# **Supplemental Data**

# Failed mitochondrial import and impaired proteostasis trigger SUMOylation of mitochondrial proteins

Florian Paasch, Fabian den Brave, Ivan Psakhye, Boris Pfander and Stefan Jentsch

Figure S1 Figure S2 Figure S3 Figure S4 Legend for Table S1 (provided as separate Excel file) Table S2 Table S3 Supplemental references



### Figure S1. Mapping of SUMO acceptor sites of mitochondrial proteins.

(A, C, E) Identification of SUMO acceptor sites in Ilv6, Adh3 and Mrpl23. Denaturing <sup>His</sup>SUMO Ni-NTA pull-downs from cells harboring plasmids that express 3HA-tagged versions of Ilv6 (A), Adh3 (C) and Mrpl23 (E) or corresponding lysine-to-arginine mutants as indicated. Expression of 3HA-tagged proteins is under control of endogenous promoter (A), *GAL1* promoter (C) or *ADH1* promoter (E).

(B, D, F) Schematic representations of Ilv6 (B), Adh3 (D) and Mrpl23 (F) showing the positions of SUMO acceptor site lysines. Abbreviations: MTS (matrix-targeting sequence), ACT domain (named after aspartate kinase, chorismate mutase, TyrA), ALS\_ss\_C domain (acetolactate synthase, small subunit, C-terminal domain), zinc-binding DH domain (zinc-binding dehydrogenase domain).



## Figure S2. SUMOylation of import-incompetent mutant variants of mitochondrial proteins.

(A, B) Generation and localization of an import-incompetent Ilv6 mutant variant. (A) Schematic representation of GFP fusion proteins of Ilv6 (Ilv6<sup>GFP</sup>) and an import-incompetent variant lacking the N-terminal 24-amino-acid matrix-targeting sequence (MTS $\Delta$ -Ilv6<sup>GFP</sup>). (B) Subcellular localization of wild type and import-incompetent versions of Ilv6<sup>GFP</sup> using GFP fluorescence. Yeast cell walls were stained with calcofluor white. Scale bars: 20  $\mu$ m.

(C-F) SUMOylation of Ilv6 and Adh3 variants lacking an MTS is mediated by the SUMO E3 ligases Siz1 and Siz2 and occurs at similar sets of SUMO acceptor sites as in wild type proteins. (C, E) Denaturing <sup>His</sup>SUMO Ni-NTA pull-downs from wild type (WT) cells and cells lacking the indicated SUMO E3 ligases. All strains harbor plasmids that express 3HA-tagged import-incompetent Ilv6 (MTS $\Delta$ -Ilv6<sup>3HA</sup>) or Adh3 (MTS $\Delta$ -Adh3<sup>3HA</sup>) from the *GAL1* promoter. (D, F) Denaturing <sup>His</sup>SUMO Ni-NTA pull-downs from cells expressing import-incompetent Ilv6 (MTS $\Delta$ -Ilv6<sup>3HA</sup>) (D) or Adh3 (MTS $\Delta$ -Adh3<sup>3HA</sup>) and corresponding lysine-to-arginine mutants as indicated from the *GAL1* promoter.



### Figure S3. The SUMOylation pattern of Ilv6 is specifically altered in SSA mutant cells.

(A) Levels of the Ilv6 precursor are elevated in *SSA* mutant cells and show an increased propensity to fractionate as insoluble. Total (T) cell lysates of wild type (WT), *SSA1* and *ssa1-45* cells were separated into soluble (S) and insoluble pellet (P) fractions and analyzed by western blotting using HA epitope-specific, Dpm1-specific and Smt3-specific antibodies (fractions were loaded in a T:S:P ratio of 1:1:60). All strains express 3HA-tagged Ilv6 from the endogenous promoter and <sup>His</sup>SUMO from the *ADH1* promoter. Bands corresponding to the precursor protein (p) or mature form (m) are labeled.

