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Abstract: In recent years, bioenergy policies have increased the competition for land as well as the
risk of adverse environmental impacts resulting from deforestation and greenhouse gas emissions
(GHGs). Primary land-use objectives confronting society today include meeting the growing demand
for agricultural products, especially energy crops, preserving essential ecosystem services for human
well-being and long-run agrarian production, and contributing to the climate policy target. Here,
future agricultural, societal and environmental consequences of bioenergy policies under different
global climate and societal development scenarios were assessed using a novel Forest and Agricultural
Sector Optimization Model for Nigeria (NGA–FASOM). The results reveal that, in Nigeria, meeting
emission reduction requires an implementation of a minimum carbon price of $80/ton within the
forest and agricultural sectors. A carbon price alone is not sufficient to preserve the remaining forests
and pasture land in Nigeria when bioenergy is subsidized. Furthermore, the result shows that subsidy
on bioenergy does not have any significant effect on the total social welfare. The findings in this study
provide a guide for policymakers in designing appropriate policies addressing bioenergy industry
issues in Nigeria.
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1. Introduction

One of the most significant challenges for sustainable development today is how to manage limited
land resources to achieve an optimal balance between market commodities production, especially
food production, and provision of non-market services. To meet the growing demand for agricultural
products while preserving essential ecosystem services on which human well-being depends, various
government policy actions are implemented. Many countries, including Nigeria, initiated different
bioenergy policies with the underlying aim of decarbonizing their economy [1–5]. Current bioenergy
policies in Nigeria include the Renewable Electricity Policy Guidelines (REPG, 2006), the Renewable
Electricity Action Program (REAP, 2006), the Nigerian Biofuel Policy and Incentives (2007), and others.
These Nigerian bioenergy policies are in line with the United Nations Framework Convention on
Climate Change entitled National Adaptation Strategy and Plan of Action on Climate Change for
Nigeria (NASPA–CCN) as part of its commitment to the Global Climate Action Plan [6]. There is
agreement that the mitigation efforts and investments over the next two to three decades will have a
substantial impact on opportunities to achieve lower stabilization levels of greenhouse gas emissions
(GHGs) [7]. Controversial opinions exist, however, about the feasibility of a decarbonized economy
with current policies. Many studies have debated the expected results of different bioenergy mandates,
which include its risks as related to indirect land-use impact concerning GHGs, food security, land
grabbing, etc. [7–12].
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In scenario assessments with high demand for crop-based bioenergy, food production is often
achieved by a substantial expansion of cropland area [13]. The projected global demand for
transportation fuel in 2050 requires about twice the land used to meet food demand under the
presumed 70% increase in per capita food demand [14]. Thus, in developing bioenergy policies,
the inclusion of land-use change (LUC) impacts is necessary [15].

Many developed countries and emerging economies have implemented biofuel development
initiatives; for instance, the European Union, United States of America, Brazil, etc. The adoption of
similar actions in Africa requires a proper assessment of the complex and heterogeneous interactions
between land use, society and environment. Currently, bioenergy policy impact assessments in Africa
involve only low-resolution studies or studies with limited scope. In Nigeria, however, significant
emphasis is placed on researching bioenergy potential. Integrated assessment review studies have
drawn their policy recommendations from reviews on modeling studies done in other countries. These
assessments have been made neglecting the uncertainties from the economic perspective of bioenergy
policies and only taking into consideration spatial and technological assessment methods, with little
impact scope [16].

Few studies shed light on LUC implications for Nigeria with a broader scope and higher-resolution
modeling framework [17]. Existing model-based studies on various energy demand and supply
pathways for Nigeria are limited by a low range and a coarse resolution [18]. While trade had
internalized agricultural products and welfare distribution, environmental impacts are not internalized.
Appropriate policies should be drawn from detailed scientific-modeling studies because their effects
can be heterogeneous.

To study bioenergy policies in Nigeria in a more comprehensive way, we develop here a
novel Forest and Agricultural Sector Optimization Model for Nigeria (NGA–FASOM). It is a partial
equilibrium model that combines complex natural conditions for agricultural and forest production
and aggregate commodity-market demand functions. It integrates engineering, geographical and
economical methods in addressing policy recommendations regarding bioenergy deployment. One of
the novelties of this modeling work is that it is among the few models of its kind that adequately
capture the biophysical aspect of oil palm as a bioenergy feedstock/crop by incorporating the model
output of [19]. The objectives of this study are to show trajectories of the future agricultural, societal,
and environmental outcomes of various bioenergy policies in Nigeria under different global climate
and societal development scenarios.

