peaks pointing downwards. Furthermore, for nega-
tive time delays, where additional frequency modulations
appear as shown in Figs. 4 and 5, one has to disentan-
gle the behavior of the peaks centered on wy; from the
remaining modulations appearing as a function of fre-
quency. Nevertheless, all panels confirm that it is possi-
ble to isolate the time-delay-dependent behavior of this
central peak and, thereby, identify the particular time
delay at which this is minimal.
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Figure 6. Pump-probe transient-absorption spectra evaluated
as a function of frequency at two different time delays 721
(blue, continuous) and 731 (red, dashed), for the same pa-
rameters used in Fig. 5. For each panel, the time delay 721
(131) at which the spectrum is evaluated is associated with
the local-minimum point of S(w21,7) [S(ws1,7)| highlighted
in Fig. 4 by a red, dashed line for 7 > 0.

Encouraged by the results displayed in Figs. 5 and 6, in
the following we focus on S(wg1, 7) and the corresponding
time-delay-dependent oscillations in order to draw con-
clusions about strong-field-induced atomic phases. Fig-
ure 7 shows the amplitude of the numerically calculated
spectra S(way,7) and S(ws1,7) as a function of probe-
pulse intensity for two different values of I;,,. The shifts
in the phase of the time-delay-dependent spectra is here
clearly apparent. For 7 > 0 or 7 < 0, the effect of the
intense pump and probe pulses appears in the spectrum
as independent pump- and probe-induced phase shifts.
In the following, in order to investigate this point fur-
ther and identify how atomic phase changes are encoded
in transient-absorption spectra, we interpret our results
in terms of the interaction operators introduced in Sub-
sec. IIC.

B. Interpretation of pump- and
probe-pulse-induced phases in terms of
interaction-operator matrix elements

Here, we use Egs. (29) and (31) in order to interpret the
numerically calculated transient-absorption spectra pre-
sented in Subsec. IIT A in terms of interaction-operator
matrix elements. In particular, we focus on the phase
of the time-delay-dependent oscillations exhibited by
S(w21,7) and S(wsy, 7) [Fig. 7], and show how these can
be understood via the strong-field-induced atomic phases
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2.8 x 10" W/cm?. The red dashed lines correspond to the local-minimum points (as a function of probe-pulse intensity) of

S(wa1,7) or S(wsi, T).

quantified in Upu and Upr. For both a probe-pump and a
pump-probe setup, we develop analytical interpretation
models, calculate Uy, and Uy, with Egs. (20) and (23),
and then use these interpretation models to understand
the phase features displayed by the transient-absorption
spectra in Figs. 4 and 7. Finally, we further investigate
the dependence of the phases extractable from transient-
absorption spectra upon the laser frequency of the pump
and probe pulses.

1. Probe-pump setup

Firstly, we focus on the probe-pump interpretation
model given by Eq. (29), aiming at better understand-
ing the properties of the spectrum evaluated at w = wg;.-
For interpretation purposes, since wsy > 7y, we are al-
lowed to neglect in first approximation the term propor-
tional to Dj,, /(iwkrr + V/2), with k" € {2, 3}, k' # F,

Wik = twso, thus obtaining

w *
Im{ 2=k
Kpr { Yk
5
X [Upr, 11Uy (1 — e 27)

* * Dk
+ UpuyllUpu,kszphllUpr,kle 27

Sprpu(wklyT) X —

U U* U U* iwkk/‘r Pyzi,‘r
+ pu,11Ypu, kk’ Ypr,11 pr,k’le € ]
(32)

The only term which displays oscillations as a function
of 7 is given by

5 w Dy e i
Sruw T x —2 _e2TImYu Yr elwkk/‘r?
prp ( k1 ) Kpr '7/{: ( pu,k fpr.k )
(33)
with
Ypr,k = Upr,llU;r,klla (34)

