1711.08331v2 [cs.LG] 24 Nov 2017

arxXiv

Learning User Preferences to Incentivize Exploration
in the Sharing Economy

Christoph Hirnschall
ETH Zurich
Zurich, Switzerland
chirnsch@gmail.com

Adish Singla
MPI-SWS
Saarbriicken, Germany
adishs @mpi-sws.org

Abstract

We study platforms in the sharing economy and discuss the
need for incentivizing users to explore options that otherwise
would not be chosen. For instance, rental platforms such as
Airbnb typically rely on customer reviews to provide users
with relevant information about different options. Yet, often a
large fraction of options does not have any reviews available.
Such options are frequently neglected as viable choices, and
in turn are unlikely to be evaluated, creating a vicious cycle.
Platforms can engage users to deviate from their preferred
choice by offering monetary incentives for choosing a differ-
ent option instead. To efficiently learn the optimal incentives
to offer, we consider structural information in user prefer-
ences and introduce a novel algorithm - Coordinated Online
Learning (CoOL) - for learning with structural information
modeled as convex constraints. We provide formal guaran-
tees on the performance of our algorithm and test the viabil-
ity of our approach in a user study with data of apartments on
Airbnb. Our findings suggest that our approach is well-suited
to learn appropriate incentives and increase exploration on the
investigated platform.

Introduction

In recent years, numerous sharing economy platforms with
a variety of goods and services have emerged. These plat-
forms are shaped by users that primarily act in their own
interest to maximize their utility. However, such behavior
might interfere with the usefulness of the platforms. For ex-
ample, users of mobility sharing systems typically prefer to
drop off rentals at the location in closest proximity, while a
more balanced distribution would allow the mobility sharing
service to operate more efficiently.

Undesirable user behavior in the sharing economy is in
many cases even self-reinforcing. For example, users in the
apartment rental marketplace Airbnb are less likely to select
infrequently reviewed apartments and are therefore unlikely
to provide reviews for these apartments (Fradkin 2014)). This
is also reflected in the distribution of reviews, where in many
cities 20% of apartments account for more than 80% of cus-
tomer review

“Work performed while at ETH Zurich.

Copyright © 2018, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.
'Data from|insideairbnb.com.

Sebastian Tschiatschek

Andreas Krause

Microsoft Research* ETH Zurich
Cambridge, United Kingdom Zurich, Switzerland
setschia@microsoft.com krausea@ethz.ch

Such dynamics create a need for platforms in the shar-
ing economy to actively engage users to shape demand and
improve efficiency. Several previous papers have proposed
the idea of using monetary incentives to encourage desir-
able behavior in such systems. One example is (Frazier et al.
2014), who studied the problem in a multi-armed bandit set-
ting, where a principal (e.g. a marketplace) attempts to max-
imize utility by incentivizing agents to explore arms other
than the myopically preferred one. In their setting, the opti-
mal amount is known to the system, and the main goal is to
quantify the required payments to achieve an optimal policy
with myopic agents. The idea of shaping demand through
monetary incentives in the sharing economy has also been
tested in practice. For example, (Singla et al. 2015)) use mon-
etary incentives to encourage users of bike sharing systems
to return bikes at beneficial locations, making automatic of-
fers through the bike sharing app.

In this context, an important question is what amounts a
platform should offer to maximize its utility. (Singla et al.
2015) introduce a simple protocol for learning optimal in-
centives in the bike sharing system to make users switch
from the preferred station to a more beneficial one, ignor-
ing information about specific switches and additional con-
text. Extending on these ideas, we explore a general online
learning protocol for efficiently learning optimal incentives.

Our Contributions
We provide the following main contributions in this paper:

* Structural information: We consider structural informa-
tion in user preferences to speed up learning of incen-
tives, and provide a general framework to model structure
across tasks via convex constraints. Our algorithm, Co-
ordinated Online Learning (CoOL) is also of interest for
related multi-task learning problems.

¢ Computational efficiency: We introduce two novel ideas
of sporadic and approximate projections to increase the
computational efficiency of our algorithm. We derive for-
mal guarantees on the performance of the CoOL algo-
rithm and achieve no-regret bounds in this setting.

e User study on Airbnb: We collect a unique data set
through a user study with apartments on Airbnb and test
the viability and benefit of the CoOL algorithm on this
dataset.

insideairbnb.com

Preliminaries

In the following, we introduce the general problem setting
of this paper.

Platform. We investigate a general platform in the sharing
economy, such as the apartment rental marketplace Airbnb.
On this platform, users can choose from n goods and ser-
vices, denoted as items. A user that arrives at time ¢ chooses
an item i’ € [n]. If the user chooses to buy item i’, the plat-
form gains utility u?.

Incentivizing exploration. The initial choice, item i?,
might not maximize the platform’s utility, and the platform
might be interested in offering a different item j* with utility
uf > wuf instead. For example, j could represent an infre-
quently reviewed item that the platform wants to explore. To
motivate the user to select item j* instead, the platform can
offer an incentive p?, for example in the form of a monetary
discount on that item. The user can either accept or reject
the offer p* depending on the private cost ¢!, where the user
accepts the offer if p* > ¢! and rejects the offer otherwise. If
the user accepts the offer, the utility gain of the platform is
ul —ul — pt.

Objective. In this setting, two tasks need to be optimized
to achieve a high utility gain: finding good switches ¢ — j,
and finding good incentives p’. Good switches i — j are
those, in which the achievable utility gain is positive, i.e.
uf —uf — ' > 0. To realize a positive utility gain, the offer
p? needs to be greater or equal to ¢, since otherwise the offer
would be rejected.

In this paper, we focus on learning optimal incentives p
over time, while the platform chooses relevant switches ¢ —
j independently.

Methodology

In this section, we present our methology for learning op-
timal incentives pﬁ,j and start with a single pair of items
(4,7). We allow for natural constraints on p} ;, such that
p;j € S;,;, where S; ; is convex and non-empty. For exam-
ple, S; ; might be lower-bounded by 0 and upper-bounded
by the maximum discount that the platform is willing to of-
fer.

Single Pair of Items

We consider the popular algorithmic framework of online
convex programming (OCP) (Zinkevich 2003) to learn op-
timal incentives p! ; for a single pair of items. The OCP al-
gorithm is a gradient-descent style algorithm that updates
with an adaptive learning rate and performs a projection af-
ter every gradient step to maintain feasibility within the con-
straints S; ;. We use 7/ ; to denote the number of times a pair
of items ¢, j has been observed and 7 to denote the learning
rate. To measure the performance of the algorithm, we use
the loss I*(p} ;), which is the difference between the opti-
mal prediction and the prediction provided by the algorithm,
such that I'(p') = Typsery - (P —) + Typrcery - (u —
c') foru > ct, and I (p*) = 0 for u < c'f}

2Note that this loss function is non-convex. A convex version is
presented in the case study.

Algorithm 1: OL — Online Learning

1 Input:
* Learning rate constant: > 0

2 Initialize: p?) ;ES, ng =0
3fort=1,2,...,Tdo

4 Suffer loss I*(p} ;)

5 | Calculate gradient g} ;
¢ t-1
6 Set7; ; _t:f’j +1
gt gt
7 Update p; 5~ = p; ; mgm

end

The algorithm, Online Learning (OL), for a single pair
of items is shown in Algorithm [I] The regret, which mea-
sures the difference in losses against any (constant) compet-
ing weight vector p; ; € S after T' rounds, is defined as

T
Regretor, ,(T,pi ;) = Z (lt(p;j) - lt(pi’j))' W

t=1

Multiple Pairs of Items

We now relax the assumption of a fixed pair of items and
return to our original problem of learning optimal incentives
for multiple pairs of items, i.e. the algorithm receives spe-
cific items 3¢ and 5* as input for each user. If we consider all
items n on the platform, the total number of pairs is n% — n.

