
 

Computationally Efficient NMPC for Batch and Semi-Batch Processes Using 

Parsimonious Input Parameterization  

 

Erdal Aydin 
a,b *, Dominique Bonvin 

c
, Kai Sundmacher 

a,d
 

 

aMax Planck Institute for Dynamics of Complex Technical Systems, Sandtorstraße 1, 39106 Magdeburg, 

Germany 

bInternational Max Planck Research School (IMPRS) for Advanced Methods in Process and Systems 

Engineering, Magdeburg, Germany 

cLaboratoire d’Automatique, Ecole Polytechnique  Fédérale de Lausanne, CH-1015 Lausanne, 

Switzerland 

dOtto-von-Guericke University Magdeburg, Universitätplatz 2, 39106 Magdeburg, Germany 

 

* Corresponding author: aydin@mpi-magdeburg.mpg.de ; Tel: +49 391 6110 391, Fax: +49 391 6110 353 

 

ABSTRACT 

The trend towards high-quality, low-volume chemical production has put more emphasis on 

batch and semi-batch processing due to its increased operational flexibility. The transient 

behavior of these processes makes their real-time optimization very challenging. In particular, the 

large prediction horizons required in shrinking-horizon NMPC increase the real-time 

computational effort due to expensive matrix factorizations. 

      The computational delay associated with advanced control methods is usually underestimated 

in theoretical studies. However, this delay may contribute to suboptimal or, worse, infeasible 

operation in real-life applications. This study proposes to combine a tailored parsimonious input 

parameterization with shrinking-horizon NMPC to reduce the real-time computational effort. 



 

Models of the optimal solution are used to suggest parsimonious parameterizations (especially for 

sensitivity-seeking arcs) that lead to computationally efficient optimization. The proposed 

approach is illustrated in simulation on two case studies in the presence of uncertainty, namely a 

batch binary distillation column and a semi-batch reactor for the hydroformylation of 1-dodecene. 

The results show that the tailored parsimonious shrinking-horizon NMPC (i) performs very 

similarly to the standard shrinking-horizon NMPC in terms of cost, (ii) is computationally much 

more efficient than the standard shrinking-horizon NMPC especially at the beginning of the 

batch, (iii) is robust to plant-model mismatch. 

  

Keywords: Computationally efficient NMPC, shrinking-horizon NMPC, parsimonious input 

parameterization, batch process   
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1. Introduction 

      Model predictive control (MPC) is an important tool for implementing closed-loop operation 

of chemical processes. It has been used extensively in industrial control applications [1]. MPC 

uses an explicit model (often linear) to forecast the future state behavior and compute the control 

actions via dynamic optimization, while taking into account process constraints. Only the first 

part of the computed inputs is typically applied to the plant, then the horizon is shifted by one 

sampling instant and the optimization repeated for the new horizon using estimates of the current 

states. The objective of MPC is typically the tracking of a desired trajectory. However, in recent 

years, the objective has been extended to the minimization of an economic cost function, thus 

giving rise to so-called economic MPC (eMPC) [9]. The MPC’s popularity stems from the fact 

that it can (i) combine feedforward and feedback actions, (ii) handle process constraints, and (iii) 

use different performance criteria [2-10].  

      Batch processing has often been used to scale-up processes from the laboratory to large-scale 

industrial facilities [11]. 
1
 However, in recent years, the trend in the process industry toward high-

tech, low-volume and high-added-value products boosted the interest in batch processing, since 

batch processes often represent flexible production environments. Batch processes are widely 

applied in the pharmaceutical, food, fine chemical and microelectronic industries. With 

increasing competition, the optimal operation of batch processes has moved from scheduling (for 

improved flexibility) to optimization (for improved profitability) [12-15]. 

      The optimal operation of batch processes requires overcoming many challenges. Unlike 

continuous operation, batch processes exhibit an inherently transient behavior as well as strong 

nonlinearities because the process does not operate around a steady operating point. 

                                                            
1 The wording “batch process” will be used in this work to mean both batch and semi-batch processes. 
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Moreover, the presence of both path and terminal constraints give rise to challenging 

optimization problems. In addition, the lack of accurate models due to the limited amount of 

experimental data results in considerable uncertainty, which hinders the usage of offline-

computed optimal profiles. In order to resolve these issues, it is vital to design effective 

measurement-based optimizing control laws [16-25]. 

      Batch processes typically have constraints on end-product quality, and the ability to influence 

the process usually decreases with time. Often, if there is a deviation in product quality, the 

charge has to be discarded. Hence, shrinking-horizon nonlinear model predictive control (sh-

NMPC) has been proposed as a successful platform for the optimal operation of batch processes, 

with the prediction horizon always running to the final batch time [13, 14, 26, 27]. Seki et al. [28] 

suggested an NMPC scheme for industrial polymerization reactors. Valappil and Georgakis [29] 

studied min-max and successive linearization structures for the NMPC of end-user properties in 

batch reactors. Nagy and Braatz [18] proposed a robust shrinking-horizon NMPC for batch 

crystallization, whereby parametric uncertainties are taken into account explicitly. Nagy et al. 

[12] studied the real-time implementation of sh-NMPC to industrial batch reactors. Mesbah et al. 

[30] compared different optimization algorithms for sh-NMPC of a semi-batch crystallizer. Lucia 

et al. [31] suggested a multi-stage NMPC for a semi-batch polymerization reactor, whereby the 

uncertainties are dealt with a novel scenario-tree approach. Later, Jang et al. [32] extended the 

multi-stage NMPC scheme by including back-off terms on path constraints. Zubov et al. [33] 

discussed the online implementation of NMPC to a semi-batch pilot-plant copolymerization 

reactor. 

