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Abstract—Embedded controllers for cyber-physical systems are
often parameterized by look-up maps representing discretizations
of continuous functions on metric spaces. For example, a non-
linear control action may be represented as a table of pre-
computed values, and the output action of the controller for
a given input computed by using interpolation. For industrial-
scale control systems, several man-hours of effort are spent
in tuning the values within the look-up maps. Suppose that
during testing, the controller code is found to have sub-optimal
performance. The parameter fault localization problem asks
which parameter values in the code are potential causes of the
sub-optimal behavior. We present a statistical parameter fault
localization approach based on binary similarity coefficients and
set spectra methods. Our approach extends previous work on
(traditional) software fault localization to a quantitative setting
where the parameters encode continuous functions over a metric
space and the program is reactive.

We have implemented our approach in a simulation workflow
for control systems in Simulink. Given controller code with
parameters (including look-up maps), our framework bootstraps
the simulation workflow to return a ranked list of map entries
which are deemed to have most impact on the performance. On
a suite of industrial case studies with seeded errors, our tool was
able to precisely identify the location of the errors.

I. INTRODUCTION

The correct operation of modern cyber-physical systems
relies on a complex software controller interacting with a
physical plant (i.e., a model of the physical processes that we
wish to control). Controllers used in industrial-scale software
present a formidable challenge for formal analysis techniques
due to their scale and format. Typical controllers are defined
over several modes of operation, each of which may use
a customized control scheme. Control schemes based on
feedforward maps that seek to statically cancel non-linearities
are frequently used [BSM06], [HC13]. Even when feedback
control schemes such as PID control are employed, it is
common for the proportional, integral and derivative gains to
vary across different modes of operation. As a result, embed-
ded control software typically has a fixed high-level structure
corresponding to the “control law” chosen by the designer.
Flexibility in the algorithm is offered instead by lookup-
maps representing nonlinear functions or mode-specific con-
trol rules. A typical design process then involves careful hand-
tuning of these maps by engineers till the overall system
meets the desired performance objectives. As a result, most
industrial-scale controllers do not have closed-form symbolic
representations, but have parametric representations such as

explicit look-up maps. A look-up map M is a function from
a finite subset of Rd to Rn (e.g., a look-up map in two
dimensions is a two dimensional table with table entries in
Rn). It defines a mathematical function fIM : C → Rn, for C
a bounded subset of Rd, by completing the map M according
to the specified interpolation scheme I (e.g., linear, bilinear,
bicubic interpolation etc.). Whenever controller performs a
“look-up” for the value m, i.e., wishes to compute fIM (m),
the control software computes the value using the stored map
M under the interpolation scheme I.

Suppose that we are given the code for a controller, with
one or more look-up maps, and on simulating the controller
in closed-loop with the plant, we find that there is a violation
of some correctness or performance specification. Which map
entries should we consider for investigation? Which map
entries involve performance critical regions of the controller?
The problem of identifying the entries most indicative of error
or performance loss is called fault localization, and tools for
effective fault localization are key to a fast design debugging
and optimization process.

In this paper, we derive a (heuristics based) ranking on the
estimated importance of map entries to an observed failure
or to overall system performance. If map entry m is ranked
higher than m′, then performance can likely be improved
by changing m rather than m′. Our approach obtains this
ranking by computing binary similarity coefficients and using
set spectra based methods. A binary similarity coefficient
φ(X,Y ) assigns a measure of similarity between two binary
categories X and Y for pattern classification [CC10], [JSH89].
In our setting, X is the category of failed or unfavorably
performing executions, and Y is the category of executions
that “look-up” an entry m or its neighborhood. The binary
similarity based ranking approach computes φ(X,Y ) for each
entry m in the map, and orders entries based on the φ(X,Y )
values. This approach has the advantage that no complicated
controller analysis is performed. It integrates with existing
simulation-guided analysis tools, and we only look at the
similarity between failed runs and map entry access in a black
box fashion. Set spectra based methods define sets of interest
using set algebra methods, also in a black box fashion.

Note that the black-box assumption for industrial control
systems is crucial: plant models for real-world physical sys-
tems are routinely modeled as hybrid and nonlinear differential
or algebraic equations, and controllers have considerable com-
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plexity. Traditional verification tools such as model checkers
or reachability analysis tools are unable to digest the scale and
complexity of such models.

Our approach is inspired by earlier work on software fault
localization [JH05], [LNZ+05], [LYF+05], [JS07], [JGG08],
[NLR11], [RFZO12], [YHC13] The similarity coefficient
based approach is motivated by the work [JH05], [WDGL14]
in software localization, and the set spectra based methods
by the work [PS92], [RR03]. We extend and improve the
ideas in these works in two ways to suit our context. First,
we observe that compared to normal software where runs
are only classified as being good or bad, executions for
cyber-physical systems are ascribed numerical scores (e.g.,
performance measures or robustness w.r.t. logical specifica-
tions [DM10], [DFM13]). Second, in most instances, a look-up
map M represents a discrete approximation of the associated
continuous function fIM . Consequently, in most cases, the map
value M(m) is close to the map value M(m′) if m and m′ are
close. This implies that an execution can indirectly contribute
to the importance level of a map entry m even if that execution
does not directly access M(m) – this happens when indices
close to m are accessed. This continuity property is absent
in traditional software where individual statements that are
problematic can be spread out far apart from each other. We
show how to cleanly extend the two Boolean software fault
localization approaches to account for the additional structure
in our domain by defining the rankings using certain basic
quantitative functions which give a measure of the effect of a
map entry on a given run.

The problem of fault localization for look-up maps can be
viewed as a parameter optimization or tuning problem, where
we are trying to determine values for parameters (in this case
the map entries) such that the value of a certain cost function
(in this case the quantitative score indicating well-behavedness
of the output) is maximized. In this sense, black-box opti-
mization approaches can be theoretically used to perform fault
localization. However, even a relatively small 20x20 look-up
map contains 400 entries, or from the perspective of the black-
box optimizer, a large 400-dimensional space over which it
needs to optimize. Such an approach, if it scales, would be
appropriate to synthesize a new look-up map in entirety to
make the design satisfy its specification, but it is not clear
whether it is well-suited to determining which entries in an
existing look-up map are responsible for making the design
not satisfy its specification (identifying sub-performing regions
is of key importance to engineers). Other parameter tuning
tools such as the PID tuning capability within the Control
System toolbox in Simulink have very specific tuning abilities
and are not general enough for the problem that we address.
[ADV+17] is a recent work on abstraction based verification
of look-up maps.

We test the ideas proposed using a prototype tool and
present its results over case studies from the industrial pro-
cesses and automotive domain. The tool is well-integrated with
the simulation-guided falsification tool Breach [Don10], and
is able to use a wide array of ranking heuristics to sort the

entries in the specified look-up map in order of importance.
The tool supports arbitrary quantitative cost functions to
score executions, including the quantitative robust satisfaction
function as defined for Signal Temporal Logic specifications
in [DM10], [DFM13]. We demonstrate the capabilities of
the tool in localizing possible sources of fault to look-up
map entries, as well as in identifying promising regions of
parameter spaces in order to optimize the closed-loop system
performance.