For learning the optimal incentive for each pair of items,
the algorithm maintains a specific learning rate proportional
to 1/ﬁ for each pair of items and performs one gradient
update step using Algorithm [I] We refer to this straightfor-
ward adaptation of the OL algorithm as Independent On-
line Learning (IOL) and use this algorithm as a baseline for
our analysis. Using regret bounds of (Zinkevich 2003)) and
denoting the number of pairs of items as K, we can upper
bound the regret of IOL as

3 ==
RegretIOL(T) S § TK ||SmarH ||gma'EH . (2)

Structural Information

In a real-world setting, incentives for different pairs of items
typically are not independent, and in some cases, certain
structural information may help to speed up learning of opti-
mal incentives. In the following, we discuss several relevant
types of structural information.

Independent learning. In this baseline setting each pair
of items is learned individually. Thus, the number of incen-
tives that need to be learned grows quadratically with the
number of items on a platform. While applicable for a small
number of items, this approach is not favorable on typical
platforms in the sharing economy.

Shared learning. Another commonly studied setting is
shared learning. In this setting, all pairs of items are con-
sidered equivalent, and only one global incentive is learned.
While allowing the platform to learn about many pairs of

items at the same time, this approach fails to consider nat-
ural asymmetries in the problem. For example, the required
incentive for switching from ¢ to j is often different than the
required incentive for switching from j to ¢, as can be also
observed in the case study of this paper.

Metric/hemimetric structure. Assuming that the re-
quired incentives are related to the dissimilarity of items ¢
and 7, metrics are a natural choice to model structural depen-
dencies, as they capture the property of triangle inequalities
in dissimilarity functions. However, incentives for pairs of
items are not necessarily required to be symmetric. For ex-
ample, the required incentives for switching from a highly
reviewed apartment on Airbnb to one without reviews is
likely higher than vice versa. Therefore, we use hemimet-
rics, which are a relaxed form of a metric that satisfy only
non-negativity constraints and triangular inequalities, cap-
turing asymmetries in preferences (cf. (Singla, Tschiatschek,
and Krause 2016)). The usefulness of the hemimetric struc-
ture for learning optimal incentives is demonstrated in the
experiments.

In the following section, we introduce a general-purpose
algorithm for learning with structural information, where the
structure is defined by convex constraints on the solution
space. The key idea of our algorithm is to coordinate be-
tween individual pairs of items by projecting onto the re-
sulting convex set. We generalize our approach for contex-
tual learning, where additional features, such as information
about users, may be available. Since projecting onto convex
sets may be computationally expensive, we further extend
our analysis to allow projections to be sporadic (i.e. only af-
ter certain gradient steps) and approximate (i.e. with some
error compared to the optimal projection).

Learning with Structural Information

We begin this section by introducing a general framework
for specifying structural information via convex constraints.
We denote each pair of items as a distinct problem z € [K],
where K is the total number of pairs of items. Each problem
z may be associated with additional features, for example
with information about the current user. As is common in on-
line learning, we consider a d dimensional weight vector w,
for each problem z € [K] for learning optimal incentives.
The prediction p, is equal to the inner product between w,
and the d dimensional feature vector. In the previous section,
we described the special case with d = 1 and a unit feature
vector, such that w, is equivalent to the prediction p..

Specifying Structure via Convex Constraints

Similar to constraints on p,, we allow for convex constraints
on w,, such that w, € S, C R% We assume S, is a con-
vex, non-empty, and compact set, where ||S,|| is the Eu-
clidean norm of the solution spacef’| Further, we assume
152l < ||Smax|| for some constant ||Spyax||.- We denote the
joint solution space of the K problems as S = 57 X -+ X
S, X - x Sg € R¥K and define wt € S as the concate-

3Euclidean norm is used throughout, unless otherwise specified.

nation of the problem specific weight vectors at time ¢, i.e.

w' = [(w)) @) wl)]

The available structural information is modelled by a set
of convex constraints, such that the joint competing weight
vector w*, against which the loss at each round is measured,
lies in a convex, non-empty, and closed set S* C S, repre-
senting a restricted joint solution space, i.e. w* € S*. In the
following, we provide several practical examples of how S*
can be defined.

Independent learning. S* = S models the setting where
the problems are unrelated/independent.

Shared learning. A shared parameter setting can be mod-
eled as

S*={w eSS |wi=--=w=-=wk}

Instead of sharing all parameters, another common scenario
is to share only a few parameters. For a given d’ < d, sharing
d’ parameters across the problems can be modeled as

S* = {w* € §|wil:d] - =w[l:d] = wi[l:d]}

where w?[1 : d’] denotes the first d’ entries in w?. This ap-
proach is useful for sharing certain parameters that do not
depend on the specific problem. For example, in the case of
apartments on Airbnb, a shared feature could be the distance
between apartments.

Hemimetric structure. To model dissimilarities between
items for learning optimal incentives, we use the hemimet-
ric set. Specifically, we use r-bounded hemimetrics, which,
next to non-negativity constraints and triangular inequalities,
also include non-negativity and upper bound constraints. For
d = 1, the convex set representing r-bounded hemimetrics
is given by S* =

{w* € Sfw;; €[0,r],w]; <wj, +wj ;i j ke [n]}

Our Algorithm

In the following, we introduce our algorithm, Coordinated
Online Learning (CoOL).

Exploiting Structure via Weighted Projections. The
CoOL algorithm exploits structural information in a prin-
cipled way by performing weighted projections to S*, with
weights for a problem z proportional to \/E Intuitively,
the weights allow us to learn about problems that have been
observed infrequently while avoiding to “unlearn” problems
that have been observed more frequently. A formal justifi-
cation for using weighted projections is provided in the ex-
tended version of this paper (Hirnschall et al. 2018)).

We define Q* as a square diagonal matrix of size dK with
each \/72 represented d times. In the one-dimensional case
(d = 1), we can write Q' as

Q' = . 3)
0 T

Using w to jointly represent the current weight vectors of
all the learners at time ¢ (cf. Line [7] in Algorithm [2)), we

Algorithm 2: CoOL — Coordinated Online Learning

Function 3: AProj — Approximate Projection

1 Input:
* Projection steps: (£')yc(r] where &' € {0, 1}
* Projection accuracy: (6*);c(r) where §* > 0
¢ Learning rate constant: n > 0

2 Initialize: w! € S,, 70 =0

3fort=1,2,...,7T do

4 Suffer loss ' (w?)

5 Calculate (sub-)gradient g

6 Set7i=7i"1+4+1

7 Update '™ = wt; @' = w! — L gt

9 \/E z

8 if ¢ = 1 then

9 Define Q' as per Equation (3)

10 Compute w'™! = AProj(@'*", 5, Q")
else

1 ‘ wit! = argmin||lw — @t;lHQ
end

end

compute the new joint weight vector w**! (c¢f. Line [10]in
Algorithm [2) by projecting onto S*, using
w'™! = argmin(w — w)'Q" (w — w). “)
weS*

We refer to this as the weighted projection onto S*. Since
S™* is convex and the projection is a special case of the Breg-
man projection, the projection onto S* is unique (cf. (Cesa-
Bianchi and Lugosi 2006; Rakhlin and Tewari 2009)).

