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Abstract
Objective
To quantify atrophy, demyelination, and iron accumulation over 2 years following acute spinal
cord injury and to identifyMRI predictors of clinical outcomes and determine their suitability as
surrogate markers of therapeutic intervention.

Methods
We assessed 156 quantitative MRI datasets from 15 patients with spinal cord injury and 18
controls at baseline and 2, 6, 12, and 24 months after injury. Clinical recovery (including
neuropathic pain) was assessed at each time point. Between-group differences in linear and
nonlinear trajectories of volume, myelin, and iron change were estimated. Structural changes by
6 months were used to predict clinical outcomes at 2 years.

Results
Themajority of patients showed clinical improvement with recovery stabilizing at 2 years. Cord
atrophy decelerated, while cortical white and gray matter atrophy progressed over 2 years.
Myelin content in the spinal cord and cortex decreased progressively over time, while cerebellar
loss decreases decelerated. As atrophy progressed in the thalamus, sustained iron accumulation
was evident. Smaller cord and cranial corticospinal tract atrophy, and myelin changes within the
sensorimotor cortices, by 6 months predicted recovery in lower extremity motor score at 2
years. Whereas greater cord atrophy and microstructural changes in the cerebellum, anterior
cingulate cortex, and secondary sensory cortex by 6 months predicted worse sensory impair-
ment and greater neuropathic pain intensity at 2 years.

Conclusion
These results draw attention to trauma-induced neuroplastic processes and highlight the in-
timate relationships among neurodegenerative processes in the cord and brain. These mea-
surable changes are sufficiently large, systematic, and predictive to render them viable outcome
measures for clinical trials.
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Recovery from spinal cord injury (SCI)—and its attendant
neurodegenerative processes—follows a complex trajectory
evolving over several years1 after trauma, where the ensuing
neurodegeneration affects the spinal cord and brain.2 Given
potential treatments that target repair of the injured spinal
cord,3 there is an imperative to improve clinical trial design
and efficiency, optimize patient stratification (in the context of
disease heterogeneity), and identify trial outcome measures
with predictive validity.4

Alterations in structure and function in motor, sensory, and
limbic systems above the level of injury have been associated
with impaired motor5 and sensory6 processes and neuro-
pathic pain7 following SCI. Serial MRI has shown rapid,
continuous volumetric and diffusivity changes in these
systems5–8 above the injury following acute SCI. The available
evidence suggests that reduction in myelin after 1 year
accompanies atrophy and is associated with clinical impair-
ment.5 By extending our longitudinal study to 2 years, we
hoped to (1) establish that macroscopic volume changes
continue with distinct trajectories; (2) characterize the asso-
ciated demyelination9 and iron accumulation10; and (3) es-
tablish that neurodegenerative change within the first 6
months after injury predicts 2-year outcome.

We applied computational neuroimaging approaches to
quantify volumetric changes in macroscopic tissue compart-
ments11 and measures of myelination (via magnetization
transfer saturation12 [MT]) and iron content (using the ef-
fective transverse relaxation rate13 [R2*]) over the course of 2
years. To characterize structural trajectories, we modeled the
MRI measures and recovery in terms of linear rate of change
(i.e., degeneration and recovery) and nonlinear changes in the
rate (i.e., acceleration and deceleration). Structural MRI
changes at 6 months were then used to predict 2-year
outcome.

Methods
Participants and study design
Fifteen patients with traumatic SCI—admitted consecutively
after surgical decompression into the rehabilitation program
(1–2 weeks post injury) at the University Hospital Balgrist
(Zurich, Switzerland) between September 2010 and July
2015—and 18 controls (table e-1, links.lww.com/WNL/
A315) participated in a 2-year longitudinal study. Eligible
patients with a traumatic SCI (<2 months post injury) and

