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Abstract
We propose a new model for formalizing reward collection problems on graphs with dynamically
generated rewards which may appear and disappear based on a stochastic model. The robot
routing problem is modeled as a graph whose nodes are stochastic processes generating potential
rewards over discrete time. The rewards are generated according to the stochastic process, but
at each step, an existing reward disappears with a given probability. The edges in the graph
encode the (unit-distance) paths between the rewards’ locations. On visiting a node, the robot
collects the accumulated reward at the node at that time, but traveling between the nodes takes
time. The optimization question asks to compute an optimal (or ε-optimal) path that maximizes
the expected collected rewards.

We consider the finite and infinite-horizon robot routing problems. For finite-horizon, the
goal is to maximize the total expected reward, while for infinite horizon we consider limit-average
objectives. We study the computational and strategy complexity of these problems, establish NP-
lower bounds and show that optimal strategies require memory in general. We also provide an
algorithm for computing ε-optimal infinite paths for arbitrary ε > 0.
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1 Introduction

Reward collecting problems on metric spaces are at the core of many applications, and studied
classically in combinatorial optimization under many well-known monikers: the traveling
salesman problem, the knapsack problem, the vehicle routing problem, the orienteering
problem, and so on. Typically, these problems model the metric space as a discrete graph
whose nodes or edges constitute rewards, either deterministic or stochastic, and ask how
to traverse the graph to maximize the collected rewards. In most versions of the problem,
rewards are either fixed or cumulative. In particular, once a reward appears, it stays there
until collection. However, in many applications, existing rewards may disappear (e.g., a
customer changing her mind) or have more “value” if they are collected fast.

We introduce the Robot Routing problem, which combines the spatial aspects of traveling
salesman and other reward collecting problems on graphs with stochastic reward generation
and with the possibility that uncollected rewards may disappear at each stage. The robot
routing problem consists of a finite graph and a reward process for each node of the graph.
The reward process models dynamic requests which appear and disappear. At each (discrete)
time point, a new reward is generated for the node according to a stochastic process with
expectation λ. However, at each point, a previously generated reward disappears with a fixed
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probability δ. When the node is visited, the entire reward is collected. The optimization
problem for robot routing asks, given a graph and a reward process, what is the optimal (or
ε-optimal) path a robot should traverse in this graph to maximize the expected reward?

As an illustrating example for our setting, consider a vendor planning her path through a
city. At each street corner, and at each time step, a new customer arrives with expectation λ,
and an existing customer leaves with probability δ. When the vendor arrives at the corner,
she serves all the existing requests at once. We ignore other possible real-world features and
behaviors e.g., customers leaving queues if the queue length is long. How should the vendor
plan her path? Similar problems can be formulated for traffic pooling [25], for robot control
[13], for patrolling [15], and many other scenarios.

Despite the usefulness of robot routing in many scenarios involving dynamic appearance
and disappearance of rewards, algorithms for its solution have not, to the best of our
knowledge, been studied before. In this paper, we study two optimization problems: the
value computation problem, that asks for the maximal expected reward over a finite or
infinite horizon, and the path computation problem, that asks for a path realizing the optimal
(or ε-optimal) reward. The key observation to solving these problems is that the reward
collection can be formulated as discounted sum problems over an extended graph, using the
correspondence between stopping processes and discounted sum games.

For finite horizon robot routing we show that the value decision problem (deciding if the
maximal expected reward is at least a certain amount) is NP-complete when the horizon
bound is given in unary, and the value and optimal path can be computed in exponential
time using dynamic programming.

For the infinite horizon problem, where the accumulated reward is defined as the long run
average, we show that the value decision problem is NP-hard if the probability of a reward
disappearing is more than a threshold dependent on the number of nodes. We show that
computing the optimal long run average reward can be reduced to a 1-player mean-payoff
game on an infinite graph. By solving the mean payoff game on a finite truncation of this
graph, we can approximate the solution up to an arbitrary precision. This gives us an
algorithm that, for any given ε, computes an ε-optimal path in time exponential in the size of
the original graph and logarithmic in 1/ε. Unlike finite mean-payoff 2-player games, strategies
which generate optimal paths for robot routing even in the 1-player setting can require
memory. For the non-discounted infinite horizon problem (that is, when rewards do not
disappear) we show that the optimal path and value problems are solvable in polynomial time.

Related work The robot routing problem is similar in nature to a number of other problems
studied in robot navigation, vehicle routing, patrolling, and queueing network control, but to
the best of our knowledge has not been studied so far.

There exists a plethora of versions of the famous traveling salesman problem (TSP) which
explore the trade-off between the cost of the constructed path and its reward. Notable
examples include the orienteering problem [23], in which the number of locations visited in
a limited amount of time is to be maximized, vehicle routing with time-windows [17] and
deadlines-TSP [2], which impose restrictions or deadlines on when locations should be visited,
as well as discounted-reward-TSP [4] in which soft deadlines are implemented by means of
discounting. Unlike in our setting, in all these problems, rewards are static, and there is no
generation and accumulation of rewards, which is a key feature of our model.

In the dynamic version of vehicle routing [7] and the dynamic traveling repairman
problem [3], tasks are dynamically introduced and the objective is to minimize the expected
task waiting time. In contrast, we focus on limit-average objectives, which are a classical way
to combine rewards over infinite system runs. Patrolling [6] is another graph optimization
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problem, motivated by operational security. The typical goal in patrolling is to synthesize a
strategy for a defender against a single attack at an undetermined time and location, and is
thus incomparable to ours. A single-robot multiple-intruders patrolling setting that is close to
ours is described in [15], but there again the objective is to merely detect whether there is a
visitor/intruder at a given room. Thus, the patrolling environment in [15] is described by the
probability of detecting a visitor for each location. On the contrary, our model can capture
counting patrolling problems, where the robot is required not only to detect the presence of
visitors but to register/count as many of them as possible. Another related problem is the
information gathering problem [20]. The key difference between the information gathering
setting and ours is that [20] assumes that making an observation earlier has bigger value than
if a lot of observations have already been made. This restriction on the reward function is not
present in our model, since the reward value collected when visiting node v at time t (making
observation (v, t), in their terms) only depends on the last time when v was previously visited,
and not on the rest of the path (the other observations made, in their terms).

Average-energy games [8, 5] are a class of games on finite graphs in which the limit-average
objective is defined by a double summation. The setting discussed in [8, 5] considers static
edge weights and no discounting. Moreover, the inner sum in an average-energy objective is
over the whole prefix so far, while in our setting the inner sum spans from the last to the
current visit of the current node, which is a crucial difference between these two settings.

Finally, there is a rich body of work on multi-robot routing [24, 1, 18, 10, 11] which is
closely related to our setting. However, the approaches developed there are limited to static
tasks with fixed or linearly decreasing rewards. The main focus in the multi-robot setting is
the task allocation and coordination between robots, which is a dimension orthogonal to the
aggregate reward collection problem which we study.

Markov decision processes (MDP) [19] seem superficially close to our model. In an MDP,
the rewards are determined statically as a function of the state and action. In contrast, the
dynamic generation and accumulation of rewards in our model, especially the individual
discounting of each generated reward, leads to algorithmic differences: for example, while
MDPs admit memoryless strategies for long run average objectives, strategies require memory
in our setting and there is no obvious reduction to, e.g., an exponentially larger, MDP.

We employed the reward structure of this article in [13] with the goal of synthesizing
controllers for reward collecting Markov processes in continuous space. The work [13] is
mainly focused on addressing the continuous dynamics of the underlying Markov process
where the authors use abstraction techniques [12] to provide approximately optimal controllers
with formal guarantees on the performance while maintaining the probabilistic nature of the
process. In contrast, we tackle the challenges of this problem with having a deterministic
graph as the underlying dynamical model of the robot and study the computational complexity
of the proposed algorithms thoroughly.

Contributions We define a novel optimization problem for formalizing and solving reward
collection in a metric space where stochastic rewards appear as well as disappear over time.

