Supplementary data

Acylated quinic acids are the main salicortin metabolites in the specialist herbivore *Cerura vinula*

Felix Feistel, Christian Paetz, Riya C. Menezes, Daniel Veit, Bernd Schneider Max Planck Institute for Chemical Ecology, Hans-Knöll-Straße 8, 07745 Jena, Germany

Table of Contents

Tal	ole of C	Contents	1
Lis	t of Tab	bles	2
Lis	t of Figu	ures	2
A)	Spect	troscopic data for structure elucidation	9
	4.1)	3-O-salicyloyl quinic acid (1):	9
	4.2)	4- <i>O</i> -Salicyloyl quinic acid (2):	14
	4.3)	5- <i>O</i> -Salicyloyl quinic acid (3):	18
	۹.4)	4- <i>O</i> -Benzoyl quinic acid (4):	22
	۹.5)	5- <i>O</i> -Benzoyl quinic acid (5):	26
1	۹.6)	3-0,4-0-Disalicyloyl quinic acid (6):	30
	۹.7)	3-0,5-0-Disalicyloyl quinic acid (7):	35
1	4.8)	4-0,5-0-Disalicyloyl quinic acid (8):	39
	۹.9)	3- <i>O</i> -Salicyloyl-4- <i>O</i> -benzoyl quinic acid (9):	43
	4.10)	3- <i>O</i> -Salicyloyl-5- <i>O</i> -benzoyl quinic acid (10):	48
1	4.11)	4- <i>O</i> -Salicyloyl-5- <i>O</i> -benzoyl quinic acid (11):	52
	4.12)	Salicortin (12):	56
	4.13)	Quinic acid (13):	58
B)	In viv	o ¹³ C-labeling of salicortin (12)	61
l	B.1)	Growth enclosure – Labeling process	61
I	B.2)	Characterization of in vivo generated [U- ¹³ C]salicortin	64
C)	[U- ¹³	C]Salicortin <i>C. vinula</i> larvae feeding	74
(C.1)	Experimental setup	74

C.2)	NMR spectra	76
C.3)	HRESIMS spectra	85
D)	Qualitative analysis of <i>C. vinula</i> hemolymphs:	
D.1)	HRESIMS of six caterpillars testes (I to VI)	
D.2)	HRESIMS of references	114

List of Tables

List of Figures

Figure A.1-1 Compound 1, UV spectrum obtained from HPLC-DAD (top) and mass spectrum (m/z	
311.1 [M-H] ⁻ , bottom)	9
Figure A.1-2 Compound 1 , HRESIMS spectrum, <i>m</i> / <i>z</i> 311.0774 [M-H] ⁻	9
Figure A.1-3 Compound 1 , ¹ H NMR spectrum (700 MHz, MeOH- <i>d</i> ₄)1	0
Figure A.1-4 Compound 1, selective 1D TOCSY spectrum (700 MHz, MeOH- d_4 , o1p = 5.70 ppm)1	0
Figure A.1-5 Compound 1, selective 1D TOCSY spectrum (700 MHz, MeOH- d_4 , o1p = 5.66 ppm)1	1
Figure A.1-6 Compound 1 , ¹ H- ¹ H COSY spectrum (700 MHz, MeOH- <i>d</i> ₄)1	1
Figure A.1-7 Compound 1, ¹ H- ¹ H COSY spectrum (700 MHz, MeOH- d_4) with selective 1D TOCSY	
projections (Fig. A.1-5)	2
Figure A.1-8 Compound 1 , ¹ H- ¹³ C HSQC spectrum (700 MHz, MeOH- <i>d</i> ₄)	2
Figure A.1-9 Compound 1 , ¹ H- ¹³ C HMBC spectrum (700 MHz, MeOH- <i>d</i> ₄)	3
Figure A.1-10 Compound 1, chemical structure with chemical shifts (MeOH-d ₄)	3
Figure A.2-1 Compound 2, UV spectrum obtained from HPLC-DAD (top) and mass spectrum (m/z	
311.1 [M-H] ⁻ , bottom)	4
Figure A.2-2 Compound 2, HRESIMS spectrum, <i>m</i> /z 311.0773 [M-H] ⁻ 1	4
Figure A.2-3 Compound 2 , ¹ H NMR spectrum (700 MHz, MeOH- <i>d</i> ₄)1	5
Figure A.2-4 Compound 2, selective 1D TOCSY spectrum (700 MHz, MeOH- d_4 , o1p = 1.89 ppm)1	5
Figure A.2-5 Compound 2 , ¹ H- ¹ H COSY spectrum (700 MHz, MeOH- <i>d</i> ₄)1	6
Figure A.2-6 Compound 2 , ¹ H- ¹³ C HSQC spectrum (700 MHz, MeOH- <i>d</i> ₄)	6
Figure A.2-7 Compound 2 , ¹ H- ¹³ C HMBC spectrum (700 MHz, MeOH- <i>d</i> ₄)	7
Figure A.2-8 Compound 2, chemical structure with chemical shifts (MeOH-d ₄)	7

Figure A.3-1 Compound 3, UV spectrum obtained from HPLC-DAD (top) and mass spectrum (<i>m</i> /z	
311.1 [M-H] ⁻ , bottom)	18
Figure A.3-2 Compound 3, HRESIMS spectrum, <i>m/z</i> 311.0773 [M-H] ⁻	18
Figure A.3-3 Compound 3, ¹ H NMR spectrum (700 MHz, MeOH- <i>d</i> ₄)	19
Figure A.3-4 Compound 3, selective 1D TOCSY spectrum (700 MHz, MeOH-d ₄ , o1p = 5.55 ppm)	19
Figure A.3-5 Compound 3, ¹ H- ¹ H COSY spectrum (700 MHz, MeOH- <i>d</i> ₄)	20
Figure A.3-6 Compound 3, ¹ H- ¹³ C HSQC spectrum (700 MHz, MeOH- <i>d</i> ₄).	20
Figure A.3-7 Compound 3 , ¹ H- ¹³ C HMBC spectrum (700 MHz, MeOH- <i>d</i> ₄)	21
Figure A.3-8 Compound 3, chemical structure with chemical shifts (MeOH-d ₄).	21
Figure A.4-1 Compound 4, UV spectrum obtained from HPLC-DAD (top) and mass spectrum (m/z	
295.1 [M-H] ⁻ , bottom)	22
Figure A.4-2 Compound 4, HRESIMS spectrum, <i>m/z</i> 295.0820 [M-H] ⁻	22
Figure A.4-3 Compound 4 , ¹ H NMR spectrum (700 MHz, MeOH- <i>d</i> ₄); insert: magnified signal of H-	
4 (δ _H 5.02)	23
Figure A.4-4 Compound 4 , ¹ H NMR spectrum (700 MHz, MeOH- <i>d</i> ₄); 6.8 to 8.2 ppm	23
Figure A.4-5 Compound 4, ¹ H- ¹ H COSY spectrum (700 MHz, MeOH- <i>d</i> ₄)	24
Figure A.4-6 Compound 4, ¹ H- ¹³ C HSQC spectrum (700 MHz, MeOH- <i>d</i> ₄).	24
Figure A.4-7 Compound 4, ¹ H- ¹³ C HMBC spectrum (700 MHz, MeOH-d ₄)	25
Figure A.4-8 Compound 4, chemical structure with chemical shifts (MeOH- d_4)	25
Figure A.5-1 Compound 5, UV spectrum obtained from HPLC-DAD (top) and mass spectrum (m/z	
295.1 [M-H] ⁻ , bottom)	26
Figure A.5-2 Compound 5, HRESIMS spectrum, <i>m/z</i> 295.0819 [M-H] ⁻	26
Figure A.5-3 Compound 5, ¹ H NMR spectrum (700 MHz, MeOH- d_4); Insert: magnified signal of H-	
5 (δ _H 5.52)	27
Figure A.5-4 Compound 5, ¹ H- ¹ H COSY spectrum (700 MHz, MeOH- <i>d</i> ₄)	27
Figure A.5-5 Compound 5, ¹ H- ¹³ C HSQC spectrum (700 MHz, MeOH- <i>d</i> ₄).	28
Figure A.5-6 Compound 5, ¹ H- ¹³ C HMBC spectrum (700 MHz, MeOH- <i>d</i> ₄).	28
Figure A.5-7 Compound 5, chemical structure with chemical shifts (MeOH- d_4).	29
Figure A.6-1 Compound 6, UV spectrum obtained from HPLC-DAD (top) and mass spectrum (m/z	
431.2 [M-H] ⁻ , bottom)	30
Figure A.6-2 Compound 6, HRESIMS spectrum, m/z 431.0986 [M-H] ⁻	30
Figure A.6-3 Compound 6 , ¹ H NMR spectrum (700 MHz, MeOH- <i>d</i> ₄)	31
Figure A.6-4 Compound 6, selective 1D TOCSY spectrum (700 MHz, MeOH- d_4 , o1p = 4.48 ppm);	
Inserts: magnified signals of H-3 (δ_{H} 5.95), H-4 (δ_{H} 5.28) and H-5 (δ_{H} 4.48)	31
Figure A.6-5 Compound 6, selective 1D TOCSY spectrum (700 MHz, MeOH- d_4 , o1p = 7.91 ppm);	
signals displayed for H-6' ($\delta_{ m H}$ 7.91), H-4' ($\delta_{ m H}$ 6.92), H-3' ($\delta_{ m H}$ 7.48) and H-5' ($\delta_{ m H}$ 6.90)	32
Figure A.6-6 Compound 6, selective 1D TOCSY spectrum (700 MHz, MeOH-d ₄ , o1p = 7.62 ppm);	
signals displayed for H-6'' ($\delta_{ m H}$ 7.62), H-4'' ($\delta_{ m H}$ 7.44), H-3'' ($\delta_{ m H}$ 6.93) and H-5'' ($\delta_{ m H}$ 6.74)	32
Figure A.6-7 Compound 6, ¹ H- ¹ H COSY spectrum (700 MHz, MeOH- <i>d</i> ₄)	33
Figure A.6-8 Compound 6, ¹ H- ¹³ C HSQC spectrum (700 MHz, MeOH- <i>d</i> ₄).	33
Figure A.6-9 Compound 6, ¹ H- ¹³ C HMBC spectrum (700 MHz, MeOH- <i>d</i> ₄).	34
Figure A.6-10 Compound 6, chemical structure with chemical shifts (MeOH-d ₄).	34