controls were older than 18 years, and had no history of head
and brain lesions, no preexisting neurologic, mental, or
medical disorders affecting outcome, and no contra-
indications to MRI. In total, 156 MRI datasets were analyzed
from 33 (15 with SCI, 18 healthy controls) participants ac-
quired at baseline and 2, 6, 12, and 24 months after SCI or
study inclusion for controls, respectively (e-Methods, links.
lww.com/WNL/A316). Follow-ups were performed suc-
cessfully in 80.0%, 93.3%, 93.3%, and 86.7% (93.3% for clin-
ical assessments) of patients, and 94.4%, 100.0%, 100.0%, and
100.0% of controls, respectively. In short, 94.6% of the par-
ticipants completed follow-up. The last time point was
delayed (up to 36 months) in a few patients but included in
the analysis. All patients were assessed clinically using the
International Standards for Neurological Classification of
SCI protocol14 for motor, light-touch, and pinprick score
and the Spinal Cord Independence Measure (SCIM). We
assessed multiple aspects of pain (e.g., onset, duration
[years], maximal and average pain intensity, quality of pain
[e.g., nociceptive or neuropathic]) at each time point using
a pain questionnaire (v4.2, emsci.org). The mean age dif-
ference between patients and controls was not found to be
different (p = 0.0601, Mann–Whitney U test), but a sex
imbalance was evident (p = 0.0342, Mann–WhitneyU test).
Both of these potentially confounding covariates were in-
cluded in all statistical tests.

Standard protocol approvals, registrations,
and patient consents
All participants gave informed written consent and the study
was approved by the local ethics committee of Zurich (EK-
2010-0271).

Structural image acquisition
We used a 3T Magnetom Verio (Siemens Healthcare,
Munich, Germany) for the first 4 time points. Before ac-
quiring the fifth time point of all subjects, the scanner was
upgraded to a 3T Magnetom Skyrafit. The MRI protocol
comprised a 3-dimensional (3D) whole-brain and cervical
cord structural volume using an optimized, high-resolution,
T1-weighted, 3D, MPRAGE (magnetization-prepared rapid-
acquisition gradient echo) sequence and a multiparametric
mapping protocol based on multiecho 3D FLASH (fast low
angle shot) sequences (further acquisition details are pro-
vided in e-Methods, links.lww.com/WNL/A316). To assess
the reproducibility of quantitative MRI measures across
scanning sites, Weiskopf et al.15 (2013) established that re-
gional intersite coefficient of variation of MT was smaller than

Glossary
ACC = anterior cingulate cortex; AIS = American Spinal Injury Association Impairment Scale; APW = anterior-posterior width;
CI = confidence interval; CST = corticospinal tract; GM = gray matter; LRW = cord left-right width; M1 = primary motor
cortices; MT = magnetization transfer saturation; R2* = effective transverse relaxation rate; ROI = region of interest; S2 =
secondary sensory cortices; SCI = spinal cord injury; SCIM = Spinal Cord IndependenceMeasure; SPM = statistical parametric
mapping; WM = white matter.
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8%, while R2* was found to be less than 20%. The current
single-site study used comparable techniques, suggesting that
our quantitative MRI measures would be equally reliable, if
not better.

Longitudinal image processing and analysis

Neurodegeneration within the cervical cord over
2 years
Using an active-surface model (figure 1A), we measured the
cross-sectional cord area at the C2-C3 level. This level offers
the most reliable assessment site using semi- or fully-
automated segmentation methods16 (e-Methods, links.lww.
com/WNL/A316). This allowed us to extract the anterior-
posterior width (APW—elliptical short axis) and the left-right
width (LRW—elliptical long axis) of the cord. We also
superimposed the region of interest (ROI) corresponding to
the cord on MT maps to evaluate the mean MT inside this
cervical cord cross-section.

Neurodegeneration within the brain over 2 years
Longitudinal image preprocessing for voxel-based
morphometry17,18 and voxel-based quantification19 were
used to further assess volumetric and microstructural

quantitative brain changes (e-Methods, links.lww.com/
WNL/A316).