      Unlike its linear counterpart MPC, NMPC relies on a nonlinear (usually first-principles) 

model to perform dynamic optimization, which results in challenging, nonconvex and constrained 
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nonlinear optimization problems (NLP). Moreover, to solve these problems, sh-NMPC requires 

expensive matrix factorizations due to large prediction and control horizons [34, 35]. 

Unfortunately, there is always a certain computational delay associated with the solution to the 

corresponding nonconvex optimal control problems in real-time, which in turn may lead to non-

negligible feedback delay in closed-loop operation. This delay may result in suboptimal or 

infeasible operation [36]. Hence, it is of great importance, and still an open research topic in both 

academia and industry, to reduce the CPU time needed for the efficient real-time implementation 

of NMPCs [37]. The reader is referred to [37] for a comprehensive review of the broad class of 

computationally efficient NMPC methods (suboptimal, explicit, hierarchical and sensitivity-

based). 

      Several sensitivity-based methods have been proposed in the literature to reduce the 

computational requirements of NLPs in the context of NMPC. These methods rely on previously 

computed solutions and NLP sensitivities. Diehl et al. [22] suggested a real-time iterative 

scheme, in which, at each sampling time, instead of a full NLP only a quadratic problem around 

the solution to a previous QP is solved. Another sensitivity-based method of choice is the 

advanced-step NMPC proposed by Zavala and Biegler [38]. In this method, the NLP problem is 

solved in advance with respect to a predicted initial state. Then, as soon as the new state 

measurements (or estimates) are available, the NLP solution is updated using a fast sensitivity-

update step and the IPOPT solver [39-41]. Successful implementations have been documented in 

the literature, in particular for large-scale processes [42, 43]. However, the performance of these 

sensitivity-based methods is still an open question for batch processes that are characterized by 

highly nonlinear effects and large perturbations. For a detailed review of the recent advances in 

the sensitivity-based NMPC, the reader is referred to [44].  
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      The optimal inputs in batch processes are characterized by the presence of various arcs. An 

optimal arc is either determined by an active input bound (𝑢𝑚𝑖𝑛, 𝑢𝑚𝑎𝑥) or a path constraint 

(𝑢𝑝𝑎𝑡ℎ), or it is inside the feasible region as a sensitivity-seeking arc (𝑢𝑠𝑒𝑛𝑠) [14]. It is usually 

difficult to accurately compute the fine shapes of sensitivity-seeking arcs due to their lack of 

sensitivity. As a result, simple models of the optimal solution can be introduced, in which the 

inputs, and most importantly the sensitivity-seeking arcs 𝑢𝑠𝑒𝑛𝑠, are parameterized parsimoniously 

using switching times and low-order polynomials. This way, the number of decision variables 

and the complexity of the optimization problem are reduced significantly. In other words, instead 

of a full NLP, a parsimoniously parameterized NLP is solved, which reduces the computational 

load of the corresponding nonconvex dynamic optimization problem. Hence, the required CPU 

time is expected to decrease significantly, without affecting much the optimal cost [45-48].  

      The main contribution of this work is to detail the application of these parsimonious input 

parameterizations in the context of sh-NMPC. As stated earlier, the optimization is performed at 

each sampling instant for the full time horizon, but only the first part of the optimal inputs is 

applied to the process. Although the resulting “parsimonious sh-NMPC” only approximates the 

fine shapes of the optimal inputs at each sampling instant, the optimal closed-loop behavior might 

be captured accurately. In addition, since the full time horizon is taken into account, the loss in 

ability to influence the batch outcome can be prevented, while still having a significant reduction 

in CPU time. 

      The paper is structured as follows. Section 2 illustrates the proposed methodology and its 

combination with sh-NMPC. Section 3 presents two case studies, namely, a batch binary 

distillation with terminal purity constraints and a semi-batch hydroformylation reactor with path 

constraints. Finally, Section 4 concludes the study. 
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2. Shrinking-Horizon NMPC 

2.1 Standard sh-NMPC 

      Standard sh-NMPC of batch processes requires the solution to the corresponding optimal 

control problem online at each iteration: 

  min
𝑢(𝑡)

  𝐽 = 𝜙(𝑥(𝑡𝑓 , 𝜃)) 

                      s.t.                  𝑥̇(𝑡) = 𝐹(𝑥(𝑡), 𝑢(𝑡), 𝜃),    𝑥(𝑡𝑘) = 𝑥𝑘 

𝑆(𝑥(𝑡), 𝑢(𝑡), 𝜃) ≤ 0,      𝑇(𝑥(𝑡𝑓), 𝜃) ≤ 0,    𝑡 ∈ [𝑡𝑘, 𝑡𝑓]   (1) 

where 𝑡𝑘 is the time at the k-th iteration, 𝐹 is the system of equations, J is the scalar performance 

index expressed as a function of the states at the final time 𝑡𝑓, 𝜙is the objective function, 𝑥(𝑡) is 

the state vector with the initial conditions 𝑥𝑘 at 𝑡𝑘, 𝑢(𝑡) is the input vector, S is the vector of 

inequality path constraints that include input bounds, T is the vector of inequality terminal 

constraints, and 𝜃 is the vector of uncertain parameters associated with plant-model mismatch. 