II. PROBLEM SETTING

Software Components and Scored Executions. In this work
we focus on software components that occur in controllers of
dynamical systems. For our purposes, a software component
is a module that transforms inputs into outputs. Let A be a
software component, and let the execution (or run) of A given
an input z be denoted as A(z). We consider a setting where
we are given a scoring of the runs of A on a finite set of
inputs Z: each run A(z) for z ∈ Z is given a real-valued
score, denoted score(A, z), with negative values being “bad”
(denoting failed or suboptimal runs), and positive values being
“good” (denoting passed or successful runs). This extends the
boolean notion where the score set can be viewed as {−1, 1}.
Intuitively, the score of a run indicates our satisfaction level on
how good that run is; the higher the score, the more satisfied
we are with the execution. As an example, given a temporal
logic (e.g. Signal Temporal Logic [MN13]) specification ϕ, the
successful runs A(z) are those which satisfy ϕ, and the failed
runs are those which do not satisfy ϕ. Quantitative scores can
be given to runs based on quantitative semantics of the logic
(e.g., the robustness values, ranging over reals, corresponding
to a Signal Temporal Logic formula ϕ [DM10], [DFM13]).

Look-up Maps. Software components invoke real-valued
functions in their executions. When these functions do not
have a closed form representation, or have a closed form
representation that is computationally inefficient, they are
instead stored in the form of look-up maps as follows. A real-
valued (finite) map M is a function from a finite subset of Rd
to Rn. The domain of M (which is a finite set) is denoted
by dom(M), and we refer to elements m ∈ dom(M) as map
entries. Let fIM : C → Rn be the completion of M using
some interpolation scheme I, where C is a bounded subset
of Rd. The stored map M is a discrete representation of the
function fIM , and for a given value m is used to compute
fIM (m) using an interpolation scheme. We abuse notation and
use I(M(m1), . . . ,M(ml)) to denote the result of applying
the interpolation scheme I to the values M(m1), . . . ,M(ml).
The most commonly known interpolation scheme is linear
interpolation. Controller software components also use other
interpolation schemes, such as nearest neighbor interpolation,
bilinear and bicubic interpolation [sim07]. Multivariate inter-
polation schemes may offer a better approximation of function
values based on the values of neighboring points [GS00].

Given m ∈ C, we define depend (M, I,m) to be the values
in the finite map domain dom(M) which are used to compute



fIM (m). Formally, depend (M, I,m) ={
{m} if m ∈ dom(M)
{m1, ..,ml} if fIM (m) = I(M(m1), . . . ,M(ml)).

(II.1)

Thus, depend (M, I,m) indicates which of the map domain
entries m1,m2 . . . ,ml are used by the interpolation scheme
I to define fIM (m). Consider a run z. Given a map entry m
in the finite set dom(M). we say that z has a map access for
m or z accesses m if (a) there exists a query for fIM (m) in
z; or (b) there exists a query for fIM (m′) in z for some m′

such that m ∈ depend (M, I,m′) (i.e. the map value at m is
queried during an interpolation in the execution z).
Parameter Localization Rankings. In addition to look-up
maps, controller software often incorporates several parame-
ters – these are certain variable entities that can take values
in some (usually) quantitative domain (e.g., gain constants).
Look-up maps can be viewed as a set of parameters (each
m ∈ M defines a parameter with value M(m)). The pa-
rameter localization problem is to narrow down problematic
parameters, in case of sub par controller performance, amongst
the total set of parameters (whether the parameters are in
the form of look-up map entries, or are of other forms)
in the code. Our approach to localization is to construct a
ranking of the parameters, in decreasing order of our belief
in them being problematic. Our parameter ranking approach
can be applied for (i) repair – in this case we are given
a hard requirement that must be met, and executions are
scored negative iff they do not satisfy the requirement; or
(ii) robustness and optimization – where we score the least
desirable runs negatively (for example, in the case of Signal
Temporal Logic where all the runs satisfy a given specification
ϕ, we can shift the quantitative robustness values of runs by
some negative constant, so that executions which originally
had a low positive robustness score value get a negative score
after shifting and get into the undesired class).

In the sequel, we fix A and M and I, and omit them (when
unnecessary) for notational simplicity.

III. RANKING BASED ON SIMILARITY COEFFICIENTS

Similarity coefficients [JH05], [WDGL14] have been widely
used in pattern analysis problems for classification and clus-
tering [CC10], [JSH89], [HPAW15], [PAR16]. A binary sim-
ilarity coefficient φ(X,Y ) assigns a measure of similarity
between two binary categories X and Y . In our setting, X
is the category of failed (or suboptimal) executions, and Y is
the category of executions that are affected by an entry m.
In this approach, we compute a ranking φ(X,m) for each
entry m, and sort the entries based on the φ(X,m) values.
In the extant approach for traditional software debugging, the
categories X and Y are Boolean, i.e., for a given category
X , the only relevant property is whether an instance belongs
to X . In our case, instances are assigned a score measuring
how well they belong to X . For example, real-valued scores
on executions can correspond to a quantitative measure of
how well an execution satisfies a given logical property, by
measuring the execution’s distance from the set of executions

Fm
A =

∑
z s.t. score(z)<0 raffect (z,m) · score(z)

Pm
A =

∑
z s.t. score(z)≥0 raffect (z,m) · score(z)

Fm
U =

∑
z s.t. score(z)<0 and raffect(z,m)=0 score(z)

Pm
U =

∑
z s.t. score(z)≥0 and raffect(z,m)=0 score(z)

P =
∑

z s.t. score(z)≥0 score(z)

F =
∑

z s.t. score(z)<0 score(z)

TABLE I
BUILDING BLOCKS FOR QUANT. SIMILARITY COEFFICIENTS

not satisfying the property. We first extend the standard binary
similarity coefficient to this quantitative setting. For ease of
presentation, we restrict ourselves to look-up maps.

A. Basic Quantitative Approach: Preliminaries

Suppose that executions in Z are scored. Further, suppose
that a run z ∈ Z queries the value fIM (m) for m ∈ dom(fIM ).
This value is then constructed using the values for the entries
in depend (m). The execution of the run z thus depends on the
entries in depend (m). For m ∈ dom(fIM ) and m′ ∈ dom(M)
let maffect (m,m′) = 1 if m′ ∈ depend (m), and 0 otherwise.
In other words, when a run z attempts to compute fIM (m), then
for each entry m′ ∈ dom(M) for which maffect(m,m′) = 1,
we say that m′ affects z.