Regions of interest
We focused on structural changes within the motor, sensory,
and limbic system because these brain areas showed structural
changes within the first year following the injury.5,6 We de-
fined bilateral ROIs using the anatomy toolbox for statistical
parametric mapping (SPM)20 to delineate the corticospinal
tracts (CSTs) and the union of the primary motor (M1) and
sensory (S1) cortices to represent the sensorimotor system.
Using the same atlas, we included the bilateral anterior cin-
gulate cortex (ACC), thalamus, secondary somatosensory
(S2) cortex, and insula using a single ROI to represent the
limbic system. The brainstem and cerebellum were defined as
a further ROI using the SUIT toolbox for SPM.21

Statistical analysis

Cord
Stata 13 (StataCorp LP, College Station, TX) was used to sta-
tistically assess recovery and change in spinal cord MRI indices.
Rates of change of cord area, LRW, APW, mean cord MT (all
participants), and recovery (patients only) were estimated with

Figure 1 Longitudinal changes in spinal cord MRI indices

(A) Illustration of measures of cross-sec-
tional spinal cord area, left-right width, and
anterior-posterior width at cervical level
C2-C3. (B) Change in cross-sectional spinal
cord area at the C2-C3 level and (C) left-
right width and (D) anterior-posterior
width after injury in patients with spinal
cord injury and in controls over 2 years. (E)
Change in mean MT (in % loss of magneti-
zation) at the C2-C3 level after injury in
patients with spinal cord injury and in
controls over 2 years. Note that black, solid
lines depict the fitted model; blue and red
points and lines show observed individual
longitudinal data for controls and patients,
respectively. MT = magnetization transfer
saturation; SCI = spinal cord injury.
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linear mixed effects models—with the MRI and clinical measure
as response variable. Intercept, study time, log time, and their
group interactions were included as predictors to model linear
and nonlinear changes specifically for clinical groups. The linear
effect corresponds to a progressive change, while a nonlinear
effect models a deceleration of markers of neurodegeneration.
Finally, regression models identified associations between ana-
tomical changes by 6 months and 2-year clinical outcome
measures, adjusting for potentially confounding effects of age
and clinical change between 6 months and baseline.

Brain
We used SPM12 to analyze group differences of structural tra-
jectories (e-Methods, links.lww.com/WNL/A316, and fil.ion.
ucl.ac.uk/spm/ for technical details).We followed a conservative
2-stage summary statistics approach22 frequently used in fMRI
and longitudinal image analysis.23 In the first stage, we used scans
at all time points from each participant to estimate individual
quadratic trajectory models y(t) = β0 + β1 t + β2 t

2 and evaluated
the intercepts (β0), rate of change (β1), and quadratic effects
(β2) for each participant, where t denotes time since injury. In
a second stage, we used statistical parametric maps of 2-sample
parametric t tests (for all voxels within each ROI) to test for
group differences while adjusting for age and sex as covariates of
no interest. Group differences of linear (e.g., β1 < 0 indicating
decline) and quadratic (e.g., β2 > 0 indicating deceleration)
effects were identified as significant using random field theory for
correction of multiple comparisons within each considered ROI.
Significant clusters were identified after applying a conservative
cluster-forming threshold of p = 0.001. We additionally used
SPM’s multiple linear regression models to test for associations
among brain changes, lesion level, and clinical recovery in
patients adjusting for potentially confounding effects of age, sex,
and clinical change between 6 months and baseline. The ex-
planatory variables in these (between-subjects) analyses were
lesion level and clinical outcome, while the response variables
were changes in structural markers over the first 6 months.

Results
Patients’ characteristics and clinical outcomes
Nine patients were tetraplegic (3 American Spinal Injury Asso-
ciation Impairment Scale [AIS] A “complete”) and 6 paraplegic
(3 AIS A “complete”) (table 1). The mean interval to the first
scan following injury was 49.67 days (SEM 5.91; range 17–102),
to the second scan 103.25 (12.40; 63–193), to the third scan
220.36 (18.69; 158–369), to the fourth scan 389.93 (29.60;
285–723), and to the fifth scan 881.14 (43.07; 718–1,109) days.