Figure A.7-1 Compound 7, UV spectrum from HPLC-DAD (top) and mass spectrum (m/z 431.3	
[M-H] ⁻ , bottom)	35
Figure A.7-2 Compound 7, HRESIMS spectrum, <i>m/z</i> 431.0985 [M-H] ⁻	35
Figure A.7-3 Compound 7, ¹ H NMR spectrum (700 MHz, MeOH- d_4)	36
Figure A.7-4 Compound 7, ¹ H NMR spectrum (700 MHz, MeOH- d_4); region from 5.55 to 5.95	
ppm, signal H-3 and H-5 are overlapping (δ_{H} 5.71); insert: magnified signal of H-4 (δ_{H} 4.13)	36
Figure A.7-5 Compound 7, ¹ H- ¹ H COSY spectrum (700 MHz, MeOH- <i>d</i> ₄)	37
Figure A.7-6 Compound 7 , ¹ H- ¹³ C HSQC spectrum (700 MHz, MeOH- <i>d</i> ₄)	37
Figure A.7-7 Compound 7 , ¹ H- ¹³ C HMBC spectrum (700 MHz, MeOH- <i>d</i> ₄)	38
Figure A.7-8 Compound 7, chemical structure with chemical shifts (MeOH-d ₄).	38
Figure A.8-1 Compound 8, UV spectrum obtained from HPLC-DAD (top) and mass spectrum (m/z	
431.3 [M-H] ⁻ , bottom)	39
Figure A.8-2 Compound 8, HRESIMS spectrum, <i>m/z</i> 431.0987 [M-H] ⁻	39
Figure A.8-3 Compound 8, 1D NOESY spectrum (700 MHz, MeOH- d_4 , o1p = 4.92 ppm), region 7.9	
to 6.8 ppm; inserts: magnified signals of H-5 (δ_{H} 5.95) and H-4 (δ_{H} 5.42)	40
Figure A.8-4 Compound 8, ¹ H- ¹ H COSY spectrum (700 MHz, MeOH-d ₄)	40
Figure A.8-5 Compound 8 , ¹ H- ¹³ C HSQC spectrum (700 MHz, MeOH- <i>d</i> ₄)	41
Figure A.8-6 Compound 8 , ¹ H- ¹³ C HMBC spectrum (700 MHz, MeOH- <i>d</i> ₄)	41
Figure A.8-7 Compound 8, chemical structure with chemical shifts (MeOH-d ₄).	42
Figure A.9-1 Compound 9, UV spectrum obtained from HPLC-DAD (top) and mass spectrum (m/z	
415.3 [M-H] ⁻ , bottom)	43
Figure A.9-2 Compound 9, HRESIMS spectrum, <i>m/z</i> 415.1038 [M-H] ⁻	43
Figure A.9-3 Compound 9, 1D NOESY spectrum (700 MHz, MeOH- d_4 , o1P = 4.92 ppm); inserts:	
magnified signals of H-3 (δ_{H} 5.93), H-4 (δ_{H} 5.22) and H-5 (δ_{H} 4.46)	44
Figure A.9-4 Compound 9, 1D NOESY spectrum (700 MHz, MeOH- d_4 , o1p = 4.92 ppm); region 8.1	
to 6.5 ppm	44
Figure A.9-5 Compound 9 , ¹ H- ¹ H COSY spectrum (700 MHz, MeOH- <i>d</i> ₄)	45
Figure A.9-6 Compound 9 , ¹ H- ¹ H COSY spectrum (700 MHz, MeOH- <i>d</i> ₄); region 8.1 to 6.5 ppm	45
Figure A.9-7 Compound 9 , ¹ H- ¹³ C HSQC spectrum (700 MHz, MeOH- <i>d</i> ₄).	46
Figure A.9-8 Compound 9 , 1 H- 13 C HMBC spectrum (700 MHz, MeOH- d_{4})	46
Figure A.9-9 Compound 9, structure with chemical shifts (MeOH- d_4)	47
Figure A.10-1 Compound 10, UV spectrum obtained from HPLC-DAD (top) and mass spectrum	
(<i>m/z</i> 415.3 [M-H] ⁻ , bottom)	48
Figure A.10-2 Compound 10, HRESIMS spectrum, <i>m</i> /z 415.1038 [M-H] ⁻	48
Figure A.10-3 Compound 10 , 1D NOESY spectrum (700 MHz, MeOH- d_4 , o1P = 4.92 ppm); inserts:	
magnified signals of H-3 (δ_{H} 5.71), H-5 (δ_{H} 5.56) and H-3 (δ_{H} 4.12)	49
Figure A.10-4 Compound 10, 1D NOESY spectrum (700 MHz, MeOH- d_4 , o1P = 4.92 ppm); region	
8.2 to 6.8 ppm	49
Figure A.10-5 Compound 10, ¹ H- ¹ H COSY spectrum (700 MHz, MeOH- <i>d</i> ₄)	50
Figure A.10-6 Compound 10 , ¹ H- ¹³ C HSQC spectrum (700 MHz, MeOH- <i>d</i> ₄)	50
Figure A.10-7 Compound 10 , ¹ H- ¹³ C HMBC spectrum (700 MHz, MeOH- <i>d</i> ₄)	51
Figure A.10-8 Compound 10, structure with chemical shifts (MeOH-d ₄)	51