After solving Problem (1), the first part 𝑢[𝑡𝑘, 𝑡𝑘 + 𝛿] of the optimal inputs is applied to the plant, 

the horizon is shrunk by the sampling interval 𝛿, the new states 𝑥𝑘+1  are estimated, and a new 

optimal control problem is solved. These steps are repeated until the final batch time is reached.  

      Direct and indirect methods exist in the literature to solve Problem (1) [15, 26, 49, 50]. The 

input profiles are typically discretized as u(t) = U(U)where U ∈ ℜ(𝑛𝑢 × 𝑁) is an input matrix that 

contains N discrete values for the nu inputs. In an earlier publication, it was observed that at least 

N=100 is required to obtain reliable optimal profiles for the batch and semi-batch problems 

investigated in this work [26].  

Accordingly, the standard sh-NMPC algorithm can be formulated as follows: 
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Standard sh-NMPC Algorithm 

Consider the optimization Problem (1). Set 𝑘 = 0 and specify 𝑥0. Specify 𝑡𝑓and 𝛿. 

while 𝑡𝑘 ∈ [0, 𝑡𝑓] do 

1. Measure/estimate 𝑥𝑘 and assign 𝑥(𝑡𝑘): = 𝑥𝑘 

2. Solve Problem (1) for the input matrix U, which gives 𝑢[𝑡𝑘, 𝑡𝑓] = U(U) 

3. Apply 𝑢[𝑡𝑘, 𝑡𝑘 + 𝛿] to the plant and wait for 𝑡𝑘+1 = 𝑡𝑘 + 𝛿 

4. Set 𝑘 ≔ 𝑘 + 1 

end do 

 

Numerical optimization schemes often require fine input discretization levels to be able to 

compute accurate solutions. In addition, since the complexity of the optimization problem 

increases exponentially with the time horizon due to the matrix factorizations required in the 

solution steps [35, 51], the CPU time required to solve the sh-NMPC problem may turn out to be 

large, especially at the beginning of the batch when the time horizon is the largest. On the other 

hand, the expensive matrix factorizations can be avoided by decreasing the number of decision 

variables using a parsimonious input parameterization, while keeping the full length of the time 

horizon.       

2.2       Parsimonious sh-NMPC 

      The strategy behind building the parsimonious input parameterization starts with the offline 

solution to Problem (1). It is typically assumed that the uncertainty does not change the types and 

sequence of optimal arcs in closed-loop operation, which is reasonable for batch processes [16, 

52]. Given the optimal solution structure and the input bounds (𝑢𝑚𝑖𝑛, 𝑢𝑚𝑎𝑥), the sensitivity-

seeking arcs (𝑢𝑠𝑒𝑛𝑠) can be approximated using polynomial profiles and adjustable switching 

times between arcs [21, 45, 46, 53].  
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Given the optimal solution structure, it is possible to reformulate the optimization problem using 

a parsimonious input parameterization of the form 𝑢(𝑡) = U(𝜋). For example, a sensitivity-

seeking arc can be expressed as a linear arc between the two switching times 𝑡1 and 𝑡2. This 

results in 𝜋 = (𝑡1, 𝑡2, 𝑎1, 𝑎2)
𝑇, with the parsimonious input model:  

                   𝒰(𝜋) = { 

𝑢max                                                                            if   0 ≤ 𝑡 < 𝑡1

𝑎1 +
𝑎2 − 𝑎1
𝑡2 − 𝑡1

(𝑡 − 𝑡1)                                              if  𝑡1 ≤ 𝑡 < 𝑡2

 𝑢min                                                                             if   𝑡2 ≤ 𝑡 < 𝑡𝑓

 

       (2) 

The reformulated optimal control problem to be solved at each sampling instant reads: 

  min  
𝜋

𝐽 = 𝜙(𝑥(𝑡𝑓 , 𝜃)) 

                      s.t.                  𝑥̇(𝑡) = 𝐹̃(𝑥(𝑡), 𝒰(𝜋), 𝜃),    𝑥(𝑡𝑘) = 𝑥𝑘 

𝑆̃(𝑥(𝑡), 𝒰(𝜋), 𝜃) ≤ 0,      𝑇(𝑥(𝑡𝑓), 𝜃) ≤ 0,    𝑡 ∈ [𝑡𝑘, 𝑡𝑓]    (3) 

 

where 𝜋 is the new vector of decision variables, 𝒰(𝜋) is the input vector given by Eq. (2), 𝐹̃ 

represents the system of equations expressed in terms of 𝒰(𝜋) instead of 𝑢(𝑡), 𝐽 is the scalar 

performance index for Problem (3), 𝑆̃ is the vector of inequality path constraints expressed in 

terms of  𝒰(𝜋) instead of 𝑢(𝑡).  
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Accordingly, the parsimonious sh-NMPC algorithm can be formulated as follows: 

Parsimonious sh-NMPC Algorithm 

I. Solve Problem (1) numerically offline for the nominal parameter values 𝜃0.  

II. Build the parsimonious input model 𝒰(𝜋) by parameterizing the inputs with respect 

to the switching times and low-order polynomials. 

