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Abstract

It is demonstrated that artificial neural networks can be used to accurately and efficiently
predict details of the magnetic topology at the plasma edge of the Wendelstein 7-X stellarator,
based on simulated as well as measured heat load patterns onto plasma-facing components
observed with infrared cameras. The connection between heat load patterns and the magnetic
topology is a challenging regression problem, but one that suits artificial neural networks
well. The use of a neural network makes it feasible to analyze and control the plasma exhaust
in real-time, an important goal for Wendelstein 7-X, and for magnetic confinement fusion
research in general.



1 Introduction

Wendelstein 7-X (W7-X) is a pioneering exper-
iment of the latest generation of optimized stel-
larators , . It aims to demonstrate steady
state capability of the confinement concept
with plasma parameters near those required in
an energy-producing fusion reactor [3} 4], and
to demonstrate the steady-state capabilities of
stellarators also at these parameters. The ex-
periment started operation (Operation Phase
1.1, OP1.1) in 2015 [5], has started its next op-
eration phase (OP1.2) in 2017, and will, when
the water-cooled plasma-facing components
have been fully installed in operation phase
2 (OP2), have discharge times of 30 min with
continuous injected power of up to 10 MW.
This discharge duration is about an order of
magnitude longer than the longest characteris-
tic time scale of the plasma, which is the one
on which the net toroidal current, I, evolves.
The dominant contributor to I, is the boot-
strap current I,s, and the time evolution of
I, can be approximated as: Iio, = Iy - e~ 7
with L/R-time 7 being the L/R time scale, of
order 1 min for high-performance plasmas.
On these time scales, power exhaust is an im-
portant issue. Ten specially designed discrete
island divertor modules []E[l take the major part
of heat flux that passes the Last Closed Mag-
netic Surface (LCMS), which defines the edge
of the confined plasma. The actively cooled
divertors, necessary for OP2, are designed to
sustain local power loads up to 10 MW /m?.
Other first wall components, however, can
only be loaded with a fraction of this heat
flux, e.g. the less cooled divertor edge with-
stands roughly 3 MW /m? [7,[8]. Overloading
the divertors implies a risk of delamination,
water leaks (cf. [9, [10]) and impurity buildup,
partially as a consequence of the first two, and
must therefore be avoided.

To ensure the safety of the first wall, in partic-
ular the divertor, and to protect the plasma
from impurities, real-time control is highly
desirable, in particular for steady-state oper-
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(a) Divertor setup with cutaways in modules one
and three as used in OP1.2 and afterwards.
Depicted are only two of the 10 divertors and
the associated IRCAMS. Module one only re-
veals the top divertor while module three shows
the bottom divertor.
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(b) Limiter setup with cutaways in modules three
and five as used in OP1.1. On this scale and
view, the limiters are small (green).

Figure 1: Top-down CAD wviews of the W7-X
inner vessel, showing sight lines of the
IR camera systems in the two differing
setups.
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Figure 2: Side view of the W7-X limiter in mod-
ule 5 after OP1.1

ation. An important part of such a real-time
control system would be one that optimizes
elements of the divertor operation, such as
pumping performance and detachment. We
aim to develop and ultimately implement such
a feedback controller in the device operation
system.

The most important sensor system for this
control loop will be ten endoscopes that will
allow IR and visible observation of the ten
divertor units. Prototypes of these will be
in operation in the now running intermediate
operation phase OP1.2, each observing one
divertor [11] (cf. Figure [la). In OP1.1 five
graphite limiters were placed vertically in the
bean shaped cross section of the plasma ves-
sel (cf. Figure . In the confinement region,
the magnetic field lines form nested toroidal
surfaces that are not intersected by material
objects. The aforementioned LCMS marks
the transition to the exhaust region, called the
Scrape-Off Layer (SOL) which is characterized
by field lines that do intersect material objects,
the Plasma-Facing Components (PFCs). The
plasma enters the SOL through diffusive and
convective transport processes perpendicular
to the magnetic field, and then enters and pop-
ulates the SOL field lines. These guide the
outflowing plasma heat and particles to the
PFCs. A common term for the shape- and in-
tensity distribution of the resulting heat load
pattern on the PFCs is “strike line” since it is

usually highly elongated. A complex interplay
of component shape, magnetic field structure,
cross- and parallel field transport results in
the strike lines observed.

The IR camera views of the strike-line pat-
terns have a complicated relationship with
the magnetic topology and the transport pro-
cesses in the plasma and the main task for
such a feedback system is the abstraction and
real time processing of these camera images
which are being recorded at frame rates of
50Hz. Artificial Neural Networks (NN, see
Section have significantly improved in the
last ten years and should be well suited for
this task.