(B, C) Ectopic expression of Ssa1 promotes growth of *ssa1-45* cells at restrictive temperature and reduces Ilv6 precursor SUMOylation in *SSA* mutants. (B) *SSA1* and *ssa1-45* cells were complemented with an empty vector or plasmids expressing wild type Ssa1 from the *ADH1* promoter. 5-fold serial dilutions of cells were spotted on SC agar plates and grown at 25°C for 2 days or 37°C for 3 days. (C) Denaturing <sup>His</sup>SUMO Ni-NTA pull-downs from *SSA1* and *ssa1-45* cells harboring plasmids that express wild type Ssa1 from the *ADH1* promoter. All strains express 3HA-tagged Ilv6 from the endogenous promoter. Bands corresponding to the unmodified or monoSUMOylated precursor protein (p) or mature form (m) are labeled.

(D) SUMOylation of multiple sites in the Ilv6 precursor is detectable in *SSA* mutant cells. Denaturing <sup>His</sup>SUMO Ni-NTA pull-downs from *SSA1* and *ssa1-45* cells harboring plasmids that express 3HA-tagged

wild type (WT) Ilv6 or one of multiple *KR* mutant variants from the *ADH1* promoter. Bands corresponding to the unmodified or monoSUMOylated precursor protein (p) or mature form (m) are labeled.



Figure S4. Enhanced SUMOylation of mitochondrial proteins in proteasome mutant cells.

(A) SUMOylation of the Ilv6 precursor is enhanced upon proteasome inhibition by MG132. Yeast cells (*pdr5* $\Delta$ ) expressing C-terminally 3HA-tagged Ilv6 were treated with 10  $\mu$ M, 20  $\mu$ M or 50  $\mu$ M MG132 for 2 h and denaturing Ni-NTA pull-downs were performed to isolate <sup>His</sup>SUMO conjugates. Bands

corresponding to the unmodified or monoSUMOylated precursor protein (p) or mature form (m) are labeled.

(B) Import-incompetent Ilv6 is degraded in a proteasome-dependent manner. Yeast cells  $(pdr5\Delta)$  expressing import-incompetent Ilv6 (MTS $\Delta$ -Ilv6<sup>3HA</sup>) from the *GAL1* promoter were incubated with MG132 for 1 h, treated with 0.5 mg/ml cycloheximide (CHX) and collected at the indicated time points. Mutant HA-tagged Ilv6 and Dpm1 were detected by western blotting using HA tag- and Dpm1-specific antibodies.

(C, D) Lack of IIv6 SUMOylation does not noticeably affect the degradation of import-incompetent IIv6. Experimental setup as in (B) but with cells expressing wild type (WT) or the 4KR variant of import-incompetent IIv6 (C) and wild type (WT) cells or cells lacking the SUMO E3 ligases Siz1 and Siz2 (*siz1* $\Delta$  *siz2* $\Delta$ ) (D).

(E, F) SUMOylation of import-incompetent Adh3 is strongly enhanced in proteasome mutant cells.

Denaturing <sup>His</sup>SUMO Ni-NTA pull-downs from wild type (WT) and *cim3-1* cells harboring plasmids that express MTS $\Delta$ -Adh3<sup>3HA</sup> or the corresponding *K305R* variant from the *GAL1* promoter.

Table S1. Excel file containing a compiled list of potential mitochondrial SUMO substrates identified by multiple mass spectrometry experiments.

