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Abstract. We study statistical model checking of continuous-time stochastic hybrid
systems. The challenge in applying statistical model checking to these systems is that
one cannot simulate such systems exactly. We employ the multilevel Monte Carlo
method (MLMC) and work on a sequence of discrete-time stochastic processes whose
executions approximate and converge weakly to that of the original continuous-time
stochastic hybrid system with respect to satisfaction of the property of interest. With
focus on bounded-horizon reachability, we recast the model checking problem as the
computation of the distribution of the exit time, which is in turn formulated as the
expectation of an indicator function. This latter computation involves estimating dis-
continuous functionals, which reduces the bound on the convergence rate of the Monte
Carlo algorithm. We propose a smoothing step with tunable precision and formally
quantify the error of the MLMC approach in the mean-square sense, which is com-
posed of smoothing error, bias, and variance. We formulate a general adaptive algo-
rithm which balances these error terms. Finally, we describe an application of our
technique to verify a model of thermostatically controlled loads.

Keywords: statistical model checking, formal verification, hybrid systems, continuous-
time stochastic processes, multilevel Monte Carlo, reachability analysis

1 Introduction

Continuous-time stochastic hybrid systems (ct-SHS) are a natural model for cyber-physical
systems operating under uncertainty [6,8]. A ct-SHS has a hybrid state space consisting of
discrete modes and, for each mode, a set of continuous states (called the invariant). In each
mode, the continuous state evolves according to a stochastic differential equation (SDE) in
continuous time. Transition from one discrete mode to another may be activated in two ways.
The continuous state may hit the boundary of the invariant and make a forced transition
according to a discrete stochastic transition kernel. Alternatively, the process may sponta-
neously change its discrete mode according to a continuous-time Markov chain whose rates
depend on the hybrid state.

We consider quantitative analysis of temporal properties of ct-SHS [4,3]. The fundamental
analysis problem, called probabilistic reachability, consists in computing the probability that
the state of a ct-SHS exits a given safe set within a given bounded time horizon. Since analytic
solutions are not available, there are two common approaches. The first approach is numerical
model checking that relies on the exact or approximate computation of the measure of the
executions satisfying the temporal property. The second approach, called statistical model
checking, relies on finitely many sample executions of the system, and employs hypothesis
testing to provide confidence intervals for the estimate of the probability.

Statistical model checking has proven to be computationally more efficient than numerical
model checking as it only requires the system to be executable. Thus, it can be applied to
larger classes of systems and of specifications [25]. The main underlying assumption in all
statistical model checking techniques is the ability to sample from the space of executions
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of the system. Unfortunately, we cannot compute exact simulations for the general class of
ct-SHS due to the process evolution being continuous in both time and space. In this paper,
we describe a statistical model checking approach to ct-SHS using the multilevel Monte Carlo
(MLMC) method [18,21], which does not require exact executions of the system.

Our procedure works as follows. First, we formulate the quantitative analysis problem as
computing the distribution of the first exit time of the system from the given safe set. Then, we
build a sequence of approximate models whose executions converge weakly (or in expectation)
to the execution of the concrete system. Although these approximate models can be used
separately in the classical setting of statistical model checking in order to compute estimates
of the exit time, the MLMC method can take advantage of coupling between approximate
executions with different time resolutions to provide better convergence rates.

An important challenge in applying the MLMC technique to the quantitative analysis
of ct-SHS is that a discontinuous function is applied to the first exit time. While MLMC
can be applied to discontinuous functions, the convergence rates we can guarantee are poor.
We propose a smoothing step that replaces the discontinuous function with a continuous
approximation and show that the replacement decreases the overall computation cost. Finally,
we analyze the asymptotic computational cost of the MLMC approach for a given error bound.
We propose an adaptive algorithm which balances errors due to bias, variance, and smoothing,
and which tunes the hyperparameters of the algorithm on the fly.

We illustrate our technique on an example model of thermostatically controlled loads.

Related work. Formal definitions of various classes of continuous-time probabilistic hybrid
models are presented in [28], together with a comparison. Over such models, [5] has formalized
the notion of probabilistic reachability, [29] has proposed a computational technique based on
convex optimization, [14] has provided discretization techniques with formal error bounds, and
[15] has developed an approach based on satisfiability modulo theory. An alternative approach
towards formal, finite approximations of continuous-time stochastic models is discussed in [35]
and extended in [34] to switching diffusions. These approaches generally suffer from curse of
dimensionality and are not applicable to large dimensional models.

For discrete-time stochastic hybrid models probabilistic reachability (and safety) has been
fully characterized in [2] and computed via software tools [12,11] that use finite abstractions.
The methods can be extended to more general probabilistic temporal logics [30]. These tech-
niques assume discrete-time dynamics and cannot be extended to ct-SHS.

An overview of statistical model checking techniques can be found in [25,24,23]. The paper
[10] employs statistical model checking for verifying unbounded temporal properties. The
paper [9] has discussed the use of importance sampling to address the issue of rare events in
statistical verification of cyber-physical systems. A distributed implementation of statistical
model checking is proposed in [7] and a set-oriented method for statistical verification of
dynamical systems is presented in [31].

Employing multigrid ideas to reduce the computational complexity (in terms of expected
number of arithmetic operations) of estimating an expected value using Monte Carlo path
simulations is initially proposed in [18] in the context of stochastic differential equations.
MLMC has a better asymptotic complexity and by its nature allows to build consecutive
approximations, which can balance the bias and variance. The general paradigm with adequate
modifications has shown significant gains in modeling jump-diffusion SDEs [33] and in fault
tolerance applications [27]. A more detailed overview of applications of MLMC can be found
in [19]. The MLMC for estimating distribution functions is described in the recent paper [17],
which is adapted to our setting.