Over 2 years, patients recovered by 2.33 points per log month
(95% confidence interval [CI] 0.41–4.26) on their lower ex-
tremity motor score (p = 0.017, all patients), showing weak
tendencies to improvement (p = 0.135, all patients) by 0.52
points per log month (−0.16 to 1.21) on their upper extremity
motor score and by 5.67 points per log month (3.25–8.08) on
the SCIM score (p < 0.001). Over this time, patients declined by

1.84 points per log month (−3.36 to −0.33) on their pinprick
score (p = 0.017), and their light-touch score did not show
a decline (p = 0.851). Neuropathic pain below the level of the
lesion emerged in 7 patients, in whom pain intensity increased
(p = 0.003) by 0.56 points per log month (0.19–0.93).

Time course of macroscopic cord and
brain changes

Cord
Over 2 years, a greater linear decline of cord area (p < 0.001),
APW (p < 0.001), and LRW (p < 0.001) was found in patients
compared to controls (figure 1, B and C). In patients, cord areas
decreased by 0.62 mm2 per month (p < 0.001, 95% CI −0.77 to
−0.46), APW decreased by 0.04 mm per month (p < 0.001, 95%
CI −0.060 to −0.024), and LRW by 0.04 mm per month (p <
0.001, 95% CI −0.06 to −0.020) but were unchanged in controls
(cord area: p= 0.39; APW: p= 0.83; LRW: p= 0.13). The rate of
change of cord area (by 0.01mm2 per month, p < 0.001, 95%CI
0.005–0.014) and LRW decrease (by 0.001 mm per month, p =
0.011, 95% CI 0.0002–0.001) showed a greater leveling-off
(i.e., a positive quadratic effect) over 2 years in patients com-
pared to controls. In controls, we did not detect any nonlinear
(quadratic) changes in cord area (p = 0.54), APW (p = 0.89),
and LRW (p = 0.42).

Brain
Over 2 years, white matter (WM) volume within the CSTs of
patients decreasedmore rapidly than in controls, with differences
in the medulla oblongata, cerebellar peduncle, and right internal
capsule. Outside the CSTs, WM volume decreased in the me-
dulla oblongata and cerebellar vermis. Over 2 years, gray matter
(GM) volume decreased in the left insula, left ACC, and right
thalamus. No GM volume changes occurred in S2 over time.
WM volume decreases within the left cerebellum accelerated in
patients compared to controls (table 2, figure 2) over 2 years.

Time course in microstructural
imaging markers

Cord
Cord MT decreased in patients relative to controls (p =
0.032). In patients, mean cord MT decreased by −0.05% per
month (p < 0.001, 95% CI −0.07 to −0.02) with no effect seen
in controls (p = 0.18) (figure 1E).

Brain
There were linear MT decreases within the GM of patients
relative to controls in the leg area of M1 and linear increases in
R2* of GM in the bilateral thalami (figure 2) over 2 years.
Testing for partial recovery effects in terms of decelerating
changes, we observed a deceleration of the WM MT changes
in the right cerebellum over 2 years.

Effect of rostrocaudal level of spinal injury
on neurodegeneration
A higher rostrocaudal level of spinal injury was associated with
greater loss in cord area over 2 years (p = 0.037, R2 = 0.42),
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Table 1 Patient information

ID Age, y Sex

Injury Initial level of
impairment
(motor/
sensory)

Pinprick
(max 56 points)

Light-touch
(max 56 points)

Motor score
(max 50 points)

SCIM
(max 100
points)

Pain intensity
(max 10 points)

Type Etiology AIS
Baseline,
L/R 2 y, L/R

Baseline,
L/R 2 y, L/R

Baseline,
L/R 2 y, L/R Baseline 2 y Baseline 2 y

1 19 M Fall Burst fracture C6 A C5/C4 13/13 16/16 12/12 15/15 8/11 11/11 4 22 0 0

2 23 M Fall Dislocation fracture C6-C7 B C7/C6 18/20 18/15 34/35 35/35 21/21 27/44 23 70 0 3

3 70 F Fall Myelopathy T6-T12 B T10/T10 37/38 33/32 40/38 35/39 27/25 43/38 41 16 0 0

4 75 M Fall Dislocation fracture T12-L1 D T12/T12 52/50 NAa 56/55 NAa 50/50 NAa 60 NAa 0 NAa