2. Methodology and Data

2.1. Description of Forest and Agricultural Sector Optimization Model for Nigeria (NGA–FASOM)

The Nigeria Forest and Agricultural Sector Model (NGA–FASOM) is a bottom-up approach
economic model which implies that supply is formed from the bottom (land cover, land use and
management systems) to the top (markets/trade/demand) (see Figure 1). NGA–FASOM is a recursive
dynamic partial equilibrium model which integrates bioenergy production processes, crop products as
well as livestock and forestry products. All land-cover types are explicitly represented in the model
across each time horizon. The optimal decision in time-step t depends on decisions that the agents
have taken in time-step t − 1. When each new time-step starts, the conditions for land use are updated
using the solutions of the simulations from the previous time-step. NGA–FASOM is brought up to
date for each time step using exogenous drivers such as population and bioenergy policies. Bioenergy
conversion processes in the model are also well represented according to the conversion processes,
technological cost, conversion efficiencies and their corresponding co-product.

The model design concept and structure is similar to the US Agricultural Sector and Mitigation of
Greenhouse Gas (ASMGHG) model [20], and its derivative the Global Biomass Optimization Model
(GLOBIOM) [8]. Market equilibrium is computed by choosing land use, processing, and trade activities
which maximize the sum of the producer and consumer surpluses as stated in the objective function
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(W) subject to resource, technological and policy constraints (see Appendix A for model equations) [21].
In NGA–FASOM, agricultural production faces a downward-sloped commodity-demand function (see
also Appendix A). Land-use equations are part of the block equations of NGA–FASOM. To restrict
extreme specialization in the model, we implemented the so-called crop mix equation which makes
the share of each crop mimic and stay within observed bounds. NGA–FASOM is based on the decision
and rational theory [22], consumer economics and law of demand [23], resource economics and law of
supply [21,22], as well as market equilibrium with trade [23–26]. Market prices and resource values
are endogenous outputs of the model. The model comprises 36 states of Nigeria plus the federal
capital territory. Trade with other countries is kept exogenous. Here, a spatial equilibrium approach
following [20] is used. Therefore, trade and demand adjustments occurred at the 37 economic units of
the model according to marginal production prices and transportation cost assuming homogeneous
goods across states. We represented the following bioenergy conversion processes in the model:
combined heat and power production, heat, fermentation of ethanol, power and gas production,
and gasification for methanol and heat production. NGA–FASOM is solved for 5 decadal time steps
(2011–2050). For more details about the model structure and philosophy see [8,20,21,27,28].
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2.2. NGA–FASOM Baseline

The NGA–FASOM baseline model is calibrated to reference data through a physical gap
parameter and a linear activity cost adjustment. The gap parameter corrects data deficiencies and
implicitly depicts all model-exogenous activities. For example, NGA–FASOM depicts eight important
agricultural crops. Resources used by other crops are exogenous to the model and are assigned to the
gap parameter. The linear cost adjustment is performed such that at baseline activity levels, marginal
cost equals marginal revenue according to microeconomic theory. The model assumes a $200/ha and
$500/ha cost for crop management change (CMC) and LUC respectively [29]. Furthermore, we assume
constant cost functions throughout the entire model horizon. The LUC impacts of the Nigeria REPG
(2006), REAP (2006), and the Nigerian Biofuel Policy and Incentives (2007) are assessed in comparison
to a policy baseline with and without emission tax. The baseline represents the way Nigeria develops
between 2011 (the model base year) and 2050 with our modeled bioenergy policy mix and no tax on
GHG emissions. We chose 2011 as the baseline because the National Bureau of Statistics of Nigeria
provides state-level data for this year on crop areas and crop yields, commodity-market indicators,
population, consumption patterns and exchange rates. Population is assumed to increase continuously
until 2050 with a growth rate equal to the averaged growth rate for the past 10 years in each state.
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The assumption and calculation result is in line with the projected population of Nigeria according
to [30]. Food commodity-demand functions are shifted in proportion to population growth. Other
factors that influence demand for land-based products, e.g., Gross Domestic Product (GDP) and dietary
patterns, are not explicitly modeled in this study because of insufficient data availability.