The article is structured as follows. In Section 2, we define the ct-SHS model and the
probabilistic reachability problem. In Sections 3 and 4, we discuss the standard Monte Carlo
technique and the MLMC method, respectively, and compare their convergence rates. We
then discuss two technical modifications: applying a smoothing operator to the discontinu-
ous function of exit time (Section 5) and an adaptive MLMC algorithm for estimating the
hyperparameters (Section 6). In Section 7, we provide simulation results for an example.
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2 Model Definition

We study statistical model checking for the rich class of continuous-time stochastic hybrid
systems (ct-SHS).

2.1 Continuous-Time Stochastic Hybrid Systems

Definition 1. A continuous-time stochastic hybrid system is a tuple H = (Q,X , b, σ, x0, r)
where the components are defined as follows.

States Q is a countable set of discrete states (modes) and X : Q→ P(Rn) maps each mode
q ∈ Q to an open set X (q) ⊆ Rn, called the invariant for the mode q. A state (q, z) with
q ∈ Q and z ∈ X (q) is called a hybrid state. The hybrid state space X is defined as

X = {(q, z) | q ∈ Q, z ∈ X (q)}. (1)

We write ∂Z for the boundary of a set Z and define ∂X := {(q, z) | q ∈ Q, z ∈ ∂X (q)}.
Evolution b : X → Rn is a vector field and σ : X → Rn×m is a matrix-valued function,

with n,m ∈ N0, where X is the hybrid space defined in (1). For each q ∈ Q, define the
following SDE:

dz(t) = b(q, z(t))dt+ σ(q, z(t))dWt, (2)

where (Wt, t ≥ 0) is an m-dimensional standard Wiener process in a complete proba-
bility space. We assume functions b(q, ·) : X (q) → Rn and σ(q, ·) : X (q) → Rn×m are
bounded and Lipschitz continuous for all q ∈ Q. The assumption ensures the existence
and uniqueness of the solution of the SDEs in (2).

Initial State x0 ∈ X is the initial state of the system;
Transition Kernel r : ∂X × Q → [0, 1] is a discrete stochastic kernel which governs the

switching between the SDEs defined in (2). That is, for all q ∈ Q, we assume r(·, q) is
measurable and, for all x ∈ ∂X, the function r(x, ·) is a discrete probability measure.

Intuitively, an execution of a ct-SHS starts in the initial state x0, and evolves according
to the solution of the diffusion process (2) for the current mode until it hits the boundary of
the invariant of the current mode for the first time. At this point, a new mode q′ is chosen
according to the transition kernel r and the execution proceeds according to the solution of
the diffusion process for q′, and so on.

We need the following definitions. Let zq(t), q ∈ Q be the solution of diffusion process (2)
starting from zq(0) ∈ X (q). Define t∗(q) as the first exit time of zq(t) from the set X (q),

t∗(q) := inf{t ∈ R>0 ∪ {∞}, such that zq(t) ∈ ∂X (q)}. (3)

A stochastic hybrid process, describing the evolution of a ct-SHS, is obtained by the concate-
nation of diffusion processes {zq(t), q ∈ Q} together with a jumping mechanism given by a
family of first exit times t∗(q); we make this formal in Definition 2.

Definition 2. A stochastic process x(t) = (q(t), z(t)) is called an execution of ct-SHS H if
there exists a sequence of stopping times T0 = 0 < T1 < T2 < . . . such that for all k ∈ N0:

– x(0) = (q0, z0) ∈ X is the initial state of H;
– for t ∈ [Tk, Tk+1), q(t) = q(Tk) is constant and z(t) is the solution of SDE

dz(t) = b(q(Tk), z(t))dt+ σ(q(Tk), z(t))dWt,

where Wt is the m-dimensional standard Wiener process;
– Tk+1 = Tk+t∗(q(Tk)) where t∗(q(Tk)) is the first exit time from the mode q(Tk) as defined

in (3);
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– The probability distribution of q(Tk+1) is governed by the discrete kernel r((q(Tk), z(T−k+1)), ·)
and z(Tk+1) = z(T−k+1), where z(T−k+1) := limt↑Tk+1

z(t).

Remark 1. For simplicity of exposition, we have put the following restrictions on the ct-SHS
model H in Definition 1. First, the model includes only forced jumps activated by reaching
the boundaries of the invariant sets ∂X (q), q ∈ Q and does not capture spontaneous jumps
activated by Poisson processes. Second, the continuous state z(t) remains continuous at the
switching times as declared in Definition 2. The approach of this paper is still applicable
for ct-SHS models without these restrictions by modifying the time discretization scheme
presented in Section 3.

2.2 Example: Thermostatically Controlled Loads

Household appliances such as water boilers/heaters, air conditioners, and electric heaters -all
referred to as thermostatically controlled loads (TCLs)- can store energy due to their thermal
mass. TCLs have been extensively studied [13,22,26] for their role in energy management
systems. TCLs generally operate within a dead-band around a temperature set-point and
are naturally modeled using ct-SHS. The temperature evolution in a cooling TCL can be
characterized by the following SDE:

dθ(t) =
1

CR
(θa − q(t)RPrate − θ(t))dt+ σ(q(t))dWt, (4)

where θa is the ambient temperature, Prate is the energy transfer rate of the TCL, and R
and C are the thermal resistance and capacitance, respectively. The noise term Wt in (4) is a
standard Wiener process. The model of the TCL has two discrete modes. When q(t) = 0, we
say the TCL is in the OFF mode at time t, and when q(t) = 1, we say it is in the ON mode.

The temperature of the cooling TCL is regulated by a control signal q(t+) = f(q(t), θ(t))
based on discrete switching as

f(q, θ) =

0, θ ≤ θs − δd/2 =: θ−
1, θ ≥ θs + δd/2 =: θ+
q, else,

(5)

where θs denotes a temperature set-point and δd a dead-band. Together, θs and δd charac-
terize an operating temperature range. The model can be described by the ct-SHS HTCL =
(Q,X , b, σ, x0, r), where

– Q = {0, 1} with the invariants X (0) = (−∞, θ+) and X (1) = (θ−,+∞)
– state space of the model X = {0} × (−∞, θ+) ∪ {1} × (θ−,+∞)
– b(q, θ) = 1

CR (θa − qRPrate − θ) for all (q, θ) ∈ X
– σ(0, θ) = σ(0), σ(1, θ) = σ(1) for all (q, θ) ∈ X
– r(q+ | q, θ) is the Kronecker delta with q+ = f(q, θ).