We consider reward-collection problems in a novel model with dynamic generation and
accumulation of rewards, where each reward can disappear with a given probability.
We study the value decision problem, the value computation problem, and the path
computation problem over a finite horizon. We show that the value decision problem is
NP-complete when the horizon is given in unary. We describe a dynamic programming
approach for computing the optimal value and an optimal path in exponential time.
We study the value decision problem, the value computation problem, and the path
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computation problem over an infinite horizon. We show that for sufficiently large values of
the disappearing factor δ the value decision problem is NP-hard. We provide an algorithm
which for any given ε > 0, computes an ε-optimal path in time exponential in the size of
the original graph and logarithmic in 1/ε. We demonstrate that strategies (in the 1-player
robot routing games) which generate infinite-horizon optimal paths can require memory.

2 Problem Formulation
Preliminaries and notation A finite directed graph G = (V,E) consists of a finite set of
nodes V and a set of edges E ⊆ V × V . A path π = v0, v1, . . . in G is a finite or infinite
sequence of nodes in G, such that (vi, vi+1) ∈ E for each i ≥ 0. We denote with |π| = N

the length (number of edges) of a finite path π = v0, v1, . . . , vN and write π[i] = vi and
π[0 . . . N ] = v0, v1, . . . vN . For an infinite path π, we define |π| = ∞. We also denote the
cardinality of a finite set U by |U |. We denote by N={0, 1, ..} and Z+ ={1, 2, ..} the sets of
non-negative and positive integers respectively. We define Z[n,m] = {n, n+ 1, . . . ,m} for any
n,m ∈N, n ≤ m. We denote with I(·) the indicator function which takes a Boolean-valued
expression as its argument and returns 1 if this expression evaluates to true and 0 otherwise.
Problem setting Fix a graph G = (V,E). We consider a discrete-time setting where at
each time step t ∈ N, at each node v ∈ V a reward process generates rewards according to
some probability distribution. Once generated, each reward at a node decays according to a
decaying function. A reward-collecting robot starts out at some node v0 ∈ V at time t = 0,
and traverses one edge in E at each time step. Every time the robot arrives at a node v ∈ V ,
it collects the reward accumulated at v since the last visit to v. Our goal is to compute the
maximum expected reward that the robot can possibly collect, and to construct an optimal
path for the robot in the graph, i.e., a path whose expected total reward is maximal.

To formalize reward accumulation, we define a function Lastπ which (for path π) maps an
index t ≤ |π| and a node v ∈ V to the length of the path starting at the previous occurrence
of v in π till position t; and to t+ 1 if v does not occur in π before time t:

Lastπ(t, v) := min (t+ 1, {t− j ∈ N | j < t, π[j] = v}) .

Reward functions Let ξ : Ω × V → R be a set of random variables defined on a sample
space Ω and indexed by the set of nodes V . Then ξ(·, v), v ∈ V, is a measurable function
from Ω to R that generates a random reward at node v at any time step. Let π be the path
in G traversed by the robot. At time t, the position of the robot is the node π[t], and the
robot collects the uncollected decayed reward generated at node π[t] (since its last visit to
π[t]) up till and including time t. Then, the robot traverses the edge (π[t], π[t+ 1]), and at
time t+ 1 it collects the rewards at node π[t+ 1].

The uncollected reward at time t at a node v given a path π traversed by the robot is
defined by the random variable

accπ(t, v) :=
Lastπ(t,v)−1∑

j=0
γ(v)jξ(w(t− j), v), w(·) ∈ Ω.

The value γ(v) in the above definition is a discounting factor that models the probability
that a reward at node v survives for one more round, that is, the probability that a given
reward instance at node v disappears at any step is 1− γ(v).

Note that the previous time a reward was collected at node v was at time t− Lastπ(v, t),
the time node v was last visited before t. Thus accπ(t, v) corresponds to the rewards
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generated at node v at times t, t− 1, . . . , t−Lastπ(t, v) + 1, which have decayed by factors of
γ(v)0, γ(v)1, . . . , γ(v)Lastπ(t,v)−1, respectively. When traversing a path π, the robot collects
the accumulated reward accπ(t, π[t]) at time t at node π[t].

We define the expected finite N -horizon sum reward for a path π as:

r(N)
sum (π) := E

[
N∑
t=0

accπ(t, π[t])
]
.

Let λ : V → R≥0 be a function that maps each node v ∈ V to the expected value of the
reward generated at node v for each time step, λ(v) = E [ξ(·, v)]. We assume that the rewards
generated at each node are independent of the agent’s move. Thus, the function λ will be
sufficient for our study, since we have

r(N)
sum (π) =

N∑
t=0

Eaccπ(t, π[t]), where Eaccπ(t, v) :=
Lastπ(t,v)−1∑

j=0
γ(v)jλ(v). (1)

For an infinite path π, the limit-average expected reward is defined as

rav(π) = lim inf
N→∞

r
(N)
sum (π)
N + 1 . (2)

The finite and infinite-horizon reward values for a node v are defined as the best rewards
over all paths originating in v: R(N)

sum (v) = supπ
{
r

(N)
sum (π) |π[0] = v, |π| = N

}
and Rav(v) =

supπ {rav(π) |π[0] = v, |π| =∞}, respectively. The choice of limit-average in (2) is due to the
unbounded sum reward r(N)

sum (π) when N goes to infinity. For a given path π, the sequence
r

(N)
sum (π) /(N+1) in (2) may not converge. Thus we opt for the worst case limiting behavior
of the sequence. Alternatively, one may select the best case limiting behavior lim supN→∞
in (2) with no substantial change in the results of this paper.
Node-invariant functions λ and γ and definition of cost functions In the case when the
functions λ and γ are constant, we write λ and γ for the respective constants. In this case, the
expressions for r(N)

sum (π) and rav(π) can be simplified using the identity 1+γ+γ2 + · · ·+γq−1 =
1−γq
1−γ for γ < 1. Then we have

r(N)
sum (π) =

N∑
t=0

Lastπ(π[t],t)−1∑
j=0

γjλ = λ ·
N∑
t=0

(
1 + γ + . . .+ γLastπ(t,π[t])−1

)

= λ ·
N∑
t=0

1− γLastπ(t,π[t])

1− γ = (N + 1)λ
1− γ − λ

1− γ

N∑
t=0

γLastπ(t,π[t]). (3)

The expression rav(π) can be simplified as:

rav(π) = lim inf
N→∞

1
N + 1r

(N)
sum (π) = λ

1− γ −
λ

1− γ lim sup
N→∞

1
N + 1

N∑
t=0

γLastπ(t,π[t]). (4)

For the special case γ = 1 (i.e., when the rewards are not discounted), the expression for the
finite-horizon reward is r(N)

sum (π) = λ
∑N
t=0 Lastπ(t, π[t]).

We define cost functions that map a path π to a real valued finite- or infinite-horizon cost:

c(N)
sum (π) :=

N∑
t=0

γLastπ(π[t],t) and cav(π) := lim sup
N→∞

c
(N)
sum (π)
N + 1 . (5)
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From Equations (3) and (4), the computation of optimal paths for the reward functions r(N)
sum

and rav corresponds to computing paths that minimize the cost functions c(N)
sum (π) and cav(π),

respectively. Analogously to R(N)
sum (v) and Rav(v), the infimums of the cost functions in (5)

over paths are denoted by C(N)
sum (v) and Cav(v) respectively.

I Example 1. Consider the graph Ge = (Ve, Ee) in Figure 1 with Ve = {a, b, c, d}, which we
will use as a running example throughout the paper. The functions λ and γ are constant.

ad

b

c

Figure 1 A graph Ge = (Ve, Ee) with
two simple cycles sharing a single node.