Figure A.11-1 Compound 11, UV-spectra from HPLC-DAD (top) and mass spectrum (m/z 415.3	
[M-H] ⁻ , bottom)	52
Figure A.11-2 Compound 11 , HRESIMS spectrum, <i>m/z</i> 415.1038 [M-H] ⁻	52
Figure A.11-3 Compound 11, 1D NOESY spectrum (700 MHz, MeOH- d_4 , o1P = 4.92 ppm); signal	
H-5 (δ_{H} 5.91), H-4 (δ_{H} 5.41) and H-3 (δ_{H} 4.47) are magnified	53
Figure A.11-4 Compound 11, 1D NOESY spectrum (700 MHz, MeOH- d_4 , o1P = 4.92 ppm); region	
8.2 to 6.7 ppm	53
Figure A.11-5 Compound 11 , ¹ H- ¹ H COSY spectrum (700 MHz, MeOH- <i>d</i> ₄)	54
Figure A.11-6 Compound 11 , ¹ H- ¹³ C HSQC spectrum (700 MHz, MeOH- <i>d</i> ₄)	54
Figure A.11-7 Compound 11 , ¹ H- ¹³ C HMBC spectrum (700 MHz, MeOH- <i>d</i> ₄)	55
Figure A.11-8 Compound 11, chemical structure with chemical shifts (MeOH-d ₄).	55
Figure A.12-1 Salicortin (12), ¹ H NMR spectrum (400 MHz, MeOD- <i>d</i> ₄)	56
Figure A.12-2 Salicortin (12), ¹³ C NMR spectrum (100 MHz, MeOD- <i>d</i> ₄)	56
Figure A.12-3 Salicortin (12), ¹ H- ¹³ C HSQC spectrum (400 MHz, MeOD- <i>d</i> ₄)	57
Figure A.12-4 Salicortin (12), chemical structure with chemical shifts (MeOH-d ₄)	57
Figure A.13-1 Quinic acid (13), ¹ H NMR spectrum (700 MHz, D ₂ O)	58
Figure A.13-2 Quinic acid (13), Partial ¹ H NMR spectrum (700 MHz, D ₂ O); region 3.5 to 4.2 ppm	58
Figure A.13-3 Quinic acid (13), ¹ H- ¹ H COSY spectrum (700 MHz, D ₂ O)	59
Figure A.13-4 Quinic acid (13), ¹ H- ¹³ C HSQC spectrum (700 MHz, D ₂ O)	59
Figure A.13-5 Quinic acid (13), ¹ H- ¹³ C HMBC spectrum (700 MHz, D ₂ O)	60
Figure A.13-6 Quinic acid (13), chemical structure with chemical shifts (D ₂ O)	60
Figure B.1-1 CO ₂ -curve [in ppm] of the 1st (blue), 2nd (red) and 3rd (green) experimental day	61
Figure B.1-2 Overall CO ₂ -curve [in ppm] of the ¹³ CO ₂ labeling experiment	62
Figure B.1-3 Overall temperature [°C], rel. humidity [%] and light-curve [Lux] of the ¹³ CO ₂ feeding	
experiment	63
Figure B.1-4 Pictures of the automated growth enclosure for stable isotope ¹³ CO ₂ labeling	
experiments. Left – Enclosure located in the greenhouse of the MPI-CE during $^{13}\text{CO}_2$	
labeling of <i>P. beaupré.</i>	64
Figure B.2-1 Stacked TIC spectra of young (blue) and old (red) leaf sample extracts of <i>P. beaupré</i>	
in comparison with a salicortin (12) reference (black)	66
Figure B.2-2 UV spectrum (top) and ESI ion trap mass spectrum (bottom) of salicortin (12) (m/z	
423.6 [M-H] ⁻ , ¹² C ₂₀ H ₂₃ O ₁₀) in the old leaf sample	67
Figure B.2-3 UV spectrum (top) and ESI ion trap mass spectrum (bottom) of salicortin (12) (m/z	
440.3 [M-H] ⁻ , ¹³ C ₁₇ ¹² C ₃ H ₂₃ O ₁₀) in the young leaf sample	68
Figure B.2-4 UV spectrum (top) and ESI ion trap mass spectrum (bottom) of the salicortin (12)	
reference $(m/z 423.6 [M-H]^{-}, {}^{12}C_{20}H_{23}O_{10})$	69
Figure B.2-5 Stacked mass spectra of salicortin (12) from young (blue) and old (red) leaf sample	
extract in comparison with a salicortin (12) reference (black). The mass range from m/z 420	
to 600 is displayed	70
Figure B.2-6 ¹³ C NMR spectra (100 MHz, MeOH- d_4) of salicortin (12) isolated from young leaf	
tissue of the ¹³ C- enriched <i>P. beaupré</i> plants (black) and the reference (red).	72

Figure B.2-7 ¹ H NMR spectra (400 MHz, MeOH- d_4) of salicortin (12) isolated from young leaf	
tissue of the "C- efficience (red) p_{i} becaupie plants (black; with water suppression of $p = 4.887$	70
ppm) and the reference (red)	72
Figure B.2-8 H- C HSQC spectrum of salicortin (12) isolated from young leaf tissue of the C-	70
	/3
Figure B.2-9 ³⁵ C NMR spectrum (100 MHz, MeOH- d_4) of salicortin (12) isolated from young leaf	
tissue of the ¹² C-enriched <i>Populus beaupre</i> plants (black). The inserts show multiplets, which	
result from ¹³ C- ¹³ C spin-spin coupling (black), in comparison to the singlet signals of the	
unlabeled reference (red)	73
Figure C.1-1 Arena setups including coated leaves and <i>C. vinula</i> larvae	74
Figure C.1-2 Leaves of <i>P. beaupré</i> coated with H ₂ O (left) and [U- ¹³ C]salicortin solution (right)	75
Figure C.1-3 Leaves of <i>P. beaupré</i> coated with H_2O (left) and $[U^{-13}C]$ salicortin solution (right)	
after drying	75
Figure C.2-1 ¹³ C NMR spectrum (125 MHz; MeOH- d_4 ; 20k scans) of feces from <i>C. vinula</i> which fed	
on <i>P. nigra</i> diet supplemented with [U- ¹³ C]salicortin.	76
Figure C.2-2 Partial ¹³ C NMR spectrum (125 MHz; MeOH- d_4 ; 20k scans; 155-175 ppm) of feces	
from <i>C. vinula</i> which fed on <i>P. nigra</i> diet supplemented with [U- ¹³ C]salicortin	76
Figure C.2-3 Partial ¹³ C NMR spectrum (125 MHz; MeOH-d ₄ ; 20k scans; 110-140 ppm) of feces	
from <i>C. vinula</i> which fed on <i>P. nigra</i> diet supplemented with [U- ¹³ C]salicortin	77
Figure C.2-4 Partial ¹³ C NMR spectrum (125 MHz; MeOH- d_4 ; 20k scans; 1-80 ppm) of feces from	
<i>C. vinula</i> which fed on <i>P. nigra</i> diet supplemented with [U- ¹³ C]salicortin	77
Figure C.2-5 ¹³ C NMR spectra (125 MHz; MeOH- d_4 ; 6k scans; 10-190 ppm) of feces from <i>C. vinula</i>	
which fed on <i>P. nigra</i> diet supplemented with [U- ¹³ C]salicortin (black) and the control leaves	
(red). The insert shows the partial spectra between 100 and 190 ppm	78
Figure C.2-6 1 H- 13 C HSQC spectrum (500 MHz, MeOH- d_4) of feces from <i>C. vinula</i> which fed on <i>P.</i>	
nigra diet supplemented with [U- ¹³ C]salicortin.	78
Figure C.2-7 ¹ H- ¹³ C HMBC spectrum (500 MHz, MeOH- d_4) of feces from <i>C. vinula</i> which fed on <i>P.</i>	
<i>nigra</i> diet supplemented with [U- ¹³ C]salicortin.	79
Figure C.2-8 1 H- 13 C HSQC spectrum (500 MHz, MeOH- d_{4}) with selective 1D TOCSY spectrum (top)	
(500 MHz, MeOH- d_4 ; o1p= 8.13 ppm with 16 Hz) and ¹³ C NMR spectrum (left) (125 MHz)	79
Figure C.2-9 ¹ H- ¹ H COSY (500 MHz, MeOH- d_4) with selective 1D TOCSY spectrum (top and left)	
(500 MHz, MeOH- d_4 ; o1p= 8.13 ppm with 16 Hz)	80
Figure C.2-10 ¹ H- ¹³ C HSQC spectrum (500 MHz, MeOH- d_4) with selective 1D TOCSY spectrum	
(top) (500 MHz, MeOH- d_4 ; o1p= 8.09 ppm with 16 Hz) and ¹³ C NMR spectrum (left) (125	
MHz)	80
Figure C.2-11 1 H- 1 H COSY spectrum (500 MHz, MeOH- d_{4}) with selective 1D TOCSY spectrum (top	
and left) (500 MHz, MeOH- d_4 ; o1p= 8.09 ppm with 16 Hz).	81
Figure C.2-12 ¹ H- ¹³ C HSQC spectrum (500 MHz, MeOH- d_{A}) with selective 1D TOCSY spectrum	
(top) (500 MHz, MeOH- d_4 ; o1p= 8.04 ppm with 16 Hz) and ¹³ C NMR spectrum (left) (125	
MHz).	81
Figure C.2-13 $^{1}\text{H}^{-1}\text{H}$ COSY spectrum (500 MHz, MeOH- d_{4}) with selective 1D TOCSY spectrum (top	
and left) (500 MHz, MeOH- d_4 ; o1p= 8.04 ppm with 16 Hz).	82
// - //	