2.3 Problem Definition

For a given random variable defined on the executions of a ct-SHS, we study the problem of
estimating its distribution function.

Problem 1. Let Y be a real-valued random variable defined on the executions of ct-SHS H.
Estimate FY (s) := P(Y ≤ s), the distribution of Y for a given s ∈ R.

Consider a ct-SHS H with state space X, a safe set A ⊂ X, assumed to be measurable,
and a time interval [0, s] ⊂ R≥0. The safety problem asks to compute the probability that the
executions of H will stay in A during time interval [0, s]. The safety problem is dual to the
reachability problem and has a fundamental role in model checking for ct-SHS. By taking Y
in Problem 1 to be the first exit time of the system from A, we reduce the safety problem to
Problem 1.
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Problem 2 (Probabilistic Safety). Compute the probability that an execution of the ct-SHS
H, with initial condition x0 ∈ X, remains within a measurable set A during the bounded
time horizon [0, s]:

P(H is safe over [0, s]) = P(Y > s) = 1− FY (s) (6)

where Y := min{t ∈ R≥0 ∪ {∞} |x(t) /∈ A, x(0) = x0} and FY (s) = P(Y ≤ s).

Remark 2. The random variable Y defined in Problem 2 is in fact the first exit time of the
system H from the safe set A and its distribution can be represented as the expectation of
an indicator functional:

FY (s) = E
(
1(−∞,s](Y )

)
. (7)

Problem 3 (Specification of interest for TCL). Although the switching mechanism (5) is de-
signed to keep the temperature inside the interval [θ−, θ+], there is still a chance that the
temperature goes out of this interval due to the Wiener process Wt. Define a random variable
Y = max {θt, t ∈ [0, s]}. We aim to estimate the probability P(Y ≤ θ+ + 0.1 · δd).

Analytic solution of Problems 1-3 is infeasible for the class of ct-SHS. Numerical compu-
tation of the solution has been investigated for restrictive subclasses of ct-SHS [32,1]. In this
work, we propose an approximate computation technique with a confidence bound. Our tech-
nique based on MLMC substantially improves the computational complexity of the standard
Monte Carlo method. We first discuss standard Monte Carlo (SMC) method in Section 3 and
then present the MLMC method in Section 4.

3 Standard Monte Carlo Method

In order to compute the quantities of interest in Problems 1-2 we need to estimate

EP = Eg (Y ) ,

where Y is a function of the execution of ct-SHS H, g : R → R is the indicator function
over the interval (−∞, s] and P := g(Y ) is a one-dimensional random variable. The exact
executions of H and thus exact samples of Y are not available is general but it is possible to
construct approximate executions and approximate samples that converge to the exact ones
in a suitable sense.

Alg. 1 presents a state update routine based on the Euler-Maruyama method that can be
used to construct approximate executions. Given the model H and the current approximate
state (qk, zk), this algorithm computes the approximate state (qk+1, zk+1) for the next time
step of size ∆. Equation (8) in step 1 of the algorithm is the Euler-Maruyama approximation
of the SDE (2). If zaux is still inside the invariant of the current mode X (qk), then the mode
remains unchanged and zaux will be the next state (steps 2-3). Otherwise, in steps 5-6 zaux is
projected onto the boundary ∂X (qk) of the invariant and the mode is updated according to
the discrete kernel r(qk, zk+1).

Alg. 2 generates approximate executions of H and approximate samples of Y using Alg. 1.
The algorithm requires the model H, the definition of Y as a function of the execution of of H,
and the time interval [0, s]. The output of the algorithm θ` is an approximate sample of random
variable Y . In steps 1-2 the number of time steps n is selected and the discretization time
step ∆ is computed. In order to highlight the dependency of the algorithm to the parameter
n, we have opted to use ` in the representation n = κ2` as the superscript of the variables.
We call ` the level of approximation which is nicely connected to the MLMC terminology
discussed in Section 4.

Alg. 2 initializes the approximate execution in step 3 as x`0 := (q`0, z
`
0) according to x0

the initial state of H. Then the algorithm iteratively computes the next approximate state
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Algorithm 1 State update (qk+1, zk+1) = Update(H, qk, zk, ∆,Wk)

Require: model H = (Q,X , b, σ, x0, r), current state (qk, zk), time step ∆, sampled noise Wk

1: compute zaux according to the difference equation

zaux = zk + b(qk, zk)∆+ σ(qk, zk)
√
∆Wk (8)

2: if zaux ∈ X (qk) then
3: zk+1 = zaux and qk+1 = qk
4: else
5: set zk+1 to be the normal projection of zaux onto ∂X (qk)
6: select qk+1 sampled from the distribution r(qk, zk+1)
7: end if
Ensure: updated hybrid state (qk+1, zk+1) = Update(H, qk, zk,∆,Wk)

Algorithm 2 Approximate sampling of random variable Y

Require: model H = (Q,X , b, σ, x0, r), Y a function of execution of H, time interval [0, s]
1: select the number of time steps n and set κ ≥ 1, ` ≥ 0 such that n = κ2`

2: compute the time step ∆ := s/n and set k := 0
3: set the initial hybrid state x`0 := (q`0, z

`
0) according to x0 = (q0, z0) ∈ X

4: while k < n do
5: sample W `

k from the standard m-dimensional normal distribution
6: update the hybrid state (q`k+1, z