III. Set 𝑘 = 0 and specify 𝑥0. Specify 𝑡𝑓and 𝛿. 

 

while 𝑡𝑘 ∈ [0, 𝑡𝑓] do 

1. Measure/estimate 𝑥𝑘 and assign 𝑥(𝑡𝑘): = 𝑥𝑘 

2. Solve Problem (3) for the decision variables 𝜋, which gives 𝑢[𝑡𝑘, 𝑡𝑓] = 𝒰(𝜋) 

3.  Apply 𝑢[𝑡𝑘, 𝑡𝑘 + 𝛿] to the plant and wait for 𝑡𝑘+1 = 𝑡𝑘 + 𝛿   

4. set k := k+1  

end do 

 

Remark 1. The polynomials used in the parsimonious input parameterization are very problem 

specific, with piecewise-constant or piecewise-linear functions often resulting in accurate 

approximations to the sensitivity-seeking arcs. Problem-specific information regarding the 

parsimonious parameterization will be detailed in the two case studies of next section. 

Remark 2. Depending on their relative degree, the inputs that activate the path constraints 𝑢𝑝𝑎𝑡ℎ 

can sometimes be computed online using the model equations, that is, without any optimization 

[15, 48]. Another alternative is to track the corresponding path constraints with the help of 

feedback controllers using 𝑢𝑝𝑎𝑡ℎ(𝑡) as manipulated variables [52].  
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3. Case Studies 

     To illustrate the application of parsimonious sh-NMPC to batch processes, two case studies 

are selected. The first example is a batch binary distillation column with terminal purity 

constraints, while the second one is a semi-batch hydroformylation reactor with path constraints. 

The nominal models and parameters of both examples are taken from [26]. In order to test the 

performance and robustness of the controllers, closed-loop simulations are performed under 

parametric uncertainties. The standard sh-NMPC cases are solved using a direct simultaneous 

method. The direct simultaneous method uses orthogonal collocation on uniform finite elements 

for both state and input discretization. The degree of the interpolating polynomials is 4. The 

number of finite elements is problem specific and will be given in the next sections. The CasADi 

toolbox and Matlab Simulink are used for both sh-NMPC methods [41, 54]. 

 

3.1 Batch Binary Distillation with Terminal Purity Constraints 

      Consider a batch distillation column with three equilibrium plates, in which components A 

and B (more volatile) are separated from each other. The operational goal is the maximization of 

the amount B in the distillate, while satisfying two terminal constraints, namely, the top 

composition of B must be at least 80 mol % and the bottom composition of B must be at most 20 

mol %. The only path constraint is on the input variable, namely, the reflux ratio. The schematic 

of the column can be found in [26]. The optimal control problem to be solved online in the 

context of sh-NMPC reads (the material balances are written in terms of the more volatile 

component B):             
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  max
𝑟(𝑡),𝑡𝑓

   𝐽 = 𝐷(𝑡𝑓) 

                       s.t. 

𝐷̇ = 𝑉(1 − 𝑟);     𝐷(𝑡𝑘) = 𝐷𝑘 

𝐵̇ = 𝑉(𝑟 − 1 );     𝐵(𝑡𝑘) = 𝐵𝑘 

   𝑛̇𝐵 = 𝑥̇𝐵𝐵 + 𝐵̇𝑥𝐵 =  𝑉(−𝑦𝐵 + 𝑟𝑥1) ;          𝑛𝐵(𝑡𝑘) = 𝑛𝐵𝑘 

𝑛̇1 = 𝑥̇1𝑀 =  𝑉(𝑦𝐵 − 𝑦1 + 𝑟(𝑥2 − 𝑥1));    𝑛1(𝑡𝑘) = 𝑛1𝑘 

𝑛̇2 = 𝑥̇2𝑀 =  𝑉(𝑦1 − 𝑦2 + 𝑟(𝑥3 − 𝑥2));     𝑛2(𝑡𝑘) = 𝑛2𝑘 

𝑛̇3 = 𝑥̇3𝑀 =  𝑉(𝑦2 − 𝑦3 + 𝑟(𝑦3 − 𝑥3));     𝑛3(𝑡𝑘) = 𝑛3𝑘 

                     𝑛̇𝐷 = 𝑉(1 − 𝑟)𝑦3;             𝑛𝐷(𝑡𝑘) = 𝑛𝐷𝑘 

𝑦𝑚 =
𝛼𝑥𝑚

1 + (𝛼 − 1)𝑥𝑚
;    𝑚 = 𝐵, 1, . . . ,3 

𝑥𝐷(𝑡𝑓) = 𝑛𝐷(𝑡𝑓)/𝐷(𝑡𝑓) ≥ 0.8 

𝑥𝐵(𝑡𝑓) = 𝑛𝐵(𝑡𝑓)/𝐵(𝑡𝑓) ≤ 0.2 

3 h ≤ 𝑡𝑓 ≤ 3.25 h 

                                                         0 ≤ 𝑟(𝑡) ≤ 1    ,    𝑡 ∈ [𝑡𝑘 , 𝑡𝑓]                            (4)                                  

where 𝑡𝑘 is the time at the k-th iteration, 𝐵𝑘 the charge, 𝑛𝐵𝑘 the moles of B in the charge, 𝑛𝑚 the 

moles of B in the liquid phase on the 𝑚-th tray, 𝑦𝑚 the mole fraction of B in the vapor phase 

leaving the m-th tray, 𝑛𝐷 the moles of B in the distillate tank, 𝑥𝐷 the mole fraction of B in the 

distillate tank, 𝑛𝐵 the moles of B in the bottoms, 𝑥𝐵 the mole fraction of B in the bottoms, 𝛼 the 

relative volatility, 𝑀 the liquid hold-up on each tray, and 𝑡𝑓 the free final time. Because of the 

assumption of total condensation, the composition of the refluxed liquid is equal to the vapor 

composition leaving the upper plate. It is also assumed that all plates are initially charged with 
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the same liquid mixture as the reboiler. The nominal model parameters and the initial conditions 

are given in Table 1. 