Figure C.2-14 ${}^{1}\text{H}{}^{-13}\text{C}$ HSQC spectrum (500 MHz, MeOH- d_4) with selective 1D TOCSY spectrum (top) (500 MHz, MeOH- d_4 ; o1p= 7.98 ppm with 16 Hz) and ${}^{13}\text{C}$ NMR spectrum (left) (125	
MHz)	82
Figure C.2-15 ¹ H- ¹ H COSY spectrum (500 MHz. MeOH- d_4) with selective 1D TOCSY spectrum (top	
and left) (500 MHz, MeOH- d_s : o1p= 7.98 ppm with 16 Hz).	
Figure C.2-16 ¹ H- ¹³ C HSOC spectrum (500 MHz. MeOH- d_1) with selective 1D TOCSY spectrum	
(top) (500 MHz MeOH-d.: o_{1} = 7.93 ppm with 16 Hz) and ¹³ C NMR spectrum (left) (125	
(10) (125 MHz) (125 MHz) (127 MCOT u_4 , $010^{-7.55}$ ppm with 10 Hz) and $v \in (1000 \text{ spectrum (iet)})$	83
Figure C 2-17 $^{1}\text{H}_{-}^{1}\text{H}$ COSV spectrum (500 MHz, MeOD-d.) with selective 1D TOCSV spectrum (top	05
and loft) (500 MHz, MoOH $d \cdot o1n = 7.02$ npm with 16 Hz)	01
Figure C 2.1 Compound 1: HESING spectrum $(m/z, 211, 0.776, [N, H]^2)$ of C, vinula focos ofter	04
Figure C.S-1 Compound 1, FIRESING Spectrum (77/2 S11.0776 [IN-Fi]) of C. Vindid Teces after	05
consumption of leaves labeled with [U- C]salicortin	85
Figure C.3-2 Compound 1; HRESINIS spectrum (<i>m/z</i> 311.0775 [M-H]) of <i>C. Vinula</i> feces after	
consumption of control tissue	86
Figure C.3-3 Compound 2; HRESIMS spectrum (<i>m/z</i> 311.0775 [M-H]) of <i>C. vinula</i> feces after	
consumption of leaves labeled with [U- ¹³ C]salicortin	87
Figure C.3-4 Compound 2 ; HRESIMS spectrum (<i>m</i> / <i>z</i> 311.0775 [M-H] ⁻) of <i>C. vinula</i> feces after	
consumption of control tissue	88
Figure C.3-5 Compound 3; HRESIMS spectrum (<i>m</i> / <i>z</i> 311.0773 [M-H] ⁻) of <i>C. vinula</i> feces after	
consumption of leaves labeled with [U- ¹³ C]salicortin	89
Figure C.3-6 Compound 3; HRESIMS spectrum (<i>m</i> / <i>z</i> 311.0774 [M-H] ⁻) of <i>C. vinula</i> feces after	
consumption of control tissue	90
Figure C.3-7 Compound 4; HRESIMS spectrum (m/z 295.0828 [M-H] ⁻) of C. vinula feces after	
consumption of leaves labeled with [U- ¹³ C]salicortin	91
Figure C.3-8 Compound 4; HRESIMS spectrum (m/z 295.0830 [M-H]) of C. vinula feces after	
consumption of control tissue	92
Figure C.3-9 Compound 5; HRESIMS spectrum (m/z 295.0825 [M-H] ⁻) of C. vinula feces after	
consumption of leaves labeled with [U- ¹³ C]salicortin	93
Figure C.3-10 Compound 5; HRESIMS spectrum (m/z 295.0826 [M-H]) of C. vinula feces after	
consumption of control tissue	94
Figure C.3-11 Compound 6; HRESIMS spectrum (<i>m/z</i> 431.0998 [M-H]) of <i>C. vinula</i> feces after	
consumption of leaves labeled with [U- ¹³ C]salicortin	95
Figure C.3-12 Compound 6 : HRESIMS spectrum (m/z 431.0997 [M-H] ⁻) of <i>C. vinula</i> feces after	
consumption of control tissue	96
Figure C.3-13 Compound 7 : HRESIMS spectrum (m/z 431,1000 [M-H] ⁻) of <i>C. vinula</i> feces after	
consumption of leaves labeled with [U- ¹³ C]salicortin	97
Figure C 3-14 Compound 7 : HRESIMS spectrum $(m/z 431.0998 [M-H]^2)$ of C vinula feces after	
consumption of control tissue	٩D
Figure C 3-15 Compound 8: HRESIMS spectrum $(m/z/431.0008 \text{ [M-H]})$ of C vinual focos ofter	90
concumption of logyos laboled with [11 ¹³ Clashicortin	00
Consumption of reaves labeled with [0- C]sallCoftin	99
rigure c.3-10 compound o, messivis spectrum (<i>III/2</i> 431.0998 [IVI-H]) OF C. VITIUIA TECES after	100
כטווגעוווףנוטוו טו כטוונוטו נוגגעפ	TOO

Figure C.3-17 Compound 9; HRESIMS spectrum (m/z 415.1046 [M-H] ⁻) of C. vinula feces after
consumption of leaves labeled with [U- ¹³ C]salicortin101
Figure C.3-18 Compound 9; HRESIMS spectrum (m/z 415.1049 [M-H] ⁻) of C. vinula feces after
consumption of control tissue102
Figure C.3-19 Compound 10; HRESIMS spectrum (m/z 415.1047 [M-H]) of C. vinula feces after
consumption of leaves labeled with [U- ¹³ C]salicortin103
Figure C.3-20 Compound 10; HRESIMS spectrum (m/z 415.1047 [M-H]) of C. vinula feces after
consumption of control tissue104
Figure C.3-21 Compound 11; HRESIMS spectrum (m/z 415.1049 [M-H]) of C. vinula feces after
consumption of leaves labeled with [U- ¹³ C]salicortin105
Figure C.3-22 Compound 11; HRESIMS spectrum (m/z 415.1046 [M-H]) of C. vinula feces after
consumption of control tissue106
Figure C.3-23 Strongly amplified, superimposed HRESIMS spectrum of compound 7 (m/z 431)
from C. vinula feces after consumption of control tissue (black) and leaves labeled with [U-
¹³ C]salicortin (red). The spectrum is strongly amplified to show occurrence of isotopologues
up to [M-H+14] ⁻
Figure D.1-1 HRESIMS; TIC and base peak chromatograms of hemolymphs from <i>C. vinula</i> larva I 108
Figure D.1-2 HRESIMS; TIC and base peak chromatograms of hemolymphs from <i>C. vinula</i> larva II 109
Figure D.1-3 HRESIM; TIC and base peak chromatograms of hemolymphs from <i>C. vinula</i> larva III 110
Figure D.1-4 HRESIMS; TIC and base peak chromatograms of hemolymphs from C. vinula larva
IV
Figure D.1-5 HRESIMS; TIC and base peak chromatograms of hemolymphs from <i>C. vinula</i> larva V 112
Figure D.1-6 HRESIMS; TIC and base peak chromatograms of hemolymphs from C. vinula larva
VI
Figure D.2-1 HRESIMS; TIC and base peak chromatograms of C. vinula feces. The peaks of quinic
acid esters are labeled with retention times. R_t (compound): 9.00 (1), 9.91 (4), 10.48 (5),
11.20 (2), 11.40 (3), 12.34 (10), 13.40 (7), 20.99 (9), 21.74 (11), 22.02 (6), 22.70 (8)
Figure D.2-2 HRESIMS; TIC and base peak chromatograms from a reference mix of salicortin (12)
(red; 11.93 min) and salicin (green; 6.10 min)115

A) Spectroscopic data for structure elucidation

A.1) 3-O-salicyloyl quinic acid (1):

Figure A.1-2 Compound 1, HRESIMS spectrum, m/z 311.0774 [M-H]⁻.