`
k+1) = Update(H, q`k, z`k,∆,W `

k) using Alg. 1
7: k = k + 1
8: end while

9: define for all t ≥ 0, z`(t) =
n∑
k=0

z`k1[k∆,(k+1)∆)(t) and q`(t) =
n∑
k=0

q`k1[k∆,(k+1)∆)(t)

10: compute θ` by applying the definition of Y to (q`(·), z`(·))
Ensure: θ` as approximate sample of Y

(q`k+1, z
`
k+1) by sampling from the m-dimensional standard normal distribution in step 5 and

applying Alg. 1 to (H, q`k, z`k, ∆,W `
k) in step 6. Finally, step 9 constructs the continuous-time

approximate execution (q`(·), z`(·)) as the piecewise constant version of the discrete execution
(q`k, z

`
k), which enables the computation of θ` by applying the definition of Y to (q`(·), z`(·))

(step 10).
Alg. 2 is parameterized by `. Due to the nature of the Euler-Maruyama method in (8), we

expect that the approximate samples θ` converge to Y as ` → ∞ in a suitable way. In fact,
it is an unbiased estimator in the limit: lim`→∞ Eg

(
θ`
)

= Eg (Y ) . The idea behind standard

Monte Carlo (SMC) method is to use the empirical mean of g
(
θ`
)

as an approximation of
Eg (Y ). The SMC estimator has the form

P̂ =
1

N

N∑
i=1

g
(
θ`i
)
, (9)

which is based on N replications of θ`. The replications {θ`i , i = 1, . . . , N} can be generated
by running Alg. 2 (with a fixed `) N times, or running any other algorithm that generates
such samples (cf. Alg. 4 in Section 4). The SMC method is summarized in Alg. 3, which
approximates Eg(Y ) based on a general sampling algorithm A`. Note that Alg. 3 can be
used for estimating Eg(Y ) not only with g(·) being the indicator function but also any other
functional that can be deterministically evaluated using the executions over the time interval
[0, s].
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Algorithm 3 Standard Monte Carlo method to estimate Eg(Y )

Require: Sampling algorithm A`, number of samples N , functional g(·)
1: i := 1
2: while i < N do
3: sample θ`i using algorithm A` (for example Alg. 2 or Alg. 4)
4: evaluate g(θ`i )
5: i = i+ 1
6: end while
Ensure: P̂ = 1

N

∑N
i=1 g(θ`i ) as approximate estimate of Eg(Y )

Owing to the randomized nature of algorithm A` embedded in Alg. 3, we quantify the
quality of its outcome using mean squared error :3

MSE (A`) ≡ E
[(
P̂ − EP

)2]
= E

[(
P̂ − EP̂

)2]
+
[
EP̂ − EP

]2
. (10)

The mean square error MSE(A`) is decomposed into two parts: Monte Carlo variance and
squared bias error. The latter is a systematic error arising from the fact that we might not
sample our random variable exactly, but rather use a suitable approximation, while the former
error comes from the randomized nature of the Monte Carlo algorithm. The Monte Carlo
variance (first term in (10)) is proportional to N−1 as

Var P̂ = Var

(
1

N

N∑
i=1

g(θ`i )

)
=

1

N2
Var

(
N∑
i=1

g(θ`i )

)
=

1

N
Var

(
g(θ`)

)
.

The cost of Alg. 3 is typically taken to be the expected runtime in order to achieve a prescribed
accuracy MSE (A`) ≤ ε. A more convenient approach for theoretical comparison between
different methods is to consider the cost associated to sampling algorithm A`,

C` (A`) := E
[
#operations and random number generations to calculate g(θ`)

]
,

which facilitates the definition of convergence rate of the algorithm.

Definition 3. We say that Alg. 3 based on sampling algorithm A` converges with rate γ > 0
if lim
`→∞

√
MSE (A`) = 0 and if there exist constants c > 0, η ≥ 0 such that

C` (A`) ≤ c ·
(√

MSE (A`)
)−γ
·
(
− log

√
MSE (A`)

)η
. (11)

Remark 3. The definition of convergence rate in (11) indicates that for a desired accuracy
MSE (A`) ≤ ε smaller convergence rate γ implies lower computational cost C` (A`).

The following theorem presents the convergence rate of the SMC method presented in
Alg. 3.

Theorem 1. Let θ` denote the numerical approximation of the random variable Y according
to an algorithm A`. Assume there exist positive constants α, ζ, c1, c2 such that for all ` ∈ N0∣∣E[g(θ`)−g(Y )]

∣∣ ≤ c12−α·`, E[C`] ≤ c2 2ζ·`, and Var g(θ`) < ∞. (12)

Then the standard Monte Carlo method of Alg. 3 based on sampling algorithm A` converges

with rate γ = 2 +
ζ

α
.

3 We slightly abuse the notation and indicate by MSE(A`) the mean square error of Alg. 3 with
the embedded sampling algorithm A`.
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Remark 4. Recall the role of ` in step 2 of Alg. 2. Increasing ` results in an exponential
increase in the number of time steps thus also in the number of samples. Therefore we have
assumed in (12) an exponential bound on the increased cost and an exponential bound in the
decreased bias as a function of `.

Application to the TCL Case Study. We construct the approximate discrete-time exe-
cutions as

θ`k+1 =
1

CR
(θa − q`kRPrate − θ`k)∆+ σ(q`k) ·

√
∆ ·W `

k , (13)

where W `
k is the sample from the standard normal distribution, ∆ = s/n, n = κ2`, and the

discrete mode at any level ` is defined as q`k+1 := f(q`k, θ
`
k) with f(·) defined in (5). This

discrete-time updating is slightly different from the Update function of Alg. 1, which can be
interpreted as follows. Instead of continuous updating of mode, the control signal acts as a
digital controller and updates the mode only at the discrete time steps. It is clear, that the
cost of simulating one execution of (13) is proportional to the number of the discretization
steps, thus setting the parameter ζ = 1 in Theorem 1.