*
Youk = Upu,llUpu,kk'a

and where we have used explicitly the fact that, for our
atomic implementation with Rb atoms, the projections
Dy of the dipole-moment matrix elements Di; along



the pulse polarization axis é, are real. We can more

explicitly write

& w Dig 7
S, w x —2 —Ze2
prpu( 21, T) Kpr Yo

X Im{e—i[wszT—arg (Ypu,2)—arg (Ypr,2)] }

" You2| [Yor 2|

w Dis v
=_9 —=e2 7 |Youo! [Yor
Kpr 726 | p,2|| p,2|
X sin [wsaT — arg (Ypu,2) — ™ — arg (Ypr,2)]
(35)

and

~ w D13 2
Sprpulwsi, T) 72K 773 e BT [You3| [Yor 3l
pr

% Im{ei[wazTJrarg (Ypu,3)+arg (Ypr,3)] }

w Dig 2,
—=e2 7|V} Y,
Kpr v3 | pu,3|‘ pr,3|

x sin [w3oT + arg (Ypu,3) + arg (Ypr 3)].

With
Yiro = Upr,llU;r,:sp
Yirs = Upr,llU;r,zp
Ypu,2 == Upu,llU;u,ng
Yous = Upu,llU;u,:aza

and the phases

*
Ppr,2 = —T — arg (Upr,ll pr,31)7
*
Ppr,3 = arg (Upr,llUpr,Ql)a
*
Ppu,2 = —arg (Upu,11 pu,23)a

_ *
Ppu,3 = arg (Upu,ll pu,32)’

(38)

this reduces to

5 w Dig
Sprpu(CUgl, 7') =-2 —e€ 2

"1Youol| [Yor
Kpr Y | p 2|| p72| (39)

X sin (w3 T + @pr.2 + Ppu,2)
and

5 w Diz »
Sprpu(wgl, T) = -2 —e 2

" Ypus| [Yor
Kpr Y3 | p ’3|| p’3| (40)

X sin [w3eT + @pr.3 + Ppu,3)-

The intensity-dependent position of the minima of
S(wg1,7) for 7 < 0, shown in Fig. 7 by the red dashed
lines at negative time delays, can hence be quantified via
Egs. (39) and (40) in terms of ¢p; 1 and ¢py k. The sine
functions appearing therein have local minima, respec-
tively centered around

Tol = To — —(¢pr’2 i @pu,2)7 for w = w1, T <0,

iz (41)

Tay = To — (¢pr,3 + ‘Ppu,3)7

w32

for w = w31, 7 <0,

with the additive offset 79 = —97/(2ws2). For real, posi-
tive dipole-moment matrix elements D1, and hence real
positive pulse areas 9, the intensity-dependent variables
Yorx and Yy, can be explicitly written in the case of
weak pulses via Eq. (27) as

0
weak __ . V3
Ypr,2 - _I?a
U
weak __ U2
Yorg™ = -7 (42)
Yvesk = —das,
Yvesk = 0903,

along with the associated phases

weak __
pr,2 — 77/23
weak __
$pr,3 — _7T/27 4
weak __ + ( 3)
@pu,Q ==X,
weak
@pu,?) = F7.

For low intensities, the effect of the probe pulse is lin-
early proportional to the pulse areas ¥, and, there-
fore, of first order in the amplitude of the electric field,
whereas the action of the pump pulse depends on the
product of 95193 and is hence of second order. This ex-
plains the small, almost vanishing amplitude of the time-
delay-dependent oscillations displayed for 7 < 0 by the
transient-absorption spectra in Figs. 4(a), 4(b), and 4(c),
for a small pump-pulse intensity of I, = 1 x 10° W /cm?.

In Figs. 8(a) and 8(b), the total phases [¢pr 2+ @pu,2 —
(opes" + opns)] and [pprs + @pus — (Phe3° + opeis)]
[Egs. (38) and (43) after numerical calculation of U,
and U, via Eqs. (20) and (23)] are exhibited, as a func-
tion of I, and for a discrete set of values of I,,. The
very good agreement between the intensity dependence
of these phases and the shift displayed by the time-delay-
dependent features of S(wa1, 7) and S(wsy, 7) [Fig. 7 and
Figs. 8(c) and 8(d) at negative time delays| confirms the
validity of our analytical interpretation model and in par-
ticular of Eq. (41). The shift in the phases [Figs. 8(a)
and 8(b)| is reflected by an oppositely directed shift in
the local-minimum points [Figs. 8(c) and 8(d)] as a func-
tion of I, and I, as expected from the minus sign in
Eq. (41).