Figure A.1-4 Compound **1**, selective 1D TOCSY spectrum (700 MHz, MeOH- d_4 , o1p = 5.70 ppm).

Figure A.1-7 Compound **1**, ${}^{1}H{}^{-1}H$ COSY spectrum (700 MHz, MeOH- d_{4}) with selective 1D TOCSY projections (**Fig. A.1-5**).

12

Figure A.1-9 Compound **1**, 1 H- 13 C HMBC spectrum (700 MHz, MeOH- d_4).

Figure A.1-10 Compound **1**, chemical structure with chemical shifts (MeOH- d_4).

A.2) 4-O-Salicyloyl quinic acid (2):

Figure A.2-2 Compound 2, HRESIMS spectrum, m/z 311.0773 [M-H]⁻.

Figure A.2-6 Compound **2**, 1 H- 13 C HSQC spectrum (700 MHz, MeOH- d_{4}).

Figure A.2-8 Compound 2, chemical structure with chemical shifts (MeOH- d_4).

A.3) 5-O-Salicyloyl quinic acid (3):

Figure A.3-2 Compound 3, HRESIMS spectrum, m/z 311.0773 [M-H]⁻.

314.0850

314

315.0870 315

316

313.0820

313

m/z

312.0804

312

311

Figure A.3-5 Compound **3**, $^{1}H^{-1}H$ COSY spectrum (700 MHz, MeOH- d_{4}).

Figure A.3-8 Compound 3, chemical structure with chemical shifts (MeOH- d_4).

Figure A.4-2 Compound 4, HRESIMS spectrum, *m*/z 295.0820 [M-H]⁻.

Figure A.4-7 Compound 4, 1 H- 13 C HMBC spectrum (700 MHz, MeOH- d_{4}).

Figure A.4-8 Compound 4, chemical structure with chemical shifts (MeOH-d₄).

A.5) 5-O-Benzoyl quinic acid (5):

[M-H]⁻, bottom).

Figure A.5-2 Compound **5**, HRESIMS spectrum, *m*/*z* 295.0819 [M-H]⁻.

Figure A.5-3 Compound **5**, ¹H NMR spectrum (700 MHz, MeOH- d_4); Insert: magnified signal of H-5 (δ_H 5.52).

27

Figure A.5-6 Compound 5, $^{1}H^{-13}C$ HMBC spectrum (700 MHz, MeOH- d_{4}).

Figure A.5-7 Compound 5, chemical structure with chemical shifts (MeOH-d₄).

A.6) 3-0,4-O-Disalicyloyl quinic acid (6):

Figure A.6-1 Compound **6**, UV spectrum obtained from HPLC-DAD (top) and mass spectrum (m/z 431.2 [M-H]⁻, bottom).

Figure A.6-2 Compound 6, HRESIMS spectrum, *m/z* 431.0986 [M-H]⁻.

Figure A.6-4 Compound **6**, selective 1D TOCSY spectrum (700 MHz, MeOH- d_4 , o1p = 4.48 ppm); Inserts: magnified signals of H-3 ($\delta_{\rm H}$ 5.95), H-4 ($\delta_{\rm H}$ 5.28) and H-5 ($\delta_{\rm H}$ 4.48).

signals displayed for H-6" (δ_H 7.62), H-4" (δ_H 7.44), H-3" (δ_H 6.93) and H-5" (δ_H 6.74).

Figure A.6-8 Compound **6**, 1 H- 13 C HSQC spectrum (700 MHz, MeOH- d_4).

Figure A.6-10 Compound 6, chemical structure with chemical shifts (MeOH-d₄).

A.7) 3-0,5-O-Disalicyloyl quinic acid (7):

Figure A.7-1 Compound 7, UV spectrum from HPLC-DAD (top) and mass spectrum (m/z 431.3 [M-H]⁻, bottom).

Figure A.7-2 Compound **7**, HRESIMS spectrum, *m*/*z* 431.0985 [M-H]⁻.

Figure A.7-4 Compound **7**, ¹H NMR spectrum (700 MHz, MeOH- d_4); region from 5.55 to 5.95 ppm, signal H-3 and H-5 are overlapping ($\delta_{\rm H}$ 5.71); insert: magnified signal of H-4 ($\delta_{\rm H}$ 4.13).

Figure A.7-8 Compound 7, chemical structure with chemical shifts (MeOH- d_4).

A.8) 4-0,5-O-Disalicyloyl quinic acid (8):

Figure A.8-1 Compound **8**, UV spectrum obtained from HPLC-DAD (top) and mass spectrum (m/z 431.3 [M-H]⁻, bottom).

Figure A.8-2 Compound 8, HRESIMS spectrum, *m*/z 431.0987 [M-H]⁻.

ppm; inserts: magnified signals of H-5 (δ_{H} 5.95) and H-4 (δ_{H} 5.42).

Figure A.8-6 Compound **8**, ${}^{1}\text{H}{}^{-13}$ C HMBC spectrum (700 MHz, MeOH- d_4).

Figure A.8-7 Compound 8, chemical structure with chemical shifts (MeOH-d₄).

A.9) 3-O-Salicyloyl-4-O-benzoyl quinic acid (9):

Figure A.9-2 Compound 9, HRESIMS spectrum, m/z 415.1038 [M-H]⁻.

signals of H-3 (δ_{H} 5.93), H-4 (δ_{H} 5.22) and H-5 (δ_{H} 4.46).

Figure A.9-4 Compound **9**, 1D NOESY spectrum (700 MHz, MeOH- d_4 , o1p = 4.92 ppm); region 8.1 to 6.5 ppm.

Figure A.9-5 Compound **9**, ¹H-¹H COSY spectrum (700 MHz, MeOH- d_4).

Figure A.9-9 Compound **9**, structure with chemical shifts (MeOH- d_4).

A.10) 3-O-Salicyloyl-5-O-benzoyl quinic acid (10):

Figure A.10-2 Compound **10**, HRESIMS spectrum, *m*/z 415.1038 [M-H]⁻.

magnified signals of H-3 (δ_{H} 5.71), H-5 (δ_{H} 5.56) and H-3 (δ_{H} 4.12).

Figure A.10-4 Compound **10**, 1D NOESY spectrum (700 MHz, MeOH- d_4 , o1P = 4.92 ppm); region 8.2 to 6.8 ppm.

Figure A.10-8 Compound 10, structure with chemical shifts (MeOH-d₄).

A.11) 4-O-Salicyloyl-5-O-benzoyl quinic acid (11):

Figure A.11-1 Compound **11**, UV-spectra from HPLC-DAD (top) and mass spectrum (m/z 415.3 [M-H]⁻, bottom).

Figure A.11-2 Compound 11, HRESIMS spectrum, *m*/z 415.1038 [M-H]⁻.

5.91), H-4 (δ_{H} 5.41) and H-3 (δ_{H} 4.47) are magnified.

7.7 7.5 7.4 7.3 7.2 7.1 8.1 8.0 7.9 7.8 7.6 7.0 6.9 6.8 ppm Figure A.11-4 Compound 11, 1D NOESY spectrum (700 MHz, MeOH- d_4 , o1P = 4.92 ppm); region 8.2 to 6.7 ppm.

Figure A.11-7 Compound **11**, ¹H-¹³C HMBC spectrum (700 MHz, MeOH-*d*₄).