| Strain       | Genotype                                                                                                               | Reference  |
|--------------|------------------------------------------------------------------------------------------------------------------------|------------|
| DF5          | his3-∆200 leu2-3,112 lys2-801 trp1-1 ura3-52                                                                           | (1,2)      |
| W303 (RAD5)  | ade2-1 can1-100 his3-11,15 leu2-3,112 trp1-1 ura3-1 RAD5                                                               | (3)        |
| SSC1         | Matα, his4-713 lys2 ura3-52 trp1Δ leu2-3,112 SSC1                                                                      | (4)        |
| ssc1-3       | Matα, his4-713 lys2 ura3-52 trp1Δ leu2-3,112 ssc1-3::LEU2                                                              | (4)        |
| JN516        | Matα, his3-11,15 leu2-3,112 his3-11 ura3-52 trp1Δ lys2                                                                 | (5)        |
|              | SSA1 ssa2A::LEU2 ssa3A::TRP1 ssa4A::LYS2                                                                               |            |
| ssa1-45 (ΔU) | <i>Matα</i> , his3-11,15 leu2-3,112 his3-11 ura3-52 trp1Δ lys2                                                         | (5,6)      |
|              | ssa1-45 ssa2A::LEU2 ssa3A::TRP1 ssa4A::LYS2                                                                            |            |
| CMY826       | Mata, ura3-52 leu2∆1 his3∆-200 trp1∆63 lys2-801 ade2-101                                                               | (7)        |
|              | bar1 <u>A</u> ::HIS3                                                                                                   |            |
| CMY726       | Mata, cim $3-1$ ura $3-52$ leu $2\Delta l$                                                                             | (7)        |
| Y0002        | DF5, $Mat\alpha$                                                                                                       | (2)        |
| YFPX4-3A     | DF5, Matα, pADH- <sup>His</sup> SMT3::URA3                                                                             | this study |
| YFPX10-5C    | DF5, Mata, ADH3 <sup>3HA</sup> ::kanMX4                                                                                | this study |
| YFPX12-9B    | DF5, $Mat\alpha$ , $ILV6^{3HA}$ ::kanMX4                                                                               | this study |
| YFPX14-1C    | DF5, Mata, pADH- <sup>His</sup> SMT3::URA3 ADH3 <sup>3HA</sup> ::kanMX4                                                | this study |
| YFPX16-6C    | DF5, Mata, pADH- <sup>His</sup> SMT3::URA3 ILV6 <sup>3HA</sup> ::kanMX4                                                | this study |
| YFPX244-5C   | DF5, Mata, pADH- <sup>His</sup> SMT3::URA3 siz1A::hphNT1                                                               | this study |
| YFPX245-7C   | DF5, Mata, pADH- <sup>His</sup> SMT3::URA3 siz2A::natNT2                                                               | this study |
| YFPX248-2C   | DF5, Mata, pADH- <sup>His</sup> SMT3::URA3 siz1A::hphNT1 siz2A::natNT2                                                 | this study |
| YFPX149-12D  | DF5, Mata, pADH- <sup>His</sup> SMT3::URA3 ADH3 <sup>3HA</sup> ::kanMX4 siz1 \Delta::hphNT1                            | this study |
| YFPX147-4B   | DF5, Mata, pADH- <sup>His</sup> SMT3::URA3 ADH3 <sup>3HA</sup> ::kanMX4 siz2A::HIS3MX6                                 | this study |
| YFPX153-2D   | DF5, Mata, pADH- <sup>His</sup> SMT3::URA3 ADH3 <sup>3HA</sup> ::kanMX4 siz1A::hphNT1 siz2A::HIS3MX6                   | this study |
| YFPX150-7C   | DF5, Mata, pADH- <sup>His</sup> SMT3::URA3 ILV6 <sup>3HA</sup> ::kanMX4 siz1 \Delta::hphNT1                            | this study |
| YFPX164-3C   | DF5, Mata, pADH- <sup>His</sup> SMT3::URA3 ILV6 <sup>3HA</sup> ::kanMX4 siz2A::natNT2                                  | this study |