2.3. NGA-FASOM Scenarios

The main driving forces for the scenarios are the bioenergy mandates as stipulated in the Nigeria
REPG (2006), REAP (2006), the Nigerian Biofuel Policy and Incentives (2007), and the National
Renewable Energy and Energy Efficiency Policy (NREEEP, 2015). Tax abatement is modeled as a
subsidy which implies a reduction in the producer’s price of bioenergy products. Electricity demand
from biomass is 2273.08 GJ, 11,560.10 GJ, 16,201.61 GJ, 16,201.61 GJ by 2020, 2030, 2040 and 2050,
respectively [31]. Bio-diesel demand is planned at 900 million liters for 2020, 2030 and 2040 [32].
Ethanol demand is 2 billion liters by 2020, 2030, 2040, 2050 for the gasoline 10% ethanol blend ratio
(E10) requirement [32]. The assessed bioenergy support instruments include: (a) a 50% subsidy
at the price of $0.044097/GJ for electricity; and (b) a 50% subsidy for biodiesel and ethanol at the
price of $0.88/L. As an incentive to reduce GHG emissions from deforestation, we implemented and
compared three carbon tax levels of $40, $80 and $120 per ton of carbon. The combination of carbon
tax and bioenergy subsidies resulted in eight scenarios, which were simulated and compared to the
baseline of the bioenergy mandate. This analysis does not intend to evaluate the feasibility of Nigerian
government policies on the bioenergy target incorporated in the study. Instead, the scenarios aim to
assess the impacts of different policy actions on the LUC, GHG emission and agricultural welfare, with
future welfare being discounted at 5% following [33,34], and including the implications for Nigeria
under constrained technology. Our approach is in line with the findings of the Intergovernmental
Panel on Climate change (IPCC) [34], that the mitigation response of implementing carbon pricing
is consistent across models and studies. The opportunity costs of carbon sequestration (break-even
carbon price) for most countries in Africa is still unknown. In this study, the base year was calibrated
using the above carbon prices to help give more insight into the implications of the different carbon
prices for the case of Nigeria.

2.4. Data

Land resources are the only resources explicitly incorporated in the current version of the model; this
is crucial to this modeling. To enable regional biophysical process characterization modeling of agricultural
and forest production, a detailed land delineation was used [29]. The land-cover/land-use data of the
forest and agricultural area of Nigeria used is a combination of [30] and [31]. Three different land-cover
types were represented; forest land, grassland and cropland. The crop species disaggregation was
done using the crop-area statistical estimates from the National Bureau of Statistics of Nigeria at the
state level. The study chose to use remotely sensed data and survey statistics as a scaling factor in
disaggregation since political and economic pressure, combined with inconsistencies in reporting,
often results in over/underestimates of the quantity of agricultural land. Government statistics
underestimate agrarian area as well as the rate at which it is converted to non-agricultural use (see
also [32]). The biophysical model outputs used include those of the Environmental Policy Integrated
Climate Model (EPIC) [33] and the Agricultural Production Systems Simulator oil palm (APSIM) [19,34].
To explore different biophysical model output scenarios with the IPCC Representative Concentration
Pathway 4.5 (RCP4.5) scenario, three productivity pathways are considered which include subsistence
agriculture, low input, and high input (see Table 1 and [19] for a detailed description of the input
assumptions). In total, 8 crops were represented in the model; cassava, corn, cotton, dry beans,
millet, oil palm, rice, and sugarcane. The IPCC tier 3 digestion and metabolism model for ruminants
(RUMINANT) model output was used for livestock production representation in the model [35]. In the
current version of NGA–FASOM, we incorporated the updated International Livestock Research
Institute/Food and Agriculture Organization (FAO) production systems classification. Twelve
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livestock production systems from this nomenclature were represented: livestock-only systems,
arid and semi-arid (LGA); livestock-only systems, humid and sub-humid (LGH); livestock-only
systems, hyper-arid (LGHYP); livestock-only systems, highland/temperate (LGT); irrigated mixed
crop/livestock systems, arid and semi-arid (MIA); irrigated mixed crop/livestock systems, humid
and sub-humid (MIH); irrigated mixed crop/livestock systems, hyper-arid (MIHYP); rain-fed mixed
crop/livestock systems, arid and semi-arid (MRA); rain-fed mixed crop/livestock systems, humid
and sub-humid (MRH); rain-fed mixed crop/livestock systems, hyper-arid (MRHYP); rain-fed mixed
crop/livestock systems, highland/temperate (MRT); built-up areas (URBAN); and, root-crop based
and root-based mixed systems (Others) [36,37]. Seven livestock products are present in the model;
cow meat, cow milk, pig meat, poultry meat, poultry eggs and sheep and goat meat. We also used
the output of the Global Forest Model (G4M) model for that of the forestry sector [38]. The forest
products considered consist of saw logs, pulp logs, other industrial logs, traditional fuelwood, and
biomass for energy. Biomass, pulp logs and saw logs further undergo processing for their respective
bioenergy products. The processing cost and conversion coefficients for both forest and crop biomass,
and crop to ethanol and/or methanol are sourced from [39–41] and Brunus Enterprises Nigeria Ltd.
To enable quantitative comparison, all energy products were converted to gigajoules. LUC and
livestock CO2-equivalent emissions are derived from [8]. Market data are sourced from the National
Bureau of Statistics of Nigeria, FAO and from literature. Where market data is available at the national
level, disaggregation using state population was done. For more details on each of the input data, see
appropriate citations above.