Consider the finite path π1 = adabcad. For the
occurrences of node a in π1 we have Lastπ1(0, a) = 1,
Lastπ1(2, a) = 2, Lastπ1(5, a) = 3, and similarly for
the other nodes in π1. The reward for π1 as a function
of λ and γ is r6

sum(π1) = 7λ
1−γ −

λ
1−γ (γ + γ2 + γ2 +

γ4 + γ5 + γ3 + γ5) for γ < 1 and r6
sum(π1) = 22λ

for γ = 1. For the infinite path π2 = (abc)ω we have
Lastπ2(0, a) = 1, Lastπ2(1, b) = 2, Lastπ2(2, c) = 3 and
the value of Last is 3 in all other cases. Thus we have

rav(π2) = λ
1−γ −

λ
1−γ γ

3 for γ < 1 and rav(π2) = 3λ for γ = 1. Similarly, for π3 = (abcad)ω

we have rav(π3) = λ
1−γ −

λ
1−γ ·

(γ2+γ3+3γ5)
5 for γ < 1 and rav(π3) = 4λ for γ = 1.

Problem statements We investigate optimization and decision problems for finite and
infinite-horizon robot routing. The value computation problems ask for the computation of
R

(N)
sum (v) and Rav(v). The corresponding decision problems asks to check if the respective

one of these two quantities is greater than or equal to a given threshold R ∈ R.

I Definition 2 (Value Decision Problems). Given a finite directed graph G = (V,E), an
expected reward function λ : V → R≥0, a discounting function γ : V → (0, 1], an initial node
v0 ∈ V and a threshold value R ∈ R,

The finite horizon value decision problem is to decide, given N , if R(N)
sum (v0) ≥ R.

The infinite horizon value decision problem is to decide if Rav(v0) ≥ R.

For a finite directed graph G = (V,E), expected reward and discounting functions
λ : V → R≥0 and γ : V → (0, 1] and v0 ∈ V , a finite path π is said to be an optimal path for
time-horizon N if (a) π[0] = v0 and |π| = N , and (b) for every path π′ in G with π′[0] = v0
and |π′| = N it holds that r(N)

sum (π) ≥ r
(N)
sum (π′). Similarly, an infinite path π is said to be

optimal for the infinite horizon if π[0] = v0 and for every infinite path π′ with π′[0] = v0 in
G it holds that rav(π) ≥ rav(π′). We can also define corresponding threshold paths: given a
value R a path π is said to be threshold R-optimal if r(N)

sum (π) ≥ R or rav(π) ≥ R, respectively.
An ε-optimal path is one which is R(N)

sum (v0)− ε or Rav(v0)− ε threshold optimal (for finite or
infinite horizon respectively).

I Example 3. Consider again the graph Ge shown in Figure 1. Examining the expressions
computed in Example 1, we have that rav(π2) > rav(π3) for γ = 0.1 and rav(π3) > rav(π2) for
γ = 0.9. Thus, in general, the optimal value depends on γ. Due to the structure of the set of
infinite paths in Ge we can analytically compute the optimal value Rav(v) for each v ∈ Ve as
a function of γ and a corresponding optimal path (the proof is in the appendix):

if γ ∈ [0, a1], then Rav(v) = λ
1−γ −

λ
1−γ γ

3 and the path (abc)ω is optimal;
if γ ∈ [a1, a2], then Rav(v) = λ

1−γ −
λ

1−γ ·
(γ2+4γ3+2γ5+γ8)

8 and (abcabcad)ω is optimal;
if γ ∈ [a2, 1], then Rav(v)= λ

1−γ−
λ

1−γ ·
(γ2+γ3+3γ5)

5 and the path (abcad)ω is optimal.
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The constants a1 ≈ 0.2587 and a2 ≈ 0.2738 are respectively the unique real roots of polynomi-
als γ6 +2γ3−4γ+1 and 5γ6−14γ3 +12γ−3 in the interval (0, 1). Note that for γ = 1 we have
Rav(v) = 4λ which is achieved by (abcad)ω. The path (abc)(ad)(abc)2(ad)2. . . (abc)n(ad)n. . .,
which is not ultimately periodic, also achieves the optimal reward.

Paths as strategies We often refer to infinite paths as resulting from strategies (of the
collecting agent). A strategy σ in G is a function that maps finite paths π[0 . . .m] to nodes
such that if σ(π) is defined then (π[m], σ(π)) ∈ E. Given an initial node v0, the strategy
σ generates a unique infinite path π, denoted as outcome(v0, σ). Thus, every infinite path
π = v0, v1, . . . defines a unique strategy σπ where σπ(π[0 . . . i]) = vi+1, and σπ(ε) = v0, and
σπ is undefined otherwise. Clearly, outcome(v0, σπ) = π. We say a strategy σ is optimal for
a path problem if the path outcome(v0, σ) is optimal. A strategy σ is memoryless if for every
two paths π′[0 . . .m′], π′′[0 . . .m′′] for which π′[m′] = π′′[m′′], it holds that σ(π′) = σ(π′′).
We say that memoryless strategies suffice for the optimal path problem if there always exists
a memoryless strategy σ such that outcome(v0, σ) is an optimal path.

3 Finite Horizon Rewards: Computing R(N)
sum(v)

In this section we consider the finite-horizon problems associated with our model. The
following theorem summarizes the main results.

I Theorem 4. Given G = (V,E), expected reward and discounting functions, node v∈V ,
and horizon N ∈N:
1. The finite-horizon value decision problem is NP-complete if N is in unary.
2. The value R(N)

sum (v) for v∈V is computable in exponential time even if N is in binary.

Analogous results hold for the related reward problem where in addition to the initial
node v, we are also given a destination node vf , and the objective is to go from v to vf in at
most N steps while maximizing the reward.

The finite-horizon value problem is NP-hard by reduction from the Hamiltonian path
problem (the proof is in the appendix), even in the case of node-invariant λ and γ. Membership
in NP in case N is in unary follows from the fact that we can guess a path of length N and
check that the reward for that path is at least the desired threshold value.

To prove the second part of the theorem, we construct a finite augmented weighted graph.
For simplicity, we give the proof for node-invariant λ and γ, working with the cost

functions csum and cav. The augmented graph construction in the general case is a trivial
generalization by changing the weights of the nodes, and the dynamic programming algorithm
used for computing the optimal cost values is easily modified to compute the corresponding
reward values instead. For γ < 1 the objective is to minimize c(N)

sum (π) =
∑N
t=0 γ

Lastπ(t,π[t])

and for γ = 1 the objective is to maximize r(N)
sum (π) = λ

∑N
t=0 Lastπ(t, π[t]) over paths π.

Augmented weighted graph Given a finite directed graph G = (V,E) we define the
augmented weighted graph G̃ = (Ṽ , Ẽ) which “encodes” the values Lastπ(t, v) for the paths in
G explicitly in the augmented graph node. We can assume w.l.o.g. that V = {1, 2, . . . , |V |}.

The set of nodes Ṽ is V × Z|V |+ (the set Ṽ is infinite). A node (v, b1, b2, . . . , b|V |) ∈ Ṽ
represents the fact that the current node is v, and that for each node u ∈ V the last visit
to u (before the current time) was bu time units before the current time.
The weight of a node (v, b1, b2, . . . , b|V |) ∈ Ṽ is γbv .
The set of edges Ẽ consists of edges (v, b1, b2, . . . , b|V |) → (v′, b′1, b′2, . . . , b′|V |) such that
(v, v′) ∈ E; and b′v = 1, and b′u = bu + 1 for all u 6= v.
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Let π be a path in G. In the graph G̃ there exists a unique path π̃ that corresponds to π:

π̃ = (π[0], 1, 1, . . . , 1) , (π[1], b1
1, b

1
2, . . . , b

1
|V |) , (π[2], b2

1, b
2
2, . . . , b

2
|V |) , . . . (6)

starting from the node (π[0], 1, 1, . . . , 1) such that for all t and for all v ∈ V , we have
Lastπ(t, v) = btv. Dually, for each path π̃ in G̃ starting from (v0, 1, 1, . . . , 1), there exists a
unique path π in G from the node v0 such that Lastπ(t, v) = btv for all t and v.