| YFPX165-14B  | DF5, Mata pADH- <sup>His</sup> SMT3::URA3 ILV6 <sup>3HA</sup> ::kanMX4 siz1 A::hphNT1 siz2 A::natNT2                   | this study |
| Y2725        | W303, <i>Mata</i>                                                                                                      | (3)        |
| YFP339       | W303, Mata, YIplac211-pADH- <sup>His</sup> SMT3::URA3                                                                  | this study |
| YFP406       | W303, <i>Matα</i> , <i>pdr5</i> Δ::HIS3MX6                                                                             | this study |
| YFPX118-13C  | W303, $Mat\alpha$ , $siz1\Delta$ :: $hphNT1$ $siz2\Delta$ :: $HIS3MX6$                                                 | this study |
| YFP582       | W303, $Mat\alpha$ , $ILV6^{3HA}$ ::TRP1 pdr5 $\Delta$ ::kanMX4                                                         | this study |
| YFP522       | W303, Matα, YIplac211-pADH- <sup>His</sup> SMT3::URA3 ILV6 <sup>3HA</sup> ::TRP1 pdr5Δ::kanMX4                         | this study |
| YFPX212-7D   | W303, Matα, YIplac211-pADH- <sup>His</sup> SMT3::URA3 siz1Δ::hphNT1                                                    | this study |
| YFPX213-7D   | W303, Matα, YIplac211-pADH- <sup>His</sup> SMT3::URA3 siz2Δ::natNT2                                                    | this study |
| YFPX220-20D  | W303, Matα, YIplac211-pADH- <sup>His</sup> SMT3::URA3 siz1Δ::hphNT1 siz2Δ::natNT2                                      | this study |
| YFP627       | W303, Matα, pRS306-pGAL-ADH3 <sup>3HA</sup> -tCYC1::URA3                                                               | this study |
| YFP630       | W303, Matα, pRS306-pGAL-adh3 <sub>28-375</sub> <sup>3HA</sup> -tCYC1::URA3                                             | this study |
| YFPX251-15C  | W303, Matα, YIplac128-pADH- <sup>His</sup> SMT3::LEU2 pRS306-pGAL-ADH3 <sup>3HA</sup> -tCYC1::URA3                     | this study |
| YFPX256-9C   | W303, Matα, YIplac128-pADH- <sup>His</sup> SMT3::LEU2 pRS306-pGAL-adh3 <sub>28-375</sub> <sup>3HA</sup> -tCYC1::URA3   | this study |
| YFPX255-3B   | W303, Matα, YIplac128-pADH- <sup>His</sup> SMT3::LEU2                                                                  | this study |
|              | pRS306-pGAL-adh3 <sub>28-375</sub> <sup>3HA</sup> -K305R-tCYC1::URA3                                                   |            |
| YFPX254-6D   | W303, Matα, YIplac128-pADH- <sup>His</sup> SMT3::LEU2 pRS306-pGAL-adh3 <sub>28-375</sub> <sup>3HA</sup> -tCYC1::URA3   | this study |
|              | cim3-1                                                                                                                 |            |
| YFPX255-7D   | W303, Mata, YIplac128-pADH- <sup>111</sup> SMT3::LEU2                                                                  | this study |
| NEDVOSI 10D  | $pRS306-pGAL-adh3_{28-375}$ $H^{1}$ $K305R-tCYC1::URA3 cim3-1$                                                         |            |
| YFPX2/1-19D  | W 303, $Mat\alpha$ , YIPlac128-pADH- $^{His}$ SMT3::LEU2 pRS306-pADH-ADH3 $^{His}$ -tCYC1::URA3                        | this study |
| YFPX2/2-20A  | W 303, Matα, YIplac128-pADH- <sup>110</sup> SMT3::LEU2 pRS306-pADH-adh3 <sub>28-375</sub> <sup>1111</sup> -tCYC1::URA3 | this study |
| 1FPA2/1-11D  | W 505, Matα, YIplac128-pADH- <sup>THE</sup> SM13::LEU2 pRS306-pADH-ADH5 <sup>THE</sup> -tCYC1::URA3                    | inis study |
| VEPY272 10C  | WI202 Mater Vinlaci 28 nADH HisSMT2 I FU2 nDS206 nADU adh2 3HA (CVC1 UDA2                                              | this study |
| 111 A272-190 | w 505, Maid, Hpiaci20-pADH- SNITSLE02 pK5500-pADH-aan5 <sub>28-375</sub> -ICICI.:UKA5                                  | uns suuy   |
| L            |                                                                                                                        | l          |