In general, a run z may query several map values fIM (m1),
fIM (m2), . . . during its execution. If any of m1, m2, . . . are
affected by a map entry m′, then m′ affects z. This is captured
by the (Boolean for now) function

raffect (z,m′) =

1 if z queries some entry m
with maffect (m,m′) = 1

0 otherwise
(III.1)

We recall that the ordering of a similarly coefficient presents
a suspiciousness ranking of the indices in M . A similarity
coefficient based rank φ : dom(M)→ R+ assigns a numerical
value φ(m) to each entry m ∈ dom(M); if the rank of
a particular m ∈ dom(M) is greater than that for another
entry m′, then m is considered more suspicious. We define a
few building blocks for defining quantitative binary similarity
coefficients in Table I, and briefly discuss these next.
1) FmA is the sum of (negative) scores of the failed runs which

are affected by entry m. The suspiciousness of m should
increase with the value1 of |FmA |.

2) PmA is the sum of (positive) scores of the passed runs
affected by m. The suspiciousness of m should decrease
for higher PmA .

1In many applications, e.g., when using Signal Temporal Logic and its
quantitative interpretation, a slightly negative score (which is close to 0,
e.g. 0.04) of an execution is a noteworthy event as this means a property
is violated. As defined, Fm

A however effectively discards such runs as
raffect (z,m) is weighted by the score of the run. If this is undesired, we can
“shift” the negative by a negative constant, and similarly the positive scores by
a positive constant in a preprocessing step so that scores with a low absolute
value do not arise.



3) FmU is the sum of (negative) scores of the failed runs
unaffected by entry m. The suspiciousness of m should
decrease with an increase in |FmU |, as a high |FmU | indicates
that the problem lies away from m.

4) PmU is the sum of (positive) scores of the passing runs
unaffected by entry m. This quantity is not important, as
we are interested in executions which are problematic; not
executions which are problem-free and do not access m.

5) P is the sum of (positive) scores of the passed runs.
6) F is the sum of (negative) scores of the failed runs.

B. Basic Quantitative Similarity Coefficients

Similarity coefficients can be constructed based on the quan-
tities FmA , P

m
A , F

m
U , P

m
U , F, P defined previously. We refer the

reader to [CC10] for 76 similarity coefficients that have been
studied before in the Boolean case.

In this work we focus on three illustrative similarity coef-
ficients – the Tarantula similarity coefficient, the Kulczynski
coefficient, and the D∗ similarity coefficient.

Tarantula similarity coefficient. The Tarantula tool [JHS02],
[JH05], given a test suite where each test is labeled as either
passing or failing, uses similarity coefficients to rank the
statements of programs in decreasing order of suspicious-
ness. The ranking is presented in the form of a visual map
with different statements getting color and brightness levels
according to the value of the similarity coefficient for that
statement. The Tarantula similarity coefficient for potentially
faulty map entries extended to the case where instead of
pass/fail executions we have quantitative values, is given as
follows:

Rtarantula(m) =
FmA /F

FmA /F + PmA /P
(III.2)

Kulczynski similarity coefficient. This similarity coefficient

extended to the quantitative setting is:

Rkulczynski(m) =
|FmA |

|FmU | + PmA
(III.3)

D∗ similarity coefficient. The D∗ coefficient [WDGL14] is
based on the Kulczynski similarity coefficient to give more
importance to failed executions which are affected by an
map entry m compared to (i) failed executions which are
not affected my m (as there might be other map indices
which might be to blame for those other executions), and
(ii) successful executions which are affected by m (as failures
are more relevant than successes). This adjustment is done
by raising the numerator |FmA | in the Kulczynski similarity
coefficient to a positive power γ ≥ 1. The D∗ coefficient
extended to our quantitative setting is:

Rγdstar(m) =
|FmA |

γ

|FmU | + PmA
(III.4)

Note that we are only interested in the order relation imposed
by the ranking functions, not the numerical values themselves.
The work [WDGL14] found γ = 2 to be best in their
experiments. They also compared this coefficient to some of

the other similarity coefficients (e.g., the Tarantula coefficient),
and found the D∗ coefficient to be better than others (in the
sense of buggy statements being ranked closer to the top).

C. Utilizing Continuity and the Metric Space Structure

In many cases, the map M approximates a continuous
function fIM . The value of fIM (m) hence while depending
directly on the map entries in depend (m), is also correlated
with the map values at nearby map entries. Consider a situation
where we have 51 failed executions, each scored the same,
where each failed execution is affected by a different map
entry (thus there are 51 potential map entries (dom(M) = 51).
Of these, 50 map entries are clustered very closely, and the
one remaining entry is far away from these 50. Intuitively then,
the 50 clustered map entries should be viewed as more prob-
lematic than the other remaining entry. Additionally, design
engineers are typically interested in identifying problematic
regions of a look-up map. A problematic region in fIM might
indicate that the engineers need to “refine the grid” in the
map M in the identified region, rather than simply changing
the map values (keeping the grid resolution the same).

We account for correlation in suspiciousness of proximal
map entries by introducing a dependence between map entries
the decays with distance. A modular way to accomplish this
goal is to build upon the approach of Subsection III-A by
defining quantitative extensions of the function maffect and
raffect which account for the fact that the values of neigh-
boring map entries are related. The new similarity coefficients
can then be constructed which simply use these new maffect
and raffect functions. The quantitative version of maffect is
defined as:

maffect (m,m′) =

{
λ
D(m,m′)
M if D(m,m′) ≤ rM

0 otherwise.
(III.5)

where 0<λM <1 is a decay constant , and rM is a quantity
denoting the radius of influence. The value maffect (m,m′)
quantifies how much the map value at entry m′ affects the
map value at entry m. These quantities can in the general
case be dependent on m – if fIM at m is changing very fast,
then λM and rM at m will be small.

Using the above defined maffect function we give a quan-
titative version of the function raffect which quantifies which
map entries affect an execution as follows:

raffect(z,m′) = max
m s.t. z queries m
∧ D(m,m′) ≤ rM

maffect (m,m′) . (III.6)

raffect (z,m′) can also be defined in other ways (e.g. taking
a sum instead of the maximum). We compare raffect to the bi-
nary raffect function of Subsection III-A – there raffect (z,m′)
was either 0 or 1 based on whether the map entry m′ was
utilized or not during the execution z. Now, raffect (z,m′)
gives a more nuanced estimate of the importance of the map
value for entry m′ (accounting for the fact that neighboring
map entries should have related map values).



The new ranking coefficients corresponding to Rtarantula,
Rkulczynski, and Rγdstar can be defined as in Equa-
tions (III.2), (III.3), and (III.4), by plugging in the new quanti-
tative functions raffect and maffect in the defining equations.