Table 1. Input assumption for the different productivity pathways. Adapted from [42].

Productivity Input Pathways Crop Management

Fertilizer Adjustment Other Input Adjustment

High Yes Yes
Low No Yes

Subsistence No No

2.5. Model Uncertainties

The study model, NGA–FASOM is robust to input data; therefore, our analysis relies on the
available data which are plausible but might be a potential source of uncertainty. Future climate and
socioeconomic development pathways could be another source of uncertainty in the model.

3. Results and Discussion

3.1. Land-Use Change Implications of Bioenergy Policy in Nigeria

The relative area for bioenergy feedstocks becomes evenly distributed when the carbon tax
is implemented (Figures 2 and 3). The oil palm area is slightly larger with a low and high tax
scenario when there is subsidy action (Figures 2 and 3). The percentage change in land-use area
by 2050 compared to the base year of our model run shows that all the grassland area will be
converted to cropland across all model scenarios after the first model horizon. In all the scenarios,
the land-use change trajectory goes from cropland and grassland to forest within the first two decades
and afterwards entirely from forest and grassland to cropland by 2050. The introduction of carbon
tax shrinks the total area of oil palm (Figures 2 and 3). About 4.94% of the forest area will remain
forest under zero carbon taxation and carbon price of $40/ton. When carbon tax above $40/ton is
implemented, however, all the area will be converted to cropland. Interestingly, the study found that
carbon tax alone even with a relatively high conversion cost ($500/ha) of forest to another land-use type
is not sufficient to retain the existing forest area in Nigeria. A sensitivity analysis revealed that Nigerian
policymakers should place a much higher conversion cost for converting forest to other land-use types
in order not to allow the conversion of the remaining forest area to cropland due to bioenergy policy
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action. This result suggests that farmers are rational decision makers. However, several caveats
are worth commenting. For instance, land-use change restriction strategies, e.g., carbon pricing
(market-based instrument) are not appropriate for ecosystem conservation in Nigeria. Our result is in
agreement with that of [43], that market-based instruments can be controversial and may not signify
the setting as a priority of nature conservation. We further argue that multiple policy actions should be
put in place to enable the realization of the multiple objectives. If nature conservation takes precedence
for policymakers, facilitation of effort to map protected areas should follow alongside the bioenergy
mandates. Conservation instruments such as payment schemes and tradable land-use permits need
to be implemented. The study result also demonstrates that policymakers will be required to make
trade-offs between bioenergy production and nature conservation as the cost of carbon alone cannot
offset the profitability of subsidized bioenergy. High-incentive payments like payment for ecosystem
services (PES) and reduced transaction costs can improve the outcomes of forest conservation [44].
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The argument behind this is that the physical process of sequestering carbon can take several
years; the cost of carbon sequestration cannot be estimated without making assumptions (implicitly or
explicitly) about its fate over time [45]. This creates a massive vacuum for uncertainty although we
assume that the price of carbon remains constant in real time. The opportunity cost of converting land
from its current use to one with higher carbon sequestration may not be profitable when comparing
the rate of sequestration in the agricultural area that has been converted.