Sporadic and Approximate Projections. For large scale
applications (i.e. large K or large d), projecting at every step
could be computationally very expensive: a projection onto
a generic convex set S* would require solving a quadratic
program of dimension d K. To allow for computationally ef-
ficient updates, we introduce two novel algorithmic ideas:
sporadic and approximate projections, defined by the above-
mentioned sequences (£*),cr and (8°);¢;7). Here, 6° de-
notes the desired accuracy at time ¢ and is given as input to
Function 3] AProj, for computing approximate projections.
This way, the accuracy can be efficiently controlled using the
duality gap of the projections. As we shall see in our exper-
imental results, these two algorithmic ideas of sporadic and
approximate projections allow us to speed up the algorithm
by an order of magnitude while retaining the improvements
obtained through the projections.

Algorithm |2} when invoked with ¢ = 1,4§" = 0Vt € [T,
corresponds to a variant of our algorithm with exact projec-
tions at every time step. When invoked with £ = 0 V¢ € [T,
our algorithm corresponds to the IOL baseline.

Relation to existing approaches. A related algorithm is
the AdaGrad algorithm (Duchi, Hazan, and Singer 2011},
which uses the sum of the magnitudes of past gradients to
determine the learning rate at each time ¢, where larger past
gradients correspond to smaller learning rates. A key differ-
ence to the CoOL algorithm is that the AdaGrad algorithm

1 Input: w, 6%, Q*
2 Define f!(w) = (w —w)'Q'(w — w) forw € S
3 Choose
witl e {we S*: fi(w) - min fiw') < 6t}
w'es*
4 Return: wi*!

enforces exact projections after every iteration. This is par-
ticularly problematic for large, complex structures since pro-
jections on these structures often rely on numeric approx-
imations, that may not guarantee to converge to the exact
solution in finite time.

Performance Guarantees and Analysis

In this section, we analyze worst-case regret bounds of the
CoOL algorithm against a competing weight vector w* &
S*. The proofs are provided in the extended version of this
paper (Hirnschall et al. 2018)).

General Bounds

We begin with a general result, without assumptions on the
projection accuracy and rate.

Theorem 1. The regret of the CoOL algorithm is bounded
by Regretcoor(T) <

1

% [Smaz|* VTE + 21 ||gmaz||* VT K (R1)
T

+ 3 L gwe-1yneny |Smasl [Gmas| (R2)

t=1

T
1
LEOIRITE (6" + V2O ()4 | Sall) (RD)

t=1

1
3 [Smazll® = 27 |gmaz || K. (R4)

The regret in Theorem [1|has four components. |R1{comes
from the standard regret analysis in the OCP framework,
[RZ] comes from sporadic projections, [R3]comes from the al-
lowed error in the projections, and |R4]is a constant.

Note that when ¢! = 0 for all ¢ (i.e. no projections are
performed) and 7 is proportional to 1/ m , we get the same

regret bounds proportional to v/T as for the IOL algorithm.
This also reveals the worst-case nature of the regret bounds
of Theorem [I] i.e. the proven bounds for CoOL are agnostic
to the specific structure S* and the order of task instances.

Sporadic/Approximate Projection Bounds

To provide specific bounds for the practically useful setting
of sporadic and approximate projections, we introduce « and
B and the user chosen parameters c, and cg to control the
frequency and accuracy of the projections.

1400 T T T T 1400 T T T T 200 T T T T
1200 - 1200 | - uw-
..|IOL CoOL
1000 | - 1000 | - 150
..|[IOL CoOL
T 800 . £ 800 i 2 Cool
2 2 CoOL 2 100
~ 600 | - ~ 600 | E ~
CoOL
400 - 400 E 50
200 - 200 -
0 1 1 1 1 1 1 1 1 0
0 100 200 300 400 500 0 100 200 300 400 500 0 100 200 300 400 500
Time Time Time
(a) Random problem order (b) Batches of problems (c) Single problem
1400 , . . . 1400 1.0 , , ,
B0 oL 1200 JioL 0sl]
1000 1000 2
5 800 5 800 = 06]
- - -
& & L
@ 600 @ 600 = 04k i
<
400 | - 400 | - °
0.2 -
200 B 200 + B
O 1 1 1 1 0 1 1 L 00 | 1 1
1.0 08 06 04 02 0.0 1.0 0.9 0.8 0.7 0.6 1.0 0.9 0.8 0.7 0.6
«a B8 B

(d) Varying o

(e) Varying 5

(f) Projection runtime varying 3

Figure 1: Simulation results for learning hemimetrics. (a,b,c) compare the performance of CoOL against IOL for different
orders of problem instances. (d,e,f) show the speed/performance tradeoff using sporadic and approximate projections.

Corollary 1. Setn = 45222 vt € [T), define
! ~ Bernoulli(a) with o« = c—a,
3 (a) Wi
VK
&' = cp(l— B)2W ||Smax||2

where constants co, € [0,V/T), cg > 0, and 3 € [0,1]. The
expected regret (w.r.t. (§')ierry) of the CoOL algorithm is
Ca Ca

bounded by E [Regretcoor(T)] <
1— =
2VK (\/T)

+eales + VIR - 9))

VTR [l g (14

As shown in Corollary [I] projections are required to be
more accurate for higher values of ¢. Intuitively, this is re-
quired so that already learned weights are not unlearned
through inaccurate projections. Using the definitions under
Corollary [} we can prove worst-case regret bounds propor-
tional to \/T for this setting.

Performance Analysis for Hememtric Structure

We now test the performance of the CoOL algorithm on syn-
thetic data with an underlying hemimetric structure.

Hemimetric projection. To be able to perform weighted
projections onto the hemimetric polytope, we use the met-
ric nearness algorithm (Sra, Tropp, and Dhillon 2004} as a
starting point. For our purposes, three modifications of the
algorithm are required: First, we lift the requirement of sym-
metry to generalize from metrics to hemimetrics. Second,
the metric nearness algorithm does not guarantee a solu-
tion in the metric set in finite time. However, to calculate
the duality gap, the solution is required to be feasible. Thus,
we apply the Floyd-Warshall algorithm (Floyd 1962) after
every iteration to receive a solution in the hemimetric set.
Third, we add weights to the triangle inequalities to allow
for weighted projections and further add upper and lower
bound constraints.

Data structure. To empirically test the performance of
the CoOL algorithm on the hemimetric set, we synthetically
generate data with d = 1 and model the underlying struc-
ture S* as a set of r-bounded hemimetrics with n = 10,
resulting in K = 90 problems. We use a simple underlying
ground-truth hemimetric w*, where the n items belong to
two equal-sized clusters, with p; ; = 1 if ¢ and j are from

New York

Apartment 1 [

Liberty Battery Park @y Brooklyn Bridge:
State Park;

)

Map data 2017 Google

Price per night: 80%
0 reviews

Location: Manhattan
1.2 miles to Times Square

Times Square O

A 2 o i New York

artment P wLLiissrd
E Liberty Battery, Park @ grookiynBridge @
State Park:

Googlel Ronrs: Vap data ©2017 Google

Price per night: 80$
- 23 reviews

Location: Brooklyn
4.4 miles to Times Square

Figure 2: Snapshot of the user survey study on MTurkE|

the same cluster and p; ; = 9 otherwise. The results of our
experiment in Figure 1| illustrate the potential runtime im-
provement using sporadic/approximate projections.

Random order of problems. Problem instances z* are
chosen uniformly at random at every time step. The CoOL
algorithm achieves a significantly lower regret than the IOL
algorithm, benefiting from the weighted projections onto S*.
At T = 500, the regret of CoOL is less than half of that of
the IOL, cf. Figure|l(a)

Batches of problems. In the batch setting, a problem in-
stance is chosen uniformly at random, then it is repeated five
times before choosing a new problem instance. Compared to
the above-mentioned random order, the IOL algorithm suf-
fers a lower regret because of a higher probability that prob-
lems are repeatedly shown. Furthermore, the benefit of the
projections onto S* for the CoOL algorithm is reduced, cf.
Figure [I(b)} showing that the benefit of the projections de-
pends on the specific order of the problem instances for a
given structure.