Figure A.11-8 Compound **11**, chemical structure with chemical shifts (MeOH- d_4).

Figure A.12-4 Salicortin (12), chemical structure with chemical shifts (MeOH- d_4).

A.13) Quinic acid (13):

4.3 4.2 4.1 4.0 3.9 3.8 3.7 3.6 3.5 3.4 3.3 3.2 3.1 3.0 2.9 2.8 2.7 2.6 2.5 2.4 2.3 2.2 2.1 2.0 ppm Figure A.13-1 Quinic acid (13), ¹H NMR spectrum (700 MHz, D₂O).

4.15 4.10 4.05 4.00 3.95 3.90 3.85 3.80 3.75 3.70 3.65 3.60 3.55 ppm **Figure A.13-2** Quinic acid (**13**), Partial ¹H NMR spectrum (700 MHz, D₂O); region 3.5 to 4.2 ppm.

4.2 4.1 4.0 3.9 3.8 3.7 3.6 3.5 3.4 3.3 3.2 3.1 3.0 2.9 2.8 2.7 2.6 2.5 2.4 2.3 2.2 2.1 2.0 1.9 1.8 ppm Figure A.13-4 Quinic acid (13), ${}^{1}H{}^{-13}C$ HSQC spectrum (700 MHz, D₂O).

Figure A.13-5 Quinic acid (13), ${}^{1}H{}^{-13}C$ HMBC spectrum (700 MHz, D₂O).

Figure A.13-6 Quinic acid (13), chemical structure with chemical shifts (D₂O).

B) In vivo ¹³C-labeling of salicortin (12)

The highlighted areas represent different daily modes of action of the labeling setup:
Purge (4:30-7:00) – strong CO₂ scrubbing with soda lime

Trap (22:30-4:15) – weak CO₂ scrubbing and trapping with saturated Ba(OH)₂ solution CO_2 injection (7:00-22:00) –automatized pulse-labeling with ¹³CO₂ gas from lecture bottle

The CO₂ level was set to 450 ppm. The CO₂-IR sensor probe did not discriminate between ¹²CO₂ and ¹³CO₂. Therefore the CO₂-value was corrected by use of the isotope ratio factor for ¹³CO₂ :¹²CO₂:

Gas bottle with a ${}^{13}CO_2$ conc. of 380 ppm and constant volume flow gave a mean signal of 57.09 ppm, yielding an isotope factor of 6.7:1 (${}^{12}CO_2$: ${}^{13}CO_2$).

- ¹³CO₂ bottles were empty at day 12 and 19 and therefore exchanged for full bottles (see Fig. B.1-2).
- During the night between day 21 and 22, leaf samples were taken in order to distinguish the ¹³Cenrichment (see B.2).
- Last bottle was emptied at early evening of day 25. Afterwards plants were kept in the chamber for further 3 days in order to consume the remaining ¹³CO₂.

Figure B.1-2 Overall CO₂-curve [in ppm] of the ¹³CO₂ labeling experiment.

Figure B.1-3 Overall temperature [°C], rel. humidity [%] and light-curve [Lux] of the ¹³CO₂ feeding experiment.

Figure B.1-4 Pictures of the automated growth enclosure for stable isotope ¹³CO₂ labeling experiments.

Left – Enclosure located in the greenhouse of the MPI-CE during ${}^{13}CO_2$ labeling of *P. beaupré*. Right – The chamber is equipped with six specimen of *P. beaupré* during the labeling experiment.

B.2) Characterization of in vivo generated [U-¹³C]salicortin

In order to investigate the ¹³C enrichment, leaf samples of old (source) and young, newly grown (sink) leaf tissue were collected during the night between days 21 and 22, lyophilized and balanced, yielding 42.58 mg (source) and 45.02 mg (sink) dried material. Afterwards, the samples were transferred into homogenizer vials (2 mL) with ZrO_2 beats (1.4 mm, 700 mg), homogenized 3 times (60 sec; 5000 rpm; 15 sec breaks) with 70% MeOH (1 mL) and subsequently centrifuged (10 min, 13200 rcf). The supernatant was collected and transferred to LC-MS (10 μ L injection) and NMR.

HPLC-ESI-MS was performed on an Agilent 1100 HPLC system, consisting of a degasser, quaternary solvent delivery pump G1311A, an autosampler G1313A (Agilent Technologies, Waldbronn, Germany), a photodiode array detector (detection 200-700 nm; J&M Analytik, Aalen, Germany) and an Esquire 3000 ion trap mass spectrometer (Bruker Daltonik, Bremen, Germany). An Isis RP-18e column (250 x 4.6 mm, 5 μ m particle size) (Macherey-Nagel, Düren, Germany) was used for separation. Column temperature was set to 35 °C, and the solvent flow rate was 0.8 mL min⁻¹ using 0.1% formic acid in water and 0.1% formic acid in MeOH as binary solvent system. An HPLC gradient was used starting with a 5 min isocratic flow of 100% H₂O, and then decreasing linearly for 5 min to 85%, 25 min to 70% and finally 50 min to

50% H_2O . Afterwards, the column was washed for 10 min with 100% MeOH and equilibrated for 10 min with 100% H_2O .

NMR spectra were recorded on a Bruker Avance III HD 400 MHz spectrometer equipped with a 5 mm BBFO probe (Bruker Biospin, Rheinstetten, Germany). NMR tubes of 5 mm outer diameter were used for measurements.

Identification and characterization was done by means of ¹H, ¹³C and ¹H-¹³C NMR (Fig. B.2-6 to B.2-8) and ESI-MS in comparison to spectra of an unlabeled reference (B.2-1 to B.2-5). The ¹H-¹³C HSQC was in accordance with the spectrum of the reference, confirming its identity as salicortin (**12**, spectra see A.12). Furthermore, as a result of spin-spin coupling between adjacent ¹³C atoms, the ¹³C NMR spectrum showed multiplet signal structures for every carbon resonance in the molecule (Schneider, 2007; Schneider et al., 2003) (Fig. B.2-9). These characteristic multiplets indicated uniform ¹³C-incorporation into the molecule. That observation was confirmed by the ¹H NMR spectra, which also showed numerous satellites for all signals resulting from ¹H-¹³C spin-spin couplings.

The mass spectra obtained from extracts of young leaf tissues displayed peaks corresponding to the salicortin isotopologues of m/z 423 to 444 (Table B.2-1). An average ¹³C enrichment of 82% (R² = 0.994) was calculated based on the comparison of theoretical and experimental MS data, according to a method previously described (Taubert et al., 2011). Accordingly, the isotopologue patterns of characteristic salicortin fragments, generated by in-source fragmentation, were extracted from the mass spectra (Table B.2-2) and used to determine the ¹³C enrichment of the different parts of the molecule. The calculation yielded an average ¹³C enrichment of 82% for the glucose (m/z 161 [M-262-H]⁻; R² = 0.987) as well as the 1-hydroxy-6-oxocyclohex-2-en-1-oyl (HCH) fragment (m/z 111 [M-312-H]⁻; R² = 0.952) and 81% for the salicin fragment (m/z 285 [M-138-H]⁻; R² = 0.947).

The salicortin mass spectrum from the extract of old leaves, however, also showed an isotopologue pattern which reached from m/z 423 to 443. Unlike the molecular ion peaks in the spectra of young plant tissue, the molecular ion peak m/z 423 [M-H]⁻ is the by far most intense signal in the mass spectrum of old leaves (Table B.2-1). Furthermore, the signal intensity of the ¹³C-enriched isotopologues appeared to be notably weak, which assumed that only a minor amount of ¹³CO₂ had been incorporated. The calculation of ¹³C-enrichment yielded 1.1% (R² = 0.989), confirming that assumption.

References:

- Schneider, B., 2007. Nuclear magnetic resonance spectroscopy in biosynthetic studies. Prog. Nucl. Magn. Reson. Spectrosc. 51, 155-198.
- Schneider, B., Gershenzon, J., Graser, G., Hölscher, D., Schmitt, B., 2003. One-dimensional ¹³C NMR and HPLC-¹H NMR techniques for observing carbon-13 and deuterium labelling in biosynthetic studies. Phytochem. Rev. 2, 31-43.
- Taubert, M., Jehmlich, N., Vogt, C., Richnow, H.H., Schmidt, F., von Bergen, M., Seifert, J., 2011. Time resolved protein-based stable isotope probing (Protein-SIP) analysis allows quantification of induced proteins in substrate shift experiments. Proteomics 11, 2265-2274.