In order to understand the physics underlying the
phase shifts ¢, appearing in the spectrum, we can use
the schematic illustration of U(I) in Fig. 3 to clarify the
meaning of the terms appearing in Egs. (37) and (38).
The associated terms Yy, = UpryllU;r,km k' # k, are
the coherences (in amplitude and phase) generated by
the first-arriving probe pulse acting on the ground state.
The shift displayed by S(wg1, 7) is therefore related to the
phase of these strong-field-induced coherences. The dif-
ferent sign appearing in the definition of ¢y, 2 and ¢p; 3
also explains why the time-delay-dependent oscillations
of S(wa1,7) and S(wsy, 7) shift in opposite directions for
increasing probe-pulse intensities [Fig. 8(c) and 8(d)].



10

[ T T T T T T 7 T T 3.5
- 4F Po
E - 1k 1 s'e
2 F 1F [ 2
z C 1t i1 B
B r — i 2.0
=] o 1F i1
s 3 ERi I =
Z o 1°F i ] Z
bt o 1°F i ] o]
= C IF {105
@ Jp © 1F s
L R IS PRI B T E PR I N £ SR IR B P I N B B . L1 I )l Lei il 1.
0.0 0.5 1.0 1.5 -600 —-400 -200 0 200 400 -0.2-0.1 0.0 0.1 0.2 0.3 04
Phase (rrad) Time delay (fs) Phase (rrad)
35T : , : : ] T3S
30F 1k (d JF 1.0
2 2.5F 1F 4F 1258
= - i 1t 1 2
N C 1t 1 =B
S 2.0 9 - it -1 r —12.0<=
o o i 1t 1=
Z 1.5 1F q¢ Jis 2
3 [ r 4 1F ] 2
= 1.0f 1 qr 110 5
0.5 1F JF Jos
S IR R P S T ST | N T TR | TR I A0 N AT T N TR
-20 -15 -10 -05 0.0 -600 -400 -200 0 200 400 0.0020406081.01214

Phase (7rrad) Time delay (fs) Phase (nrrad)

Figure 8. Correspondence between strong-field-induced atomic phases and time-delay-dependent oscillations of the transient-
absorption spectra for a laser frequency of wr, = 1.59eV. [(c), (d)] Time delays (as a function of probe pulse intensity) associated
with minima in the absorption spectra (c) S(w21,7) and (d) S(ws1,7) for both positive and negative time delays, [(a), (b)]
associated total phases for a probe-pump setup (a) [@pr,2 + @pu,2 — (Phes +hes)] and (b) [Ppr,3 + Ppu,s — (PEeE +o5e%)]; and
[(e), (f)] associated total phases for a pump-probe setup (€) [Ypr,2 +¥pu — (Vaca +¥e)] and (f) [Ypr,3 +pu — (Vhess +1/Jweak)],
In all panels, curves are displayed for pump intensities of I, = 1 x 10° W/cm? (blue continuous line), Iy = 1 x 10'° W/cm?

(orange dashed line), Ty = 1.9 x 10'° W/cm? (green dotted line), and I, = 2.8 x 10*® W/cm? (red dashed-dotted line).