For a path π̃ in the form of (6) let

c̃(N)
sum (π̃) :=

N∑
t=0

γb
t
vt and c̃av(π̃) := lim sup

N→∞

1
N + 1

N∑
t=0

γb
t
vt . Observe that:

c̃
(N)
sum (π̃) is the sum of weights associated with the first N + 1 nodes of π̃.
c̃av(π̃) is the limit-average of the weights associated with the nodes of π̃.

Thus, c̃(N)
sum and c̃av define the classical total finite sum (shortest paths) and limit average

objectives on weighted (infinite) graphs [26]. Additionally, c̃(N)
sum (π̃) = c

(N)
sum (π), and c̃av(π̃) =

cav(π) where π is the path in G corresponding to the path π̃.
Now, define C̃(N)

sum ((v0, 1, 1, . . . , 1)) as the infimum of c̃(N)
sum (π̃) over all paths π̃ with π̃[0] =

(v0, 1, 1, . . . , 1), and similarly for C̃av ((v0, 1, 1, . . . , 1)). Then it is easy to see that C(N)
sum (v0) =

C̃
(N)
sum ((v0, 1, 1, . . . , 1)) and Cav(v0) = C̃av ((v0, 1, 1, . . . , 1)). Thus, we can reduce the optimal

path and value problems for G to standard objectives in G̃. The major difficulty is that G̃ is
infinite. However, note that only the first N + 1 nodes of π̃ are relevant for the computation
of c̃(N)

sum (π̃). Thus, the value of C̃(N)
sum ((v0, 1, . . . , 1)) can be computed on a finite subgraph of

G̃, obtained by considering only the finite subset of nodes V ×Z[1, N + 1]|V | ⊆ Ṽ .
For γ < 1, we obtain the value C̃(N)

sum (π̃) by a standard dynamic programming algorithm
which computes the shortest path of length N on this finite subgraph starting from the node
(v0, 1, 1, . . . , 1) (and keeping track of the number of steps). For γ = 1, where the objective
is to maximize r(N)

sum (π) = λ
∑N
t=0 Lastπ(t, π[t]) over paths π, we proceed analogously. Note

that the subgraph used for the dynamic programming computations is of exponential size in
terms of the size of G and the description of N . This gives the desired result in Theorem 4.

4 Infinite Horizon Rewards: Computing Rav(v)

Since we consider finite graphs, every infinite path eventually stays in some strongly connected
component (SCC). Furthermore, the value of the reward function rav(π) does not change if
we alter/remove a finite prefix of the path π. Thus, it suffices to restrict our attention to
the SCCs of the graph: the problem of finding an optimal path from a node v ∈ V reduces
to finding the SCC that gives the highest reward among the SCCs reachable from node v.
Therefore, we assume that the graph is strongly connected.

4.1 Hardness of Exact Rav(v) Value Computation
Since it is sufficient for the hardness results, we consider node-invariant λ and γ.

Insufficiency of memoryless strategies. Before we turn to the computational hardness of
the value decision problem, we look at the strategy complexity of the optimal path problem
and show that optimal strategies need memory.

I Proposition 5. Memoryless strategies do not suffice for the infinite horizon problem.
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Proof. Consider Example 3. A memoryless strategy results in paths which cycle exclusively
either in the left cycle, or the right cycle (as from node a, it prescribes a move to either only
b or only d). As shown in Example 3, the optimal path for γ≥a1 needs to visit both cycles.
Thus, memoryless strategies do not suffice for this example. J

For ω-regular objectives, strategies based on latest visitation records [14, 22], which
depend only on the order of the last node visits (i.e., for all node pairs v1 6= v2 ∈ V , whether
the last visit of v1 was before that of v2 or vice versa) are sufficient. However, we can show
that such strategies do not suffice either. To see this, recall the graph in Figure 1 for which
the optimal path for γ = 0.26 is (abcabcad)ω. Upon visiting node a this strategy chooses one
of the nodes b or d depending on the number of visits to b since the last occurrence of d. On
the other hand, every strategy based only on the order of last visits is not able to count the
number of visits to b and thus, results in a path that ends up in one of (abc)ω, or (ad)ω, or
(abcad)ω, which are not optimal for this γ. The proof is given in the appendix. It is open if
finite memory strategies are sufficient for the infinite-horizon optimal path problem.
NP-Hardness of the value decision problem To show NP-hardness of the infinite-horizon
value decision problem, we first give bounds on Rav(v0). The following Lemma proven in the
appendix, establishes these bounds.

I Lemma 6. For any graph G = (V,E) and any node v0 ∈ V , Rav(v0) is bounded as

λ
1− γp

1− γ ≤ Rav(v0) ≤ λ1− γnv

1− γ , (7)

where nv = |V | and p is the length of the longest simple cycle in G.

I Corollary 7. If the graph G = (V,E) contains a Hamiltonian cycle, any path π =
(v1v2 . . . v|V |)ω, with v1v2 . . . v|V |v1 being a Hamiltonian cycle, is optimal and the optimal
value of Rav(v0) is exactly the upper bound in (7).

The following lemma establishes a relationship between the value of optimal paths and
the existence of a Hamiltonian cycle in the graph, and is useful for providing a lower bound
on the computational complexity of the value decision problem.

I Lemma 8. If the upper bound in (7) is achieved with a path π for some γ < 1/|V |, then
the graph contains a Hamiltonian cycle ρ that occurs in π infinitely often.

Proof. The proof is by contradiction. Suppose π does not visit any Hamiltonian cycle
infinitely often. Then it visits each such cycle at most a finite number of times. Without
loss of generality we can assume that the path doesn’t visit any such cycles, since the total
number of Hamiltonian cycles is finite. We have for nv = |V |

c(N)
sum (π) ≥

N∑
t=0

γLastπ(t,π[t])I(Lastπ(t, π[t]) < nv) ≥ γnv−1
N∑
t=0

I(Lastπ(t, π[t]) < nv).

Now let’s look at πn,nv = π[n(n + 1) . . . (n + nv)] a finite sub-path of length nv. There is
at least one node repeated in πn,nv since the graph has nv distinct nodes. Note that if
π[n] = π[n+ nv], there must be another repetition due to the lack of Hamiltonian cycles in
the path. In either case, there is an in ∈ Z[n, n+ nv] such that Lastπ(in, π[in]) < nv.

c(N)
sum (π) ≥ γnv−1

N∑
t=0

I(Lastπ(t, π[t]) < nv) ≥ γnv−1
⌊
N

nv

⌋
⇒ cav(π) ≥ γnv−1 lim sup

N→∞

1
N + 1

⌊
N

nv

⌋
= γnv−1 1

nv
⇒ γnv ≥

(
γnv−1) /nv ⇒ γ ≥ 1/nv,
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which is a contradiction with the assumption that γ < 1/nv. Then a necessary condition for
cav(π)=γnv with some γ<1/nv is the existence of a Hamiltonian cycle. J

Remark. Following the same reasoning of the above proof it is possible to improve the upper
bound in (7) as Rav(v0) ≤ λ (1− γp/nv) /(1− γ) for small values of γ, where p is the length
of the longest simple cycle of the graph.

I Theorem 9. The infinite horizon value decision problem is NP-hard for γ<1/|V |.

