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ABSTRACT

The land surface forms an important component of Earth system models and interacts nonlinearly with

other parts such as ocean and atmosphere. To capture the complex and heterogeneous hydrology of the land

surface, land surface models include a large number of parameters impacting the coupling to other compo-

nents of the Earth system model.

Focusing onECMWF’s land surfacemodelHydrologyTiledECMWFSchemeof SurfaceExchanges over Land

(HTESSEL), the authors present in this study a comprehensive parameter sensitivity evaluation using multiple

observational datasets in Europe. The authors select six poorly constrained effective parameters (surface runoff

effective depth, skin conductivity, minimum stomatal resistance, maximum interception, soil moisture stress

function shape, and total soil depth) and explore their sensitivity to model outputs such as soil moisture, evapo-

transpiration, and runoff using uncoupled simulations and coupled seasonal forecasts. Additionally, the authors

investigate the possibility to construct ensembles from the multiple land surface parameters.

In the uncoupled runs the authors find that minimum stomatal resistance and total soil depth have the most

influence on model performance. Forecast skill scores are moreover sensitive to the same parameters as

HTESSEL performance in the uncoupled analysis. The authors demonstrate the robustness of these findings

by comparing multiple best-performing parameter sets and multiple randomly chosen parameter sets. The

authors find better temperature and precipitation forecast skill with the best-performing parameter pertur-

bations demonstrating representativeness of model performance across uncoupled (and hence less compu-

tationally demanding) and coupled settings.

Finally, the authors construct ensemble forecasts from ensemble members derived with different best-

performing parameterizations of HTESSEL. This incorporation of parameter uncertainty in the ensemble

generation yields an increase in forecast skill, even beyond the skill of the default system.

1. Introduction

The land surface is an important element in Earth

system models (IPCC 2013; Gedney et al. 2014). The

hydrology at the land surface is extremely complex; for

example, there is lateral and vertical heterogeneity of

the soil and the vegetation and nonlinear processes that

govern the exchange of energy and water between the
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land surface and the atmosphere (Seneviratne et al.

2010). Capturing these processes with land surface

models is a great challenge (Beven and Binley 1992;

Beven 2001). Thanks to the advance in computational

resources, their complexity is growing as additional

processes are implemented (Oleson et al. 2010; Balsamo

et al. 2011).

However, despite an improved physical representa-

tion of land surface processes, the models’ performance

is not necessarily increasing (Orth et al. 2015). This is

because the calibration of land surface models becomes

increasingly difficult as increased model complexity

usually involves more (effective) model parameters and

other challenges such as increased uncertainty in the

model structure. Furthermore, it is challenging to apply

model parameterizations at the required spatial scales

(Kauffeldt et al. 2013, 2015). The calibration of model

parameters is moreover complicated by the scarcity (and

uncertainty) of observations of land surface hydrology

and of basic characteristics of the soils and the vegetation.

In this study we focus on the European Centre for

Medium-Range Weather Forecasts (ECMWF) land

surface model Hydrology Tiled ECMWF Scheme of

Surface Exchanges over Land (HTESSEL; Balsamo

et al. 2011). To address the uncertain representation of

the land surface therein, we adopt a comprehensive

approach proposed by Orth and Seneviratne (2015) to

calibrate HTESSEL against multiple hydrological ob-

servation datasets in Europe. For this purpose we

determine a number of poorly constrained parameters

and perturb them in many different combinations

using a quasi-random variation strategy (Sobol’ 1967).

Employing observed meteorological forcing, the result-

ing uncoupled model simulations allow us to identify

sensitive parameters and, furthermore, a number of dif-

ferent but equally well-performing sets of parameters.

Usually, the scope of themodel calibration defines the

methodology. For example, in numerical weather pre-

diction systems the landmodel should contribute to high

forecast skill scores (Cloke et al. 2011; MacLeod et al.

2016). However, model calibration within such a cou-

pled system is difficult and computationally demanding.

Here, we address this problem and investigate the

transferability of results from uncoupled model experi-

ments to a coupled setting. An uncoupled setting means

running the land surface model driven with (observed)

atmospheric forcings without any feedback to the atmo-

sphere. A coupled model run includes running both the

land surface model and an atmospheric model that com-

putes the atmospheric forcings taking into account the

feedback (e.g., evaporation fluxes) from the land surface.

We compare model performance across uncoupled and

coupled settings by extending the uncoupled model

calibration approach and testing the derived best-

performing parameter sets in coupled subseasonal en-

semble weather forecasts. Thereby, we analyze to which

extent a comprehensive coupled modeling system may

benefit from an uncoupled model calibration that is more

straightforward andmuch less computationally demanding.

Going beyond model calibration, in a last step we try

to provide a new perspective on land model parameter

uncertainty. We analyze potential benefits of consider-

ing different but equally well-performing land model

parameterizations for the forecast ensemble generation.

This is done with coupled model experiments, which are

rare in other studies owing to the related computational

effort. Using equifinal model parameterizations in this

approach allows us to jointly capture uncertainties

arising from the model parameterization and from the

initial conditions as these change in response to pa-

rameter changes. Such an approach can be useful as

representing surface variable uncertainties is difficult

because their distributions can change over time

(Tennant andBeare 2014), and it provides an alternative

to model uncertainty assessment through testing dif-

ferent physics schemes (Hacker et al. 2011). The fol-

lowing two sections describe the data and methods used

in this study, followed by the results discussion of the

uncoupled and coupled simulations, and the last section

resumes the main conclusions of this study.