5 44 M Fall Herniated disk L3-L4b D T11/T11 56/53 52/46 56/51 56/50 48/41 50/45 84 100 0 0

6 42 M Fall Anterolisthesis of C6 relative to C7 A C5/C5 10/10 9/8 13/14 10/11 11/12 13/13 18 41 0 0

7 71 M Fall Flexion-distraction fracture C6-C7 B C7/C8 16/20 14/11 42/43 36/30 17/35 44/46 17 43 0 0

8 20 M MVA Dislocation fracture C5-C6 A C5/C5 10/9 9/9 10/11 27/18 9/12 9/12 4 39 0 3

9 30 M MVA Dislocation fracture C6-C7 B C7/C8 17/18 15/15 33/31 37/35 23/24 23/24 38 40 0 4

10 52 M Fall Flexion-distraction T9-T10 D T9/T9 45/44 45/45 48/47 47/47 49/49 49/50 84 100 0 0

11 47 M MVA Dislocation fracture C6-C7 D C5/C4 53/51 56/40 52/52 56/43 48/39 49/35 99 100 0 7

12 29 M Fall Flexion-distraction T12-L1 A T11/T11 44/44 34/35 43/43 38/38 30/30 31/31 52 68 0 0

13 70 M MVA Dislocation fracture T11 A T7/T7 28/37 32/31 35/37 36/36 25/25 25/25 18 54 0 8

14 52 M MVA Dislocation fracture C6-C7 B C6/C6 19/19 25/19 32/33 30/30 13/13 20/20 16 20 0 6

15 68 M Fall Spinal compression C3-C4 D C4/C4 25/27 49/48 30/30 56/56 46/45 50/50 100 100 0 7

Abbreviations: AIS = American Spinal Injury Association Impairment Scale; ID = identification; max = maximum; MVA = motor vehicle accident; NA = not applicable; SCIM = Spinal Cord Independence Measure.
a Patient died by natural cause before 24-month follow-up.
b Although level of injury was at L3-L4, the patient presented with motor and sensory deficits below T11.
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greater decreases in the MT within GM in the right M1 over 6
months (p = 0.006, z score = 3.75, cluster extent 27), and
greater WM volume loss within the right cerebellum at 6
months (p = 0.002, z score 3.80, cluster extent 95).

Prediction of clinical outcomes
A better lower extremity motor score at 2 years was associated
with a smaller decrease in cord area (figure e-1, links.lww.
com/WNL/A314), a smaller decrease in WM volume at the
level of the medullary pyramid (i.e., CST) and pons, and
a smaller decrease in MT in the sensorimotor cortex, bi-
laterally over 6 months. A better SCIM score at 2 years was
associated with a smaller decrease in MT in the somatosen-
sory cortex, bilaterally over 6 months. A worse 2-year pinprick
score was associated with a greater loss in cord area (figure e-
1) and an increase in R2* in the right cerebellum and right
ACC over 6 months. Greater increases in neuropathic pain
intensity were associated with greater R2* increases in the
right S2, in left ACC, and the cerebellum, bilaterally over 6
months (table e-2, links.lww.com/WNL/A315; figure 3).

Discussion
This study characterized progressive changes in macroscopic
andmicrostructural MRImarkers of neurodegeneration in the
spinal cord, which continue for at least 2 years post trauma.
Crucially, while volume changes slow down at the level of

injury, both macroscopic and microstructural measures of
neurodegeneration show sustained changes, as a linear func-
tion of time, in the spinal cord and brain. The magnitude of
neurodegeneration at the level of the spinal cord, brainstem,
and cortex over the first 6 months predicted clinical outcome
at 2 years, independently of early clinical changes.