Proof. We reduce the Hamiltonian cycle problem to the infinite horizon optimal path problem.
Given a graph G = (V,E), we fix some λ and γ < 1/|V |. We show that G is Hamiltonian iff
Rav(v0) ≥ λ

(
1− γ|V |

)
/(1−γ). If G has a Hamiltonian cycle v1v2 . . . v|V |v1, then the infinite

path π = (v1v2 . . . v|V |)ω has reward rav(π) = λ
(
1− γ|V |

)
/(1− γ), for any choice of γ. For

the other direction, applying Lemma 8 with γ < 1/|V | implies that G is Hamiltonian. J

Non-discounted rewards (γ = 1) and node-invariant function λ Contrary to the finite-
horizon non-discounted case, the infinite-horizon optimal path and value problems for γ = 1
can be solved in polynomial time. To see this, note that the reward expression r

(N)
sum (π)

can be written as r(N)
sum (π) = λ

∑
v∈V y(v, π,N), where y(v, π,N) is defined as y(v, π,N) =

1 + maxU, for U = {j ∈ N|j ≤ N, π[j] = v} ∪ {−1}. Then, we can bound the reward by

rav(π) ≤ lim
N→∞

λ
∑|V (π)|
i=1 (N + 1− i+ 1)

N + 1 = lim
N→∞

λ|V (π)|(2N − |V (π)|+ 3)
2(N + 1) = λ|Inf(π)|,

where Inf(π) is the set of nodes visited in the path π infinitely often. This indicates that
the maximum reward is bounded by λ times the maximal size of a reachable SCC in the
graph G. This upper bound is also achievable: we can construct an optimal path by finding a
maximal SCC reachable from the initial node and a (not necessarily simple) cycle v1 . . . vnv1
that visits all the nodes in this SCC. Then, a subset of optimal paths contains paths of the
form π0 · (v1 . . . vn)ω, where π0 is any finite path that reaches v1. This procedure can be
done with a computational time polynomial in the size of G.

I Example 10. Consider the graph in Figure 1. The optimal reward for the infinite-horizon
non-discounted case is 4λ, achievable by the path π = (abcad)ω. Another path which is not ul-
timately periodic but achieves the same reward π′ = (abc)(ad)(abc)2(ad)2 . . . (abc)n(ad)n . . ..

Note that for the case γ = 1 there always exists an ultimately periodic optimal path,
such a path is generated by a finite-memory strategy.

4.2 Approximate Computation of Rav(v)
In the previous section we discussed how to solve the infinite-horizon value and path
computation problems for the non-discounted case. Now we show how the infinite-horizon path
and value computation problems for γ < 1 can be effectively approximated. We first define
functions that over and underapproximate Cav(v) (thus also Rav(v)) and establish bounds on
the error of these approximations. Given an integer K ∈ N, approximately optimal paths and
an associated interval approximating Cav(v) can be computed using a finite augmented graph
G̃K based on the augmented graph G̃ of Section 3. Intuitively, G̃K is obtained from G̃ by
pruning nodes that have a component greater than K in their augmentation. By increasing
the value of K, the approximation error can be made arbitrarily small.

We describe the approximation algorithm for node-invariant λ and γ. The results
generalize trivially to the case when λ and γ are not node-invariant by choosing K large
enough to satisfy the condition that bounds the approximation error for each λ(v) and γ(v).
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Approximate cost functions Consider the following functions from V ∗×N to R≥0:

c̄(N)
sum (π,K) :=

N∑
t=0

γmin{K,Lastπ(t,π[t])} and

c(N)
sum(π,K) :=

N∑
t=0

γLastπ(t,π[t])I(Lastπ(t, π[t]) ≤ K).

Informally, for c̄(N)
sum (π,K), if the last visit to node π[t] occurred more than K time units before

time t, the cost is γK , rather than the original smaller amount γLastπ(t,π[t]). For c(N)
sum(π,K),

if the last visit to π[t] occurred more than K time steps before time t, then the cost is 0. For
both, if the last visit to the node π[t] occurred less than or equal to K steps before, we pay the
actual cost γLastπ(t,π[t]). The above definition implies that c(N)

sum(π,K) ≤ c(N)
sum (π) ≤ c̄(N)

sum (π,K)
for every π. Then we have C(v0,K) ≤ Cav(v0) ≤ C(v0,K), where we define

C(v0,K) := inf
π,π[0]=v0

lim sup
N→∞

c
(N)
sum(π,K)
N + 1 and

C(v0,K) := inf
π,π[0]=v0

lim sup
N→∞

c̄
(N)
sum (π,K)
N + 1 .

The difference between the upper and lower bounds can be tuned by selecting K:

c̄(N)
sum (π,K)− c(N)

sum(π,K) =
N∑
t=0

γKI(Lastπ(t, π[t]) ≥ K + 1)

=⇒ 0 ≤ c̄(N)
sum (π,K)− c(N)

sum(π,K) ≤ (N + 1)γK

=⇒ c(N)
sum(π,K) ≤ c̄(N)

sum (π,K) ≤ c(N)
sum(π,K) + (N + 1)γK

=⇒ C(v0,K) ≤ C(v0,K) ≤ C(v0,K) + γK .

Therefore Cav(v0) belongs to the interval [C(v0,K), C(v0,K)] ⊂ [0, γK ] and the length of
the interval is at most γK . In order to guarantee the total error of ε > 0 for the actual
reward Rav(v0)1, we can select K ∈ N according to λ

1−γ γ
K ≤ ε =⇒ K ≥ ln

[
ε(1−γ)
λ

]
/ ln γ.

The value Cav(v0) can be computed up to the desired degree of accuracy by computing either
C(v0,K) or C(v0,K). Next, we give the procedure for computing C(v0,K) (the procedure
for C(v0,K) is similar). It utilizes a finite augmented weighted graph G̃K .
Truncated augmented weighted graph G̃K Recall the infinite augmented weighted graph
G̃ from Section 3. We define a truncated version G̃K = (ṼK , ẼK) of G̃ where we only keep
track of Lastπ(t, v) values less than or equal to K. For G̃K we define two weight functions w
and w, for c̄(N)

sum and c(N)
sum respectively.

The set of nodes ṼK is V × Z[0,K]|V |.
For a node ṽ = (v, b1, b2, . . . , b|V |) ∈ Ṽ ,

the weight ω(ṽ) is γbv if bv > 0 and γK otherwise.
the weight ω(ṽ) is γbv if bv > 0 and 0 otherwise.

The set of edges ẼK consists of edges (v, b1, b2, . . . , b|V |) → (v′, b′1, b′2, . . . , b′|V |) such that
(v → v′) ∈ E, b′v = 1, and for u 6= v:

1 Since Rav(v0) is upper bounded by λ/(1 − γ), we assume that the required accuracy ε is less than this
upper bound.
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b′u = bu + 1 if bu > 0 and bu + 1 ≤ K,
b′u = 0 if bu = 0 or bu + 1 > K.

Thus, in G̃K we specify two different weights for path π at time step t in the case when
the previous visit to π[t] in π was more than K time steps ago.
Similarly to the infinite augmented graph we have
c̄

(N)
sum (π,K) is the sum of weights assigned by w to the first (N + 1) nodes of π̃.
c

(N)
sum(π,K) is the sum of weights assigned by w to the first (N + 1) nodes of π̃.

It is easy to see that C(v0,K) is the least possible limit-average cost with respect to w in
G̃K starting from the node ṽ0 = (v0, 1, 1, . . . , 1). The same holds for C(v0,K) with w. Below
we show how to compute C(v0,K). The case C(v0,K) is analogous, and thus omitted.
Algorithm for computing C(v0,K) We now describe a method to compute C(v0,K) as
the least possible limit-average cost in G̃K with respect to w. It is well-known that this can
be reduced to the computation of the minimum cycle mean in the weighted graph [26], which
in turn can be done using the algorithm from [16] that we now describe.

As before, first we assume that G̃K is strongly connected. For every ṽ ∈ ṼK , and every
n ∈ Z+, we define Wn(ṽ) as the minimum weight of a path of length n from ṽ0 to ṽ; if no
such path exists, then Wn(ṽ) =∞. The values Wn(ṽ) can be computed by the recurrence

Wn(ṽ) = min
(ũ,̃v)∈ẼK

{Wn−1(ũ) + w(ṽ)}, n = 1, 2, . . . , |ṼK |,

with the initial conditionsW0(ṽ0) = 0 andW0(ṽ) =∞ for any ṽ 6= ṽ0. Then, we can compute

C(v0,K) = min
ṽ∈ṼK

max
n∈Z[0,|ṼK |−1]

[
W|ṼK |

(ṽ)−Wn(ṽ)

|ṼK | − n

]
.