D. Incorporating Frequency of Access

The rankings of the previous two subsections do not in-
corporate the frequency of map accesses inside an execution.
Consider a situation in which bad executions have a tendency
to repeatedly access a certain portion of the map during the
course of the executions. If a map region is repeatedly accessed
during an execution, one natural heuristic is to give that map
region more importance. For a given run z and a map entry
m, a frequency measure of accessing a particular map region
around m can be expressed by generalizing the raffect function
as follows. Let |z| denote the number of map queries in z,
that is, if in z we have the (possibly non-distinct) queries
fIM (m1), fIM (m2), . . . fIM (mp) then |z| is p. The k-th query in
z is denoted by z[k]. The function fraffect generalizes raffect,
and is defined as

fraffect (z,m) =

∑|z|
k=1 maffect (z[k],m)

|z|
(III.7)

for m ∈ dom(M).
Intuitively, fraffect (z,m) can be thought of as a weighted

fraction corresponding to the effect of the region around m
on the execution z. The function fraffect can be defined
using the binary maffect function; or the quantitative maffect
function of Equation (III.5) incorporating entry correlation.
As an example, if we use the binary maffect function, and
fraffect (z,m) is 0.4, then it means that 40% of the function
calls fIM (·) during the course of z were affected by m. Ana-
logues to Equations (III.2), (III.3), and (III.4) can be obtained
by replacing raffect by fraffect; and letting P = PmU + PmA ,
and F = FmU + FmA .

IV. SET SPECTRA BASED METHODS

An alternative to the binary coefficient based ranking
method is to define various sets of map indices for inferring
possible problematic values. The work in [PS92] defines
several sets of interest in software fault localization using set
algebra operations. We adapt the union model, which is the
most promising set-spectra based heuristic, to our quantitative
setting of map lookups.

The union model [PS92], [AHLW95] for software fault
localization – given a failed run – looks at statements that
are executed in the buggy execution, but not in any successful
run. The intuition behind the model is that if certain statements
are executed only in failing runs, those statements are likely
to be buggy. The term union comes from the fact that under
this heuristic, the set of suspicious statements is given by⋃

statement s executed by z
s.t. score(z)<0

{s} \
⋃

statement s executed by z
s.t. score(z)>0

{s}

The work in [RR03] found in their experiments that buggy
statements often are executed in successful runs, and so

the union model in many cases fails to label these buggy
statements as suspicious (i.e., the above set is empty); however,
in cases where the union model does label statements as
suspicious, the labelled statements are almost always buggy.
That is, the union model has a very low false positive rate
in labelling buggy statements (and a high false negative rate).
A very low false positive rate is extremely attractive in bug
finding, thus, we chose to explore the performance of the union
method for our look-up map setting. In case the union method
labels every region as non-buggy, we can fall back on other
methods, e.g., the methods of the previous section.

Utilizing Continuity of Map Values. We modify the union
model in this case as follows. We ask for the following (at a
high level): is there a map access m in a run z with a negative
score score(z), such that all positively scored runs z′ access
map indices at least rM distance away from m? That is, for
the set of executions Z, is there an area in dom(fIM ) that is
(i) accessed only by failing runs, and (ii) is at least rM distance
away from the areas accessed by successful runs?

Formally, let access(n,m) be the predicate on whether a
run z access map entry m, let MF be the set of map entries
accessed by faulty (negatively scored) runs, and let MS be
the set of map entries accessed by successful (non-negatively
scored) runs. That is,
• MF = {m |∃ z s.t. score(z)<0 ∧ access(z,m) = T} ;
• MS = {m |∃ z s.t. score(z) ≥ 0 ∧ access(z,m) = T}.
For X a set of map entries and r a positive real number,

let Ball(X, r) denote the set {x′ ∈ dom(M) | exists x ∈ X
such that D(x, x′) ≤ r}. The set of suspicious map indices
susU is defined to be:

susU = MF \ Ball(MS , rM ). (IV.1)

The elements in susU are the suspicious map entries. In most
cases, a ranking on susU will not be necessary as susU will be
a small set, and the entire set can be classified as suspicious.
If desired we can rank the entries in susU as follows. For a
map entry m ∈ susU , the quantification of suspiciousness of
m depends on: (a) the negative scores of the failed runs, and
(b) the distance from the map accesses in the positively scored
runs. For a map entry m ∈ susU , we call the first quantity
accessed by a negatively scored run as sU (m) and define it as
follows:

sU (m) = min {|score(z)| | access(z,m)= T ∧ score(z)<0}
(IV.2)

In other words, sU (m) tells us what is the absolute value score
of the best among failing runs (i.e. the score which is closest
to 0) which is affected by m. The higher the value of sU (m),
the more suspicious should m be. The second quantity for an
entry m ∈ susU is denoted dU (m) and we define it as follows:

dU (m) = min

{
D(m,m′)

∣∣∣∣ ∃ z′ s.t. score(z′) ≥ 0∧
access(z′,m′) = T ∧D(m,m′)>rM

}
Note that the above value is equivalent to minimize the

distance {D(m,m′) | m′ ∈MS }.



In case the set in the above equation is empty, i.e., if there
does not exist a run z′ such that score(z′) ≥ 0, we let dU (m)
be a high constant. Note that since m ∈ susU , if there exists
a run z′ such that score(z′) ≥ 0, then z′ access m′ with
D(m,m′) > rM . The quantity dU (m) gives the separation
distance between m and MS (the set of entries affected by
successful runs). The higher the value of dU (m), the more
suspicious should m be. The set union based ranking RU is a
function of dU and sU :

RU (m) = sU (m) · dU (m).

Note that setting rM = 0 makes RU (m) be 0 iff there exists
a positively scored run which accesses m (like in the original
union model).

The above method marks only map entries which are
accessed, as opposed to the rankings of the previous section
which may mark entries that are not accessed, but lie in
suspicious areas of the fIM areas. When using this method
in practice, the user thus must look at the surrounding entries
in case an index m is found to be buggy.

We keep only the set algebraic version of Equation (IV.1)
for this model, and not define quantitative extensions based
on smoothness of fIM (as in Subsection III-C) because this
heuristic is based on set-algebra. We expect a high percentage
of entries in susU to be problematic (the set susU is expected
to be small), thus further quantitative refinements are not of
much use.

V. EVALUATING EFFECTIVENESS OF PROPOSED APPROACH

For fault localization in traditional software, the EXAM
score [WGL+16] is a commonly used measure to quantify
the effectiveness of the different techniques. In our context, it
can be defined as

EXAMscore =

number of look-up map entries examined
(in decreasing order of their scores)

till an entry deemed problematic is encountered
total number of look-up map entries

×100

A lower score is better as it indicates that only a small number
of entries are ranked above the “true” buggy ones. However, in
engineering practice, a percentile relative score is not always
sufficient [PO11]; thus we also define an absolute version of
the EXAM score as

AbsEXAMscore =
number of look-up map entries examined

(in decreasing order of their scores)
till an entry deemed problematic is encountered

In the look-up map context, EXAMscore, and
AbsEXAMscore values are not always appropriate metrics.
While these scores are relevant when the maps contain
isolated entries that may be the cause of a fault, in typical
practice, a region of the map (which often correspond
to regions of operation of the plant and the controller)
contains suboptimal entries. In essence, we want to cluster
map entries based on their rank values, and present these
clusters to the user in order to identify suboptimal map
regions. Ideally, there should be a small number of clusters
containing the high-ranked map entries, and moreover each

such cluster containing high-ranked map entries should
contain minimal low-ranked entries. There is a plethora of
cluster analysis algorithms and tools [AR14]. For one or
two-dimensional look-up tables, one of the simplest methods
is by visual inspection of a heat-map of the ranked entries
(Matlab provides a heat-map visualization function). Our tool
incorporates this heat-map visualization functionality.