A machine learning approach for real time
control is an active object of research in the
nuclear fusion community for several different
tasks [12H14].

The first step towards the ambitious goal of
controlling the plasma divertor operation for
W7-X in real-time is presented here: the train-
ing of NNs to reconstruct the edge magnetic
topology from IR camera observations of the
strike-lines.

So far, IR picture series are available from
OP1.1 discharges only (cf. Section [2.4.1)), with
OP1.2 barely started at the time of writing
this paper. With a very limited set of different
magnetic configurations, these experimental
data available is no solid basis for a NN train-
ing set. To alleviate this problem, simulated
strike lines function as NN training set data,
and the performance of the NN is verified with
experimental data. Since in OP1.1 no divertor
was installed only the aforementioned limiters,
this study is done entirely with the OP1.1
limiter geometry and associated magnetic con-
figurations.

The limiters are centered on planes with up-
down symmetry, which reduces the geometric
complexity of the strike line. Complexity of
the intersection between magnetic field and
limiter is moreover minimized by limiter de-
sign. These two factors restrain the limiter
strike line variability to a fraction of the di-
vertor strike line. Because of this, the mag-
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netic configuration reconstruction from limiter
strike lines is expected to be much less accu-
rate than that of more variable divertor strike
lines.

The relevant information regarding the used
NN architecture, W7-X, training data creation
and NN input pre-processing are given in Sec-
tion [2] In Section [3 we present the results of
the challenging magnetic field reconstructior

from limiter strike lines, which give reason fo

optimism with respect to future performance

in a divertor geometry.

2 Methods

2.1 Artificial Neural Network

Machine learning tackles the question "How
can we build computer systems that automat-
ically improve with experience, and what are
the fundamental laws that govern all learning
processes?" as stated by Tom Mitchel in [15].
Artificial Neural Networks are an approach
to solving machine learning problems. This
capability allows them to reproduce the behav-
ior of unknown, complicated functions from
many examples instead of explicitly program-
ming the function traditionally. The NNs used
to predict the magnetic configuration are all
based on ideas from 1975, when the method of
backpropagation for NNs was introduced [16].
Such a NN depends on numerous parameters
that are optimized in a so-called training pro-
cess. In the previous decades NNs were not as
popular as they have now become, especially
because the parameter convergence during the
training turned out to be slow and the amount
of training data was small. Recently NNs are
used more frequently because of newly devel-
oped network architectures |17, [1§], the im-
provement of NN training algorithms |19} 20|,
increased computer performance 21| and open
source NN libraries |22, 23].

A simple NN is based on fully connected lay-

ers (see Figure , where an input vector 7 is
linearly transformed, followed by an element
wise non-linearity ¢, usually referred to as ac-
tivation function (see Figure [3|) such that
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Figure 3: Activation functions

represents one layer. The free parameters W
and b define the linear transformation. The
activation function mimics the transmission
of action potential in physiological neurons,
which only create a signal if a certain thresh-
old potential is reached. It is crucial to choose
¢ so that it is smooth and differentiable almost
everywhere to allow an efficient gradient-based
optimization. A NN consists of multiple of
such or more complex layers where the output
of one layer is treated as the input of the fol-
lowing one.

A more complex layer is the so-called convolu-
tional layer [24], which has been developed to
recognize patterns independent of the location
by applying the same linear transformation on
multiple smaller subsets of the input. Another
positive effect is the reduction of free param-
eters, which decreases the risk of overfitting
[25]. Convolutional layers (see Figure are
used particularly frequently in image pattern
recognition. For example the AlexNet archi-
tecture 26|, which successfully won the 2012
ImageNet challenge [27], consists of several
such layers. Most more complex layer struc-
tures, that are not recurrent, are based on the
concept of convolutional layers.

The free parameters are arranged in the vector
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Figure 4: Schematic representation of neural
network layer architectures
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Figure 5: The used neural network architecture
with two convolutional layers and two
fully connected layers

0. To train the NN, the error

E(6) = i (@ d-u=). @

1=

defined as the sum of squared differences be-
tween all NN result values y(&, 6) with inputs
7; and target values ;%" of the correspond-
ing set with set size N, is minimized with
respect to all free parameters. By calculating
WE , the gradient of the error with respect to
57 efficient gradient based minimization algo-
rithms can be used. The basic approach is the
gradient descent

01 = 0; — \VE (3)

with step size A. This algorithm starts with an
initial 50 and calculates new §i+1 with every
iteration.

