日本語
 
Help Privacy Policy ポリシー/免責事項
  詳細検索ブラウズ

アイテム詳細


公開

学術論文

Mean circulation of the Hamburg LSG OGCM and its sensitivity to the thermohaline surface forcing

MPS-Authors
/persons/resource/persons37253

Maier-Reimer,  Ernst
MPI for Meteorology, Max Planck Society;

/persons/resource/persons37265

Mikolajewicz,  Uwe
MPI for Meteorology, Max Planck Society;

/persons/resource/persons37172

Hasselmann,  Klaus
MPI for Meteorology, Max Planck Society;

External Resource
There are no locators available
Fulltext (restricted access)
There are currently no full texts shared for your IP range.
フルテキスト (公開)

JoPO-1993-Hasselmann.pdf
(出版社版), 2MB

068-Report.pdf
(出版社版), 5MB

付随資料 (公開)
There is no public supplementary material available
引用

Maier-Reimer, E., Mikolajewicz, U., & Hasselmann, K. (1993). Mean circulation of the Hamburg LSG OGCM and its sensitivity to the thermohaline surface forcing. Journal of Physical Oceanography, 23, 731-757. doi:10.1175/1520-0485(1993)023<0731:MCOTHL>2.0.CO;2.


引用: https://hdl.handle.net/21.11116/0000-0001-2BED-5
要旨
The sensitivity of the global ocean circulation to changes in surface heat flux forcing is studied using the Hamburg Large Scale Geostrophic (LSG) ocean circulation model. The simulated mean ocean circulation for appropriately chosen surface forcing fields reproduces the principal water mass properties, residence times, and large-scale transport properties of the observed ocean circulation quite realistically within the constraints of the model resolution. However, rather minor changes in the formulation of the high-latitude air-sea heat flux can produce dramatic changes in the structure of the ocean circulation. These strongly affect the deep-ocean over-turning rates and residence times, the oceanic heat transport, and the rate of oceanic uptake Of CO2.
The sensitivity is largely controlled by the mechanism of deep-water formation in high latitudes. The experiments support similar findings by other authors on the sensitivity of the ocean circulation to changes in the fresh-water flux and are consistent with the existence of multiequilibria circulation states with a relatively low transition threshold.