Table S2. Yeast (Saccharomyces cerevisiae) strains used in this study, related to Experimental procedures.

(continued on next page)

| YFP95  | Mata, SSC1 YIplac211-pADH- <sup>His</sup> SMT3::URA3 ILV6 <sup>3HA</sup> ::TRP1                                                                              | this study |
|--------|--------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|
| YFP103 | Mata, ssc1-3 YIplac211-pADH- <sup>His</sup> SMT3::URA3 ILV6 <sup>3HA</sup> ::TRP1                                                                            | this study |
| YFP516 | Mata, SSA1 ssa2A::LEU2 ssa3A::TRP1 ssa4A::LYS2 YIplac211-pADH- <sup>His</sup> SMT3::URA3                                                                     | this study |
| YFP519 | Matα, ssa1-45 ssa2Δ::LEU2 ssa3Δ::TRP1 ssa4Δ::LYS2 YIplac211-pADH- <sup>His</sup> SMT3::URA3                                                                  | this study |
| YFP602 | Matα, SSA1 ssa2Δ::LEU2 ssa3Δ::TRP1 ssa4Δ::LYS2 YIplac211-pADH- <sup>His</sup> SMT3::URA3<br>ADH3 <sup>3HA</sup> ::kanMX4                                     | this study |
| YFP606 | Matα, SSA1 ssa2Δ::LEU2 ssa3Δ::TRP1 ssa4Δ::LYS YIplac211-pADH- <sup>His</sup> SMT3::URA3<br>ILV6 <sup>3HA</sup> ::kanMX4                                      | this study |
| YFP612 | Mat $\alpha$ , ssa1-45 ssa2 $\Delta$ ::LEU2 ssa3 $\Delta$ ::TRP1 ssa4 $\Delta$ ::LYS2 YIplac211-pADH- <sup>His</sup> SMT3::URA3 ADH3 <sup>3HA</sup> ::kanMX4 | this study |
| YFP616 | Mata, $ssa1-45 ssa2\Delta$ ::LEU2 $ssa3\Delta$ ::TRP1 $ssa4\Delta$ ::LYS2 YIplac211-pADH- <sup>His</sup> SMT3::URA3 ILV6 <sup>3HA</sup> ::kanMX4             | this study |
| YFP162 | CMY826, Mata, YIplac211-pADH- <sup>His</sup> SMT3::URA3                                                                                                      | this study |
| YFP140 | CMY763, Mato, YIplac211-pADH- <sup>His</sup> SMT3::URA3                                                                                                      | this study |
| YFP167 | CMY826, Mata, YIplac211-pADH- <sup>His</sup> SMT3::URA3<br>ADH3 <sup>3HA</sup> ::kanMX4                                                                      | this study |
| YFP154 | CMY763, Mata, YIplac211-pADH- <sup>His</sup> SMT3::URA3<br>ADH3 <sup>3HA</sup> ::kanMX4                                                                      | this study |
| YFP171 | CMY826, Mata, YIplac211-pADH- <sup>His</sup> SMT3::URA3<br>ILV6 <sup>3HA</sup> ::kanMX4                                                                      | this study |
| YFP156 | CMY763, Mata, YIplac211-pADH- <sup>His</sup> SMT3::URA3<br>ILV6 <sup>3HA</sup> ::kanMX4                                                                      | this study |