Single-problem setting. A single problem z is repeated
in every round. As illustrated, in this case the IOL algo-
rithm and the CoOL algorithm have the same regret, cf.
Figure In order to get a better understanding of us-
ing weights Q! for the weighted projection, we also show a
variant uw-CoOL using Q! as identity matrix. Unweighted
projection or using the wrong weights can hinder the con-
vergence of the learners, as shown in Figure for this
extreme case of a single-problem setting.

Varying the rate of projection (). The regret of the
CoOL algorithm monotonically increases as « decreases,
and is equivalent to the regret of the IOL algorithm at o« = 0,
¢f- Figure [I(d)} In the range of « values between 1 and 0.1,
the regret of the CoOL algorithm is relatively constant and
increases strongly only as a approaches 0. With « as low as
0.1, the regret of the CoOL algorithm in this setting is still
almost half of that of the IOL algorithm.

Varying the accuracy of projection (3). The regret of
the CoOL algorithm monotonically increases as 3 decreases,
and exceeds that of the IOL algorithm for values smaller
than 0.65 because of high errors in the projections, cf. Fig-
ure In the range of 3 values between 1 and 0.85, the
regret of the CoOL algorithm is relatively constant and less

“Real pictures from Airbnb replaced with illustrative examples.

than half of that of the IOL algorithm.

Runtime vs. approximate projections. As expected, the
runtime of the projection monotonically decreases as 3 de-
creases, cf. Figure For values of 3 smaller than 0.95,
the runtime of the projection is less than 10% of that of the
exact projection. Thus, with 3 values in the range of 0.85 to
0.95, the CoOL algorithm achieves the best of both worlds:
the regret is significantly smaller than that of IOL, with an
order of magnitude speed up in the runtime compared to ex-
act projections.

Airbnb Case Study

To test the viability and benefit of the CoOL algorithm in a
realistic setting, we conducted a user study with data from
the marketplace Airbnb.

Experimental Setup

We use the following setup in our user study:

Airbnb dataset. Using data of Airbnb apartments from
insideairbnb.com, we created a dataset of 20 apart-
ments as follows: we chose apartments from 4 types in New
York City by location (Manhattan or Brooklyn) and number
of reviews (high, > 20 or low, < 2). From each type we
chose 5 apartments, resulting in a total sample of n = 20
apartments.

Survey study on MTurk platform. In order to obtain
real-world distributions of the users’ private costs, we col-
lected data from Amazon’s Mechanical Turk marketplace.
After several introductory questions about their preferences
and familiarity with travel accommodations, participants
were shown two randomly chosen apartments from the
Airbnb dataset. To choose between the apartment, partici-
pants were given the price, location, picture, number of re-
views and rating of each apartment, as shown in Figure [2}
Participants were first asked to select their preferred choice
between the two apartments. Next, they were asked to spec-
ify their private cost for choosing the other, less preferred
apartment instead. The collected data from the responses
consists of tuples ((¢, j), ¢), where 1 is the preferred choice,
j is the suggested alternative, and c is the private cost of the
user.

Sample. In total, we received 943 responses, as summa-
rized in Table[I] The sample for the performance analysis of

insideairbnb.com

1400 —

(S

Rutherford 3 C)OA _65 Los] T T T
g $2734
) (i North Bergen @:Cb) 1200 - 4CoOL ~
o5 & =t
MANHATT N 1000 g < CoOL
© 2O @ o ZD
: @ % 800 4I0L =
o £ ' E oL
Jersey City @) o Y o g 600 u g;o
0 Newo”o.x oo o 400 k- i 2;:
"®® 00°%0)
O 200 | i
2 > @ (] @ 0 AN ! ! ! ! 0]]]] | |
(#) & JohnFiK 0 50 100 150 200 250 300 0 50 100 150 200 250 300

0 High review count o Low review count

(a) Dataset of 20 apartments

Time

(b) Cummulative utility gain

Time

(c) Average utility gain

Figure 3: Results of experiments with Airbnb dataset.

the CoOL algorithm consists of 323 responses, in which ¢
was a frequently reviewed apartment, j an infrequently re-
viewed apartment, and participants were willing to explore
the infrequently reviewed apartment for a discount (i.e. they
did not select NA).

Utility gain. The utility gain u for getting a review for
infrequently reviewed apartments is set to v = 40 in our
experiments, based on referral discounts given by Airbnb in
the past.

Loss function. As introduced in the methodology section,
we require a convex version of the true loss function for our
online learning framework, ideally acting as a surrogate of
the true loss. Additionally, the gradient of the loss function
needs to be calculated from the binary feedback of accep-
tance/rejection of the offers. However, in the analyzed model
with binary feedback, a loss function that satisfies both re-
quirements cannot be constructed. Instead, we consider a
simplified piece-wise linear convex loss function given by
lt(pt) =]l{ptZC‘} . (pt - ct) + IL{;lo’5<c"} ’ % : (Ct - pt)’
where % denotes the magnitude of the gradient when a user
rejects the offer. For the experiment, we use a delta value of
20. Due to this transformation, we use the utility gain rather
than the loss as a useful measure of the performance of the
CoOL algorithm.

Structure. Due to the small number of apartments, we
consider a non-contextual setting with d = 1 and use an r-
bounded hemimetric structure to model the relationship of
the tasks, where r is set to 40 to avoid recommending incen-
tives p' > wu. Using a setting with d > 1 would allow for

i J Responses Accepted Avg. Discount
High Low 416 77.6% 29.5%
Low Low 228 83.3% 28.1%
High High 219 822 % 25.4%
Low High 80 81.3% 25.9%

Table 1: Responses for different apartment types.

real-world applications with additional context.

Main Results

We now present and discuss the results of the user study.

Descriptive statistics. Out of all responses, 758 (80.4%)
respondents were willing to accept an offer for their less pre-
ferred apartment, given a certain discount per night. Out of
these respondents, the average required discount for accept-
ing the alternative apartment was 27.9 USD per night. The
average required discount for switching from a frequently
reviewed apartment to an infrequently reviewed apartment
was 6% higher.

Out of the respondents who could choose between a fre-
quently and an infrequently reviewed apartment, 83.9% re-
spondents chose the frequently reviewed apartment, while
only 16.1% respondents chose the infrequently reviewed
apartment.

In the responses to an open question about the factors re-
spondents considered to decide on the discount, we captured
the frequency at which different factors were mentioned by
defining several keywords for each factor. The number of
times each factor was mentioned is shown in Table[2l

Algorithm performance. We use the cumulative utility
gain to measure the performance of the IOL and the CoOL
algorithm. The utility gains of both algorithms after 323 re-
sponses are shown in Figure The utility gain in Fig-
ure [3(b)|is almost 50% higher for the CoOL algorithm than
for the IOL algorithm. Figure reveals that this gain is
mainly achieved due to a significant speed up in learning

Category Example keywords Mentions
Location neighborhood, distance 477
Reviews rating, star 309
Price expensive, cheap 182
Picture image, photo 169

Table 2: Mentioned categories for deciding on a discount.

over the first 50 problems.

Discussion. The results of the user study confirm several
findings of (Fradkin 2014])), who studied the booking behav-
ior on Airbnb. Similar to this study, we find that apartments
with a high number of reviews are significantly more likely
to be selected. We also find that the average required dis-
count per night is higher when the alternative choice is an
infrequently reviewed apartment. This also points toward a
difference in willingness to pay between frequently and in-
frequently reviewed apartments. Similar results have been
found in earlier studies on other marketplaces (Resnick et
al. 2006;|Ye, Law, and Gu 2009; Luca 2011).