Figure B.2-1 Stacked TIC spectra of young (blue) and old (red) leaf sample extracts of *P. beaupré* in comparison with a salicortin (**12**) reference (black).

Figure B.2-2 UV spectrum (top) and ESI ion trap mass spectrum (bottom) of salicortin (**12**) (m/z 423.6 [M-H]⁻, ¹²C₂₀H₂₃O₁₀) in the old leaf sample.

Figure B.2-3 UV spectrum (top) and ESI ion trap mass spectrum (bottom) of salicortin (**12**) (m/z 440.3 [M-H]⁻, ¹³C₁₇⁻¹²C₃H₂₃O₁₀) in the young leaf sample.

Figure B.2-5 Stacked mass spectra of salicortin (**12**) from young (blue) and old (red) leaf sample extract in comparison with a salicortin (**12**) reference (black). The mass range from m/z 420 to 600 is displayed.

Table B.2-1 Extracted MS data which were used for the calculation of the ¹³C-enrichment of the salicortin isotopologues (m/z) together with their signal intensity and their signal-to-noise ratio (S/N).

C-isotope		Salicortin in old leaves				Salicortin in young leaves		
¹² C	¹³ C	m/z	intensity S/N <i>m/z</i> intens		intensity	S/N		
20	0	423.6	10223	468.9		423.0	0	-
19	1	424.4	2321	106.5		424.0	0	-
18	2	425.4	611	28.0		425.0	0	-
17	3	426.3	191	8.8		426.0	0	-
16	4	427.3	227	10.4		427.0	0	-
15	5	428.4	237	10.9	428.0		0	-
14	6	429.4	243	11.2		429.0	0	-
13	7	430.4	202	9.3		430.6	109	2.1
12	8	431.4	137	6.3		431.7	139	2.7
11	9	432.4	152	7.0		432.5	194	3.7
10	10	433.4	208	9.5		433.7	335	6.4
9	11	434.4	270	12.4		435.0	654	12.5
8	12	435.4	233	10.7		435.9	1420	27.2
7	13	436.4	259	11.9		436.9	3370	64.5
6	14	437.4	244	11.2		437.8	6567	125.7
5	15	438.4	341	15.7		438.6	11446	219.0
4	16	439.4	433	19.8		439.4	14074	269.3
3	17	440.4	381	17.5		440.3	15363	294.0
2	18	441.4	447	20.5		441.3	12920	247.2
1	19	442.4	196	9.0		442.3	7304	139.8
0	20	443.4	106	4.9		443.3	2079	39.8

Only signals of S/N > 2 were extracted. *Italic* values were artificially added for the calculation.

Table B.2-2 Isotopologue patterns (m/z) observed for the fragment ions of labeled salicortin (**12**). MS data were used to calculate the ¹³C-enrichment. Only signals of S/N > 1 were extracted from the mass spectra. *Italic* values were artificially added for the calculation. Values marked with (*) resulted from overlapping signals and were assumed as zero for calculation.

	HCH fragment ion			glucos	e fragment	ion	salicin fragment ion		
	Chem Ex	ical Formula: C ₆ F eact Mass: 111.05	1 ₇ O ₂ - 5	нс		С Н			
				Cher	nical Formula: C	C ₆ H ₉ O ₅ ⁻	Chemical Formula: C ₁₃ H ₁₇ O ₇ ⁻ Exact Mass: 285.10		
	Intens 1200 1000 500 0 115 miz			1500 1000 500 0,155 165.1 165.1 165.1 165.1 165.1 165.1 165.1 165.1 167.1 165.1 167.1 165.1 167.1 167.1 167.1 167.1 165.1 167.1 177.1			Intens. 400 300 200 100 0 285 294,4 297,4 294,4 297,4 297,4 294,4 297,4 295,4 7 295,4 7 297,4 295,4 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7		
¹³ C	m/z	intensity	S/N	m/z	intensity	S/N	m/z	intensity	S/N
0	111	0	-	161.1	(1274)*	(24.7)*	285	0	-
1	112.1	63	1.2	162.1	(797)*	(15.5)*	286	0	-
2	113.1	254	4.9	163.1	206	4.0	287	0	-
3	114.1	404	7.8	164.1	473	9.2	288	0	-
4	115.1	785	15.2	165.1	1000	19.4	289	0	-
5	116.1	1184	23.0	166.1	1701	33.0	290	0	-
6	117.1	1175	22.8	167.1	1479	28.7	291	0	-
7							292.3	75	1.5
8							293.4	143	2.8
9							294.4	144	2.8
10							295.4	202	3.9
11							296.4	313	6.1
12							297.4	224	4.3
13							298.3	85	1.7

Figure B.2-7 ¹H NMR spectra (400 MHz, MeOH- d_4) of salicortin (**12**) isolated from young leaf tissue of the ¹³C- enriched *P. beaupré* plants (black; with water suppression o1p = 4.887 ppm) and the reference (red).

Figure B.2-8 ¹H-¹³C HSQC spectrum of salicortin (**12**) isolated from young leaf tissue of the ¹³C-enriched *P. beaupré* plants.

Figure B.2-9 ¹³C NMR spectrum (100 MHz, MeOH- d_4) of salicortin (**12**) isolated from young leaf tissue of the ¹³C-enriched *Populus beaupré* plants (black). The inserts show multiplets, which result from ¹³C-¹³C spin-spin coupling (black), in comparison to the singlet signals of the unlabeled reference (red).

C) [U-¹³C]Salicortin *C. vinula* larvae feeding

C.1) Experimental setup

Figure C.1-1 Arena setups including coated leaves and C. vinula larvae

Figure C.1-2 Leaves of *P. beaupré* coated with H_2O (left) and $[U^{-13}C]$ salicortin solution (right).

Figure C.1-3 Leaves of *P. beaupré* coated with H_2O (left) and $[U^{-13}C]$ salicortin solution (right) after drying.

C.2) NMR spectra

Figure C.2-1 ¹³C NMR spectrum (125 MHz; MeOH- d_4 ; 20k scans) of feces from *C. vinula* which fed on *P. nigra* diet supplemented with [U-¹³C]salicortin.

Figure C.2-2 Partial ¹³C NMR spectrum (125 MHz; MeOH- d_4 ; 20k scans; 155-175 ppm) of feces from *C. vinula* which fed on *P. nigra* diet supplemented with [U-¹³C]salicortin.

vinula which fed on *P. nigra* diet supplemented with [U-¹³C]salicortin.

which fed on *P. nigra* diet supplemented with [U-¹³C]salicortin.

Figure C.2-5 ¹³C NMR spectra (125 MHz; MeOH- d_4 ; 6k scans; 10-190 ppm) of feces from *C. vinula* which fed on *P. nigra* diet supplemented with [U-¹³C]salicortin (black) and the control leaves (red). The insert shows the partial spectra between 100 and 190 ppm.

Figure C.2-6 ¹H-¹³C HSQC spectrum (500 MHz, MeOH- d_4) of feces from *C. vinula* which fed on *P. nigra* diet supplemented with [U-¹³C]salicortin.

Figure C.2-7 ¹H-¹³C HMBC spectrum (500 MHz, MeOH- d_4) of feces from *C. vinula* which fed on *P. nigra* diet supplemented with [U-¹³C]salicortin.

Figure C.2-8 ¹H-¹³C HSQC spectrum (500 MHz, MeOH- d_4) with selective 1D TOCSY spectrum (top) (500 MHz, MeOH- d_4 ; o1p= 8.13 ppm with 16 Hz) and ¹³C NMR spectrum (left) (125 MHz).

Figure C.2-9 ¹H-¹H COSY (500 MHz, MeOH- d_4) with selective 1D TOCSY spectrum (top and left) (500 MHz, MeOH- d_4 ; o1p= 8.13 ppm with 16 Hz).