VI. CASE STUDIES

In this section, we empirically evaluate the efficacy of the
ranking heuristics on several case studies. In Subsection VI-A
we investigate the ranking heuristics on smaller examples, and
in Subsection VI-B we run the ranking methods on industrial
case studies.

In this section, we use the term look-up table (LUT)
for readers familiar with the eponymous Simulink R© block
for implementing N -dimensional look-up. Understanding how
each ranking heuristic performs on toy models, can help
provide CPS designers with guidelines on choosing the right
ranking heuristic based on their design-type. We assume reader
familiarity with temporal logics such as Signal Temporal Logic
(STL). We refer the readers to [MN13], [DFM13] for STL
syntax, and semantics (boolean and quantitative).

A. Basic Models

1) Nonlinearity Cancellator: We designed a toy model
Anc to mimic canceling a nonlinearity in the input u(t) in
Simulink R©. Anc has two outputs functions:

y1(t) = u(t) ·M(u(t)) y2(t) =

b t
∆ c∑
k=1

∆ · y1(k∆) (VI.1)

In the equation for y2(t), ∆ represents the fixed time step
used for simulating Anc, (∆ = 0.1 sec. for this experiment).
In the equation for y1(t), M(x) represents a LUT representing
the nonlinear function 1

x . In our example, we use

dom(M) = {e | e = 0.1 · z ∧ z ∈ N ∧ z ∈ [1, 90]} , (VI.2)

(thus there are 90 entries in M ), and for each e in dom(M),
we let M(e) = 0.01 · round( 100

e ), i.e., the approximation of 1
e

up to two decimal places2.
The input signal u(t) is specified in terms of 11 equally

spaced control inputs between times 0 and 30 secs, where
u(t) is in [0.09, 9.01] at each control point, and is a linear
interpolation of the values at control points for all other
times. The domain of the input signal is purposely chosen to
exceed the domain of the LUT M to exercise the extrapolation
of values performed by the LUT3. The range of u(t) and
the chosen M together guarantee that ∀u(t) ∈ [0.09, 9.01],
u(t) ·M(u(t)) < 1.4. We are interested in checking the model
against the following STL requirements:

ϕnc
1 , 2[10,30](|y1−1|<0.4) ϕnc

2 , 2[0,30](y2 ≤ 30) (VI.3)

2Note round(a) rounds a to the nearest integer.
3 We note that the semantics of LUTs in Simulink R© allow for values

outside the domain of the LUT to be input to the LUT. The LUT output
computed is then obtained by linear extrapolation.



We then seed the LUT M with a bug, by changing M(2) to 0.8
(original value 0.5). We excite the model with 100 randomly
chosen piecewise linear signals u(t), and then evaluate the
ranking on entries produced by each of the heuristics.
Results. The top 3 entries deemed most important by each of
the heuristics are reported in Table II.

We get no information from the Rtarantula ranking heuristic
as all entries are weighted equally. For the first property (ϕ1),
the ranking heuristics that take the frequency of an entry
into account perform generally better than the heuristic based
on a Boolean notion of access. This is expected as every
violation of the requirement (which corresponds to accessing
the faulty region of the LUT), has an additive effect on the
frequency-based ranking heuristics. The union spectrum based
methods are also ineffective because the way we designed
the experiment, all LUT entries are accessed by each trace.
This is achieved by supplying an input signal with the first
linear segment that is a ramp from 0.09 to 9.01 within the
first 3 seconds. As this example had a seeded bug, we can
compute the AbsEXAMscore. This score is −,−, 2, 1, 2,−
corresponding to the six ranking functions in Table II (here we
take the worst scores corresponding to the two specification
functions ϕnc

1 andϕnc
2 ). Recall that the union spectrum method

works well when there are certain LUT entries accessed only
by the failing traces.

2) Two-Dimensional Nonlinear System: In this experi-
ment, we designed Aff , a model to represent the FeedForward
control of a nonlinear dynamical system. The plant is a 2-
dimensional nonlinear (unstable) system with dynamics de-
scribed by ODEs on the left side of Eqn. (VI.4).

ẋ1 = −3x1 + 2x1x
2
2 + u

ẋ2 = −x3
2 − x2

ϕff , 2[0.8,2](|x1| < 0.8) (VI.4)

The control action u used is one which trivially cancels out
the nonlinearity in the first state’s dynamical equation (u =
−2x1x

2
2). We observe that once u cancels out the 2x1x

2
2 term,

the rest of the system is trivially asymptotically stable4 with
the V (x1, x2) = x2

1 + x2
2 as a Lyapunov function certifying

stability. This guarantees that for any c, the system never leaves
the set V (x1, x2) < c.

We note that the computed feedforward control action is
a polynomial in the plant state that can be represented using
a 2-dimensional LUT in which we add an entry at intervals
of 0.5 for integer values of x1 and x2 in the range [−10, 10].
This gives a LUT with 412 = 1681 entries. For the purpose of
simulating the system, we pick a random initial state x1(0) ∈
[−10, 0] and x2(0) ∈ [0, 10]. We then introduce bugs in 30
of the entries that correspond to x1 in [−10,−8], and x2 in
[7.5, 10]. The bug basically multiplies each entry by −2. While
the original system is globally asymptotically stable, observe
that the bug may cause unstable behavior in the system.

4The Lie derivative of the resulting system with V (x1, x2) as the Lyapunov
function is −(3x2

1 + x4
2 + x2

2), and as the term inside the parentheses is
a sum-of-squares polynomial, the Lie derivative of V (x1, x2) is negative
everywhere.

The STL requirement on the right side of Eqn. (VI.4)
relates to the settling time of x1(t). We run 100 randomly
chosen simulations to excite the model and apply our ranking
heuristics to identify the entries likeliest to be the root cause
of settling time violations.
Results. The top 3 entries deemed most important by each of
the heuristics are reported in Table II. The ranking heuristics
based on quantitative similarity coefficients do not work well
for this example. (There is an exception: the Tarantula rankings
utilizing the metric space interpretation of the LUT). This is
so because when a wrong LUT entry is accessed in computing
the feedback law, the controlled signal deviates from the
desired reference value, and all subsequent accesses of the
LUT are indexed by the deviated values. The set spectrum
method based on the union model, on the other hand, focuses
on entries that are solely accessed by the failing traces, and
does not get misled by a frequentist reasoning approach. The
Tarantula-based binary similarity coefficients also focus on
entries appearing in failing traces; however, unless additional
weighting is provided to the failing entries by considering
nearby entries as potential sources of failure, the Tarantula
rankings are not effective. This also shows the value of using
the metric space interpretation of LUT entries.