The study also finds that subsidy for the bioenergy industry in Nigeria does not mean that some
feedstock will have comparative advantages over others. The share of the total area for oil palm
in the baseline scenario will substantially become higher by 2050 compared with other feedstocks.
But when the carbon tax is implemented the other feedstocks will come into play in the bioenergy
feedstock mix as shown in Figures 2 and 3. This is also replicated in the total agricultural crop area
(see Figures 4 and 5).
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3.2. The Effect of Direct and Indirect Land-Use Change Greenhouse Gas Emissions (GHGs) as a Consequence of
Bioenergy Policy Mix

Total potential GHG emissions of the bioenergy scenarios (no carbon tax, low carbon tax, moderate
carbon tax, and high carbon tax) for both subsidy and no subsidy action (Figures 6 and 7) indicate
that the use of emission tax is an appropriate instrument for Nigeria if emission reduction is to be
achieved when compared to the baseline scenario of zero-emission cost. Therefore, implementation of
a carbon tax is essential for the slope of the land-use change emission supply function. Nevertheless,
policies that could allow a win–win situation are needed. We further argue that policies should aim
at subsidizing landowners for their below- and above-ground biomass because vegetation carbon
transpiring in the first two-time horizons of our result is very likely. This might happen because there
are no incentives to keep land-use areas such as grassland and shrubland. However, challenges such as
the proper measurement of below-ground biomass are an open research area for scientists. The result
of this study concurs with the consensus that carbon pricing will be a useful strategy for meeting the
Paris Agreement [46].
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Figure 7. Total GHG emissions under no subsidy action.
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As shown in Figures 8 and 9, the indirect land-use change emissions reduction will only be
feasible if a carbon price of a minimum of $80/ton is implemented. The calculation of LUC emissions
is based on the assumptions from [8], that agricultural practices do not have an impact on soil carbon
emissions, and deforestation is defined as the expansion of cropland into the forest, so the total carbon
contained in above- and below-ground biomass is emitted. The study result shows that a substantial
amount of emission could be saved by implementation of a carbon tax whether there is a subsidy on
bioenergy production or not. However, another interesting point from this result is the break-even
carbon price of $80/ton. The result shows that support for the bioenergy industry does not have any
substantial effect on LUC emissions. NGA–FASOM is subject to limitation based on data availability.
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One of these limitations includes the limited data on crop-management system areas in Nigeria.
This deficiency leads to an improper representation of the crop-management system within the
crop-mix equation where we restricted the crop area to mimic the crop area share of the observation.
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On a sensitivity analysis, we find that a negative indirect land-use change GHG emission is
achievable with the implementation of a carbon tax of $40/ton if, and only if, the Nigerian government
places a land-use conversion cost of $10,000/ha with or without subsidy on the bioenergy industry.

3.3. Implications of Bioenergy Subsidies on Food Prices, Total Welfare and Bioenergy Consumption Pattern

The results reveal that combining a volume mandate with a carbon price policy does not
provide any substantial change in bioenergy consumption due to the energy products’ elasticity
(see Figures 10–13). Instead, at optimal control, a carbon tax tends to favor the disposable income
with regards to bioenergy at the expense of other competing agricultural products. Our results reveal
that by 2050 the biofuel and bioelectricity consumption trend by states showed very little difference
across the three tax scenarios with or without a subsidy on bioenergy (see Figures 10–13). Kogi state
showed the highest consumption share when a carbon price is implemented in scenarios for both
biofuel and bioelectricity by 2050. Bayelsa state consumes the highest bioenergy when there is no
carbon tax, and decreases its consumption share by almost a factor of 5 with the introduction of a
carbon tax. Putting this into perspective, one could translate this into changes in land use, principally
those associated with deforestation of the mangrove forest, land-use change emissions cost and the
trade cost with other states due to proximity challenges. The result also replicates the same issue as
with Bayelsa state in the case of Akwa Ibom state with a factor of 4 when a carbon tax is implemented.
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The study result also shows that a subsidy does not have any significant effect on the total welfare
due to deadweight loss (Figures 14 and 15). The economic inefficiency caused by the grant is because
of the cost of enacting the government support, which is more than the marginal benefit of the subsidy
to the producers and consumers.
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Our result shows that the bioenergy policy target in Nigeria will translate to very high food prices
by 2050 under all the scenarios with or without a carbon tax (see Figures 16 and 17). This result is in
accord with that of [47]. The food-price dynamics across the model horizon as seen in without subsidy
scenarios (Figure 17) are caused by the land-use change trajectories.
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4. Conclusions and Policy Implications