Figure C.2-10 ¹H-¹³C HSQC spectrum (500 MHz, MeOH- d_4) with selective 1D TOCSY spectrum (top) (500 MHz, MeOH- d_4 ; o1p= 8.09 ppm with 16 Hz) and ¹³C NMR spectrum (left) (125 MHz).

Figure C.2-11 ¹H-¹H COSY spectrum (500 MHz, MeOH- d_4) with selective 1D TOCSY spectrum (top and left) (500 MHz, MeOH- d_4 ; o1p= 8.09 ppm with 16 Hz).

Figure C.2-12 ¹H-¹³C HSQC spectrum (500 MHz, MeOH- d_4) with selective 1D TOCSY spectrum (top) (500 MHz, MeOH- d_4 ; o1p= 8.04 ppm with 16 Hz) and ¹³C NMR spectrum (left) (125 MHz).

Figure C.2-13 ¹H-¹H COSY spectrum (500 MHz, MeOH- d_4) with selective 1D TOCSY spectrum (top and left) (500 MHz, MeOH- d_4 ; o1p= 8.04 ppm with 16 Hz).

Figure C.2-14 ¹H-¹³C HSQC spectrum (500 MHz, MeOH- d_4) with selective 1D TOCSY spectrum (top) (500 MHz, MeOH- d_4 ; o1p= 7.98 ppm with 16 Hz) and ¹³C NMR spectrum (left) (125 MHz).

Figure C.2-15 ¹H-¹H COSY spectrum (500 MHz, MeOH- d_4) with selective 1D TOCSY spectrum (top and left) (500 MHz, MeOH- d_4 ; o1p= 7.98 ppm with 16 Hz).

Figure C.2-16 ¹H-¹³C HSQC spectrum (500 MHz, MeOH- d_4) with selective 1D TOCSY spectrum (top) (500 MHz, MeOH- d_4 ; o1p= 7.93 ppm with 16 Hz) and ¹³C NMR spectrum (left) (125 MHz).

Figure C.2-17 ¹H-¹H COSY spectrum (500 MHz, MeOD- d_4) with selective 1D TOCSY spectrum (top and left) (500 MHz, MeOH- d_4 ; o1p= 7.93 ppm with 16 Hz).

Figure C.3-1 Compound **1**; HRESIMS spectrum (m/z 311.0776 [M-H]⁻) of *C. vinula* feces after consumption of leaves labeled with [U-¹³C]salicortin.

Figure C.3-2 Compound **1**; HRESIMS spectrum (*m*/*z* 311.0775 [M-H]⁻) of *C. vinula* feces after consumption of control tissue.

Figure C.3-3 Compound **2**; HRESIMS spectrum (m/z 311.0775 [M-H]⁻) of *C. vinula* feces after consumption of leaves labeled with [U-¹³C]salicortin.

Figure C.3-4 Compound **2**; HRESIMS spectrum (*m*/*z* 311.0775 [M-H]⁻) of *C. vinula* feces after consumption of control tissue.

Figure C.3-5 Compound **3**; HRESIMS spectrum (m/z 311.0773 [M-H]⁻) of *C. vinula* feces after consumption of leaves labeled with [U-¹³C]salicortin.

Figure C.3-6 Compound **3**; HRESIMS spectrum (*m*/*z* 311.0774 [M-H]⁻) of *C. vinula* feces after consumption of control tissue.

Figure C.3-7 Compound **4**; HRESIMS spectrum (m/z 295.0828 [M-H]⁻) of *C. vinula* feces after consumption of leaves labeled with [U-¹³C]<u>salicortin</u>.

Figure C.3-8 Compound **4**; HRESIMS spectrum (*m*/*z* 295.0830 [M-H]⁻) of *C. vinula* feces after consumption of control tissue.

Figure C.3-9 Compound **5**; HRESIMS spectrum (m/z 295.0825 [M-H]⁻) of *C. vinula* feces after consumption of leaves labeled with $[U-^{13}C]$ salicortin.

Figure C.3-10 Compound **5**; HRESIMS spectrum (*m*/*z* 295.0826 [M-H]⁻) of *C. vinula* feces after consumption of control tissue.

Figure C.3-11 Compound **6**; HRESIMS spectrum (m/z 431.0998 [M-H]⁻) of *C. vinula* feces after consumption of leaves labeled with [U-¹³C]salicortin.

Figure C.3-12 Compound **6**; HRESIMS spectrum (*m*/*z* 431.0997 [M-H]⁻) of *C. vinula* feces after consumption of control tissue.

Figure C.3-13 Compound **7**; HRESIMS spectrum (m/z 431.1000 [M-H]⁻) of *C. vinula* feces after consumption of leaves labeled with [U-¹³C]salicortin.

Figure C.3-14 Compound **7**; HRESIMS spectrum (*m*/*z* 431.0998 [M-H]⁻) of *C. vinula* feces after consumption of control tissue.

Figure C.3-15 Compound **8**; HRESIMS spectrum (m/z 431.0998 [M-H]⁻) of *C. vinula* feces after consumption of leaves labeled with [U-¹³C]salicortin.

Figure C.3-16 Compound **8**; HRESIMS spectrum (*m*/*z* 431.0998 [M-H]⁻) of *C. vinula* feces after consumption of control tissue.

Figure C.3-17 Compound **9**; HRESIMS spectrum (m/z 415.1046 [M-H]⁻) of *C. vinula* feces after consumption of leaves labeled with [U-¹³C]salicortin.

Figure C.3-18 Compound **9**; HRESIMS spectrum (*m*/*z* 415.1049 [M-H]⁻) of *C. vinula* feces after consumption of control tissue.

Figure C.3-19 Compound **10**; HRESIMS spectrum (m/z 415.1047 [M-H]⁻) of *C. vinula* feces after consumption of leaves labeled with [U-¹³C]salicortin.

Figure C.3-20 Compound **10**; HRESIMS spectrum (*m*/*z* 415.1047 [M-H]⁻) of *C. vinula* feces after consumption of control tissue.

Figure C.3-21 Compound **11**; HRESIMS spectrum (m/z 415.1049 [M-H]⁻) of *C. vinula* feces after consumption of leaves labeled with [U-¹³C]salicortin.

Figure C.3-22 Compound **11**; HRESIMS spectrum (*m*/*z* 415.1046 [M-H]⁻) of *C. vinula* feces after consumption of control tissue.

Figure C.3-23 Strongly amplified, superimposed HRESIMS spectrum of compound **7** (m/z 431) from *C. vinula* feces after consumption of control tissue (black) and leaves labeled with $[U^{-13}C]$ salicortin (red). The spectrum is strongly amplified to show occurrence of isotopologues up to $[M-H+14]^{-1}$.

D)Qualitative analysis of C. vinula hemolymphs:

D.1) HRESIMS of six caterpillars testes (I to VI)

Figure D.1-1 HRESIMS; TIC and base peak chromatograms of hemolymphs from *C. vinula* larva I.

Figure D.1-2 HRESIMS; TIC and base peak chromatograms of hemolymphs from C. vinula larva II.

Figure D.1-3 HRESIM; TIC and base peak chromatograms of hemolymphs from C. vinula larva III.

Figure D.1-4 HRESIMS; TIC and base peak chromatograms of hemolymphs from C. vinula larva IV.

Figure D.1-5 HRESIMS; TIC and base peak chromatograms of hemolymphs from C. vinula larva V.

Figure D.1-6 HRESIMS; TIC and base peak chromatograms of hemolymphs from C. vinula larva VI.

Figure D.2-1 HRESIMS; TIC and base peak chromatograms of *C. vinula* feces. The peaks of quinic acid esters are labeled with retention times. R_t (compound): 9.00 (**1**), 9.91 (**4**), 10.48 (**5**), 11.20 (**2**), 11.40 (**3**), 12.34 (**10**), 13.40 (**7**), 20.99 (**9**), 21.74 (**11**), 22.02 (**6**), 22.70 (**8**).

Figure D.2-2 HRESIMS; TIC and base peak chromatograms from a reference mix of salicortin (**12**) (red; 11.93 min) and salicin (green; 6.10 min).