The user study also confirms that incentives influence
buying behavior and can help increase exploration on on-
line marketplaces (Avery, Resnick, and Zeckhauser 1999
Robinson, Nightingale, and Mongrain 2012); when respon-
dents chose a frequently reviewed apartment and were
asked to instead choose an infrequently reviewed apartment,
77.6% of respondents were willing to accept a sufficiently
large offer. More than 10% of those respondents were will-
ing to accept a discount of 10 USD per night or less.

The performance of the IOL and CoOL algorithm in Fig-
ures [3(b)|and [3(c)|suggests that incentives can be learned via
online learning, and that structural information can be used
to significantly speed up the learning. Further, the speed up
in learning directly increases the marketplace’s utility gain
from suggesting alternative items. To reduce the problem
size on a real-world application such as Airbnb, items could
be grouped by features such as location or number of re-
views. Further, problem-specific features, such as the dis-
tance between apartments could be added to increase the ac-
curacy of the prediction.

Related Work

Multi-armed bandit / Bayesian games. A related path of
research are multi-armed bandit and Bayesian games, where
a principal attempts to coordinate agents to maximize its
utility. Research in this area mainly focuses on changing
the behavior of agents in the way information is disclosed,
rather than through provision of payments. (Kremer, Man-
sour, and Perry 2014)) provide optimal information disclo-
sure policies for deterministic utilities and only two possible
actions. (Mansour, Slivkins, and Syrgkanis 2015) general-
ize the results for stochastic utilities and a constant number
of actions. Further, (Mansour et al. 2016) consider the in-
teraction of multiple agents, and (Chakraborty et al. 2017
analyze a multi-armed bandits in the presence of communi-
cation costs. Our problem is different to previous research in
that utilities are not required to be stochastic, and additional
structural information is available to the principal.
Recommender systems. A different approach to encour-
aging exploration in online marketplaces are recommender
systems, which are known to influence buyers’ purchasing
decisions and can be used to encourage exploration (Resnick
and Varian 1997;|Senecal and Nantel 2004)). For example, e-
greedy recommender systems recommend a product closest
to the buyer’s preferences with probability (1 — ¢) and a ran-
dom product with probability € (Ten Hagen, Van Someren,

and Hollink 2003)). Such recommender systems can be ex-
tended using ideas studied in this paper.

Online/distributed multi-task learning. Multi-task
learning has been increasingly studied in online and dis-
tributed settings recently. Inspired by wearable computing,
a recent work by (Jin et al. 2015)) studied online multi-task
learning in a distributed setting. They considered a setup,
where tasks arrive asynchronously, and the relatedness
among the tasks is maintained via a correlation matrix.
However, there is no theoretical analysis on the regret
bounds for the proposed algorithms. (Wang, Kolar, and
Srerbo 2016) recently studied the multi-task learning for
distributed LASSO with shared support. Their work is dif-
ferent from ours — we consider general convex constraints
to model task relationships and consider the adversarial
online regret minimization framework.

Conclusions and Future Work

We highlighted the need in the sharing economy to actively
shape demand by incentivizing users to differ from their pre-
ferred choices and explore different options instead. To learn
the incentives users require to choose different items, we
developed a novel algorithm, CoOL, which uses structural
information in user preferences to speed up learning. The
key idea of our algorithm is to exploit structural information
in a computationally efficient way by performing sporadic
and approximate projections. We formally derived no-regret
bounds for the CoOL algorithm and provided evidence for
the increase in performance over the IOL baseline through
several experiments. In a user study with apartments from
the rental marketplace Airbnb, we demonstrated the practi-
cal applicability of our approach in a real-world setting. To
conclude, we discuss several additional considerations for
offering incentives in a sharing economy platform.

Safety/individual consumer loss. Generally, exploration
in the sharing economy may be risky, and individuals can
face severe losses while exploring. For example, new hosts
might not be trustworthy, and new drivers in ridesharing sys-
tems might not be reliable. In our approach, the items to be
explored are controlled by the platform, and appropriate pre-
conditions would need to be implemented to minimize risks.

Reliability/Consistency. In order for platforms to imple-
ment an algorithmic provision of monetary incentives, it is
important that incentives are reliable and consistent over
time. Ideally, similar users should receive similar incentives,
and offers should be consistent with the user’s preferences.
Using the CoOL algorithm, consistency can be controlled
through appropriate convex constraints.

Strategy-proofness. Providing monetary incentives
based on user preferences creates possibilities for oppor-
tunistic behavior. For example, users could attempt to
repeatedly decline offers to receive higher offers in the
future or browse certain items hoping to receive offers for
similar items. To control for such behavior, markets need
to be large enough so that behavior of individuals does not
affect overall learning. Further, platforms can control the
number and frequency with which individual users receive
offers to minimize opportunistic possibilities.

Acknowledgments

This work was supported in part by the Swiss National Sci-
ence Foundation, and Nano-Tera.ch program as part of the
Opensense II project, ERC StG 307036, and a Microsoft Re-
search Faculty Fellowship. Adish Singla acknowledges sup-
port by a Facebook Graduate Fellowship.

References

[Avery, Resnick, and Zeckhauser 1999] Avery, C.; Resnick,
P.; and Zeckhauser, R. 1999. The market for evaluations.
American Economic Review 564-584.

[Beckenbach and Bellman 2012] Beckenbach, E. F., and
Bellman, R. 2012. Inequalities, volume 30. Springer Sci-
ence & Business Media.

[Cesa-Bianchi and Lugosi 2006] Cesa-Bianchi, N., and Lu-
gosi, G. 2006. Prediction, learning, and games. Cambridge
university press.

[Chakraborty et al. 2017] Chakraborty, M.; Chua, K. Y. P;
Das, S.; and Juba, B. 2017. Coordinated versus decentral-
ized exploration in multi-agent multi-armed bandits. In Pro-
ceedings of the Twenty-Sixth International Joint Conference
on Artificial Intelligence, IJCAI-17, 164—170.

[Duchi, Hazan, and Singer 2011] Duchi, J.; Hazan, E.; and
Singer, Y. 2011. Adaptive subgradient methods for online
learning and stochastic optimization. Journal of Machine
Learning Research 12:2121-2159.

[Floyd 1962] Floyd, R. W. 1962. Algorithm 97: shortest
path. Communications of the ACM 5(6):345.

[Fradkin 2014] Fradkin, A. 2014. Search frictions and the
design of online marketplaces. NBER Working Paper.

[Frazier et al. 2014] Frazier, P,; Kempe, D.; Kleinberg, J.;
and Kleinberg, R. 2014. Incentivizing exploration. In Pro-

ceedings of the fifteenth ACM conference on Economics and
computation, 5-22. ACM.

[Hirnschall et al. 2018] Hirnschall, C.; Singla, A.; Tschi-
atschek, S.; and Krause, A. 2018. Learning user preferences
to incentivize exploration in the sharing economy (extended
version).

[Jin et al. 2015] Jin, X.; Luo, P.; Zhuang, F.; He, J.; and He,
Q. 2015. Collaborating between local and global learning
for distributed online multiple tasks. In CIKM.

[Kremer, Mansour, and Perry 2014] Kremer, I.; Mansour, Y.;
and Perry, M. 2014. Implementing the wisdom of the crowd.
Journal of Political Economy 122(5):988-1012.

[Luca 2011] Luca, M. 2011. Reviews, reputation, and rev-
enue: The case of yelp. com. Harvard Business School NOM
Unit Working Paper.

[Mansour et al. 2016] Mansour, Y.; Slivkins, A.; Syrgkanis,
V.; and Wu, Z. S. 2016. Bayesian exploration: Incentivizing
exploration in bayesian games. In Proceedings of the 2016
ACM Conference on Economics and Computation, EC ’16,
661-661. New York, NY, USA: ACM.