Public support for bioenergy deployment is widely debated, and it is agreed that the substitution
of traditional fossil-fuel energy sources by bioenergy can provide benefits for energy security and
potential for GHG mitigation. However, the rapid expansion of biofuels production from some
feedstocks (e.g., oil palm) has raised concerns regarding land use and the implications of cropland
expansion for net GHG emissions. Thus, the focus for future bioenergy use has shifted toward
second-generation feedstocks that may alleviate these issues of converting forest land to cropland.
However, there are some technological and logistical hurdles to overcome before second-generation
feedstocks can be used to generate large quantities of bioenergy at competitive costs [48]. Conclusions
from this study are that market-based instruments such as a carbon tax alone are not sufficient for
preserving the remaining forest area in Nigeria. Therefore, political willingness to support an infant
industry such as the bioenergy industry have to couple a carbon tax with conservation instruments
such as Payment for Ecosystem Services (PES). NGA–FASOM showed that, to achieve a negative
GHG reduction in the forest and agricultural sector in Nigeria, a carbon tax above $80/ton is required.
In Nigeria, a subsidy on bioenergy products does not have any significant effect on total social welfare.
Another general conclusion that emerges from this study is that a subsidy on the bioenergy industry
in Nigeria does not translate into any substantial comparative advantage on bioenergy feedstocks.
Furthermore, bioenergy consumption will not be significantly affected by a subsidy. In addition, we
conclude that following the stipulated bioenergy mandates will cause a substantial hike in food prices
in Nigeria. We recommend further studies to look at the potential and realization of the bioenergy
targets as stipulated above using second-generation feedstocks and placing a physical restriction on
land-use change.
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Appendix A. Model Equations

W = ∑
t


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+ ∑
r,a,m

(ct,r,a,m · Lt,r,a,m)

+ ∑
r,̃r,y

(
ct,r,̃r,y · Tt,r,̃r,y

)
+∑

r,m
(ct,r,_,m · Pt,r,m)


−

 +∑
r,i
(
∫

φt,r,i(St,r,i)dSt,r,i)

+ ∑
r,u,ũ
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Linearization Equations
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Table A1. Description of Variables, Parameters, Functions and Indices.

Variable Description Unit

W Welfare million USD
D Domestic demand quantity 1000 tons
S Domestic supply quantity 1000 units
T Trade quantity 1000 tons
A Land-use activity 1000 ha
L Livestock production activity 1000 units
P Processing activity (also used to depict product substitutions) 1000 units
E Environmental impacts 1000 units
U Land-use change 1000 ha

Parameter Description Unit

a Technical coefficient containing productivities, input
coefficients, per-unit cost, environmental impact coefficients product or resource unit/activity unit

b Endowments 1000 units
c Objective function coefficients USD/activity unit
k Commodity coefficients attribute unit/product unit
δ discount factor unit less
ε elasticity unit less

Function Description

φ inverse demand/supply function
χ marginal cost function
ν marginal value function

Index Description Elements

t time decades
r region 36 States + FCT

y commodity food commodities, forest products,
and bioenergy

i input (resource) land and energy (implicitly represented)
e environmental impact GHG emissions (CO2eqv.)
s species ~8 Crops, ~1 forest type
a animal ~6 animal types

m management land, livestock production,
and processing alternatives

u land-use type cropland, forest land, and grassland

z commodity attribute food commodities, animal feedstuffs,
and bioenergy products
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