Table 1. Nominal model parameters and initial conditions for the batch distillation. 

Vapor flowrate, 𝑉 50 kmol/h 

Relative volatility, 𝛼 2.35 

Initial charge, 𝐵0 115 kmol 

Concentration of B in the charge, 𝑥𝐵0 0.4 

Molar hold-up per plate, 𝑀 5 kmol 

 

      It is assumed that state feedback information is available in order to focus only on the 

computational aspects of the optimization scheme. This is a reasonable assumption considering 

the advances in state estimation and online spectroscopy [43, 55, 56]. In addition, since the final 

time is not fixed but represents a degree of freedom in the optimization problem, a time 

transformation is introduced in the ODEs to have a unity normalized time and 𝑡𝑓 as a decision 

variable. 

 

      3.1.1 Nominal Open-Loop Optimal Policy 

      The optimal control Problem (4) is first solved offline using the parameters given in Table 4. 

The optimal profiles, computed using a direct simultaneous method and 100 piecewise-constant 

elements, are given in Fig. 1. The optimal cost is 44.69 [kmol]. 
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Figure 1. Optimal open-loop profiles for Problem (4) obtained with a direct simultaneous method 

(DSM) and a parsimonious input model (PIM).  

 

      Fig. 1 shows that the optimal solution starts with total reflux to increase the purity at the top 

of the column. Then, a sensitivity-seeking arc represents the best compromise between producing 

more distillate and satisfying the required terminal purities. Finally, a no-reflux third arc recovers 

the high-purity material that is still at the top of the column.  

      Analyzing the optimal input profile, a parsimonious input model can be proposed, in which 

the sensitivity-seeking arc varies linearly between the two switching times 𝑡1 and 𝑡2. 

Furthermore, the values of 𝑟𝑠𝑒𝑛𝑠 at the switching times are also considered as the decision 

variables 𝑟𝑏1 and 𝑟𝑏2, because 𝑟𝑠𝑒𝑛𝑠 does not start at 1 and end at 0. Accordingly, the new vector 

of decision variables for this parsimonious input model is 𝜋 = (𝑡1, 𝑡2, 𝑟𝑏1, 𝑟𝑏2, 𝑡𝑓)
𝑇, and the 

parameterized reflux ratio reads: 

0 0.5 1 1.5 2 2.5 3
0

0.2

0.4

0.6

0.8

1

R
e
fl

u
x

 r
a
ti

o
, 
r

Time (h)

 

 

0 0.5 1 1.5 2 2.5 3
0

10

20

30

40

50

D
is

ti
ll

a
te

, 
D

 (
k

m
o

l)

Time (h)

 

 

0 0.5 1 1.5 2 2.5 3
0.4

0.5

0.6

0.7

0.8

0.9

D
is

ti
ll

a
te

 c
o

m
p

o
si

ti
o

n
, 
x D

Time (h)

0 0.5 1 1.5 2 2.5 3

0.2

0.25

0.3

0.35

0.4

B
o

tt
o

m
s 

c
o

m
p

o
si

ti
o

n
, 
x B

Time (h)

DSM, t
f
 = 3.13

PIM, t
f
 = 3.085

J = 44.69 kmol

J = 44.56 kmol

r
b1

t
2

r
b2

t
1



 

13 
 

                   𝑟(𝜋) = { 

1                                                                           if   0 ≤ 𝑡 < 𝑡1

𝑟𝑏1 +
𝑟𝑏2 − 𝑟𝑏1
𝑡2 − 𝑡1

(𝑡 − 𝑡1)                                   if  𝑡1 ≤ 𝑡 < 𝑡2

0                                                                             if   𝑡2 ≤ 𝑡 < 𝑡𝑓

 

       (5) 

      The optimal profiles obtained with this parsimonious input model are also shown in Fig. 1, 

with an optimal cost of 44.56 [kmol]. It is observed that the nominal and approximated open-loop 

optimal profiles are very similar. 

      3.1.2 Closed-Loop Simulations with sh-NMPC 

      In order to check the performances of the two sh-NMPC schemes, uncertainty is added to the 

relative volatility parameter 𝛼, which is allowed to vary randomly from batch to batch between -

15% and 0%. In addition, the vapor flowrate 𝑉 is randomly perturbed by ± 3 kmol/h within the 

batch. The controller sampling time is 1 min. 

      Firstly, the performances of standard and parsimonious sh-NMPC are compared for one 

particular batch. The optimal closed-loop behaviors are given in Fig. 2, which shows that very 

similar performance can be achieved with both methods. In other words, the closed-loop optimal 

behavior can be approximated accurately using the parsimonious input model. 
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Figure 2. Optimal closed-loop profiles for Problem (4) obtained with standard and parsimonious 

sh-NMPC.  

 

On the other hand, Fig. 3 indicates that parsimonious sh-NMPC requires significantly less 

CPU time and is much faster than standard sh-NMPC, especially at the beginning of the batch.  
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Figure 3. Computational times with standard and parsimonious sh-NMPC. 

 

 

      Finally, to validate the robustness and check the performance of parsimonious sh-NMPC for 

different uncertainty realizations, 40 closed-loop simulations were performed. In all cases, the 

simulation is stopped as soon as the desired purity is achieved. The results are given in Fig. 4. 