B. Industrial Case Studies

1) Debugging a Gain-Scheduled Control System: In this
case study, we look at ACSTR, a model of a continuously
stirred tank reactor (CSTR), a common chemical system used
in the industry. A Simulink R© model of this process is available
as a demonstration example from the Mathworks [TM]. The
control objective is to ensure that the concentration of the
reagent in the tank is maintained at a specified set-point. The
model assumes that the controller can gets sensor readings of
the residual concentration of the reagent in the tank, and is able
to change the temperature of the coolant in reactor’s cooling
jacket to control the reaction. The control task is complex as
the process dynamics are nonlinear and vary substantially with
concentration. Hence, the system uses a Proportional + Integral
+ Derivative (PID) controller that is gain-scheduled, i.e., uses
different P+I+D gains for different reference set-points for
the concentration. There are 8 different control regimes and 3
different lookup tables for the P, I and D gains respectively.

In this experiment, we introduce a bug in the model. We
reverse the polarity of the P gain for the control regime
corresponding to a concentration of 3 units (entry M(3) in
the P gain LUT. Outwardly, the bug is egregious; reversing
the polarity of the P gain makes the closed loop system in that
control regime unstable. However, once the system transitions
to a different concentration regime, corrective feedback takes
over, and the system eventually settles (possibly with a longer
settling time). The STL requirement in (VI.5) captures that:
(1) the system is excited by a step change in the reference at
2 seconds (enforced by the time-interval for the outermost 2
operator), and (2) the maximum percentage deviation in the
concentration signal c(t) from the given settling region is less



Ranking Top 3 entries for Anc (1D LUT, size 90) Top 3 entries for Aff (2D LUT, size 1681)

Heuristic Req. ϕnc
1 Req. ϕnc

2 Req. ϕff AbsEXAMscore

Rtarantula – – (-9.5,-0.5) , (-9.5,0.0) , (0.0,-0.5) –
Rtarantula (metric) – – (-10.0,7.5) , (-10.0,8.0), (-10.0,8.5) 1
R2

dstar 1.7,1.4,1.1 2.0,1.7,2.3 (-10.0,0.5) , (-10.0,1.0), (-10.0,4.5) > 3
Rkulczynski (freq.) 2.0,1.7,1.9 2.0,1.7,2.3 (-9.5,0.5) , (-9.5,1.0) , (-10.0,1.5) > 3
R2

dstar (freq.) 2.0,1.9,2.3 1.9,1.8,1.6 (-10.0,0.5) , (-10.0,1.0), (-10.0,4.5) > 3
RU – – (-10.0,10.0), (-10.0,9.0), (-10.0,9.5) 1

TABLE II
THE MOST SIGNIFICANT 3 ENTRIES AS DEEMED BY THE RANKING HEURISTICS FOR EXPERIMENTS ON THE MODELS IN VI-A

Ranking Top 3 entries for ACSTR (1D LUT, size 8) Top 3 entries for AAFC (1D LUT, size 11)

Heuristic Req. ϕcstr
settle Req. ϕafc

overshoot Req. ϕafc
settle

Rtarantula 3,2,4 3250,3000,2750 3250,2750,3000
R2

dstar 4,3,5 2500,2250,2000 2250,2000,2500
Rkulczynski (freq.) 4,3,5 2500,2250,2000 2250,2000,2500
R2

dstar (freq.) 4,3,5 2500,2250,2000 2250,2000,2500
RU – – –

TABLE III
COLUMN ENTRIES CONTAIN THE TOP 3 ENTRIES DEEMED MOST IMPORTANT BY EACH RANKING HEURISTIC. THE SECOND COLUMN CONTAINS ENTRIES

FOR THE CONTINUOUSLY STIRRED TANK REACTOR MODEL. THE THIRD & FOURTH COLUMNS CONTAIN RESULTS FOR AIR-FUEL RATIO CONTROL SYSTEM.

than 2% of the reference r(t) after the given settling time
deadline of 2.5 seconds.

ϕcstr
settle , 2[2,20]

(
step(r)⇒ 2[2.5,9.9]

(∣∣∣∣c− rr
∣∣∣∣<0.02

))
(VI.5)

We ran 100 randomly chosen simulations and ranked entries
that are the likeliest causes for failure of requirement ϕcstr

settle.
Results. The results are shown in Table III. All the similarity
coefficients except RU are able to find the seeded bug. In this
case, the union spectrum based heuristic is not useful as there
is no clear separation between entries accessed by failing and
passing traces.

2) Identifying Sensitive Regions in an Observer: In
this case study, we consider AAFC, a model [JDK+14] for
regulating the air to fuel ratio (denoted λ) in the mixture
that undergoes combustion in gasoline engines. As the peak
efficiency of a catalytic converter to reduce noxious emissions
in the exhaust is reached when λ is 14.7, this is an important
control problem. AAFC has a controller that uses an observer
to estimate the amount of fuel that puddles on the injection
port and is thus not used for combustion in the engine. The
observer is based on the Aquino model for fuel puddling in
the controller [JDK+14]. This observer uses two LUTs for
predicting the deposit ratio and residual ratio of the fuel from
engine speed. Both LUTs have the same size and are indexed
by the same quantity (engine speed), so the access patterns
for entries of both LUTs are identical, and the entries shown
in the results correspond to the corresponding entries for the
same engine speed.

Let µ(t) = λ−14.7
14.7 and let θ(t) denote the throttle input

signal from the user. Then, we wish to identify the regions of
the observer LUTs that have the most impact on the maximum

overshoot (5%) and settling time (1 sec.) requirements on λ
as shown in Eqns. (VI.6),(VI.7).

ϕafc
overshoot , 2[2.5,10] (step(θ)⇒ 2(µ < 0.05)) (VI.6)

ϕafc
settle , 2[2.5,10]

(
step(θ)⇒ 2[1,∞](|µ| < 0.01)

)
(VI.7)

Results. Table III indicates that the observer region correspond-
ing to high engine speed does not predict the state of the
deposit ratio and residual ratio (two quantities to quantify the
amount of fuel that puddles) accurately, causing the model
to behave poorly at high engine speed. In [JDK+14], the
authors indicate that the observer was designed based on a
linear model at an operating point of 1000 rpm. Thus, the
result above confirms the designer hypothesis that the observer
performance is poor at high engine speeds.