A cycle ρ̃ with the computed minimum mean can be extracted by fixing the node ṽ which
achieves the minimum in the above value and the respective path length n and finding a
minimum-weight path from ṽ0 to ṽ and a cycle of length |ṼK | − n within this path. Thus,
the path π̃ in G̃K obtained by repeating ρ̃ infinitely often realizes this value. A path π from
v0 in G with cav(π) = C(v0,K) is obtained from π̃ by projection on V .

In the general case, when G̃K is not strongly connected we have to consider each of its
SCCs reachable from ṽ0, and determine the one with the least minimum cycle mean.

For each SCC with m edges and n nodes the computation of the quantities W requires
O(n · m) operations. The computation of the minimum cycle mean for this component
requires O(n2) further operations. Since n ≤ m because of the strong connectivity, the
overall computation time for the SCC is O(n ·m). Finally, the SCCs of G̃K can be computed
in time O(|ṼK |+ |ẼK |) [21]. This gives us the following result.

I Lemma 11. The value C(v0,K) and a path π with limit average cost cav(π) = C(v0,K)
can be computed in time polynomial in the size of G̃K .

The same result can be established for the under approximation C(v0,K).
Remark. The number of nodes of G̃K is |ṼK | = |V | × (K + 1)|V |. For the approximation
procedure described above it suffices to augment the graph with the information about which
nodes were visited in the last K steps and in what order. Thus, we can alternatively consider
a graph with |V | × |V |K nodes in the case when the computed K is smaller than |V |.

I Example 12. Figure 2 shows the SCC of the augmented graph G̃K reachable from initial
node (a, 1, 1, 1, 1) for the graph given in Figure 1 and K = 5. The nodes in the SCC are
denoted by shorthands in the picture, e.g., a1 = (a, 3, 2, 1, 4). The labels on the nodes
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bb1, γ
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bc1, γ
3

ba2, γ
3

b
b2, γ

3

b

b3, γ
5

b c2, γ
5 b d1, γ

5

b d2,
(γ5, 0)

a1 = (a, 3, 2, 1, 4) a2 = (a, 3, 2, 1, 0)
a3 = (a, 2, 4, 3, 1) a4 = (a, 2, 0, 5, 1)
a5 = (a, 2, 0, 0, 1)

b1 = (b, 1, 3, 2, 5) b2 = (b, 1, 3, 2, 0)
b3 = (b, 1, 5, 4, 2) b4 = (b, 1, 0, 0, 2)

c1 = (c, 2, 1, 3, 0) c2 = (c, 2, 1, 5, 3)
c3 = (c, 2, 1, 0, 3)

d1 = (d, 1, 3, 2, 5) d2 = (d, 1, 3, 2, 0)
d3 = (d, 1, 5, 4, 2) d4 = (d, 1, 0, 0, 2)

Figure 2 The SCC of the finite augmented graph G̃5 for the graph in Figure 1. The node labels
are the values of the functions w and w (in black if w = w, otherwise respectively in blue and red).

correspond to the values of the weight functions w and w. As we can see, G̃5 already
contains simple cycles (a2b2c2a2), (a3b3c2a1b1c1a2d2a3), (a3b3c2a1d1a3), which correspond to
the optimal paths presented in Example 3. The outcome of the minimum cycle mean for
G̃5 will be the same with the two sets of weights only for the first and third interval for γ
determined in Example 3, but will be different for the second case in which the term γ8 is
replaced respectively by γ5 and 0 for the upper and lower bounds.

Theorem 13, a consequence of Lemma 11, states the approximate computation result.

I Theorem 13. Given a graph G = (V,E), node v0 ∈ V , rational values λ and 0 < γ < 1,
and error bound ε > 0, we can compute in time polynomial in |V |(K + 1)|V | for K =
ln
[
ε(1−γ)
λ

]
/ ln γ (i.e., exponential in |V |), infinite paths πunder and πover and values rav(πunder)

and rav(πover) such that rav(πunder) ≤ Rav(v0) ≤ rav(πover) and rav(πover)− rav(πunder) ≤ ε.

4.3 Approximation via Bounded Memory
The algorithm presented earlier is based on an augmentation of the graph with a specific
structure updated deterministically and whose size depends on the desired quality of approx-
imation. Furthermore, in this graph there exists a memoryless strategy with approximately
optimal reward. We show that this allows us to quantify how far from the optimal reward
value is a strategy that is optimal among the ones with bounded memory of fixed size.

First, we give the definition of memory structures. A memory structure M = (M,m0, δ)
for a graph G = (V,E) consists of a set M , initial memory m0 ∈M and a memory update
function δ : M × V →M . The memory update function can be extended to δ∗ : V ∗ →M

by defining δ∗(ε) = m0 and δ∗(π · v) = δ(δ∗(π), v). A memory structureM together with a
function τ : V ×M → V such that (v, τ(v,m)) ∈ E for all v ∈ V and m ∈M , and an initial
node v0 ∈ V define a strategy σ : V ∗ → V where σ(ε) = v0 and σ(π · v) = τ(v, δ∗(π)). In
this case we say that the strategy σ has memory M. Given a bound B ∈ N on memory
size we define the finite graph G × B = (V G×B , EG×B), where V G×B = V × Z[1, B]; and
EG×B = {((v, i), (v′, j)) ∈ (V ×Z[1, B])× (V ×Z[1, B]) | (v, v′) ∈ E}).

Memoryless strategies in this graph precisely correspond to strategies that have memory
of size B. More precisely, for each strategy σ in G = (V,E) that has memory M =
(M,m0, δ) there exists a memoryless strategy σM in G × |M | such that the projection of
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outcome((v0,m0), σM) on V is outcome(v0, σ). Conversely, for each memoryless strategy σM
in G×B there exist a memory structureM = (M,m0, δ) with |M | = B and a strategy σ with
memoryM in G such that the projection of outcome((v0,m0), σM) on V is outcome(v0, σ).

I Example 14. Recall that in Example 3 we established that an optimal path for γ = 0.26
is the path (abcabcad)ω. In the graph G × 3 there exists a simple cycle corresponding to
this path, namely (a, 1)(b, 1)(c, 2)(a, 2)(b, 2)(c, 3)(a, 3)(d, 1)(a, 1). Thus, the optimal path
(abcabcad)ω corresponds to a strategy with memory size of 3.

An optimal strategy among those with memory of a given size B can be computed by
inspecting the memoryless strategies in G×B and selecting the one with maximal reward
(these strategies are finitely but exponentially many).

A strategy returned by the approximation algorithm presented earlier uses a memory
structure of size (K + 1)|V |. If (K + 1)|V | ≤ B, then this strategy is isomorphic to some
memoryless strategy σ in G × B. Since the reward achieved by the optimal memoryless
strategy in G×B is at least that of σ, its value is at most λ

1−γ γ
K away from Rav(v0). Now,

(K + 1)|V | ≤ B iff K ≤
⌊

lnB
ln|V |

⌋
− 1. Thus, under a memory size B, we are guaranteed to

find a strategy which has reward that at most λ
1−γ γ

⌊
lnB

ln|V |

⌋
−1 away from the optimal.

Next we sketch an algorithm for computing optimal B-memory bounded strategies. As
mentioned previously, we can restrict our attention to memoryless strategies in G × B.
Memoryless strategies in this graph lead to lasso shaped infinite paths, with an initial
non-cyclic path followed by a simple cycle which is repeated infinitely often. This means
that we can restrict our attention to paths of length |V | ·B which complete the lasso. Now,
we apply this length bound to restrict our attention to the finite portion of the augmented
graph G̃ from Section 3 that corresponds to path lengths at most |V |·B. This finite subgraph
contains nodes V × N[1, |V |·B]|V |. The dynamic programming algorithm is polynomial time
on this graph, hence we get a running time which is polynomial in |V | · (|V | ·B)|V |.

I Theorem 15. Given a graph G = (V,E), a node v0 ∈ V , rational values λ and 0 < γ < 1,
and a memory bound B > 1, we can compute a B-memory optimal strategy σ with reward rav

at most λ
1−γ γ

⌊
lnB

ln|V |

⌋
−1 away from the optimal Rav(v0) in time polynomial in |V |(|V |+1) ·B|V |.