2. Methodology

a. Model description

1) HTESSEL

The ECMWF land surface model HTESSEL

(Balsamo et al. 2011) computes the land surface re-

sponse to atmospheric conditions, simulating the surface

water and energy fluxes and the temporal evolution of

soil temperature, soil moisture content, vegetation in-

terception, and snowpack conditions.

At the interface with the atmosphere, each grid box is

divided into up to six land tiles representing different

land covers (e.g., bare ground, high/low vegetation, ex-

posed snow, shaded snow, and interception). The sur-

face energy balance is computed independently for each

tile prior to solving the soil and snow mass and energy

balance. Therefore, for this explicit formulation, a skin

conductivity parameter is required to represent the

thermal conductivity between the skin layer and the

underlying soil (accounting for processes like radiative

transfer within the canopy). The interception reservoir

is a thin layer on top of the soil/vegetation, collecting

liquid water by the interception of rain a collection of
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dew, evaporating at the potential rate. The vegetation

transpiration is modeled by the canopy resistance that

is a function of the available radiation, leaf area index,

soil moisture water vapor deficit, andminimum stomatal

resistance. The soil is discretized in four layers constant

globally (with depths of 7, 21, 72, and 189 cm) for the

water and energy transfer. Water leaves the soil column

in the bottom layer as free drainage, and at the surface, a

variable infiltration rate that accounts for the subgrid

variability related to orography is used to compute the

surface runoff.

2) ECMWF ENSEMBLE PREDICTION SYSTEM

For the coupled subseasonal forecasting experiments

we used a model configuration similar to ECMWF’s

current operational ensemble prediction system (ENS).

The ENS used for operational monthly forecasting is

a 51-member ensemble of coupled ocean–atmosphere

model integrations up to a lead time of 60 days. The

first 10 days are performed with a TL639 resolution

(;28 km). After day 10, the resolution is TL319

(;50 km). The 60-day forecasts are performed every

Thursday and Monday. The ensemble members differ

slightly with respect to their initial conditions and sto-

chastic physics to represent the uncertainties inherent

in the operational analyses. In this context, initial

conditions refer, for example, to initial soil moisture

and pressure fields. Differences in the stochastic physics

are generated by random perturbations applied to the

tendencies in the atmospheric physics. The initial condi-

tions of the respective ensemble members are produced

using the singular vector perturbation method (these

include perturbations in the extratropics and pertur-

bations in some tropical areas by targeting tropical

cyclones) and also perturbations from the data assim-

ilation. The ocean initial conditions are furthermore

perturbed by accounting for wind stress uncertainties

in the ocean data assimilation.

In comparison with the operation system, our experi-

ment setup differs in resolution and ensemble size. A

lower resolution (T255, ;60km, constant through the

entire forecast period) and reduced ensemble size (15

instead of 51) was necessary to reduce the computational

cost of these experiments in order to be able to test sev-

eral land surface perturbations.

b. Model simulations

Understanding the impact of land model parameter

uncertainty on its performance is key to answering the

question whether accounting for this parameter un-

certainty can improve weather forecasts. For this pur-

pose we need to test a large number of parameter sets

in a computationally affordable setting. Selecting a

subset of parameter sets, we then test and transfer the

initial findings to extended model simulations. This is

achieved by analyzing three different configurations

(see Table 1 for an overview):

1) To test many different parameter perturbations in

HTESSEL, we perform uncoupled simulations at six

selected locations from 1983 to 2012. Details of the

applied parameter perturbations are provided in section

2c(1).Thefirst year 1983 is included toallow themodel to

reach an equilibrium state (spinup) and is not considered

for the analysis. The locations are chosen to represent the

northern, central, and southern European climate; they

are displayed in Fig. 1. A time step of 1h is used.

2) To assess the representativeness of the results from the

six locations, we perform uncoupled simulations with

the land surfacemodelHTESSELacross Europe from

1983 to 2012. These simulations are carried out with a

subset of 50 sets of parameter perturbations [see

section 2c(2) for details]. The spinup strategy, model

configuration, and time step are the same as above.

3) To study the transferability of the results to coupled

forecasts, we select 11 out of the 50 parameter

perturbations to perform global ensemble forecasts

[see section 2c(2)]. We adopt the study design of the

Global Land–Atmosphere Coupling Experiment 2

(GLACE-2; Koster et al. 2010) as they also in-

vestigate the impact of the land surface (namely of

initial soil moisture) in subseasonal forecasts: We

focus on Northern Hemispheric summer with fore-

casts starting every year between 2001 and 2010 at

the beginning and middle of each involved month

(i.e., 1 May, 15 May, 1 June, 15 June, 1 July, 15 July,

TABLE 1. Overview of performed model experiments.

Model Type Domain Spatial resolution Time period No. of simulations

HTESSEL Uncoupled Six representative

locations (Fig. 1)

— 1983–2012 2300

HTESSEL Uncoupled Europe (358–708N, 108W–508E) 0.58 3 0.58 1983–2012 50

ECMWF Ensemble

Prediction System

Coupled forecasts Global 0.78 3 0.78 2001–10 11
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1 August, and 15 August). The forecasts are com-

puted to a lead time of 45 days and consist of 15

ensemble members, thereby allowing a probabilistic

evaluation. The initial atmospheric conditions are

taken from the ERA-Interim reanalysis (Dee et al.