[Mansour, Slivkins, and Syrgkanis 2015] Mansour, Y;
Slivkins, A.; and Syrgkanis, V. 2015. Bayesian incentive-
compatible bandit exploration. In Proceedings of the

Sixteenth ACM Conference on Economics and Computa-
tion, EC ’15, 565-582. New York, NY, USA: ACM.

[Rakhlin and Tewari 2009] Rakhlin, A., and Tewari, A.
2009. Lecture notes on online learning. Draft, April.

[Resnick and Varian 1997] Resnick, P., and Varian, H. R.
1997. Recommender systems. Communications of the ACM
40(3):56-58.

[Resnick et al. 2006] Resnick, P.; Zeckhauser, R.; Swanson,
J.; and Lockwood, K. 2006. The value of reputation on ebay:

A controlled experiment. Experimental economics 9(2):79—
101.

[Robinson, Nightingale, and Mongrain 2012] Robinson,
J. G.; Nightingale, T. R.; and Mongrain, S. A. 2012. Meth-
ods and systems for obtaining reviews for items lacking
reviews. US Patent 8,108,255.

[Senecal and Nantel 2004] Senecal, S., and Nantel, J. 2004.
The influence of online product recommendations on con-
sumers online choices. Journal of retailing 80(2):159-169.

[Singla et al. 2015] Singla, A.; Santoni, M.; Barték, G.;
Mukerji, P.; Meenen, M.; and Krause, A. 2015. Incentiviz-
ing users for balancing bike sharing systems. In AAAL

[Singla, Tschiatschek, and Krause 2016] Singla, A.; Tschi-
atschek, S.; and Krause, A. 2016. Actively learning hemi-
metrics with applications to eliciting user preferences. In
ICML.

[Sra, Tropp, and Dhillon 2004] Sra, S.; Tropp, J.; and
Dhillon, I. S. 2004. Triangle fixing algorithms for the met-
ric nearness problem. In Advances in Neural Information
Processing Systems, 361-368.

[Ten Hagen, Van Someren, and Hollink 2003] Ten Hagen,

S.; Van Someren, M.; and Hollink, V. 2003. Explo-
ration/exploitation in adaptive recommender systems.
Proceedings of Eunite 2003.

[Wang, Kolar, and Srerbo 2016] Wang, J.; Kolar, M.; and
Srerbo, N. 2016. Distributed multi-task learning. In AIS-
TATS.

[Ye, Law, and Gu 2009] Ye, Q.; Law, R.; and Gu, B. 2009.
The impact of online user reviews on hotel room sales. In-
ternational Journal of Hospitality Management 28(1):180—
182.

[Zinkevich 2003] Zinkevich, M. 2003. Online convex pro-

gramming and generalized infinitesimal gradient ascent. In
ICML.

Outine of the Supplement

We start the supplement by introducing properties of the Bregman divergence and additional notation required for the proofs
of the regret bounds. We further introduce two basic propositions and several lemmas. We then provide formal justification
for using weighted projection in the CoOL algorithm, ¢f: Equation (d). Lastly, we provide the proof of the regret bound of the
CoOL algorithm in Theorem[I]and Corollary

Preleminaries
Bregman Divergence
For any strictly convex function R? : R? — R, the Bregman divergence D« between a, b € R? is defined as the difference
between the value of R! at a, and the first-order Taylor expansion of R? around b evaluated at a, i.e.
Dgi(a,b) = R'(a) — R'(b) — VR'(b) - (a — b),
We use the following properties of the Bregman divergence, c¢f. (Rakhlin and Tewari 2009):
* The Bregman divergences is non-negative.
* The Bregman projection R

b = argmin Dg:(a,b)
acs

onto a convex set S exists and is unique.

« For b defined as in the Bregman projection above and u € .S, by the generalized Pythagorean theorem, cf. (Cesa-Bianchi and
Lugosi 2006), the Bregman divergence satisfies

~ o~

DRt(u,b) > DRt(’U,,b) + DRt(b,b).
¢ The three-point equality
Dgt (0,7 b) + Dpt (b, C) = Dpgt (a, C) + (a — b)(VR(C) — VR(b))

follows directly from the definition of the Bregman divergence.

Notation
Throughout the supplement we use 7! = \% and Q' as per Equation (3). Similar to the definition of w?, we also define z?,
TZ

and g* as the concatenation of the task specific feature and gradient vectors, i.e.
/ !/
gt = [(&y) (@) @) gt =[e1) - (g2) - (gk)]

where for all ¢, ' and g are 0 in all positions that do not correspond to task z*. We also use @' to refer to the concatenation
of the updated task specific weights, before any coordination, such that

@t-i-l _ [('wl)/ . .(wzy . '('UJK)/]I.

~t .
where w, = w' for z # 2! and w, = w}, otherwise.

Propositions
In the following we introduce two basic propositions that we need for the proof of Theorem T}

K
Proposition 1. If 7, € RT forallz€ {1...K}, and Y. 7, =T, then
z=1

K
> VT SVTK.

Proof. Extending and applying the Cauchy-Schwarz inequality, we get

Proposition 2. The sum from 3", % is bounded by 2v/T — 1.

Proof.

Lemmas

In this section we introduce the lemmas required for the proof of the regret bounds of the CoOL algorithm. Applying LemmalT]
allows us to replace the loss function with its linearization, similar to (Zinkevich 2003). Lemmas E] and E] allow us to get an
equivalent update procedure, using the Bregman divergence, and Lemma 4] gives a handle on the linearized regret bound, cf.
(Rakhlin and Tewari 2009). Lemma [5] uses the duality gap to upper bound the Bregman divergence between the exact and
approximate projection. Lemmas [] and[7] provide different upper bounds on the Bregman divergence.

Lemma 1. For all t and w' there exists a g' € R? such that ' (w') can be replaced with g* - w, without loss of generality.

Proof. The loss function affects the regret in two ways: First, the loss function’s gradient is used in the update step, and second,

the loss function is used to calculate the regret of the algorithm. Let g¢ = VI'(w?) and consider the linearized loss g° - w.

Using the linearized loss, the behavior of the algorithm remains unchanged, since VI!(w'!) = g!. Further, the regret either
increases or remains unchanged, since the loss function is convex, such that for allu, € S,
I'(u;) > gt - (u, —wl) + 1" (w)).
Rearranging, we get
t t t t t t
l (wz) =1 (uz) ng W, — g, Uz,
such that using a linearized loss, the regret either remains constant or increases. [

Lemma 2. For R'(w) = w'Q'w, the update rule

~i+1 t_ tot
wo =w 1.9
is equivalent to the update rule
@' = argminng’ - w + Dy (w, w').
weERIK
Proof. For the second update rule, inserting R' (w) = %w' Q'w into the definition of the Bregman divergence and setting the

derivative with respect to w evaluated at '™ to zero, we have
~t41
77gt +,wt+ Qt 7,tht =0
Rewriting, using that g* is non-zero only in entries that correspond to 2!, and applying the definitions of Q¢ and 7, we get

@' = w' g (@)

—wt n g
T
t_ bt
O
Lemma 3. For R'(w) = 1w/'Q'w, the update rule
w'™! = argmin Dy (w, "),
weS*
h ~t+1 t t t .
wherew ' =w" — 1.g", is equivalent to the update rule
w't! = argminng’ - w 4+ Dg: (w, w")

wes*

Proof. Applying the definition of R!(w), we can rewrite

w't! = argmin D (w, ')
weS*
1 _ _
= argmin o (1 — w' +19'(Q")) Q"(w —w' +1g"(Q") ")
wes™*

1
= argminng’ - w + = (w — w")'Q" (w — w')
weS* 2

= argminng’ - w + Dy (w, w")
weS*

O

Lemma 4. [fw'™! is the constraint minimizer of the objective ng' - w + Dy (w,w?) as stated in Lemma|3| then for any a in
the solution space,
£ il ¢ t+1 t+1, ¢
19" - (W' — @) < D (a,0') — Dpe(a,0'*) — D (', 0).