The values of constants α, ζ, c1, c2 in Theorem 1 depend on the regularity of the func-
tional g, sampling algorithm A` and other parameters. In the next section we propose to
use MLMC method that improves the convergence rate and substantially reduces the com-
putational complexity of the estimation. We discuss a smoothing in Section 5 that replaces
the indicator function g(·) with a smoothed function and discuss its effect on the algorithm’s
error.

4 Multilevel Monte Carlo Method

The multilevel Monte Carlo method (MLMC) relies on the simple observation of telescoping
sum for expectation:

Eg
(
θL
)

= Eg
(
θ0
)

+

L∑
l=1

E
[
g
(
θ`
)
− g

(
θ`−1

)]
. (14)

where θ0 and θL correspond respectively to the coarsest and finest levels of numerical ap-
proximation. While any of the approximations {θ0, θ1, . . . , θL} can be used individually in
Alg. 3 to approximate Y , instead, the MLMC method independently estimates each of the
expectations on the right-hand side of (14) such that the overall variance is minimized for a
given computational cost. The estimator P̂ of Eg

(
θL
)

can be seen as a sum of independent
estimators

P̂ =

L∑
`=0

P `, (15)

where P 0 is an estimator for Eg
(
θ0
)

based onN0 samples, and P ` are estimates for E
[
g
(
θ`
)
− g

(
θ`−1

)]
based on N` samples. As we saw in the MSC method of Section 3, the simplest forms for P 0

and P ` are the empirical means over all samples:

P 0 =
1

N0

N0∑
i=1

g
(
θ0i
)
, P ` =

1

N`

N∑̀
i=1

[
g
(
θ`i
)
− g

(
θ`−1i

)]
, ` = 1, . . . , L. (16)

Using the assumption of having independent estimators {P 0, P 1, P 2, . . . , PL} and employing
the telescoping sum (14) we can compute respectively the variance of P̂ and bias as

Var P̂ = Var

[
L∑
`=0

P `

]
=

L∑
`=0

VarP `, EP − EP̂ = EP − E

[
L∑
`=0

P `

]
= EP − Eg

(
θL
)
.
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Algorithm 4 Approximate coupled samples θ`, θ`−1 of random variable Y

Require: model H = (Q,X , b, σ, x0, r), Y a function of execution of H, time interval [0, s], level `
1: select the number of time steps nf = κ2` and nc = κ2`−1 for some κ ≥ 1
2: compute the time step ∆c := s/nc, ∆f := s/nf and set k := 0
3: set the initial states x`,c0 := (q`,c0 , z`,c0 ) and x`,f0 := (q`,f0 , z`,f0 ) according to x0 = (q0, z0) ∈ X
4: while k < nc do
5: sample W `

2k, W
`
2k+1 independently from the standard m-dimensional normal distribution

6: update hybrid state (q`,f2k+1, z
`,f
2k+1) = Update(H, q`,f2k , z

`,f
2k ,∆f ,W

`
2k) using Alg. 1

7: update hybrid state (q`,f2k+2, z
`,f
2k+2) = Update(H, q`,f2k+1, z

`,f
2k+1,∆f ,W

`
2k+1) using Alg. 1

8: update hybrid state (q`,ck+1, z
`,c
k+1) = Update(H, q`,ck , z`,ck ,∆c, (W

`
2k +W `

2k+1)/
√

2) using Alg. 1
9: k = k + 1

10: end while

11: define z`,f (t) =
nf∑
k=0

z`,fk 1[k∆f ,(k+1)∆f )(t) and q`,f (t) =
nf∑
k=0

q`,fk 1[k∆f ,(k+1)∆f )(t)

12: define z`,c(t) =
nc∑
k=0

z`,ck 1[k∆c,(k+1)∆c)(t) and q`,c(t) =
nc∑
k=0

q`,ck 1[k∆c,(k+1)∆c)(t)

13: compute θ` and θ`−1 by applying the definition of Y to (q`,f (·), z`,f (·)) and (q`,c(·), z`,c(·)) re-
spectively

Ensure: θ`, θ`−1 as approximate sample of Y

The computation of P ` in (16) requires the samples θ`i , θ
`−1
i to be generated from a

common probability space. We utilize the fact that sum of normal random variables is still
normally distributed. Alg. 4 presents generation of approximate coupled samples θ`i , θ

`−1
i for

the random variable Y defined on the execution of a ct-SHS H. As can be seen in steps 6-7
and 11, the approximate execution for the finer level ` is constructed exactly the same way as
in Alg. 2 with nf = κ2` time steps. The construction of approximate execution for the coarser
level (`−1) with nc = κ2`−1 is also similar except that the noise term in step 8 is obtained by
taking the weighted sum of noise terms from the finer level (W `

2k +W `
2k+1)/

√
2. This choice

preserves the properties of each approximation level while coupling the executions of levels
`− 1, ` thus also coupling approximate samples θ`−1, θ`.

Now we are ready to present the MLMC method in Alg. 5. The method is parameterized
by the number of levels L, number of samples for each level N`, ` = 0, 1, . . . , L (which are
gathered in S), and the initial number of time steps κ. Steps 2-3 performs the SMC method
of Alg. 3 with embedded sampling algorithm 2 in order to estimate Eg(θ0) with N0 samples
at the initial level ` = 0. Then the algorithm iteratively estimate E[g(θl) − g(θl−1)] in steps
6-7 using Alg. 3 with number of samples N = Nl and with the embedded coupled sampling
algorithm 4. The sum estimated quantity is reported in step 10 as the estimation of Eg(Y ).

The next theorem gives the convergence rate of MLMC method presented in Alg. 5.