2011) for all forecast experiments and the initial

land conditions are taken from global uncoupled

HTESSEL simulations with the corresponding set

of parameter perturbations. That means the initial

land initial conditions differ across experiments,

while the initial atmospheric conditions are the

same (Fig. 2).

c. Parameter perturbations

1) SAMPLING THE ENTIRE PARAMETER SPACE

The search for efficient and effective ways to constrain

model parameters and their uncertainties is a long-

standing topic in land surface modeling, and different

methods have been proposed (e.g., Harrison et al. 2012;

Beven and Binley 2014).

In contrast to these studies that use Monte Carlo–

based techniques, we employ in this study a quasi-

random parameter perturbation approach proposed by

Sobol (1967) because it allows us to sample the entire

multidimensional parameter space more efficiently and

it ensures no cross correlations between the perturba-

tions of individual parameters. We have decided not to

assume any cross correlations as we feel such an addi-

tional assumption is not necessary here because cali-

brating the model toward optimal performance will

properly adjust these correlations anyway. This ap-

proach allows extending a purely statistical treatment of

the issue with hydrological consideration of error and

uncertainty. For a comprehensive sensitivity analysis we

perturb a number of selected parameters simultaneously

(Saltelli et al. 2008). This allows us to derive the total

sensitivity of the model performance against each indi-

vidual parameter [for applications, see Cloke et al.

(2008), Pappenberger et al. (2008), and Dobler and

Pappenberger (2013)]. We select six parameters of

which we perturb the default values in this study. This
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FIG. 1. Selected locations for HTESSEL uncoupled simulations. Furthermore, a subset of 50 HTESSEL simulations

is computed across the entire displayed domain.
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choice is based on expert judgment by the model de-

velopers and existing literature in this area (e.g.,

Harrison et al. 2012; Santanello et al. 2013; MacLeod

et al. 2016); the parameters are chosen as they are poorly

constrained because of scarce measurements and/or

large spatial heterogeneity and as they are deemed im-

portant for the model’s land hydrology. An overview is

provided in Table 2. The chosen parameters constitute

only a small fraction of the model parameters (i.e.,

currently of the order of 100). Note that even though

more parameters would allow for amore comprehensive

model calibration, we are limited by the computational

cost as the number of possible combinations of per-

turbed parameters increases drastically with the number

of parameters.

We perturb the parameters by applying multiplicative

factors to each of them. The factors are chosen from a

range between 0.25 and 4, which keeps the variations

within a physically plausible range but still allows for a

substantial impact on the model simulations. The mul-

tipliers are kept constant in space and time. To further

limit the computational effort we use an efficient quasi-

random variation strategy to perturb the parameters as

described above. To assess interactions between the

effects of individual parameters additionally to the total

sensitivity of each parameter, we compute a set of 200

perturbations (multiplicative factors) for each of the six

parameters. Then, we exchange the first 100 perturba-

tions of the first parameter with the latter 100 pertur-

bations of the same parameter. This is done for each

parameter separately and also for every possible com-

bination of 2 parameters, resulting in 200 (original

perturbations) 1 6 3 100 (exchanged perturbations for

each parameter) 1 15 3 100 (exchanged perturbations

for every set of 2 parameters) 5 2300 sets of parameter

perturbations. Note, however, that even thoughwe use a

large number of parameter perturbations and an effi-

cient sampling strategy, we inevitably miss some regions

in the large six-dimensional parameter space, and this

consequently impacts our estimation of parameter

uncertainties.

2) SELECTING SUBSETS OF PERTURBED

PARAMETER SETS

As described above the corresponding 2300HTESSEL

simulations are performed at six locations, whereas a

subset of 50 sets of parameter perturbations is chosen for

simulations across Europe. One-half of these 50 sets

represents the best-performing parameter sets, and the

other half is randomly chosen from the remaining 2275

sets to represent the full variability of the parameter

space. To determine the performance of the parameter

sets we first rank all 2300 simulations by comparing them

against each of the four validation datasets [section

3b(1)]. For each parameter set, six ranks are computed

based on anomaly correlation for soil moisture, terrestrial

water storage, streamflow andET, and absolute biases for

streamflow and ET.

The best-performing sets of parameter perturbations are

determined by the following: (i) the sum of the six ranks of

the respective simulations must be among the 10% lowest

of all 2300 and (ii) the individual ranksmust all be lower or

equal 1311 (557% quantile) out of 2300. These numbers

were chosen to yield exactly 25 best-performing parameter

sets. Note that these include the default parameter set of

HTESSEL without any perturbations.

The additional 25 sets of parameter perturbations are

selected randomly from the remaining 2275 simulations,

thereby ensuring that these 25 parameter perturbations are

reasonably different (i.e., mostly uncorrelated). For this

FIG. 2. Illustration of soil moisture evolution before and after forecast start. Initial soil

moisture conditions differ, reflecting different model behavior caused by different parameter

sets. During the forecast period, the initial soil moisture difference is increasingly overlain by

the different atmospheric forcings in the different ensemble members.
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purpose we picked a random sample where none of the

correlations between the perturbations of any parameter

with the perturbations of another parameter exceeds 0.1.

Because of computational constraints, we cannot test

all selected 50 parameter sets in coupled global fore-

casts. Hence we choose a further subset of 11 parameter

sets, consisting of the default calibration (see Table 2)

and five sets of the (other) best-performing parameters

and of the additional parameters, respectively. To make

this selection we test all possible combinations of 5 out

of 25 parameter sets to select the combination with the

most uncorrelated parameter perturbations (see above).

d. Computing parameter sensitivities

To assess the sensitivity s of the performance p of a

particular output variable of HTESSEL against the

perturbations of a particular parameter i we compute

(Saltelli et al. 2008)

s(p, i)5
var[E(p j i)]

var(p)
, (1)

where p is the model performance expressed as anomaly

correlation or bias and computed against any validation

dataset [section 3b(1)], var(p) is the variance thereof,

E(p j i) is the expected value of p conditional on parameter

perturbation i, and E(p j i) is estimated by fitting a cubic

spline function [see also Touzani and Busby (2013)], as il-

lustrated in Fig. S1 in the online supplemental material.