Signs of neurodegeneration above the level of injury occur
with distinct temporal and spatial patterns over the 2 years
after acute SCI. At the cord level, the decrease of cord area and
LRW, potentially reflecting retrograde changes in the CSTs,24

decelerated over 2 years, while the APW, potentially reflecting
ongoing wallerian degeneration in the posterior columns,24,25

showed sustained changes. Further upstream, atrophy oc-
curred within the motor, sensory, and limbic systems, with
acceleration of volume loss within the cerebellum. However,
changes in volumetric measures reflect an accumulation of
pathologic processes and are therefore insensitive to in-
dividual disease processes. We found clear evidence that
quantitative markers of myelin and iron change continue over
time, reflecting progressive myelin changes12 and iron accu-
mulation.13 Crucially, sustained changes in myelin-sensitive
MT were expressed in the spinal cord and leg area of M1—
demonstrating continuous myelin changes within WM and
GM9 in the absence of macroscopic changes.26 This finding is
supported by a previous serial diffusion tensor study that
showed progressive diffusivity changes across the CST8 fol-
lowing acute SCI. Changes in microstructure might also

Table 2 White and gray matter atrophy and microstructural changes

Rate of change differences between SCI and controls in
brain regions p Value z Score Cluster extent x (mm) y (mm) z (mm)

WM (CST–medulla oblongata) 0.001 5.48 542 −2 −41 −69

WM (CST–cerebral peduncle) 0.002 4.04 497 −9 −17 −27

WM (CST–right internal capsule) 0.043 3.46 184 23 −24 11

WM (vermis of cerebellum) <0.001 4.62 692 −6 −45 −27

WM (medulla oblongata) <0.001 5.63 1,920 2 −50 −51

GM (right thalamus) 0.047 4.05 122 3 0 −9

GM (left insula) <0.001 4.70 273 −38 −9 −23

GM (ACC) 0.001 4.07 310 −2 41 −5

MT-GM (M1/S1) 0.047 3.49 19 2 −33 62

R2*-GM (left thalamus) <0.001 3.40 46 −27 −32 8

R2*-GM (right thalamus) 0.002 3.47 29 17 −35 5

Acceleration/deceleration differences between SCI and
controls in brain regions

Acceleration of WM (left cerebellum) 0.018 3.53 104 −26 −68 −21

Deceleration of MT in WM (right cerebellum) <0.001 3.82 59 −27 −56 −47

Abbreviations: ACC = anterior cingulate cortex; CST = corticospinal tract; GM = gray matter; M1 = primary motor cortices; MT = magnetization transfer
saturation; R2* = effective transverse relaxation rate; S1 = primary sensory cortices; SCI = spinal cord injury; WM = white matter.
Only clusters with significant rates of change between patients and controls are shown.

e1262 Neurology | Volume 90, Number 14 | April 3, 2018 Neurology.org/N

http://links.lww.com/WNL/A314
http://links.lww.com/WNL/A314
http://links.lww.com/WNL/A315
http://neurology.org/n


Figure 2 Longitudinal changes in brain volume, myelin, and iron shown by longitudinal voxel-basedmorphometry (A) and
voxel-based quantification (B)

(A, B) Overlay of statistical parametric
maps (t values uncorrected p < 0.001,
shown for descriptive purposes, masked
by the union of regions of interest)
showing regions of volume changes in
GM volume (in blue), and WM CST vol-
ume (yellow), WM excluding the CST
(red), MT (cyan), and effective transverse
relaxation rate (in green). Corresponding
structural trajectories are shown for local
effects in voxel-based morphometry and
voxel-based quantification ([C.a] CST, [C.
b] anterior cingulate cortex, [C.c] thala-
mus, [C.d] sensorimotor cortex). Note
that black, solid lines depict the fitted
model; blue and red points and lines
show observed individual longitudinal
data for controls and patients, re-
spectively. CST = corticospinal tract; GM=
graymatter;MT =magnetization transfer
saturation; R2* = effective transverse
relaxation rate; SCI = spinal cord injury;
WM = white matter.