Theorem 2. Let θ` denote the level ` numerical approximation of the random variable Y .
Assume the independent estimators P` used in Alg. 5 satisfy∣∣E[g(θ`)−g(Y )]

∣∣ ≤ c1 2−α ` and E[C`] ≤ c2 2ζ ` (17)

E[P `] =

{
E[g(θ0)], ` = 0

E[g(θ`)−g(θ`−1)], ` > 0
and Var[P `] ≤ c3N

−1
` 2−β ` (18)

for positive constants α, β, ζ, c1, c2, c3 with α≥ 1
2 min(β, ζ). Then the MLMC method in Alg. 5

converges with rate 2 +
max(ζ−β, 0)

α
.

Assumptions in (17) are exactly the same as the ones used in Theorem 1. Assumptions in
(18) put restriction on the statistical properties of the estimators P `: they first enables us to
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Algorithm 5 MLMC method to estimate Eg(Y )

Require: model H = (Q,X , b, σ, x0, r), Y a function of execution of H, time interval [0, s], functional
g(Y )

1: select the parameters: finest level of approximation L, number of samples for each level S :=
(N0, N1, . . . , NL), initial number of time steps κ

2: define A0 to be Alg. 2 with ` = 0 and time step n0 = κ20 that generates samples θ0

3: compute P 0 using Alg. 3 with number of samples N = N0 and functional g(θ0) and with the
embedded algorithm A0

4: l = 1
5: while l < L do
6: define Al to be Alg. 4 with time step nf = κ2` that generates samples θ` and θ`−1

7: compute P ` using Alg. 3 with number of samples N = Nl and functional [g(θl)− g(θl−1)] and
with the embedded algorithm A`

8: l = l + 1
9: end while

10: compute P̂ =
∑L
`=0 P

` according to (15)

Ensure: P̂ as approximate estimate of Eg(Y )

use the telescoping property (14) and the second ensures the exponentially decaying variance
as a function of level `. In compare with the convergence rate of SMC method in Theorem 1,
the improvement is due to the non-zero factor β which is the decaying rate of the variance of
estimators.

Application to the TCL Case Study. We construct the approximate discrete-time exe-
cutions for the finer lever ` as

θ`,fk+1 =
1

CR
(θa − q`,fk RPrate − θ`,fk )∆f + σ(q`,fk ) ·

√
∆f ·W `

k , (19)

q`,fk+1 := f(q`,fk , θ`,fk ), for all k = 0, 1, . . . , nf ,

where W `
k is the sample from the standard normal distribution, ∆f = s/nf , nf = κ2`, and

with f(·) defined in (5). The coupling, which means that we get the dynamics for θ`,c based
on the increments for θ`,f , is done in a following way:

θ`,ck+1 = θ`,ck +
1

CR
(θa − q`,ck RPrate − θ`,ck )∆c + σ(q`,ck ) ·

√
∆c ·

1√
2
· (W `

2k−1 +W `
2k), (20)

q`,ck+1 := f(q`,ck , θ`,ck ), for all k = 0, 1, . . . , nc,

where ∆c = s/nc with nc = κ2`−1. The fact that we have used the same Brownian increments
W `

2k−1,W
`
2k from the finer level (19) in the courser level (20) lays the foundation of having

nonzero value of β in Theorem 2. The cost of simulating one approximate execution in (19)-
(20) is proportional to the number of discretization steps, thus setting the parameter ζ = 1
in Theorems 1-2.

Now that we have set up the MLMC method and the coupling technique that improves the
convergence rate of the estimation, we focus on the following important problems associated
with the approach:

1. Discontinuity of functional g(Y ) = 1(−∞,s](Y ), leads to smaller values of α and β in
Theorem 2. This results in larger convergence rate γ thus larger computational cost for a
given accuracy ε.

2. The optimal choice of parameters N`, L and the unknown constants in Theorem 2.
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The first issue, discussed in Section 5, is resolved through smoothing, which replaces the
discontinuous function g with a smoothed function gδ with Lipschitz constant proportional to
δ−1. The second issue, discussed in Section 6, is resolved through an adaptive algorithm. This
adaptive algorithm follows [20], and combines the smoothing of discontinuous functionals and
the MLMC method. Note that we require an updated set of assumptions and include the
search for parameter δ into the adaptive algorithm.

5 MLMC with Smoothed Indicator Function

The smoothing is based on the function gδ : R → R, which are the rescaled translates of a
function g0 : R→ R of the form

g0(x) =


0, x > 1
1
2 + 1

8

(
5x3 − 9x

)
, −1 ≤ x ≤ 1

1, x < −1,

and gδ(x) = g0((x− s)/δ), x ∈ R. (21)

Since we add a smoothing step, we need to update the MLMC estimator (15), derive new a
MSE decomposition (instead of (10)) which incorporates the error due to the smoothing, and
update Assumptions (17)-(18) in Theorem 2.

Note that function (21) is not the only possible choice for a smoothing function (see [20]),
but in our experience this is the easiest to implement and numerically stable, while still
providing significant gains in computational cost.

Recall that the MLMC method is based on a sequence (θ`)`∈N0
of random variables, defined

on a common probability space together with Y . The new MLMC method that includes
smoothing is defined by

Mδ,L
S =

1

N0
·
N0∑
i=1

gδ(θ0i ) +

L∑
`=1

1

N`
·
N∑̀
i=1

(
gδ(θ`,fi )− gδ(θ`,ci )

)
, (22)

with an independent family of R2-valued random variables (θ`,fi , θ`,ci ) for i = 1, . . . , N` and

` = 0, 1, . . . , L such that equality in distribution holds for (θ`,fi , θ`,ci ) and (θ`, θ`−1), where we

used the notation (θ0,fi , θ0,ci ) = (θ0i , 0) for the initial level ` = 0. Note that (22) is the same as
the MLMC estimator (15) except using the smoothing function gδ(·) instead of the indicator
function g(·). The next theorem gives the mean square error decomposition for (22).