The sensitivity computed in Eq. (1) is high if there is a re-

lationship between the perturbations of parameter i and

the resulting model performance p; that is, if such a fitted

spline function can capture a large part of the variability of

the individual performance’s p. In contrast, the sensitivity is

low if the scatter of the performances p is large and random

such that a fitted function cannot capture much of the

overall variability. The sensitivity varies between 0 and 1; if

the performance of any output variable is strongly sensitive

to the perturbations of a particular parameter, s will be

close to one, whereas otherwise it will be close to zero.

The total sensitivity described above consists of (i) a

first-order sensitivity that reflects the direct impact of a

particular parameter and (ii) higher-order sensitivity

that captures the impact of interactions a particular

parameter with other parameters. The experimental

design described in section 2b allows us to employ cor-

responding equations from Saltelli et al. (2009) (Table 2

therein) to compute these components.

e. Construction of multiparameterization ensemble
forecasts

We test if the consideration of land model parameter

uncertainty can improve ensemble weather forecasts.

For this purpose we construct ensemble forecasts in

three different ways: (i) using ensemble members of all

five ensemble forecasts performed with the five best

parameter sets [see section 2c(2)], (ii) using ensemble

members of all five ensemble forecasts performed with

the five additional parameter sets [see section 2c(2)],

and (iii) using ensemble members of all three ensemble

forecasts performed with the three best-performing pa-

rameter sets in terms of temperature and precipitation

forecast skills. This ensemble construction is done by

randomly selecting individual ensemble members from

the forecasts computed with the respective parameter

sets. However, aiming for similar initial spread and

mean in the resulting constructed ensemble compared

with the other ensembles, we ensure that at least 5 out of

the 15 members have initial values lower or equal than

the unperturbed member of the respective conventional

ensemble and at least another 5 should have larger or

equal initial values.

f. Forecast skill measures

To assess the coupled global forecasts described in

section 2b, we infer temperature and precipitation

forecast skills [see section 3b(1) for reference datasets].

For a robust evaluation of forecast skill we consider

several skill metrics:

1) Anomaly correlation: Correlating forecasted versus

observed anomalies. These are derived by subtract-

ing the respective climatological seasonal cycle as

determined from the reference data and the fore-

casts, respectively, over the investigated time

period 2001–10.

2) Bias: Here we use the absolute forecasted values and

compare them directly with the reference data to

obtain the difference.

3) Reliability: To quantify the reliability of the fore-

casts, we use reliability diagrams [Fig. S2 in the

online supplemental material; see also Weisheimer

and Palmer (2014)]. These diagrams investigate the

ability of the forecasts to detect an event; in this study

we consider temperature/precipitation below 33%

quantile or above the 66% quantile. Therefore, from

all forecasts within a particular region, we select

forecasts predicting similar occurrence probabilities

(e.g., 10%–20%) of such an event, as determined

from their ensemble members; then the mean ob-

served frequency of the event in the selected cases is

computed. This is done for all occurrence probabil-

ities that occur in the forecasts. To quantify the

relationship between observed frequencies and fore-

casted probabilities, we consider the slope of a linear

least squares regression line using the number of
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available forecasts for each range of forecasted

occurrence probabilities as weights.

To investigate reliability, we employ climate regions

suggested by Seneviratne et al. (2012). For the analysis

of forecast skills in Europe, we focus on the respective

three regions (north, center, south), but we also average

the anomaly correlations and biases across these regions

to simplify the analysis.

To evaluate the forecasts, we focus on three ranges of

lead times: 1–15, 16–30, and 31–45 days. All forecasts, as

well as the reference data are averaged over the re-

spective period such that the skill measures are com-

puted with these averages.

3. Data

a. Forcing data

To force the uncoupled HTESSEL simulations (first

two rows in Table 1) we use the WFDEI dataset

(Weedon et al. 2014), which is derived from bias cor-

rected ERA-Interim data (Harding et al. 2011).

We rerun the uncoupled European simulations with

replaced precipitation and radiation data to test the role

of the forcing dataset and to ensure that our results are

not dominated by errors and uncertainties in the forc-

ings. In this context precipitation and radiation forcings

were chosen as uncertainties in those dataset will have

the largest impact onmodeled land hydrology (Orth and

Seneviratne 2015). We replace the bias corrected ERA-

Interim precipitation with precipitation from theE-OBS

dataset (Haylock et al. 2008), which is derived by up-

scaling rain gauge measurements. The replacement for

radiation is the satellite-derived shortwave and long-

wave downward radiation data from the CERES

experiment (http://ceres.larc.nasa.gov/order_data.php,

accessed on 19 June 2015) and the NASA/GEWEX

SRB dataset (http://gewex-srb.larc.nasa.gov/, accessed

on 19 June 2015). As in Orth and Seneviratne (2015) we

join these two datasets after adapting local means and

variabilities of SRB to the more reliable CERES data to

derive a continuous record from 1984 to 2012. The re-

maining forcing data (wind, pressure, relative humidity,

and temperature) are left unchanged.