The second-arriving intense pump pulse nonlinearly
modifies an already existent superposition of excited
states. The shifts ¢p,2 and ¢p,3 in the oscillating
features of S(we1,7) and S(wsi,T), respectively, quan-
tify the changes in the atomic phases induced by the
pump pulse. This can be recognized via inspection
of the associated interaction-operator matrix elements,
Youk = Upu11Upy, gprs K # K [Eqs. (37) and (38)], which
describe how the pump pulse transforms an initial coher-
ence between ground state and excited state |k’) into a
final coherence between ground state and excited state
|k) (see also the schematic illustration in Fig. 3). The
ensuing phase change determines the shift appearing in
the oscillating features of the transient-absorption spec-
trum. Also in this case, the shift in opposite directions
displayed by S(ws1,7) and S(wsy, ) for rising values of
Iou [Fig. 8(c) and 8(d)| is a consequence of the oppo-
site sign with which ¢p,2 and ¢,y 3 are related to the
interaction-operator matrix elements [Eq. (38)].

2. Pump-probe setup

Here, we focus on the positive-time-delay part of the
spectrum, and use the associated interpretation model
given by Eq. (31) in order to better understand the prop-
erties of the spectra evaluated at w = wyy. For this pur-
pose, as already performed in the previous part, we can
neglect terms given by DY, /(iwkr + v/ /2) in Eq. (31),
and thus identify those contributions which are respon-
sible for the oscillations exhibited by the spectrum as a
function of 7:

w le 7v2-§73 T

Kpr Vi
* iwzoT
X Im(Upr,IQUpr’kSUpu,QlU u,31 €

* —iwgaT
+ Upr»13Upr,k2Up‘l’31Upu,21 € 3 )

Spupr(wkl, T) x —2

(44)

Also in this case, we have used explicitly the fact that the
dipole-moment matrix elements Dq; are real. By intro-



ducing the intensity-dependent pump and probe variables
Zpu = pu,ZIUSu,317

Apr,k = Upr712U;r,k3a (45)
By = UPT713U;r,k2’
we can write Eq. (44) as
w Dy
Koo e (46)
X Im (Apr ke Zpu €27 + By Ziyy € %27),

_y2+73
5 T

Spupr(wkh T) x —2

and observe that the pump pulse equally acts on both
terms of the above sums, resulting in a phase shift

Ypu = arg (Zpu) = arg (Upu,ﬂU;u,Sl)- (47)

Furthermore, since Im(z) = —Im(z*), we have that
Im{By, x Zy, €427} = —Im{Bprk pu€327} and
hence
3 ( ) 9 w le _w;waT' |
upr(Wk1,7) X — - u
pup Kpr Yk P (48)

X Iml:(Apr)k; — B)"< k

or ) ei(W32T+'¢)pu):| X

By further introducing the phases

Ypr2 = arg (Apr2 — B;r,Q)
= arg (Upr,12U r,23

'l/}pr,S = arg (Apr,S B;r 3)
= arg (Upr,12Upr,33 -

Upr,22U T, 13)

UPT>32U;r,13)7
the spectrum can be written as

w le
Kpr i
X sin (w32 + Vpu + Ypr,k)-

_y2+v3 +’Y3 T

Spupr(wklﬁ) x =2 |Zpu| |Apr kE—

(50)

This implies that the intensity-dependent positions of
the minima of S(wk1,7), shown in Fig. 7 by the red
dashed lines at positive time delays, can be quantified
via Eq. (50) in terms of ¢, and 9y, . The sine func-
tions appearing therein have local minima respectively
centered around

T21 = T0 — 7(¢pu * wpr,Z)’ for w = wo1, T > 07
w32
(51)
T31 = Top — Wou + ¥pra) ’l/)pr,S), for w =ws1, 7 >0,
w32

with the additive offset 79 = 77/(2ws2). For real, posi-
tive dipole-moment matrix elements D;;, and hence real
positive pulse areas 19k, the intensity-dependent variables
Zpw and |Apy i — pr * k| can be exphcltly written in the
case of weak pulses via Eq. (27) as

. P03
Zwedk _
u 4
Aweak Bweak o & (52)
pr,2 ( pr,2 ) =1 9 ’
wea. wea. U2
Apr Sk (Bpr Sk) = 177
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along with the associated phases

weak __

pu =0,

oy =7/2, (53)
;Vre;gk =7/2.

Also in a pump-prob