| Plasmid | Description                                                                     | Reference  |
|---------|---------------------------------------------------------------------------------|------------|
| p41XADH | pRS41X-pADH-tCYC1                                                               | (8)        |
| p41XGAL | pRS41X-pGAL-tCYC1                                                               | (9)        |
| D1374   | YIplac211-pADH- <sup>His</sup> SMT3                                             | (10)       |
| D1549   | YIplac128-pADH- <sup>His</sup> SMT3                                             | (11,12)    |
| pFP17   | YCplac22-pILV6-Ilv6 <sup>3HA</sup>                                              | this study |
| pFP38   | YCplac22-pILV6-Ilv6 <sup>3HA</sup> -K260R                                       | this study |
| pFP41   | YCplac22-pILV6-Ilv6 <sup>3HA</sup> -K218, K260R                                 | this study |
| pFP50   | YCplac22-pILV6-Ilv6 <sup>3HA</sup> -K218,K260R, K284R                           | this study |
| pFP51   | YCplac22-pILV6-Ilv6 <sup>3HA</sup> -K218,K260R, K296R                           | this study |
| pFP52   | YCplac22-pILV6-Ilv6 <sup>3HA</sup> -K218,K260R, K284R, K296R (4KR)              | this study |
| pFP53   | p415GAL-Ilv6 <sup>3HA</sup>                                                     | this study |
| pFP62   | p415GAL-Ilv6 <sub>25-309</sub> <sup>3HA</sup>                                   | this study |
| pFP72   | p415GAL-Ilv6 <sub>25-309</sub> <sup>3HA</sup> -K218R, K260R, K284R, K296R (4KR) | this study |
| pFP108  | p413ADH-Ilv6 <sup>3HA</sup>                                                     | this study |
| pFP109  | p413ADH-Ilv6 <sup>3HA</sup> -K218R, K260R, K284R, K296R (4KR)                   | this study |
| pFP110  | p413ADH-Ilv6 <sup>3HA</sup> -4KR, K202R                                         | this study |
| pFP111  | p413ADH-Ilv6 <sup>3HA</sup> -4KR, K158R, K202R                                  | this study |
| pFP112  | p413ADH-Ilv6 <sup>3HA</sup> -4KR, K116R, K158R, K202R                           | this study |
| pFP113  | p413ADH-Ilv6 <sup>3HA</sup> -4KR, K76R, K116R, K158R, K202R                     | this study |
| pFP93   | pRS313-pILV6-IIv6 <sup>GFP</sup>                                                | this study |
| pFP91   | p413GAL-IIv6 <sub>25-309</sub> GFP                                              | this study |
| pFP12   | p415GAL-Adh3 <sup>3HA</sup>                                                     | this study |
| pFP23   | p415GAL-Adh3 <sup>3HA</sup> -K305R                                              | this study |
| pFP24   | p415GAL-Adh3 <sup>3HA</sup> -K375R                                              | this study |
| pFP25   | p415GAL-Adh3 <sup>3HA</sup> -K305R, K375R                                       | this study |
| pFP13   | p415GAL-Adh3 <sub>28-375</sub> <sup>3HA</sup>                                   | this study |
| pFP107  | p415GAL-Adh3 <sub>28-375</sub> <sup>3HA</sup> -K305R                            | this study |
| pFP118  | pRS413-pTDH3-Adh3 <sup>3HA</sup>                                                | this study |
| pFP119  | pRS413-pTDH3-Adh3 <sup>3HA</sup> -K305R                                         | this study |
| pFP120  | pRS413-pTDH3-Adh3 <sub>28-375</sub> <sup>3HA</sup>                              | this study |
| pFP121  | pRS413-pTDH3-Adh3 <sub>28-375</sub> <sup>3HA</sup> -K305R                       | this study |
| pFP103  | pRS306-pGAL-Adh3 <sub>28-375</sub> <sup>3HA</sup>                               | this study |
| pFP106  | pRS306-pGAL-Adh3 <sub>28-375</sub> <sup>3HA</sup> -K305R                        | this study |
| pFP114  | pRS306-pADH-Adh3 <sup>3HA</sup>                                                 | this study |
| pFP115  | pRS306-pADH-Adh3 <sub>28-375</sub> <sup>3HA</sup>                               | this study |
| pFP97   | p415ADH-Mrpl23 <sup>3HA</sup>                                                   | this study |
| pFP98   | p415ADH-Mrpl23 <sup>3HA</sup> -K163R                                            | this study |
| pFP99   | p415ADH-Mrpl23 <sup>3HA</sup> -K155R, K163R                                     | this study |
| pFP77   | p413ADH-Ssa1                                                                    | this study |