b. Validation data

1) VALIDATION OF UNCOUPLED HTESSEL
SIMULATIONS

We assess the uncoupled model simulations (see pre-

vious section) in terms of soil moisture, evapotranspiration,

and streamflow. Therefore we use several observation-

based meteorological and hydrological datasets as a

reference to validate the uncoupled simulations in a mul-

tiobjective optimization framework (e.g., Vrugt et al. 2003;

Orth and Seneviratne 2015):

(i) Soil moisture measurements from 11 stations

across Europe representing different climate re-

gimes. Four stations are located in Finland, 5 in

Switzerland, and 2 in southern Italy; for more

details on measurement depths and time periods

see Table S1 in Orth and Seneviratne (2015). Data

from each station cover at least 4 yr and four

measurement depths. Locations of two sites in each

country are selected to yield the six locations where

the first set of HTESSEL simulations is computed

(section 2b).

(ii) GRACE terrestrial water storage anomalies de-

rived from satellite measurements (Swenson and

Wahr 2006; Landerer and Swenson 2012). We

employ the equivalent water thickness data from

the current release of the Center for Space Re-

search (The University of Texas at Austin). Even

though the spatial resolution of theGRACEdata is

low (footprint of about 200 km), it allows to vali-

date large-scale patterns of modeled total column

soil moisture. The available time period is 2003–12.

(iii) Evapotranspiration (ET) data from the LandFlux-

EVAL dataset (Mueller et al. 2013), derived by

merging uncoupled land model simulations with

diagnostic (satellite based) datasets. This dataset

has a spatial resolution of 18 3 18 and covers the

time period 1989–2005.

(iv) Streamflow data from .400 near-natural catch-

ments (i.e., with negligible human influence) across

Europe (Stahl et al. 2010) from 1984 to 2007.

Note that the validation is performed over different time

periods, depending on the reference dataset. Evaluation

of the model simulations is performed at the monthly

time scale, except for soil moisture where daily observa-

tions are available. To validate the first set of simulations

at the six locations, we use soil moisture data from the

respective locations, GRACE and ET data from the re-

spective grid points, and streamflow data from nearby

catchments. However, as there are no data from catch-

ments close to the Italian sites, we do not perform a

streamflow validation there.

2) VALIDATION OF COUPLED FORECASTS

We investigate the performance of the coupled fore-

casts with respect to temperature and precipitation. To

assess their quality in Europe, we use the E-OBS dataset

as a reference.Asmentioned above, this dataset is derived

from a large number of ground observations that are then

interpolated to a regular grid (Haylock et al. 2008). To
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infer forecast skills globally we employ data from theERA-

Interim reanalyses, whereby the precipitation data have

been corrected with monthly data from the Global Pre-

cipitation Climatology Project (GPCP; Adler et al. 2003;

http://www.esrl.noaa.gov/psd/data/gridded/data.gpcp.html,

accessed on 22 June 2015), as used in the ERA-Interim/

Land reanalysis (Balsamo et al. 2015).

4. Results

In this section we first assess the sensitivity of

uncoupled HTESSEL simulations to the applied pa-

rameter perturbations. We also analyze the role of the

forcing and the considered domain in this context.

Thereafter, we investigate the sensitivity of forecast

skills of coupled subseasonal forecasts to the applied

land model parameter perturbations. Finally, we show

how accounting for land model parameter uncertainty

can improve forecast skills in Europe and around the

world, especially during extreme events.

a. Uncoupled simulations

1) PARAMETER SENSITIVITIES AT SELECTED

LOCATIONS

We perform uncoupled simulations withHTESSEL at

six locations (Fig. 1) using 2300 combinations of six

perturbed parameters (sections 2b and 2c; Table 1). The

simulated soil moisture, ET, and runoff are evaluated

against corresponding observations [section 3b(1)].

The results are shown in Fig. 3. The red point in each

plot denotes the default parameterization, which is

mostly among the highest correlations or lowest biases,

indicating comparatively good performance of the
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current model parameterization. As described in section

2c(1), we select 25 best parameter sets and 25 additional

parameter sets based on these results. The 25 best pa-

rameter sets are shown in green. There is a clustering of

their respective multiplicative factors of the minimum

stomatal resistance and the soil depth but not of other

parameters. This means that these parameters have a

profound impact on the model performance, and their

respective values need to bewithin a tight range to ensure

good model performance. To sample the entire parame-

ter space with a reduced set of parameter perturbations

we select the additional parameter sets [section 2c(1)].

These are shown in light blue and as intended they cover

the entire perturbation range of each parameter.

The sensitivities of model performance to the indi-

vidual parameters (section 2d) are shown by the color of

the plot frames. We find a strong sensitivity of model

performance with respect to the minimum stomatal

resistance. Furthermore, the ET performance is sensi-

tive to the soil moisture stress function, and the runoff

dynamics and the total terrestrial water storage are

sensitive to the employed soil depth. This can be ex-

plained as the soil depth influences the variability of the

water storage. Model performance is not sensitive to the

three remaining parameters runoff depth, skin conduc-

tivity, and maximum interception. However, evaluating

HTESSEL’s performance in a different context with

other than the hydrological observations employed here

may yield different results; tests with satellite-based

measurements of land surface temperature revealed an

important role of the skin conductivity parameter (not

shown). In some cases such as for ET dynamics, the

sensitivity varies across the range of tested parameter

values; for example, the soil moisture stress function has

no impact if it is decreased but strong influence if it is

larger than the default value. Sometimes results are

furthermore contradictory; an increased soil depth, for

example, improves the model’s performance in terms of

terrestrial water storage but deteriorates the simulated

runoff dynamics. This underlines the usefulness of our

multivariable evaluation approach. Note that with this

approach we also validate the model across temporal

scales (daily soil moisture, monthly ET, and runoff) and

spatial scales [different footprints of the observations;

see section 3b(1)], which increases the robustness of the

results.