Proof. Since w'*! is the constraint minimizer of the objective ng’ -w + Dg: (w,w?), any vector pointing away from w**! into
the solution space has a positive product with the gradient of the objective at w*!, such that
0< (@—w™)-(ng" + VR'(w'™*) - VR'(w'")).
Rewriting and using the three-point equality, we get
ng' - (@) < (a—w't) (VR (w'T) - VR (w'))

= DRt (a7‘u]t) - DRt (a,wt+1) - DRt (wt+1,wt).

Lemma 5. Ifw' ™" is the exact solution of

argmin Dpe (w, ')

weS*
and w'*tt € S* is an approximate solution with duality gap less than &%, then
6t > Dpe (@ wth).
Proof. The duality gap is defined as the difference between the primal and dual value of the solution. The dual value

is upper bounded by the optimal solution and thus less than or equal to Dp: (@t“,ﬁtﬂ). Thus, for the primal solution
Dge(w'+t @'Y with duality gap less than 8%, we have

6' > Dpe(w @' — Dpe(@ ")

Note that '™ is the projection of @' onto $* and w't! € S*. Thus, using the propertiesof the Bregman divergence we can
apply the generalized Pythagorean theorem such that

~t4+1 ~t4+1 ~t+1 ~t+1
Dpe(w™*t ™) > Dpe(w™, @' + Dpe (@' 0"
Inserting into the above inequality we get the result. O

Lemma 6. For R'(w) = 1w/'Q'w and a and b € S,

1
Dri(a,b) < 5 [Smaz” VK
Proof. Using the definition of Q*, noting that ||a. — b.||> < || Simaz||, and applying Propositionwe can write

D (a,b) = %(a —5)/Q'(a—b)

1 K
§Z||az_b2||2 7!
z=1

1 o
by | Smaa |l Z\/Tz
z=1

1
1

IN

IN

Smazl|? VIEK

Lemma 7. For any two a', b* € S,
d 1
> " Dpeva(a,b') — Dpe(a',b') < 3 1S mazll® VTK.
-1

Proof. Applying our definition of R?, we can rewrite

T T
S Dpees (a',b) — Die (',) = %Z V(@ — Q') (a' —b).
t=1
Note that
Terl — Tf 0
Q@ -Q"H =

0 Vi v
152117 < [|Smaz|® we get
%ZZ(W—@) —

- K T

5 ISmacl® Y2 D7 (VAT = /)

z=1t=1

K
= m(JT2Z<\/ Tg—‘rl* \/Tzl
+1 _

N

Applying Propositionand using ||la. — b.||?

T
S Dy |[a’,b']| — Die(a',b)

t=1

| /\

>)
st (S0)
5?35 (V77 - 1)

z=1

K
maa:H (Z 7 \/TZTTH +1- \/TZTT+1 - 1)

z=1

1 2 /
<) | Smazll Z 7
z=1

1
by ||SmazH2 VI'K

mam H

IN

Idea of Weighted Projections
The update in Algorithm [2]line[7|can be equivalently written as

~t+1 _ .t t t
wo =w —n.9.
As shown in Lemma[2] we can rewrite this as
~ 41 .
@'t = argminng’ - w + Dpe (w, wt),
weRIK

using the regularizer R'(w) = w - Q'w
Intuitively, the CoOL algorithm restricts the solution to S*, such that the update can be rewritten as

1 = argminng’ - w + Dp: (w, w")

weS*

w

1
= argminng’ - w + = (w — w") - Q' (w — w")
weS* 2

— arguin 3 (w — ' +1g'(@)) Q'(w — w' +1g' (@) ")
wesS™

1 ~ ~
= argmin - (w — ') - Q' (w — @'™)
weS*

)

which is equal to the weighted projection introduced in Equation (). Using weights defined by some other heuristics could
in general lead to a higher regret. For instance, in Figure we show the increase in regret of the CoOL algorithm, when
setting Q¢ as the identity matrix.

Proof of Theorem 1|

In the following we provide the proof of Theorem [I] using notation and results of the earlier sections of the supplement.
Unlike earlier work (e.g. (Zinkevich 2003} [Rakhlin and Tewari 2009)), in our setting projections are allowed to be noisy and
therefore, the solution may not be a constraint minimizer of the projection. Additionally, in our setting projection may occur
only sporadically, and thus intermediary solutions may not be in S*. To keep track of whether projection occurred, we define
indicator functions and handle the special case of projection at time ¢ without projection at time ¢ — 1 separately.

Proof. Proof of Theorem|T]

Preparation

We define @' as the exact solution of the projection onto S*, such that

' = argmin(w — @') Q' (w —w'™).
weSsS*

Recall that £ is 1 with probability o and 0 with probability (1 — «). The algorithm projects onto S* if £/ = 1 and onto S, if
&' = 0. We define the indicator functions

L1 ire=1
€3~ 1 0 otherwise.

and the inverse

1 1 ifet=0
=€} =1 0 otherwise.
as well as

" 1 if¢t=0and¢t =1
1€ DAEDY T) 0 otherwise.

and the inverse

1 if¢l=1oré =0
Lie-1yv(-eny = { 0 otherwise.

Our goal is to upper bound the regret, which, using Lemma|[I] we can write as

Regretcoor (T Zgzt . Z, —Ut).

Using the definitions above, we rewrite

T

T
dogho(whe—u) =) g" (w' —u)
t=1

t=1

!
!

=Y @ —w Y g -

t=1 t=1

=Y lng' +Zﬂ{ﬂ5t}9)
po

~

T T
+ Y e nveng' - (@ =)+ Y e aeng’ - (' -,

t=1 t=1

and further upper bound each sum individually.

Throughout the proof, we use the Bregman divergence with the regularizer R! (w) = %w’ Q'w, and apply Lemmas [2|and
to get an equivalent update procedure.

Step 1: First sum
Applying Lemma@with @' as the constraint minimizer of the objective 79" - w + D g (w, w') and u € S*, we have
ng' - (@ —u) < Dpe(u,w) — Dpe(u, @) — De (@', w?).

Summing over time,

T
UZ]l{ft}gt . (’QTI
t=1

{ff (DRf(u w) DRt(H_l) — DRt (@t+1,wt)>

M= HMH

(]l{gt+1}DRt+1 (u,th) -]1{5t}DRt (u,’L/l.\Jt-i_l) -]l{gt,}DRt (’l/l\]t+1,wt)>

+
=

{¢ 1}DR1 (’U, w) -]1{£T+1}DRT+1('U,,‘1UT+1)

MH

({£t+1}DRt+1 (u w) — 1{£t}DRt(U w" t+1))

-+

ﬂ{sf}(DRt(uw ') = Dr:(u, t“))

~
Il
-

+]].{EI}DRI (u,wl).

In the following, we upper bound each term individually. For now we leave the first term unchanged and provide an upper
bound in step 3 by combining it with the results of step 2.

For the second term, we use that for our choice of R, the square root of the Bregman divergence is a norm and therefore
satisfies the triangle inequality. Thus,

/Dpe (u, w1 < \/DRt(&) + \/D @' wt+),

Squaring both sides, we have

Dpe (’U,, wt“) < Dgt (u,@tJrl) + Dpt ('I/I\)tJrl,’th'—l) + 2\/DRt (@t+17wt+1)DRt (’u,7 ’lT)t+1).
Applying Lemmas[5]and 6] we get
Dge(u,w™Y) — Dge(u, @) < 68 + V25L(#K) Y4 || S | -

For the third term, using that @' is 1 in exactly one position, we have

1 2
}5 ||Smaac|| .