3) Parameter Space Optimization for a Suspension Con-
trol System: In [MT], the authors present AQS, a quarter
car model of an automotive suspension system implemented
in Simulink R©. AQS considers only one of the wheels and
simplifies the dynamics to that of a suspension mass suspended
by two spring-damper systems. The controller uses a Pro-
portional+Integral+Derivative (PID) scheme to provide active
assistance to the suspension system. The design objective for
this system is that the distance between the suspension mass
and the vehicle body (denoted y) shows acceptable transient
behavior, as sustained oscillations or a slow settling time on
y are a cause discomfort to the vehicle occupants.

Let the P, I and D gains be respectively Kp,Ki and Kd. Let
K = (Kp,Ki,Kd). We optimize the controller performance by
looking for regions in K-space that correlate well with good
controller performance. In this model, there are no explicit
LUTs, but we impose a grid on K-space and then use our
tool to find grid regions with a high rank with respect to



the design objective. In contrast to other case studies, where
we use ranking heuristics (all rankings except Rtarantula had
similar behaviour, so we picked a typical ranking function) to
identify the cause of undesirable behavior, in this case, we use
it to search for desirable behavior. As K-space does not have
an explicit (user-defined) structure, this case study allows us
a flexible way of exploring the (possibly nonlinear) parameter
space. We explore a simple scheme, where we first search
the K-space using a coarse grid, and then impose a finer
grid on the top grid element found in the first iteration. In
each iteration, we pick 200 simulations for randomly chosen
values of the gains within the chosen paramter regions. This
example requires large numbers for the Kp, Ki, Kd gains, so
for brevity in presentation, we assume that each of the gains
in the following discussion are ×106.

For the first iteration, we assume that Kp ∈ [100, 500],
Ki ∈ [8, 600], and Kd ∈ [0, 3]. We use 21 equally spaced
grid points in these intervals giving rise to a total of 9261
grid elements. In the first iteration, the tool identifies the grid
element (16, 18, 2) as the highest ranked grid point according
to a simple majority of the rankings. This corresponds to the
center of the region: Kp ∈ [380, 420], Ki ∈ [481.6, 540.8],
Kd ∈ [0, 0.3]. We then impose a finer grid on this region, with
21 equally spaced points for each gain-parameter. After run-
ning the second iteration, we identified grid element (13, 14, 2)
as the top ranked element in the new grid. This corresponds to
the region Kp ∈ [402, 406], Ki ∈ [517.12, 523.04], and Kd ∈
[0, 0.03]. Essentially, this is a narrow region for Kp,Ki,Kd

that correlates well with good controller performance (i.e. low
settling time). This demonstrates the power of the tool for
parameter optimization.

4) Model Predictive Control of a Diesel Engine Air Path:
Next, we consider ADAP, an early prototype closed-loop
Simulink R© model from [HZBK16] of a Diesel engine Air
Path controller. ADAP has a high fidelity plant model of the
air path dynamics and a model predictive controller (MPC)
to regulate the intake manifold pressure and the exhaust gas
recirculation (EGR) flow rate. A notable feature of ADAP is
its scale: it has more than 3000 Simulink R© blocks and over
20 multi-dimensional lookup tables. ADAP has two inputs: (1)
the fuel injection rate (denoted fr and excited by a single step
of magnitude in a given range), and the engine speed (denoted
ne, picked from a given range, but held constant during any
single simulation). There are two outputs of interest: the intake
manifold pressure (denoted p) and the EGR flow rate (denoted
egr). The control designers for ADAP indicated to us that
they are interested in two requirements: Requirement (VI.8)
characterizes the overshoot in the intake manifold pressure.
Requirement (VI.9) relates to how well the MPC scheme
tracks the egr signal against the egr reference signal (denoted
egrref ). Let µ =

egr−egrref

egrref
.

ϕdiesel
overshoot , 2[2,10](step(fr)⇒ 2[0,10](p < pmax)) (VI.8)

ϕdiesel
settle , 2[2,10](step(fr)⇒ 2[τ,10](|µ| < v)) (VI.9)

As this model is proprietary, we suppress the numeric values
for the settling time (τ ), the settling region (v), and the
maximum allowed overshoot (pmax). For the LUT entries, we
scale the actual values to representative integer values. We
pick an LUT identified as the most important for analysis by
the control designer. This is a 2D 20× 15 LUT.
Results. We show the results obtained by applying our tool
(for a typical similarity coefficient ranking) on 500 random
simulation runs of ADAP in Table IV. For this particular
experiment, the LUT entries deemed most important have a
direct interpretation as the inputs to the LUT are model inputs
fr and ne. Thus, each entry in the LUT corresponds to a range
of fr and ne values. We remark that the entry (2, 9) corresponds
to a low fuel injection rate and higher engine speed scenario,
while the entry (12, 1) corresponds to a higher fuel injection
rate and very low engine speed scenario. We also remark that
for the settling time requirement, we find entries accessed only
by the failing trajectories. Interestingly, the top three entries,
although from different regions of the LUT, all correspond
to boundary (edge) cases of the LUT. This indicates that
the MPC-based controller has poorer performance w.r.t. the
settling time requirements at boundary conditions.

In Fig. 1, we present the results in the form of a heat-
map that pinpoints hot-spots in the chosen look-up table
w.r.t. a given requirement. The bottom portion of the heat-
map consists of entries not accessed by any simulation trace;
this is because the control designer indicated interest only in
fuel injection rates less than a certain amount. Thus entries
corresponding to values greater than this amount were never
accessed. This also shows another value of our tool: it allows
visualizing coverage of LUT entries or the parameter space
by a given set of simulation runs.

5) Study of Responsiveness in a Hydrogen Fuel-Cell Vehi-
cle: Next, we use a prototype Model-In-the-Loop-Simulation
(MILS) model of an airpath control model from a hydrogen
fuel-cell (FC) vehcile powertrain. This model has more than
7000 Simulink R© blocks that give a detailed description of the
physics of the airpath, along with a simplified model of the
power management, and a complex controller with several
look-up maps to regulate the flow of air through the fuel-
cell stack. A key requirement of the closed-loop system is
responsiveness: how well does the system react to a driver’s
request for increased torque. Internally, a torque request gets
translated to a request for increased air-flow through the stack.
Thus the rise time on the air-flow rate signal is a good proxy
for system responsiveness (STL requirement (VI.10)). In the
requirement, r is the rise-time, and λ is a suitable number in
[0.5, 1].

ϕFC
rise, 2[0,T ]

(
step(AFRref)⇒ 3[0,r](AFR>λ·AFRref)

)
(VI.10)

In this case study, we choose three key controller look-up
maps and study the correlation between accessing a certain
region of the look-up map with the responsiveness of the
closed-loop system. As the model is proprietary, we suppress
the values on the axes.