Interestingly, the best parameter sets contain only

runoff depth values equal or smaller than the default,

even though this parameter is not sensitive (see Fig. S3

in the online supplemental material). Among the best

10% parameter sets (5230) there are also larger runoff

depth values; however, only very few of the corre-

sponding parameter sets performwell against runoff and

FIG. 4. (a) The overall ranks of the selected subset of 50 pa-

rameter perturbations, compared against a ranking among only

these 50 parameter sets. (b)–(d) Consistency of ranking of selected

subset of 50 parameter perturbations computed at six locations

(i) when evaluated across entire Europe, (ii) when simulations are

computed with replaced precipitation and radiation forcing, and

(iii) when simulations are evaluated across entire Europe and

computed with replaced precipitation and radiation forcing.
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GRACE dynamics at the same time [applying the 57%-

quantile threshold described in section 2c(1)]. None of

these finally performs well in terms of ET bias.

2) ROLE OF SPATIAL DOMAIN AND ATMOSPHERIC

FORCING

In a next step we test the representativeness of the

model performance at the six selected locations. For this

purpose we compare ranks of the 50 selected parameter

sets (25 best including the default and 25 additional

shown in green and light blue, respectively) across dif-

ferent domains and atmospheric forcings. The ranks

are inferred from the sum of the ranks in the individual

rankings against each observation dataset [section 2c(1)].

Figure 4a shows the overall ranks of the selected 50

parameter sets plotted against the ranks among these 50.

It confirms that the 25 additional parameter sets are not

only well distributed across the parameter space but also

in terms of their performance.

Figure 4b shows that the model performance assessed

at the six locations is somewhat representative for the

performance across the entire continent, although the

rankings differ to some extent. The best datasets still

perform better than the randomly chosen parameter

sets, even though there is substantial scatter. These re-

sults (roughly) validate our approach to start the anal-

ysis with only six representative locations to allow

testing many parameter sets.

Figure 4c shows the rankings at the six locationswithE-

OBS and WFDEI atmospheric forcing (section 3a); the

results are similar. The performance of any parameter set

is hence roughly independent from the employed forcing

data; this is a useful characteristic for model calibration in

general.

b. Coupled subseasonal forecasts

In this section we present results on the forecast skill

obtained with different HTESSEL parameter sets
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employed within the coupled forecasting system [sec-

tion 2a(2)] and its sensitivity toward particular pa-

rameters. The focus is mainly on Europe, whereby we

distinguish between northern, central, and southern

Europe.

1) SENSITIVITY OF FORECAST SKILL ON LAND

MODEL PARAMETERS

Figure 5 shows temperature forecasts skills (anomaly

correlation and bias) associated with 11 HTESSEL pa-

rameter sets at aggregated lead times of 1–15, 16–30, and

46–60 days in the three European subregions. Because

of computational constraints we had to select a subset of

11 parameter sets (default 1 5 others of the best pa-

rameter sets 1 5 of the additional parameter sets) from

the previously considered 50 parameter sets [section

2c(1)]. Focusing on the obtained sensitivities we find

that soil depth and stomatal resistance are impacting

forecast skills. Also runoff depth and skin conductivity

have some influence. The forecast skills differ partly

substantially between the considered subregions.

Overall the results are rather noisy as we only test 11

parameter sets. The sensitivities of the anomaly corre-

lations fade away with increasing lead time, whereas the

sensitivities associated with bias are rather constant with

lead time. This might have to do with the fact that the

different land surface model parameterizations impact

both the initial land conditions and the land–atmosphere

coupling during the forecasting period.Whereas the bias

is probably more impacted by the second, the anomaly

correlation is influenced by both. The sensitivities re-

lated to the anomaly correlation skill probably decrease

with lead time because of the increasing uncertainty in

the forecast—that is, the reduction of predictability and

the decline of the signal-to-noise ratio. The land–

atmosphere coupling is somewhat sensitive to most

tested parameters with the strongest response to the soil

moisture stress function and the soil depth (see Fig. S4 in

the online supplementalmaterial). In contrast, the initial

soil moisture is sensitive tominimum stomatal resistance
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FIG. 6. As in Fig. 5, but focusing on the ensemble spread of the (top) temperature and (bottom) precipitation forecasts.
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and the soil depth (see Fig. S5 in the online supplemental

material). The soil depth furthermore impacts the soil

moisture spread of the forecast ensemble.

As for the anomaly correlation, we found no clear

signal when evaluating the reliability of the temperature

forecasts for the lower and upper terciles (see Fig. S6 in

the online supplemental material).

Similar to the temperature forecast results, the pre-

cipitation forecasts’ (see Figs. S7 and S8 in the online

supplemental material) sensitivities are rather constant

with lead time for the bias but decrease with lead time

for anomaly correlation and reliability. Stomatal re-

sistance and soil depth parameters are overall most in-

fluential, and the soil moisture stress has some impact on

the bias. Interestingly, we find similar influential pa-

rameters for temperature and precipitation forecast and,

furthermore, these parameters were found to be im-

portant in the uncoupled simulations. This means that

computationally less demanding uncoupled simulations

can help—to some extent—to identify and calibrate key

parameters of the land surface mode.