Table S3. Plasmids used in this study, related to Experimental procedures.

Plasmids encoding the import-incompetent mutant variant of Ilv6 (MTS $\Delta$ -Ilv6) encode a protein variant lacking the N-terminal 24 amino acids (Ilv6<sub>25-309</sub>); plasmids encoding the import-incompetent mutant variant of Adh3 (MTS $\Delta$ -Adh3) encode a protein variant lacking the N-terminal 27 amino acids (Adh3<sub>28-375</sub>).

# **Supplemental references**

- 1. Finley, D., Ozkaynak, E., and Varshavsky, A. (1987) The yeast polyubiquitin gene is essential for resistance to high temperatures, starvation, and other stresses. *Cell* **48**, 1035-1046
- 2. Ulrich, H. D., and Jentsch, S. (2000) Two RING finger proteins mediate cooperation between ubiquitin-conjugating enzymes in DNA repair. *EMBO J* **19**, 3388-3397
- 3. McDonald, J. P., Levine, A. S., and Woodgate, R. (1997) The Saccharomyces cerevisiae RAD30 gene, a homologue of Escherichia coli dinB and umuC, is DNA damage inducible and functions in a novel error-free postreplication repair mechanism. *Genetics* **147**, 1557-1568
- 4. Gambill, B. D., Voos, W., Kang, P. J., Miao, B., Langer, T., Craig, E. A., and Pfanner, N. (1993) A dual role for mitochondrial heat shock protein 70 in membrane translocation of preproteins. *J Cell Biol* **123**, 109-117
- 5. Becker, J., Walter, W., Yan, W., and Craig, E. A. (1996) Functional interaction of cytosolic hsp70 and a DnaJ-related protein, Ydj1p, in protein translocation in vivo. *Mol Cell Biol* **16**, 4378-4386
- 6. Taxis, C., Hitt, R., Park, S. H., Deak, P. M., Kostova, Z., and Wolf, D. H. (2003) Use of modular substrates demonstrates mechanistic diversity and reveals differences in chaperone requirement of ERAD. *J Biol Chem* **278**, 35903-35913
- 7. Ghislain, M., Udvardy, A., and Mann, C. (1993) S. cerevisiae 26S protease mutants arrest cell division in G2/metaphase. *Nature* **366**, 358-362
- 8. Mumberg, D., Muller, R., and Funk, M. (1995) Yeast vectors for the controlled expression of heterologous proteins in different genetic backgrounds. *Gene* **156**, 119-122
- 9. Mumberg, D., Muller, R., and Funk, M. (1994) Regulatable promoters of Saccharomyces cerevisiae: comparison of transcriptional activity and their use for heterologous expression. *Nucleic Acids Res* **22**, 5767-5768
- 10. Hoege, C., Pfander, B., Moldovan, G. L., Pyrowolakis, G., and Jentsch, S. (2002) RAD6dependent DNA repair is linked to modification of PCNA by ubiquitin and SUMO. *Nature* **419**, 135-141
- 11. Psakhye, I., and Jentsch, S. (2012) Protein group modification and synergy in the SUMO pathway as exemplified in DNA repair. *Cell* **151**, 807-820
- 12. Sacher, M., Pfander, B., Hoege, C., and Jentsch, S. (2006) Control of Rad52 recombination activity by double-strand break-induced SUMO modification. *Nat Cell Biol* **8**, 1284-1290