5 Generalizations of the Model

General Decay Profiles. In this section we assume the expected value of the generated
reward for nodes to be time independent. Given a node v ∈ V , the associated decay profile
Γv for the node is defined to be be a strictly monotonically decreasing sequence 1, a1, a2, . . .

(starting from 1) converging to 0. We denote the i-th element of the sequence as Γv(i),
and the sequence portion Γv(i),Γv(i + 1), . . .Γv(j) as Γv[i..j]. If the original generated
reward at a node v was λ, after ∆ time units only λ · Γv(∆) of that reward remains after
decay if uncollected. Denote the sum of the elements of Γv[i..j] as Sum (Γv[i..j]), that is
Sum (Γv[i..j]) =

∑j
k=i Γv(k).

For a path π = v0, v1, . . . , (and under fixed decay profiles Γv for the nodes in V ) we define
the finite horizon cumulative (expected) reward as

r(N)
sum (π) =

N∑
t=0

λ(vt) · Sum (Γvt [0 .. t−Lastπ(t, vt)−1]) .
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Note that the quantities λ(vt) · Γvt(0), λ(vt) · Γvt(1), . . . , λ(vt) · Γvt(t− Lastπ(t, vt)− 1) are
the expectations of the uncollected rewards at node vt for times t, t−1, . . . , t−Lastπ(t, vt)−1
respectively.

We define the infinite horizon limit-average (expected) reward as for the multiplicative
discounting in (2). Value decision problems are defined analogously to Definition 2.

The following theorem shows that the rsum-value decision problem remains NP-hard
under any decay profile (the proof is given in the appendix); and that the rsum-values can be
computed in EXPTIME (a version of the augmented weighted graph can be defined similar
to the multiplicative discounting case to compute the finite horizon reward value R(N)

sum (v)).

I Theorem 16. Let G = (V,E) be a finite directed graph, and let the expected rewards and
reward decay profiles be node independent (and non-zero).
1. The finite horizon rsum-value decision problem is NP-complete in case N is given in unary,

and NP-hard otherwise.
2. The value R(N)

sum (v) for v∈V (given N in binary) is computable in EXPTIME.

Proof. Consider N = |V |−1. Let β = λ·
∑N
i=0 Sum (Γ[0 .. i]). We reduce deciding existence of

the Hamiltonian path to the rsum-value decision problem. Clearly if there exists a Hamiltonian
path in G, then the answer to the rsum-value decision problem is affirmative. Suppose the
answer to the rsum-value decision problem is affirmative. We show in this case that G must
have a Hamiltonian path. Consider any non-Hamiltonian path π = v0, . . . , vN of length N .
We show rsum(π) < β. We have

β − r(N)
sum (π)
λ

=
N∑
i=0

ai,

where

ai =
{

0 if vi does not appear in v0, v1, . . . , vi−1

Sum (Γ[0 .. i]) − Sum (Γ[0 .. Lastπ(i, vi)− 1]) otherwise.

Observe that

Sum (Γ[0 .. i]) − Sum (Γ[0 .. Lastπ(i, vi)− 1]) > 0

in case Lastπ(i, vi) < i+ 1, i.e., if vi has appeared in the path prefix v0, v1, . . . , vi−1. Since
we must have at least one node which appears twice in π, we have that at least one ai in∑N

i=0 ai must be strictly positive. This concludes the proof. J

In the infinite horizon case, a truncated weighted graph can be defined along the lines of
G̃K to compute ε-approximate bounds on R(N)

sum (v) (even if
∑∞
i=0 Γv(i) =∞). In this case,

given ε>0, the constant K depends on the rate of decay of the sequences Γv.
Two-Player Turn-Based Game Setting. In this setting, the nodes of the graph are
partitioned into player-1 and player-2 nodes, with the outgoing edges from a node being
controlled by the respective player. The objective of player 1 (the collecting agent) is to
maximise its reward (rNsum(π) or rav(π)) when facing an adversarial player 2 (as earlier, in
this setting the collecting agent does not receive information about the actual generated
reward instances). Plays and strategies are defined in the standard way (see e.g., [26]). It
can be checked that the augmented weighted graphs of Sections 3 and 4 also work in this
game-based setting, and thus we obtain algorithms for computing R(N)

sum (v) and ε-optimal
Rav(v) values applying algorithms for shortest path and mean-payoff games [9, 26].



XX:16 The Robot Routing Problem for Collecting Aggregate Stochastic Rewards

6 Conclusion and Open Problems

We have introduced the robot routing problem, which is a reward collection problem on
graphs in which the reward structure combines spatial aspects with dynamic and stochastic
reward generation. We have studied the computational complexity of the finite and infinite-
horizon versions of the problem, as well as the strategy complexity of the infinite-horizon case.
We have shown that optimal strategies need memory in general, and that strategies based
on last visitation records do not suffice. However, the important question about whether
finite-memory suffices for the infinite-horizon optimal path problem or infinite memory is
needed remains open. In case finite-memory suffices, it will be desirable to provide an
algorithm for precisely solving the infinite-horizon value problem. So far we have only given
methods for approximating the optimal solution.

Another interesting line of future work is the generalization of the model to incorporate
timing constraints. More specifically, in this work we have assumed that all the rewards
accumulated at a node are instantaneously collected. This assumption is justified by the
fact that in many request-serving scenarios the time taken to serve the requests at a given
location is negligible compared to the time necessary to travel between the locations. A more
precise model, however, would have to incorporate the serving time per node, which would
depend on the amount of collected reward. This would imply that the elapsed time becomes
a random variable, while in our current model it is deterministic.

Other extensions include the setting where the robot can react to the environment by
observing the collected rewards, or observing the accumulated rewards at nodes of the graph,
or where there is probabilistic uncertainty in the transitions of the robot in the graph. Finally,
the robot routing problem presents new challenges for development of efficient approximation
algorithms, which is a major research direction concerning path optimization problems.
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Appendix

A Optimal Path for Example 3

Since the graph Ge is strongly connected, the optimal path is independent of the initial
state. We can also neglect a finite prefix of any path with respect to the computation of the
optimal limit-average collected rewards. Any path in the graph Ge can be (after neglecting
a finite prefix) (abc)w or (ad)w or can be presented as π = (abc)n0(ad)m0(abc)n1(ad)m1 . . .

for unique sequences {nk}k and {mk}k where nk,mk ∈ Z+. In the following we focus on
the limit-average cost function cav(π) and provide a path-independent lower bound which
is also achievable by some paths in the graph. To study the cav(π), we need to compute
lim supN→∞ of the fraction c(N)

sum (π)/(N + 1). Since we intend to provide a lower bound for
this quantity, we focus on the limiting behavior of the fraction only for the subsequence
{
∑na

k=0(3nk + 2mk) − 1 | na = 1, 2, . . .}. The finite-horizon cost associated to π for the
horizon N =

∑na

k=0(3nk + 2mk)− 1 is the following

c(N)
sum (π) = g0(γ, n0,m0) +

na∑
k=1

[
γ2 + 2γ2mk−1+3 + (3nk − 3)γ3]

+
na∑
k=1

[
γ3 + γ3nk+2 + (2mk − 2)γ2] ,

where g0(γ, n0,m0) is the polynomial that includes the terms generated by the prefix
(abc)n0(ad)m0 . Then

c
(N)
sum (π)
N + 1 =

∑na

k=1 f(γ, nk,mk)∑na

k=0(3nk + 2mk)
+ g0(γ, n0,m0) + 2γ2m0+3 − 2γ2mn+3∑na

k=0(3nk + 2mk)

where f(γ, nk,mk) := (2mk − 1)γ2 + (3nk − 2)γ3 + 2γ2mk+3 + γ3nk+2. The second fraction
in the right-hand side goes to zero for na →∞ thus the limit of the fraction is the same as
the following∑na

k=1 f(γ, nk,mk)∑na

k=1(3nk + 2mk)
=
∑
i,j=1 a

(na)
ij f(γ, i, j)∑

i,j=1 a
(na)
ij (3i+ 2j)