Theorem 3. For δ > 0, the error of Mδ,L
S in (22) with smoothing function (21) can be

decomposed as

MSE
(
Mδ,L

S

)
:= E‖Mδ,L

S − Eg(Y )‖2

≤ δ4 +
∣∣E(gδ(Y ))− E(gδ(θL))

∣∣2 + Var(Mδ,L
S ) =: e21 + e22 + e3. (23)

The error terms in (23) are related to smoothing, bias, and variance, respectively. Note
that as δ goes to zero, the Lipschitz constant for gδ(x) goes to infinity, which has to be
taken into account. Hence the assumptions in Theorem 2 have to be updated. The theoretical
analysis and updated assumptions are presented in [20].

6 Adaptive MLMC Algorithm

In this section we present an adaptive algorithm to find the optimal parameters for the MLMC
method. For a given ε > 0 we wish to select the parameters of the MLMC algorithm such
that its error is at most ε and its cost is as small as possible. Our approach to the selection
of the replication numbers and of the maximal level follows [19].
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The adaptive algorithm assumes no prior knowledge on the smoothing parameter δ, along
with bias and variance dependencies on it. The smoothing parameter δ is chosen from the
discrete set of values δm = 1/2m, where m ∈ N. With a slight abuse of notation we put

gm = gδm . In order to achieve MSE(Mδ,L
S ) ≤ ε we have to assign certain proportions of ε to

the three sources of the error introduced in (23). Specifically we wish to choose the parameters
of our algorithm such that

e1 ≤ a1ε∗, e2 ≤ a2 · ε∗, e3 ≤ a23 · ε2∗, where ε∗ :=
ε

a1 + a2 + a3
. (24)

The MLMC algorithm is parameterized by the value m for smoothing δm = 1/2m, the values
of the maximal level L, and the replication numbers S = (N0, . . . , NL). We always select
L ≥ 2 and N` ≥ 100 for ` = 0, . . . , L. By the latter, we ensure a reasonable accuracy in
certain estimates to be introduced below. We use yi,0 to denote actual samples of the random
variable θ0 and (yi,`, yi,`−1) to denote the actual samples of the random vector (θ`, θ`−1) for

` = 1, . . . , L as opposed to θ`,fi , θ`,ci which were used previously for their respective random
variables.

Assumptions. Theorem 2 relies on the assumption of exponential upper bounds in (17)-
(18), which in general might be difficult to verify. Instead in this section we study asymptotic
upper bounds. For this purpose we use the following notation. For sequences of real numbers
u` and positive real numbers w` we write u` ≈ w` if lim`→∞ u`/w` = 1, and write u` . w` if
lim sup`→∞ u`/w` ≤ 1. We also replace assumptions (17)-(18) with the requirement that for
every m there exists c, α > 0 such that

|E(gm(θ`))− E(gm(θ`−1))| ≈ c · 2−`·α and lim
`→∞

Egm(θ`) = Egm(Y ). (25)

This yields the following asymptotic upper bound for the bias at level `∣∣E(gm(Y ))− E(gm(θ`))
∣∣ . (2α − 1)−1 ·

∣∣E(gm(θ`))− E(gm(θ`−1))
∣∣. (26)

We put Cr = 2r+1 with r = 3, the degree of polynomial in (21), and suppose that there exists
c > 0 such that

∣∣E(gm(Y ))− E(gm−1(Y ))
∣∣ ≈ c · δ4m. This yields the asymptotic upper bound

for the smoothing error with parameter δm,∣∣Eg(Y )− E(gm(Y ))
∣∣ . (Cr − 1)−1 ·

∣∣E(gm(Y ))− E(gm−1(Y ))
∣∣. (27)

Our adaptive MLMC algorithm is based on the intuition that the asymptotic bounds (26)
and (27) can be replaced by their corresponding inequalities (≤ instead of . ), and estimators
for means and variances can be assumed to be nearly exact.

Variance Estimation and Selection of the Replication Numbers. To estimate the
expectations and variances we employ the empirical mean and variance

b̂0 =
1

N0
·
N0∑
i=1

gm(yi,0), and b̂` =
1

N`
·
N∑̀
i=1

(gm(yi,`)− gm(yi,`−1)), (28)

v̂0 =
1

N0
·
N0∑
i=1

|gm(yi,0)− b̂0|2 and v̂` =
1

N`
·
N∑̀
i=1

|gm(yi,`)− gm(yi,`−1)− b̂`|2. (29)

We get that v̂(S) =
∑L
`=0

1
N`
· v̂` serves as an empirical upper bound for the variance of the

MLMC algorithm with any choice of replication numbers S = (N0, N1, . . . , NL). If, for the
present choice of replication numbers, this bound is too large compared to the upper bound
for Var(Mδ,L

S ) in (24), i.e., if the variance constraint

v̂(S) ≤ a23 · ε2∗ (30)
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is violated, we determine new values of N ′0, . . . , N
′
L by minimizing c(N0, . . . , NL) subject to

the constraint v̂(S) ≤ a23 · ε2∗, which leads to

N ′` =
v̂
1/2
`

(2` + 1)1/2
·
L∑
`=0

(
v̂` · (2` + 1)

)1/2 · ε−2∗
a23
, ` = 0, 1, . . . , L, (31)

and extra samples of θ0 and (θ`, θ`−1) have to be generated accordingly.

Bias Estimation and Selection of the Maximal Level. For estimating |E(gm(θ`)) −
E(gm(θ`−1))| we can use the values of |b̂`| already available from (28) for the levels ` = 1, . . . , L.
We estimate α and c in (25) by a least-squares fit, i.e., we take α̂ and ĉ to minimize

(α, c) 7→
∑
`∈L

(
log |b̂`|+ ` · α log 2 + log c

)2
. (32)

While the value of ĉ is irrelevant, an upper bound for
∣∣E(gm(θL))− E(gm(θL−1))

∣∣ is given by

|b̂L|, or, more generally, by 2(`−L)·α̂ · |b̂`| with ` ≤ L. This geometric upper bound can be used
to set the stopping criterion of increasing the maximal level. Let us define

B̂2 = max
(
|b̂2|, |b̂1|/2α̂

)
, for L = 2 (33)

B̂L = max
(
|b̂L|, |b̂L−1|/2α̂, |b̂L−2|/22α̂

)
for L ≥ 3. (34)

The present value of L is accepted as the maximal level, if the bias constraint

B̂L ≤ a2 · (2α̂ − 1) · ε∗ (35)

is satisfied. Otherwise, L is increased by one, and new samples will be generated.