Note that the parsimonious sh-NMPC results in feasible operation. Furthermore, with reduced 

CPU time at each iteration, faster sampling and control can be used, which in turn helps deal with 

plant-model mismatch. This way, parsimonious sh-NMPC can outperform standard sh-NMPC in 

real-life implementation. 
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Figure 4. Optimal closed-loop profiles for Problem (4) obtained with parsimonious sh-NMPC for 

40 different batches. 
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inside the reactor 𝑉𝑔𝑎𝑠 are assumed to be constant (900 mL each). The operational objective is to 

maximize the amount of n-tridecanal (nC13al) at the end of the batch. Input bounds and limits on 

the total pressure in the gas phase represent the path constraints that should be met throughout the 

operation. Earlier studies showed that plant-model mismatch affects the process conditions and 

feasibility significantly and, therefore, should be taken into account [58, 59]. The species indices 

are as follows: 1: 𝐻2, 2: 𝐶𝑂, 3: 𝑛𝐶12𝑒𝑛, 4: 𝑖𝐶12𝑒𝑛, 5: 𝑛𝑐13𝑎𝑙, 6: 𝑖𝑐13𝑎𝑙, 7: 𝑛𝐶12𝑎𝑛. Only two 

species are present in the gas phase, namely, 𝐻2 and 𝐶𝑂. The reaction network can be found in 

[57]. Note that the reaction takes place in the liquid phase. 

      The optimal control problem to be solved online at each sh-NMPC iteration reads [58, 59]: 

                                                  max
𝑢(𝑡),𝑇(𝑡)

 𝐽 = 𝑐𝑛𝑐13𝑎𝑙(𝑡𝑓)                  𝑡 ∈ [𝑡𝑘, 𝑡𝑓] 

        s.t          𝑐̇𝑖 = 𝑗𝑖
𝐺𝐿 + 𝑐𝑐𝑎𝑡𝑀𝑐𝑎𝑡 ∑ 𝑣𝑗,𝑖𝑟𝑗𝑗∈R  ;       𝑐𝑖(𝑡𝑘) = 𝑐̂𝑖,𝑘;    i=1, 2,…,7  

𝑝̇𝑖 =
𝑅𝑇

𝑉𝑔𝑎𝑠
(𝑢 𝑥𝑖 − 𝑉𝑙𝑖𝑞 𝑗𝑖

𝐺𝐿)   (𝑖 ∈ 𝑔𝑎𝑠) ;    𝑝𝑖(𝑡𝑘) = 𝑝𝑖,𝑘 ;   𝑥𝑖  =  0.5 (
mol

mol
) ;    i = 1, 2 

𝑗𝑖
𝐺𝐿 = {

(𝑘𝐿𝑎)𝑖(𝑐𝑖
∗ − 𝑐𝑖), (𝑖𝑓 𝑖 ∈ 𝑔𝑎𝑠);    i = 1, 2

0,                               (𝑒𝑙𝑠𝑒);    i = 3,4, … ,7
       

𝑟1 =
𝑘1,0(𝑇)𝑐𝑛𝐶12𝑒𝑛𝑐𝐻2𝑐𝐶𝑂

1 + 𝐾1,1𝑐𝑛𝐶12𝑒𝑛 + 𝐾1,2𝑐𝑛𝐶13𝑎𝑙 + 𝐾1,3𝑐𝐻2
  

𝑟2 =

𝑘2,0(𝑇)(𝑐𝑛𝐶12𝑒𝑛 −
𝑐𝑖𝐶12𝑒𝑛
𝐾𝑝,2

)

1 + 𝐾2,1𝑐𝑛𝐶12𝑒𝑛 + 𝐾2,2𝑐𝑖𝐶12𝑒𝑛
  

𝑟3 =

𝑘3,0(𝑇)(𝑐𝑛𝐶12𝑒𝑛𝑐𝐻2 −
𝑐𝑛𝐶12𝑎𝑛
𝐾𝑝,3

)

1 + 𝐾3,1𝑐𝑛𝐶12𝑒𝑛 + 𝐾3,2𝑐𝑛𝐶13𝑎𝑛 + 𝐾3,3𝑐𝐻2
  

𝑟4 = 𝑘4,0(𝑇)𝑐𝑖𝐶12𝑒𝑛𝑐𝐻2   

𝑟5 = 𝑘5,0(𝑇)𝑐𝑖𝐶12𝑒𝑛𝑐𝐻2𝑐𝐶𝑂  
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𝑟6 = 𝑘6,0(𝑇)𝑐𝑛𝐶12𝑒𝑛𝑐𝐻2𝑐𝐶𝑂  

 𝑘𝑗(𝑇) = 𝑘0,𝑗 exp(−
𝐸𝐴,𝑗
𝑅
(
1

𝑇
−

1

𝑇𝑟𝑒𝑓
))   

𝐾𝑝,𝑗 = exp (
−Δ𝐺𝑗
𝑅𝑇

) 

−Δ𝐺𝑗 = 𝑎0,𝑗 + 𝑎1,𝑗𝑇 + 𝑎2,𝑗𝑇
2  

𝑐𝑐𝑎𝑡 =
𝛾𝑐𝑐𝑎𝑡,𝑡𝑜𝑡

1 + 𝐾𝑐𝑎𝑡,1𝑐𝐶𝑂
𝐾𝑐𝑎𝑡,3 + 𝐾𝑐𝑎𝑡,2

𝑐𝐶𝑂
𝐾𝑐𝑎𝑡,3

𝑐𝐻2

  