Combining and dividing by 7, we get the upper bound for the first sum

L1y Dpe (u,wl) <la

Z]l{gt}g t+1 u) S - Z]l{gtJrl}DRtJrl(’I.UHI) —]l{gt}DRt (u,wt“)
t 1

i %Z Lery (0% + V2T (EE) Y |)

t=1

1 2
— ey [Smazll” -
+ o 1€ [|

Step 2: Second sum
Similar to step 1, we get

T
nz]]-{ﬁft}gt . ('{1\) S Z ﬂ{ﬁgt-f—l}DRf-H(’u, 'UJ) _]l{ﬁgi}DRt(U,’wt—"_l))
= t=1

T
+Z]l (—¢t} (DRf w,w'™) — Dpe(u, th))
t=1

+]].{ﬁgl}DRl (u,'w).

Asin step 1, we leave the first term unchanged. For the second term, note that w!*? is not project onto S*, and thus o' = w

for all ¢, such that
T

Z]l{ﬂgt} (DRt (’U,,’U)H_) DRt (u ’thrl)) =0.
t=1
For the third term, similar to step 1, we have

1 2
]l{_,ﬁl}DRl (’u,wl) <]l{ﬂgl}i HSmruH .

Combining, we get the upper bound for the second sum
T 1 I
Z ﬂ{ﬁgt}gt . (’lT)t+1 - ’U,) < HZ]1{_|5L+1}D3t+1 (u,wtﬂ) -]l{ﬁft}DRt (’LL, ’I.Ut+1)
= t=1
+ -ty [maal®
2 {=¢'} lIPmazll -

Step 3: Combination of steps 1 and 2
Note that]].{Et} +]l{ﬁgt} = 1 for all t. Thus, the first terms of step 1 and 2 sum to

1
- Z Dpei (w,w'™) — Dge(w,w'™1).
Using Lemma([7] we get
1« 1
=Y " Dpeni (w,w'™) = Dpe(u,w'™) < [[Spaal|* VTK.
ni= 2n
Summing the remaining terms and again noting that 1 ¢+) +1{_¢t:y = 1, we get the upper bound for the first and second sum

@ 1 1
Zg @) < o S maal” VTE + o (S|
n n

T
1 f—
+ H Zﬂ{ft} <5t + 25t(tK)1/4 HSmaacH) :
t=1

Step 4: Third sum

To upper bound ZtT:I Li(et—1)y(-g)g" - (w' —w
Bellman 2012)) to get

t+1) we start by using Holder’s inequality (see for example (Beckenbach and

~ i1
gt (w' — wthat+1 wt — o't ’ 7

Qt

) < lg'llo:
where .
lg'llg: = maxz-g": lellg <1

~t+1 H 1

For the norm Hwlt —w as the constraint minimizer of the objective ng’ - w +

, we applya Lemma 4 with @'t
Dpe(w,w') with w! € S*. Using the symmetry of the Bregman divergence for our choice of R?,

ng' - (@ —w') < —2Dp (w0

and thus

. 1 .
Dge (@ w') < 5’79t (w' -,

tJrl) 1

1 t i+l

Note that D gt (w?, w w HQ and thus,
t

2
ot - @ HQ <ng'- (w' — '),
Using Holder’s inequality on the right side of the inequality, we get

o' —w"Hlg. < llg'llg

Therefore,

g - (w

We now apply the definition of the dual norm to rewrite ||g* ||Zzt Note that g* is non-zero only in position z* and thus

)

9"l = masa 9" Jallgu <1

1/2
= maxz..g (szt% W;) <1
ot

1

< -
= —1/2

= maxz.g5: : ||z,
Tt Tt

1

ﬁ1/2
z

< max [zl (gt |, : llwae], <

The maximum is achieved at |2+ ||, =

W

Thus,
1

| Rl

Inserting, summing, and using Propositions|l|and[2} we get the upper bound for the third sum,

'llge = llgzell,

T T K
t t tH1)
D Lev-eng’ (W' —w ZZngHQ
t=1 t=1 2—1
K T 1
2
<7 Z > gl —=
z=1t=1 TZ
K
203 lo- (vor-1)
K
2
< 27 |gmaz|l Z <\/ = 1)
z=1
2 2
< 27 [|gmaz | VT'K = 21 ||gmaz ||~ K
Step 5: Fourth sum
For the fourth sum we use that . 1
g (W' —w) =gl (Wl —w).
Using the Cauchy-Schwarz inequality, we get
t+1 ~t+l
gl - (Wl — @) < [lgt], |wls — @t

< 1Smazll |gmaz |l
Thus,

M=

T
Y Leaeng’ - @ =) < Ticeaen 1Smasll 1gmasll -

t=1 t

1

Step 6: Combination
Adding the results from steps 1 to 5, we get the result

Zg (' —u <f||smamu VTK + 201 || gmas|* VTK

T
+ 3 Tycerm1yaceny 1Smaal gmasll

t=1
4= Z]l{gf <5t + V280 ()M ||Smm||)
t 1

+ ? HSmax||2 —2n ||gmaarH2 K.
n

Proof of Corollary [1]

By plugging in specific algorithmic parameters into Theorem|[T|we can get more concrete regret bounds on the CoOL algorithm.
We provide no-regret bounds for the parametric choices of sporadic and approximate projection, and note that similar no-regret
bounds can also be achieved for different parameters.

Proof of Corollary[l} Inserting n = % HS’"”J'I into the results of Theoreml taking the expected value over £!, and using that
K > 1, we get
T
E th) (wt _u)] < 2VTK [|Simaz || |gmaz|
t=1

—+ a(l — Oé)T ||SmaxH ||gmaa:H

T
gmam /
+ 20 ||||S |||| Z (6t + 26t(tK)1/4 ||Smaz||) .
max t=1

For the third term, sing 6* = (1 — ﬂ)Q‘/—E | Simaz||* Where cg >0, 8 €[0,1], then

K
(St + \/ﬁ(tK)l/él ||Smaa:|| = C,@(l — ﬁ)QT Hsma:v||2 + (1 - B)mﬁnsmam‘ﬁ

< Cﬂ(l -)\/>||SmaxH \/ 2c \/>H5mcw||
=(1- Cﬂ + \/ﬂ HSmam”)

and, using Proposition 2] for the sum,

T
376+ V2 ()Y [Sac | < a1l — BTVE (c5 + /265) [1Smac

t=1
Inserting o = CTQT where ¢,, € [0, \/T], we get
T
E th ’ (wt _'u')‘| < 2VTK [|Smaz || |gmaz|
t=1

Ca
+ \/TC 1-— Smuw max
(175 WSl g
+ QFCQ Cﬁ + \/f 1- HSmax” ||gma93||

	Introduction
	Our Contributions

	Preliminaries
	Methodology
	Single Pair of Items
	Multiple Pairs of Items
	Structural Information

	Learning with Structural Information
	Specifying Structure via Convex Constraints
	Our Algorithm

	Performance Guarantees and Analysis
	General Bounds
	Sporadic/Approximate Projection Bounds
	Performance Analysis for Hememtric Structure

	Airbnb Case Study
	Experimental Setup
	Main Results

	Related Work
	Conclusions and Future Work
	Acknowledgments

	Outine of the Supplement
	Preleminaries
	Bregman Divergence
	Notation

	Propositions
	Lemmas
	Idea of Weighted Projections
	Proof of Theorem 1
	Proof of Corollary 1