Selection of the Smoothing Parameter. We wish to determine the smallest value of m,
i.e., the largest value of δm, such that∣∣E(gm(Y ))− E(gm−1(Y ))

∣∣ ≤ a1 · (Cr − 1) · ε∗

is satisfied, which corresponds to the upper bound for e1 in (24) together with (27). Initially
we try m = 2. Actually, Y is approximated by θL, so the present value is accepted if

ŝ :=
∣∣∣ 1

NL
·
NL∑
i=1

(gm(yi,L)− gm−1(yi,L))
∣∣∣ ≤ a1 · (Cr − 1) · ε∗. (36)

The Adaptive Algorithm. We combine the above results and sum them up in Alg. 6, where
the desired accuracy ε is the input.

7 Simulation Results

Recall Problem 3 where the goal is to estimate the probability P(Y ≤ θ+ + 0.1 · δd). The
random variable Y is defined as Y = max{θt, t ∈ [0, s]}. We set the parameters of the TCL
model (4)-(5) according to Table 1 and select the time horizon s = 1 hour. We implement
the MLMC Alg. 6 for target accuracies ε = 2−k, where k ∈ {3, . . . , 8}. We set the parameters
a1 = 4, a2 = a3 = 2 in (24). With this choice we put less pressure on the smoothing error
because the influence of the smoothing parameter δ on the variance and thus on the overal
cost is severe. Due to the smoothing step we have to sample executions for the time duration
of at least (s+ δ) in order to evaluate the functional g(Y ). With the selected values of s and
ε, sampling executions for 1.5 hours is sufficient.

The result of the experiments is presented in Figure 1. The left and center plots show the
impact of the smoothing coefficient on the variance and mean decays respectively based on 106
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Algorithm 6 Adaptive MLMC algorithm with smoothing

Require: sampling algorithm A`, functional g(·), target accuracy ε
1: initialize parameters m = 2; L = 2 N0 = N1 = N2 = 102

2: generate N0 samples of θ0 and N` samples of (θ`, θ`−1) for ` = 1, 2
3: compute v̂0, v̂1, v̂2, according to (29)
4: repeat {/* smoothing */}
5: m = m+ 1 and newlevel = false
6: repeat {/* bias */}
7: if newlevel then
8: L = L+ 1; NL = 100
9: generate NL number of samples of (θL, θL−1)

10: compute v̂L according to (29)
11: end if
12: repeat
13: compute the replication numbers N ′0, . . . , N

′
L according to (31)

14: N` = max(N`, N
′
`) for ` = 0, . . . , L

15: generate extra samples of θ0 and (θ`, θ`−1) for ` = 1, . . . , L
16: compute v̂0, . . . , v̂L according to (29)
17: until the variance constraint (30) is satisfied
18: compute α̂ according to (32), and B̂L according to (33)-(34)
19: newlevel = true
20: until the bias constraint (35) is satisfied
21: compute ŝ according to (36)
22: until the smoothing constraint (36) is satisfied
Ensure: Mδ,L

S as an estimation of Eg(Y )

Table 1: Parameters of a residential air conditioner as a TCL [16] modeled in (4)-(5).
Param. Interpretation Value

θs set-point 20 [◦C]
δd dead-band width 0.5 [◦C]
θa ambient temperature 32 [◦C]
Prate power 14 [kW ]

Param. Interpretation Value

R thermal resistance 1.5 [◦C/kW ]
C thermal capacitance 10 [kWh/◦C]

σ0 standard deviation OFF mode 0.2 [◦C/
√
hour]

σ1 standard deviation ON mode 0.22 [◦C/
√
hour]

runs of the algorithm. The data points of the plots with ` = 1 and with the indicator function
are related to the SMC method. These plots indicate that the adaptive MLMC method is
beneficial over SMC method due to the strong variance and mean decay with respect to level
` as well as the use of smoothing function instead of the indicator function.

The computational gain of the MLMC over SMC is presented on the right plot based on
100 runs. The plot compares the expected cost of the SMC method with the estimated cost of
the adaptive MLMC method. The cost of SMC method is given by ε−2−

1
ᾱ (see Theorem 1),

which bounds the cost of generating executions and evaluating functionals. We estimate the
parameter ᾱ through the precalculation and do not take into account the cost of estimating ᾱ.
In this way we assume the parameter ᾱ is known in advance and make the comparison more
in favor of the SMC method. The plot indicates larger computational gains for higher target
accuracies (smaller ε). Note that the curve in the right plot is not monotone because there is
an additional cost of updating the smoothing coefficient, hence re-evaluating the functionals
with the new value of δ. This additional cost has not been compensated by the MLMC gains
as much in compare with the neighboring accuracies.

8 Conclusions

In this paper we studied the problem of statistical model checking of continuous-time hybrid
systems that do not admit exact simulations. We employed multilevel Monte Carlo method
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Fig. 1: Simulation results for Problem 3. Variance (left) and mean (center) of the estimation
decay with respect to level ` for different smoothing coefficient. Computational gain (right)
is computed as ratio of the cost of SMC over cost of adaptive MLMC.

and presented a smoothing step with tunable precision that replaces the desired discontinuous
functional with a continuous approximation thus decreasing the overall computational effort of
the approach. An adaptive algorithm was designed which balances the errors due to the bias,
variance, and smoothing. The approach was demonstrated on the model of thermostatically
controlled loads.
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