Neurology.org/N Neurology | Volume 90, Number 14 | April 3, 2018 e1263

http://neurology.org/n


reflect ongoing activity-dependent structural changes
(i.e., reorganization) as seen after intensive training.27 Of in-
terest, GM atrophy within the thalamus was accompanied by
increasing iron levels (i.e., R2*). Such iron accumulation may
be indicative of myelin breakdown triggered by oxidative
stress and chronic inflammation28,29 leading to a release of
iron.30,31 Within the cerebellum, accelerated volume decline
was associated with deceleration in myelin-sensitive MT,
reflecting ongoing processes in the context of compensation,
decompensation, and the compounding of functional
deficits.2

The magnitude of neurodegeneration within the spinal cord,
cerebellum, and leg area of M1 are driven by the rostrocaudal
level of injury because a lesion of the cervical cord affects the
structural integrity of a higher number of fibers and neurons
than a comparable thoracic lesion.24,7 Larger cohorts and
longer time intervals might offer further clues as to whether
the rate of neurodegeneration can be predicted by the level
and severity of injury. Finally, inflammation29 leading to
subsequent swelling of neuronal tissue might have biased
morphometric measurements toward initial increases in area
and volume. To resolve this issue, future serial investigation
needs to sample at higher frequency to disentangle the re-
lationship between inflammation (i.e., tissue swelling) and
atrophy (i.e., tissue shrinkage), informed by monitoring in-
flammatory markers in the CSF.32

Clinical recovery occurs most rapidly within the first 6 months
and levels off, at the latest, after 2 years.1 We used changes in
the macroscopic neuronal tissue compartments, together with
measures of myelination and iron content, to provide greater
insight into the complicated relationship between neuronal
changes33,34 and clinical recovery. While clinical recovery
leveled off at 2 years, neurodegeneration continues beyond
this point. Of note, we show a close association between

slower longitudinal changes in the progression of macroscopic
and microstructural integrity and better 2-year clinical out-
come, independent of early clinical changes. Less neuropathic
pain was related to less myelin reduction and less iron
accumulation in the brain areas that have been previously
identified as hotspots for altered pain processing in patients
with chronic SCI.7 The fact that these associations hold their
significance after correcting for the initial clinical changes
suggests that the neuroimaging biomarkers significantly adds
to the predictive potential of clinical measures of recovery.35

However, these early MRI changes cannot inform treatment
regimens that could improve patient care during their hospital
stay.

This study has some limitations. It is worth mentioning that
this explorative study is based on observing patients without
a priori power calculation. However, we hope that our find-
ings on SCI disease progression might inform more com-
prehensive prospective studies in near future. Despite existing
histologic evidence that both MT and R2* markers associate
with their biochemical counterparts,12,13 they remain indirect
markers of myelin and iron deposition. We therefore cannot
exclude a partial contribution of unexplored physiologic/
cellular processes occurring after SCI. Moreover, unobserved
latent lifestyle or genetic factors differentiating patients with
SCI from controls a priori cannot be precluded based on
applied standardized neurologic tests. Because of the serious
clinical condition of the neurologic patients, the image ac-
quisition was delayed by about 50 days on average. This
clearly limited our ability to explore early injury-induced
neuronal changes. However, our goal to assess mid- to long-
term progression trends over years is unlikely to be affected by
this short-term shift (of typically less than 6%) of the overall
longitudinal acquisition interval. Our sample size was small,
but compliance was very good given the severity of the dis-
order. Effectively, this resulted in 4.7 MRI scans per person,

Figure 3 Correlation between brain MRI changes at 6 months and 2-year clinical outcome (t values uncorrected p < 0.001,
shown for descriptive purposes, masked by the union of the regions of interest)