𝑐𝑖
∗ =

𝑝𝑖
𝐻𝑖
  

𝐻𝑖 = 𝐻𝑖
0 exp (

−𝐸𝐴,𝐻,𝑖
𝑅𝑇

) 

𝑝𝑡𝑜𝑡𝑎𝑙(𝑡) = 𝑝𝐻2(𝑡) + 𝑝𝐶𝑂(𝑡)  

1 𝑏𝑎𝑟 ≤ 𝑝𝑡𝑜𝑡𝑎𝑙(𝑡) ≤ 20 𝑏𝑎𝑟  

                                                     368.15 K  ≤ 𝑇(𝑡) ≤ 388.15 K   

|𝑇(𝑡) − 𝑇(𝑡𝑘)|

𝑡 − 𝑡𝑘
≤ ∆𝑇𝑚𝑎𝑥 

                                                   𝑐𝑛𝑐13𝑎𝑙(𝑡𝑓)  ≤ 0.8             𝑡 ∈ [𝑡𝑘, 𝑡𝑓]                                        (6) 

 

where 𝑡𝑘 is the time at the k-th iteration, i represents the component index (i=1,2,…,7 for the 

liquid phase, and i=1,2 for the gas phase), j is the reaction index, R is the reaction set, 𝑐̂𝑖,𝑘 is the 

estimated concentration of component i in the liquid phase, 𝑝𝑖,𝑘 is the partial pressure of Gas i in 

the gas phase, and 𝛾 is catalyst activity. The fixed final time 𝑡𝑓 is 70 min. The nominal model 

parameter values are given in Table 2. 
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Table 2. Nominal parameter values and corresponding variations for the hydroformylation 

process: (𝑘𝐿𝑎)𝑖 varies within batch, while 𝑘𝑖,0 and 𝛾 vary from batch to batch. 

Parameter 
Nominal Value  

[57] 

Minimal 

Value 

Maximal 

Value 

(𝑘𝐿𝑎)1 9.57 8.57 10.57 

(𝑘𝐿𝑎)2 7.08 6.08 8.08 

𝑘1,0 4.904 3.8 6.0 

𝑘2,0 4.878 3.78 5.98 

𝑘3,0 2.724 1.72 3.72 

𝑘4,0 2.958 1.8 4.0 

𝑘5,0 3.702 2.6 4.8 

𝑘6,0 3.951 2.8 5.0 

𝛾 100 % 80 % 100 % 

 

      The optimal reactor temperature calculated by sh-NMPC serves as the setpoint for a 

thermostat, where a PID controller regulates the reactor temperature by adjusting the flowrate of 

the heating or cooling fluid. Hence, a rate constraint on the temperature change is introduced 

(with ∆𝑇𝑚𝑎𝑥= 0.0233 K/s) in order for the controller to be capable of reaching the setpoint before 

the next sh-NMPC iteration. This rate constraint term depends on the heating/cooling capacity of 
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the thermostat. On the other hand, the optimal feedrate can be applied directly to the reactor [25, 

60]. 

3.2.1 Nominal Open-Loop Optimal Policy 

      Problem (6) is solved offline for the nominal parameter values. The input parameterization 

uses 500 piecewise-constant elements. The optimal profiles are shown in Fig. 5. It is seen that (i) 

the optimal solution exhibits a single arc for the feedrate 𝑢, and (ii) the upper pressure limit is 

always active, 𝑝𝑡𝑜𝑡𝑎𝑙(𝑡) = 20 bar. Furthermore, the optimal temperature profile starts at the 

lower limit (𝑇min ) to favor the desired reactions, then follows a sensitivity-seeking arc 

(𝑇sens) that expresses the compromise between producing as much as nC13al as possible without 

producing too much side products, and ends up at the upper limit (𝑇max ) to suppress the 

undesired reactions. The optimal cost with the fully parameterized NLP is 0.591 [mol/L]. 
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Figure 5. Optimal open-loop profiles for Problem (6) obtained with a direct simultaneous method 

(DSM) and a parsimonious input model (PIM).  

 

      A parsimonious input parameterization can be introduced to reduce the computational load of 

the online control problem. In this model, the temperature 𝑇(𝑡) is parameterized using the 

switching times 𝑡1 and 𝑡2 and a linear profile between the lower and upper bounds between these 

switching times. On the other hand, the feedrate input 𝑢(𝑡) is set to keep the pressure at its upper 

limit. 

It can be seen from Eq. (6) that the pressure constraint has relative degree 1. In other words, the 

input becomes explicit after the first time derivative of this constraint. Hence, the value of 

𝑢(𝑡) that keeps the total pressure active can be computed from 𝑝̇𝑡𝑜𝑡𝑎𝑙(𝑡) = 𝑝̇1(𝑡) + 𝑝̇2(𝑡) = 0, 
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which gives 𝑢(𝑡) = 𝑉𝑙𝑖𝑞 ( 𝑗1
𝐺𝐿(𝑡) + 𝑗2

𝐺𝐿(𝑡)). As a result, the vector of decision variables for the 

reformulated problem is simply 𝜋 = (𝑡1, 𝑡2)
𝑇. Accordingly, the parsimonious input model reads: 

 

𝒰(𝜋) =

{
 
 

 
 

 
𝑇 (𝜋) = {

368.15                                                                          𝑖𝑓   0 ≤ 𝑡 < 𝑡1