Ranking Top 3 entries for ADAP (2D LUT, size 300)

Heuristic Req. ϕdiesel
overshoot Req. ϕdiesel

settle

R2
dstar (2,9),(1,9),(2,10) (2,11),(1,11),(4,11)

Rkulczynski (freq.) (2,9),(1,9),(2,10) (2,11),(1,11),(2,10)
R2

dstar (freq.) (2,9),(1,9),(2,10) (2,11),(1,11),(2,12)
R2

dstar (freq.+metric) (2,9),(5,9),(1,8) (1,10),(2,11),(3,10)
RU – (12,1),(10,10),(11,10)

TABLE IV
TOP 3 ENTRIES DEEMED THE MOST IMPORTANT BY DIFFERENT RANKING HEURISTICS FOR MODEL PREDICTIVE OF A DIESEL ENGINE AIRPATH. MODEL.
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(a) Importance of LUT entries for the requirement
related to overshoot on the intake manifold pressure
during up-steps in fuel injection. The results shown
are w.r.t. the Rdstar heuristic incorporating frequency
of access and metric-space interpretation of the table.
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(b) Importance of LUT entries for the requirement
related to settling time on the EGR rate on down-steps
in fuel injection. The results shown are w.r.t. the Rdstar

heuristic incorporating Boolean access of entries and a
metric-space interpretation of the table.

Fig. 1. Heatmap representation for LUT entries for the ADAP model. Entries in blue are not accessed by any trace. The color spectrum from light green (least)
to dark red (most) indicates importance of the entry. The numbers on the color-bar are the rank values, that can be used to have a quantitative interpretation
of the relative importance of entries. Observe that the graphical depiction may allow a broader judgement regarding problematic regions in the LUT.

Results. Figure 2 depicts the heat-map of the LUT rankings for
a chosen LUT. All three LUTs show similar heat-maps, and
we only show one due to lack of space. The actual signals
used to index the look-up maps correspond to the pressure
ratio across a compressor component and the air-flow through
the compressor. Our analysis shows that the model is not
responsive at low air-flow rates and pressure ratio values. The
designers confirmed that this analysis was of interest to them,
and indicated plans to improve the model performance for
these conditions.

VII. CONCLUSION

In this paper we present a set of easy-to-compute statistical
correlation based rankings in order to localize parameters
in control software which may be causing undesired model
behavior in controlled cyber-physical systems. We empirically
test the ranking heuristics provided by these methods on
a number of case studies that are relevant in an industrial
cyber physical systems context using our tool integrated into a
simulation-guided falsification workflow for Simulink R© mod-
els. It is a perfectly reasonable expectation of the reader that
we suggest a single ranking scheme that should be generally
used or present some guidelines to pick a ranking scheme
for analysis. Unfortunately, our experiments show that each
ranking scheme has its own merits, and any guidelines would

have to rely on deep knowledge of the model structure and
dynamics. It is arguable that the union spectrum ranking
scheme, when it gives a result should not be ignored by the
designer. For the other ranking schemes, our suggestion is to
use them to get an overall picture of the “problem regions”
in the LUT, using graphical visualization tools such as heat-
maps.
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APPENDIX

RUNNING TIME FOR RANKING COMPUTATION

Basic Quantitative Similarity Coefficients Let Z be the set
of executions. We assume that the code is instrumented such
that each execution z stores a time-ordered list of map indices
that are accessed during the execution. We denote by |z| the
number of function queries in z, that is, if in z we get queries
for fIM (m1), fIM (m2), . . . fIM (mp) (the queries need not be
distinct), then |z| is p. We assume that the interpolation scheme
uses a constant number of value to construct an interpolation,
that is we assume |depend(m)| to be a constant. Thus, the
time-ordered list of map indices that are accessed during the
execution is of size O(|z|). We let size(Z) denote

∑
z∈Z|z|.

Note that the total size of the time-ordered list of map indices
that are accessed during the executions in Z is at most size(Z).
The binary similarity coefficients for m ∈ dom(M) can be
computed in time linear in the size of this time-ordered list.
Finally, the ranking is done by sorting the indices based on
the similarity coefficients. Thus, the total time required is
O (size(Z) + |M | log (|M |)).

Similarity Coefficients utilizing Continuity and the Met-
ric Space structure Let Z be the set of executions.
In this case, we assume that the code is instrumented
such that each execution z stores, a time-ordered list of
(i) map indices that are accessed during the execution, and
(ii) function arguments to fIM that are queried for, i.e., if
the execution queries fIM (m1), fIM (m2), . . . , then we store
m1, depend(m1),m2, depend(m2), . . . . From this list for z,
we construct another list containing raffect(m) values for
every m ∈ dom(M), where raffect is as in Equation (III.6).
This can be done by first building another list which, for each
mk in the original list (arising from a fIM (mk) query), creates
a sublist of all maffect(mk,m) values for m ∈ dom(M) such
that maffect(mk,m) > 0. In case rM is∞, this takes O(|M |)
time for each mk. In case rM is finite, this takes O(|M |rM )
time, where |M |rM denotes the maximum number of indices
of M in an rM sized ball (in the indices space). From this
secondary list, the list of raffect values can be constructed in
linear time, and the coefficients constructed. Thus, the total
running time is O

(
size(Z) · |M |rM + |M | log (|M |)

)
. Thus,

having a small radius rM allows us to avoid a (possibly
quadratic) blowup in the running time as compared to the basic
similarity coefficient approach.

Similarity Coefficients incorporating frequency of access-
ing a map For both definitions of maffect, we can pro-
ceed as follows. Sort the arguments for queries in each
execution z (i.e., sort the mk values where fIM (mk) is
called in z), based on some ordering of the indices; and
then add up maffect() values for the same mk values. This
step takes O (|z| · log (|z|)) time, and gives a list of the
fraffect values for z. The similarity coefficients then be
calculated in linear time, and after that we need to sort M
elements to get a ranking. Thus, the total time required is
O
(∑

z∈Z (|z| · log (|z|)) + |M | log (|M |)
)
.

Union Spectrum method The sets MF ⊆ M and MS ⊆ M
can be computed in time O(|M | + size(Z)) as a sorted
list. The set Ball(MS , rM ) can be obtained as a sorted list
in time O

(
|MS | · |M |rM

)
where |M |rM denotes the max-

imum number of indices of M in an rM sized ball (in
the indices space). The set difference MF \ Ball(MS , rM )
can be computed time O (|MF |+ |Ball(MS , rM )|). Putting
everything together, we get that susU can be computed in
O
(
size(Z) + |M | · |M |rM

)
time. The values sU (m) can be

inferred for all m ∈ dom(M) by maintaining some additional
bookkeeping in the above algorithm without increasing the
running time complexity. The values dU (m) can also be
computed from the sets MF and MS augmented with some
additional bookkeeping in linear time. Finally, we need to sort
according the values RU (m). The total running time works
out to be O

(
size(Z) + |M | · |M |rM + |M | · log(|M |)

)
.
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