Better lower extremity motor score (Lems) (yellow) at 2 years was associated with greater volume (brainstem) and a smaller decrease in MT (sensorimotor
cortex) over 6 months. Better functional independence score (Scim) (red) was associated with a smaller decrease in MT in the somatosensory cortex,
bilaterally. A worse pinprick (PP) (blue) score at 2 years was associated with increases in R2* in the right cerebellum and right ACC over 6 months. Greater
increases in neuropathic pain intensity score (green) was associated with greater R2* increases in the right secondary sensory cortex, in left ACC, and the
cerebellum, bilaterally over 6months. Note that not all clusters are shown, but are presented in Table e-1. ACC = anterior cingulate cortex;MT =magnetization
transfer saturation; R2* = effective transverse relaxation rate; SCIM = Spinal Cord Independence Measure.
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which is comparably high for longitudinal neuroimaging
studies. The potentially confounding effect of upgrading the
MRI scanner is mitigated by virtue of acquiring data from
patients and controls before and after upgrade, allowing us to
account for the upgrade effect (common to both cohorts).
Given the fact that we were using novel imaging markers, we
were not able to assess the extent of measurement error for
the outcome measures.36–39 However, this does not invalidate
our presented group comparisons and significant findings: it is
possible that, in the future, variability caused by measurement
error may be reduced, in which case requisite sample sizes
would be smaller, reflecting the reduced measurement noise.
Crucially, our results were based on the group level analysis.
Given that image-based markers are noisy, considering, for
example, a voxel or ROI of one image modality separately,
limits the potential for accurate predictions about individuals.
In the future, we therefore hope to exploit the potential of
multivariate methods for accurate individual-level clinical
predictions of disease progression using multimodal and
spatially distributed patterns in larger, pooled SCI samples.40

Our findings illustrate the progressive and enduring neuro-
degenerative and plastic processes induced by SCI, high-
lighting a temporally structured neurodegenerative process
that encompasses the spinal cord and brain.2 The changes
revealed by neuroimaging are sufficiently large, systematic,
and predictive to render them viable candidates for assessing
the effects of treatment, including rehabilitation.
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Study question
What is the progression of longitudinal microstructural changes inMRI scans
over 2 years following acute spinal cord injury (SCI)?

Summary answer
SCI patients show volumetric declines, and progressive alterations in spinal
cord, cortical and subcortical measures of myelination and iron-accumulation
compared to controls. Various 6-month MRI changes can predict 2-year
clinical outcomes.

What is known and what this paper adds
Recovery from SCI follows a largely unknown mid-to long-term trajec-
tory, especially for microstructural aspects such as myelination and iron
accumulation. This study provides longitudinal evidence (with 5 scans
within patients) for cord and brain progression over 2 years after injury
and evidence that the changes detected on structural MRI data between
baseline and 6 months post-SCI can predict long-term outcomes.

Participants and setting
This study enrolled 15 consecutive adult patients with traumatic SCI
from Zurich’s University Hospital Balgrist between September 2010 and
July 2015. The study also enrolled 18 adult healthy controls with no
histories of head or brain lesions or any neurologic or mental disorders.

Design, size, and duration
The MRI protocol involved 3-dimensional whole-brain and cervical cord
morphometric measures as well as novel myelin- and iron-sensitive imaging
markers captured at 3T. Longitudinal voxel-based analysis within regions-of-
interest were then calculated. (Non-)linear progression in the patients were
compared to those in the healthy controls. The clinical assessments included
tests for motor skills, sensory impairment, and multiple aspects of pain.
Regressionmodels were used to detect associations betweenMRI structural
observations 6 months post-SCI and clinical outcomes 2 years post-SCI.

Primary outcomes
Clinical recovery (including neuropathic pain) at baseline, and 2, 6, 12,
and 24 months after injury.

Main results and the role of chance
The majority of patients showed clinical improvement with recovery stabil-
ising at 2-year. Cord atrophy decelerated, while cortical white and greymatter
atrophy progressed over 2-year. Myelin content in the spinal cord and cortex
decreased progressively over time, while cerebellar loss decreases decelerated.
As atrophy progressed in the thalamus, sustained iron accumulation was

evident. Smaller cord and cranial corticospinal tract atrophy—and myelin
changes within the sensorimotor cortices by 6-month predicted recovery in
terms of lower extremity motor score at 2-year. Greater cord atrophy and
microstructural changes in the cerebellum, anterior cingulate cortex and
secondary sensory cortex by 6-month predicted worse sensory impairment
and greater neuropathic pain intensity at 2-year.

Bias, confounding, and other reasons for caution
The study lacked any a priori power calculations, and the sample size
was relatively small. Myelination and iron deposition were measured
indirectly.

Generalizability to other populations
Because this study involved group-level analysis of noisy imaging data, the
results cannot be used to accurately predict outcomes in individual patients.
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