368.15 +
20

𝑡2−𝑡1
(𝑡 − 𝑡1)                                            𝑖𝑓  𝑡1 ≤ 𝑡 < 𝑡2

388.15                                                                          𝑖𝑓   𝑡2 ≤ 𝑡 < 𝑡𝑓

 𝑢(𝑡) =  𝑉𝑙𝑖𝑞 ( 𝑗1
𝐺𝐿(𝑡) + 𝑗

2
𝐺𝐿(𝑡))                                     ∀ 𝑡 ∈ [0, 𝑡𝑓]              (7)

                          

      The optimal profiles obtained via the parsimonious input model are also shown in Fig.  5, 

with the optimal cost being 0.589 [mol/L]. Although the input profiles are somewhat different, 

very similar cost values are achieved [26, 66]. On the other hand, note that the number of 

decision variables is reduced from 500 to 2 through the use of the parsimonious input 

parameterization, which will result in a significant reduction in online computational effort. 

3.2.2 Closed-Loop Simulations with sh-NMPC 

      The performance and robustness of the two sh-NMPC schemes are compared under the 

parametric variations given in Table 2. The controller sampling time is 30 s. It is assumed that the 

concentrations of each component can be measured via online spectroscopy every 30 s, with a 5 s 

measurement delay. The total pressure in the gas phase is assumed to be measured every second 

with no delay. Moreover, all measurements are corrupted with Gaussian white noise. A linear 

observer is used to estimate the concentrations of all species in the liquid phase at each sampling 

instant [59]. 

In order to reject the effects of parametric uncertainty on the pressure path constraint, a 

hierarchical control structure is recommended. In this scheme, the total pressure in the gas phase 

𝑝𝑡𝑜𝑡𝑎𝑙 computed via optimization is sent as a setpoint to a low-level PID controller that tracks the 
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pressure by adjusting the feedrate of syngas 𝑢(𝑡). This way, the fast perturbations affecting the 

path constraint are rejected via the low-level controller, while the slow perturbations on the cost 

are reduced through the upper level sh-NMPC. Note that implicit control of this path constraint 

via the system equations is also possible, but additional simulations are necessary to determine 

the values of the back-off terms in the presence of uncertainty and measurement noise [59]. The 

suggested hierarchical structure is illustrated in Fig. 6, with the thermostat and the state estimator 

hidden inside the reactor. 

 

 

 

          

  

Figure 6. Hierarchical sh-NMPC structure for the semi-batch hydroformylation reactor.  

 

Remark 3. The ∆𝑇𝑚𝑎𝑥 constraint can be enforced directly with standard sh-NMPC. With 

parsimonious sh-NMPC, this constraint can be included in the optimization via a constraint on 

the two switching times, namely, 𝑡2 − 𝑡1 > 15 min. 

      To be able to compare the performance of the two sh-NMPC methods, closed-loop 

simulations were performed using the same parametric variations throughout the operation. Also, 

to have a fair comparison in terms of CPU times, the inputs of standard sh-NMPC were 

parameterized with 50 piecewise-constant elements. The results are reported in Fig. 7.  
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Figure 7. Optimal closed-loop profiles for Problem (6) obtained with standard and parsimonious 

sh-NMPC. 

 

      As shown in Fig. 7, both control schemes give very similar final concentrations of tridecanal 

(nC13al), even though the input profiles are somewhat different. Furthermore, one sees that the 
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costs are 0.5527 [mol/L] for standard sh-NMPC and 0.5525 [mol/L] for parsimonious sh-NMPC. 

Parsimonious sh-NMPC is computationally far superior to standard sh-NMPC. The CPU times at 

each sampling time are reported in Fig. 8. One may expect that the computational time reduction 

associated with parsimonious sh-NMPC leads to improved closed-loop performance due to 

increased optimization frequency. 

 

Figure 8. Computational times with standard and parsimonious sh-NMPC. 

 

      Finally, parsimonious sh-NMPC is tested for 40 different uncertainty realizations. The 

optimal profiles are given in Fig. 9. The parsimonious sh-NMPC scheme results in feasible 

operation, with a mean final concentration of tridecanal of 0.5562 [mol/L]. 
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Figure 9. Optimal closed-loop profiles for Problem (6) obtained with parsimonious sh-NMPC for 

40 different batches. 
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4. Conclusions 

      This study has discussed the use of parsimonious input models together within shrinking-

horizon NMPC for batch processes. This approach reduces the complexity of the optimization 

problem and therefore also the CPU times. This decrease in online computational effort is 

important in practice. Faster computation enables higher optimization frequencies, which in turn 

may lead to better closed-loop performance. Furthermore, faster computations are welcome in 

real-time embedded systems in which short battery life is a challenge. The resulting scheme, 

labeled ‘parsimonious sh-NMPC’, has been applied to two case studies simulated in the presence 

of uncertainty.  

      Parsimonious sh-NMPC has been compared to standard sh-NMPC in terms of both nominal 

performance and robustness. Although the input profiles computed with parsimonious sh-NMPC 

and standard sh-NMPC differ to some extent, both NMPC schemes exhibit the same solution 

structures and arc types. It turns out that the performance of parsimonious sh-NMPC is very close 

to that of standard sh-NMPC in terms of optimal cost. Furthermore, significant reduction in real-

time computational effort has been observed in the case studies. Hence, the computational 

superiority of the parsimonious sh-NMPC scheme makes it very suited to optimize batch 

processes. 
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