=
∑
i,j=1

a
(na)
ij (3i+ 2j)∑

i1,j1=1 a
(na)
i1j1

(3i1 + 2j1)
f(γ, i, j)
3i+ 2j ,

(8)

where a(na)
ij is the number of pairs (i, j) that appear in the finite sequence {(nk,mk) | k =

1, 2, . . . , na}. This equality indicates that (8) is a convex combination of fractions f(γ, i, j)/(3i+
2j) thus cav(π) is lower bounded by

cav(π) ≥ inf
{
f(γ, i, j)
3i+ 2j

∣∣∣∣ i, j ∈ Z+

}
. (9)
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Note that f(γ, i, j)/(3i+ 2j) is exactly the cost of path π with the constant sequences nk = i

and mk = j for all k. Therefore, inequality (9) states that for the graph of Example 3, the
cost of non-periodic paths can not be less that the minimum cost of periodic paths. Then
we need to compare a countable number of polynomials and find their minimum over the
interval γ ∈ (0, 1). Such a comparison reveals that there are two support polynomials with
(i, j) equal to (1, 1), (2, 1). There is also one limit polynomial in which j is fixed and i goes
to infinity. This polynomial γ3 is not present in (9) explicitly but is generated by the path
(abc)w which we left a side from the beginning. This completes the proof of computation in
Example 3.

B Missing Proofs from Section 3

The NP-hardness result (Theorem 4) for γ < 1 is based on the following lemma.

I Lemma 17. For any finite graph G = (V,E) with |V | = nv, v ∈ V and γ ∈ (0, 1), we have
that

Rnv−1
sum (v) ≤

λ
(
nv − (nv + 1)γ + γnv+1)

(1− γ)2 . (10)

The equality holds if and only if the graph has a Hamiltonian path starting from v.

Proof. The definition of Lastπ(t, v) implies that Lastπ(t, v) ≤ t + 1. Then for any path π
with |π| = nv − 1 and π[0] = v,

cnv−1
sum (π) =

nv−1∑
t=0

γLastπ(t,π[t]) ≥
nv−1∑
t=0

γt+1 = γ(1− γnv )
1− γ

⇒rnv−1
sum (π) ≤ nvλ

1− γ −
λ

1− γ
γ(1− γnv )

1− γ ,

which proves (10). If the path π is Hamiltonian, then the path does not contain any repeated
node and Lastπ(t, π[t]) = t+ 1 thus π is optimal and achieves the upper bound in (10). For
the other direction, we show that a path π that satisfies the condition of the claim is a
Hamiltonian path. Suppose that this is not the case. Since the length of π is nv−1, π contains
at least one repeated node. Thus for at least one index t we have Lastπ(t, π[t]) < t + 1,
and then

∑nv−1
t=0 γLastπ(t,π[t]) >

∑nv−1
t=0 γt+1. Therefore, rnv−1

sum (π) is strictly less than the
right-hand side of (10), which contradicts the choice of the path π. J

Theorem 4. The case for γ ∈ (0, 1) can be proved as follows. We reduce the Hamiltonian
path problem to the finite horizon value decision problem as follows. Given a graph G =
(V,E) with |V | = nv, we fix some constants λ and γ. By the inequality we showed in
(10), G contains a Hamiltonian path if and only if for some v ∈ V we have Rnv−1

sum (v) ≥
λ
[
nv − (nv + 1)γ + γnv+1] /(1− γ)2. This completes the reduction.
The proof for γ = 1 is similar to the proof of Theorem 16. J

C Missing Proofs from Section 4

Lemma 6 For any graph G = (V,E) and any node v0 ∈ V , Rav(v0) is bounded as

λ
1− γp

1− γ ≤ Rav(v0) ≤ λ1− γnv

1− γ , (11)

where nv = |V | and p is the length of the longest simple cycle in G.
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Proof. Let π be an infinite path and denote with πN = π[0 . . . N ] the prefix of π of length
N . We apply the inequality of arithmetic and geometric means for n ∈ N

a1+a2+. . .+an
n

≥ n
√
a1a2 . . . an, a1, a2, .., an ≥ 0,

where the equality holds if and only if all ai’s are equal. Then we have

c(N)
sum (π) ≥ (N+1)γ

1
N+1

∑N

t=0
Lastπ(t,π[t]) = (N+1)γ

∑
v
yv/(N+1),

where yv = 1 + max{j ∈ N | j ≤ N, π[j] = v} if v is visited by πN , otherwise yv = 0. This
implies that yv ≤ N + 1 and c(N)

sum (π) ≥ (N + 1)γnv(N+1)/(N+1) = (N + 1)γnv . Dividing both
sides by (N + 1) and taking lim supN→∞ gives a general path-independent lower bound
γnv for cav(π), which also implies Cav(v0) = infπ {cav(π) | π[0] = v0} ≥ γnv . This proves the
upper bound in (11). The particular path πp = (v1v2 . . . vp)ω, with v1v2 . . . vpv1 being the
longest simple cycle, gives the bound Rav(v0) ≥ rav(πp) which is the lower bound in (11). J

I Proposition 18. Strategies based only on last visitation records not suffice for the infinite-
horizon optimal path problem.

Proof. Recall that for the graph Ge = (Ve, Ee) in Figure 1 and γ = 0.26 the path (abcabcad)ω
is optimal. Upon visiting node a the corresponding strategy chooses one of the nodes b or d
depending on the number of visits to b since the last occurrence of d. We will now show that
every strategy based only on the order of last visits results in an ultimately periodic path the
loop of which is one of the cycles (abc)ω, or (ad)ω, or (abcad)ω, and is hence not optimal.

To this end, consider the graph Ĝe = (V̂e, Êe) with set of states V̂e = Ve ×O, where the
set O consists of the vectors of elements of V , of length less than or equal to 4, that represent
the order of last occurrences of the nodes V in the traversed path. For example, 〈a, c, b〉
denotes the fact that the last occurrence of a was after the last occurrence of c, which was
after the last occurrence of b, and node d has not occurred yet in the path. The edge relation
Êe ⊆ V̂e × V̂e, where (v, o)→ (v′, o′) implies (v, v′) ∈ Ee, updates the last occurrence order
in the expected way, depending on the taken edge (v, v′).

For example, the unique path in Ĝe that corresponds to (abcabcad)ω is

π̂ = (a, 〈〉)(b, o1)(c, o2)(a, o3)(b, o4)(c, o5)(a, o3)(d, o4) · ρ̂ω,

where

ρ̂ = (a, o6)(b, o7)(c, o8)(a, o9)(b, o10)(c, o11)(a, o9)(d, o10)

and
o1 = 〈a〉, o2 = 〈b, a〉, o3 = 〈c, b, a〉, o4 = 〈a, c, b〉, o5 = 〈b, a, c〉, o6 = 〈d, a, c, b〉, o7 = 〈a, d, c, b〉,
o8 = 〈b, a, d, c〉, o9 = 〈c, b, a, d〉, o10 = 〈a, c, b, d〉, o11 = 〈b, a, c, d〉.

Since there are occurrences of node (a, o3) in the path followed by different nodes, (b, o4)
and (d, o4) respectively, and similarly for node (a, o9), followed by either (b, o10) or (d, o10),
the path π̂ cannot be generated by a memoryless strategy in Ĝ.

In general, in Ĝ there are 5 possible reachable states of the form (a, o), namely, (a, 〈〉),
(a, 〈c, b, a〉), (a, 〈d, a〉), (a, 〈d, a, c, b〉) and (a, 〈c, b, a, d〉). A memoryless strategy in Ĝ (that
is, a strategy that only records the order of last visits) must map each of these nodes to a
unique successor node. Thus, such a strategy results in one of the paths (abc)ω, abc(ad)ω,
(abcad)ω, (ad)ω, ad(abc)ω, or (adabc)ω.

For γ = 0.26 each of these paths has reward strictly smaller than (abcabcad)ω and is
hence not optimal.This concludes the proof. J
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