Comparing the green versus the red symbols in the

bias plots of temperature and precipitation shows that

the best parameter sets tend to make the coupled

model drier (especially in central Europe) and warmer

(mostly in southern Europe). As a consequence, the

land–atmosphere coupling strengthens in central

Europe.

In line with the importance of the soil depth for the

forecast skills, we find a strong impact of this param-

eter on the spread of the temperature and pre-

cipitation forecast ensembles at all lead times, as

shown in Fig. 6. The deeper the soil, the larger is the

precipitation ensemble spread and the lower is the

temperature ensemble spread. As the land surface

water reservoir grows with larger soil depth, an en-

hanced moisture recycling tends to increase pre-

cipitation. At the same time, more moisture dampens

temperature variability.

2) IMPROVING SUBSEASONAL PREDICTABILITY

BY INCLUDING LAND MODEL PARAMETER

UNCERTAINTY?

Moving beyond sensitivities, here we compare fore-

cast skills derived with the different HTESSEL param-

eterizations. In this context we consider the skills of

forecasts derived with the 11 parameter sets. Addition-

ally, we consider artificially constructed ensemble fore-

casts based on the five best, or the five additional

parameter sets that therefore include land model pa-

rameter uncertainty [section 2c(2)].

For each lead time and considered forecast skill

metric we compute a ranking among the 11 1 3 5 14

considered forecast configurations; the results are shown

in Fig. 7. The default parameter set performs compara-

tively well as indicated by the reddish colors denoting

low ranks. This confirms results of the uncoupled sim-

ulations in Fig. 3. Only in terms of temperature re-

liability does the default parameterization perform less

well. Comparing the mean skills of the five best and the
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configurations as evaluated from the forecast performance.

APRIL 2016 ORTH ET AL . 1563



five additional parameter sets, respectively, we find

better skill across most metrics and lead times in the

forecasts using the best parameter sets. This is an im-

portant finding, as it illustrates that uncoupled model

calibration (against hydrological observations) can im-

prove coupled (temperature and precipitation) fore-

casts. This is furthermore in line with the similar

sensitivities found in the previous subsection. Another

main result of this study is that the construction of

forecast ensembles from members using different

HTESSEL parameterizations (that differ in terms of the

six parameters considered here) improves the forecast

skill, both for combining the best and additional pa-

rameter sets, respectively. Finally, unlike using the best

parameter sets determined in the uncoupled simula-

tions, we construct ensembles with the three best pa-

rameters sets in terms of forecast skills. As shown in the

bottom row, this ‘‘combined best’’ forecast indeed out-

performs all other described forecasts, except for the

default. It ranks better than the default only in terms of

temperature reliability. It seems that three is the mini-

mum amount of required parameter sets within the

constructed ensemble; tests with less showed degraded

forecast skill whereas tests with more did not yield sig-

nificant improvements.

With these results, we can answer the question posed

in the title of this subsection with yes.

However, the current default parameterization

performs really well such that it is not easy to apply

these findings to improve the operational forecasting

system.

3) GOING GLOBAL

Whereas the previous analyses focused on Europe, we

present here a global comparison between the combined

best forecasts and the default. The results are shown in

Figs. 8 and 9 for all considered lead times and skill

metrics. Note that reliability slopes are computed over

climate regions while the other metrics are computed at

each grid point (see section 2f). Confirming results of the

previous subsection, we find clearly improved temper-

ature reliability in Europe but also across most other

regions of the globe. Only at longer lead times the signal

is weaker because the corresponding slopes are small. In

terms of the anomaly correlation both forecasts overall

perform equally well. We find patchy patterns; with in-

creasing lead time they increase in amplitude and vary

spatially. The size of the regions where one forecast is

better than the other is about equal. Also for pre-

cipitation there is no clear difference in the anomaly

correlations, and furthermore the reliability of the two

considered forecasts is not systematically different.

Temperature and precipitation biases are globally

larger in the combined best forecasts. The biases accu-

mulate with lead time, reaching 1K and 0.5mmday21 in

many regions. These are remarkable changes in the

mean model climate that highlight the role of the land

surface parameterization in the coupled system. Note,
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however, that the default model configuration is

‘‘tuned’’ for a reduced bias. This means that parameters

in all components of the model (land surface, boundary

layer, clouds, radiation, etc.) are adapted accordingly

during model development. Following the same meth-

odology with the combined best forecasts may allow us

to reduce the biases, even though the improved tem-

perature reliability might be diminished at the same

time. A way forward in this context might be to ‘‘tune’’

the coupled system taking into account more skill met-

rics than only the bias.

4) EXAMPLE FORECASTS OF 2010 RUSSIAN HEAT

WAVE

In addition to comparing the combined best forecasts

with the default in terms of their mean skill we focus

here on extreme events. In this context we choose the

heat waves in western Russia in 2010 (Barriopedro et al.

2011) and in central Europe in 2003 (MacLeod et al.

2016) as examples.

The respective forecasts of the onset of the Russian

heat wave in the first half of June 2010 are presented in

Fig. 10. We compare forecasts of temperature, pre-

cipitation, and atmospheric circulation expressed

through geopotential height. Forecasts initialized at

1 May do not show any large-scale temperature or pre-

cipitation anomaly in the first half of June. Forecasts

initialized at 16 May differ between the default system

and the combined best forecasts. The latter start to pick

up the observed large-scale anomalies in the correct

regions, also thanks to the roughly matching forecasted

circulation pattern. In contrast, the default configuration

does not (yet) forecast a heat wave. This is another main

result of this study: the land model parameterization

impacts weather beyond the near surface: it can influ-

ence the large-scale atmospheric circulation and the

associated forecast skill. Forecasts initialized at 1 June

capture the upcoming heat wave and the associated

large-scale circulation with both configurations.

Whereas the combined forecasts methodology helps

an earlier capture of the Russian heat wave, there is no

such difference for the onset of the 2003 heat wave (see

Fig. S9 in the online supplemental material). The im-

provement of extreme event forecasts therefore does

not necessarily seem to be a general characteristic of the

inclusion of land model parameter uncertainty.

Probably the contrasting results for the two considered

heat waves are due to different initial (dry) soil moisture

anomalies. Whereas soils were not dry in central Europe

at the beginning of the 2003 summer such that the event

was mainly driven by the large-scale circulation, there

was an initial anomaly in western Russia in 2010 (Whan

et al. 2015; Prudhomme et al. 2016) that amplified the role

of the land–atmosphere coupling.

5. Conclusions

In this study, we have demonstrated how the land

model calibration(s) can improve a state-of-the-art

subseasonal forecasting system. For this purpose we
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performed uncoupled and hence computationally in-

expensive simulations with HTESSEL, which we eval-

uated against multiple reference datasets to infer several

best-performing sets of previously poorly constrained

parameters. Employing these sets in coupled forecasts,

we illustrated potential benefits of incorporating dif-

ferent but equally well-performing land model param-

eter sets within the generation of ensemble forecasts.

This provides a new perspective on land model param-

eter uncertainty. Moreover, our analyses highlighted

that uncoupled model calibration allows us to improve a

coupled forecasting system and, hence, offers a com-

putationally less demanding option to advance a cou-

pled model. Our results underline the importance of the

land surface within a coupled Earth system, even though

the improvements of the coupled system only occur

occasionally as the role of the land surface furthermore

varies dependent on conditions such as soil moisture

content and the state of the vegetation (Koster et al.

2011). Hence, different results are also found when

considering forecasts of mean versus extreme conditions

(Fujita et al. 2007) or of dry versus wet conditions

(Santanello et al. 2013). Note that the time periods

considered in the uncoupled HTESSEL calibration

[depending on reference dataset; see section 3b(1)]

partly include the time period where the coupled fore-

casts are validated (2001–10). However, the compre-

hensive calibration against multiple parameter sets in

different time periods should ensure the usefulness of

this methodology also for future forecasts. Furthermore,

different variables are considered in the uncoupled

calibration (soil moisture, evapotranspiration, and

streamflow) and the evaluation of the coupled forecasts

(temperature and precipitation). Whereas land model

parameters are perturbed in this analysis and other

studies (Fujita et al. 2007; Harrison et al. 2012;

Santanello et al. 2013; MacLeod et al. 2016), which

then impacts land surface variables such as soil mois-

ture, similar results can be obtained when perturbing

land surface variables directly as in other land surface

uncertainty studies (Harrison et al. 2012; Lavaysse

et al. 2013; Bouttier et al. 2016). Also, remote sensing

data has been used in this context to better constrain

land surface parameters (Harrison et al. 2012). All

these studies confirm that perturbations in surface

hydrology can influence and improve ensemble

weather forecasts. These results furthermore indicate

that also other than the six parameters we investigated

here might have profound impacts on weather forecast

skills.

We investigated the role of six poorly constrained

parameters and found that the minimum stomatal re-

sistance and the soil depth are most important. Whereas

the importance of the stomatal resistance is expected as

it directly impacts the exchange of water and energy

between the surface and the atmosphere, the important

role of the soil depth and hence the water holding ca-

pacity has not been previously reported. We find that

different model parameters have the strongest impacts

on precipitation or temperature. Also, Lavaysse et al.

(2013) and Fujita et al. (2007) found that particular land

surface variables impact some meteorological variables

more than others.

Note that the results of this study are potentially de-

pendent on the choice of the models, their spatial reso-

lutions, and the time scales considered in the analysis.

Furthermore, the choice of the parameters and of the

reference datasets is necessarily subjective given limited

computational resources and a variety of different land

surface observations. Instead of constraining landmodel

hydrology, future research might consider land surface

temperature data or carbon-proxy data and obtain dif-

ferent parameter sensitivities. Another way forward in

future studies might be to test spatiotemporal variations

of land model parameter (perturbations) instead of ap-

plying the same relative changes. Nevertheless, we be-

lieve that these caveats do not question the main lessons

learned in this study.

Our results moreover have implications on model

development strategies. For example, the ‘‘tuning’’ of a

coupled system to specific parameterizations of indi-

vidual model components is somewhat obstructive to

exploit its full potential. Improvements in the land sur-

face model may lead to larger temperature and pre-

cipitation biases in the coupled system, arising from

compensating errors. This highlights the importance of

careful testing and calibration of each component prior

to the tuning of the entire system. The latter should

furthermore take into account multiple skill metrics.

Another problem arises from the increasing complexity

of many model components and the correspondingly

increasing number of parameters. A careful consider-

ation of the role of each parameter is necessary; for in-

stance, if no influence on model performance can be

detected even in an extensive analysis, parts of the

model code might need to be replaced or reformulated

(Rahman et al. 2015). With further increasing model

resolutions in future, comprehensive calibration and

sensitivity analysis such as introduced in this studymight

help to cope with the corresponding increase in spatial

heterogeneity and local uncertainties.
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