The data set is separated in training, valida-
tion and test sets. Weights are adjusted with
the training set only. Training terminates if
the error on the validation set reaches a mini-
mum. Once the NN training stops, the gener-
alization quality is checked on the independent
test set. To increase the rate of convergence,
this method has been improved by the stochas-
tic gradient descent where the error gradient is
not calculated for all training sets but only for
a stochastic selection, the mini-batch. After
each mini-batch 0 is updated. Other improve-
ments focus on the choice of 8, [28] or the step
size \, where, instead of a constant value, an
adaptive method depending on the previous A
and the derivative VjE, such as AdaGrad [19)
and Adam [20], determines the update rule.
Though in the W7-X experiment IR cameras
will monitor the vessel wall temperature, the
input for the used NN is not an image, but
characteristics extracted from it, as further
explained in Section [2.4.3] Experimental data
is scarce so the main data set is based on
simulations (see Section . The network
structure (see Figure [5)) consists of two 1D
convolutional layers followed by two fully con-
nected layers. This choice is based on the
better performance as compared to fully con-
nected layer based NNs. The convolutional
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layers consist of 12 and 24 feature maps respec-
tively, the first fully connected layer consists
of 96 neurons. The last layer in this NN leads
to the target value.

The network is trained with the Adam opti-
mizer and the recommended parameters. A
dropout [29] of 0.5 is applied during the train-
ing. The weights are initialized by a normal
distribution with standard deviation 0.5 and
0.1 for the first three layers and the last layer
respectively. The activation functions as intro-
duced in Figure are Rectified Linear Units
(ReLU) in the convolutional layers. In the first
fully connected layer the logistic function has
been is chosen as activation function. Before
the first layer, the NN input is linearly trans-
formed in such a way, that the training set
input has mean 0 and standard deviation 1 to
improve convergence. The simulated data set
has a size of 3993 and the experimental data
set has a size of 319 cf. Table 2] The training
set is nine times larger than the validation set
while the test set size depends on the respec-
tive experiment.

The NN quality is evaluated by the root-mean-
square error (rmse), defined as

£(9)

rmse = \| —~*%. (4)

N

2.2 W7-X Coil System

Toroidal magnetic confinement devices need
a rotational transform 7 to compensate for
magnetic drifts which would otherwise cause
charge separation. 7 is defined as

]OI' -
i =c- é +ior, (5)
where . V()
r
Ior - 'or ! d !
o= [ ) (6

is the toroidal current enclosed by the mag-
netic surface at . © = [ VyBdV represents
the toroidal magnetic flux. ¢ denotes a con-
stant that depends on the machine coil cur-
rents. Iop is the current free part of 7, only

occurring in stellarators and as well depending
on the coil geometry and currents [30].

The W7-X coil system is shown in Figure [6al
The magnetic coil system consists of five iden-
tical modules each of which is point symmetric
towards the module center, creating a five-fold
symmetry in the magnetic field (cf. Figure .
Each half module consists of five different non-
planar and two planar coils, depicted in red
and blue. The modular coils are used to con-
fine the plasma. The planar coils provide fur-
ther variability of the magnetic field.

The modular and planar coils consist of 108
and 36 windings respectively. For convenience
and clearness, we indicate the corresponding
coil currents Iy, ..., I5 and I5, Iz in terms of
coil currents that would yield the same mag-
netic field with one winding only:

TNy * Ix,true

Ve € {1,2,...,5, A, B}, where the nominal
current [, is defined such, that all I, are di-
mensionless. I ;e is the current that is actu-
ally applied to the coils and n,, denotes the
number of windings per coil. This follows the
convention used in [32].

The parameter space spanned by the coil cur-
rents is six-dimensional since the effects of the
magnetic field strength are negligible.

2.3 Parameter Space Choice

The strike line is mainly influenced by the
topology of the magnetic field B at the edge.
The topology of Bistoa large degree deter-
mined by the rotational transform i (cf. Sec-
tion [2.2)), which is a measure of how much a
field line moves poloidally for one full toroidal
turn. In stellarators, i is primarily determined
by the currents in the magnetic coils rather
than those running inside the plasma. We re-
fer to this plasma-current free contribution as
lor- U is heavily dependent on the values of I
and Ig. If I + Ig < 0, 7 is increased and vice
versa. Plasma currents can similarly change
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(a) All 50 modular (blue) and 20 planar coils

(black)
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(b) Coils contained in one module with modular
coils 1 =5 (red) and planar coils A, B (blue).
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Figure 6: Overview of the W7-X main coil sys-
tem

¢ but these plasma effects can be effectively
mimicked by adjusting coil currents [31]. In
particular, the i changes due to plasma cur-
rents are roughly equivalent to changes caused
by the currents I, and Ig in the planar coil
systems. While it is complicated and compu-
tationally intensive to calculate the plasma
currents that change i, it is straight-forward
to calculate the essentially equivalent changes
in ¢ caused by I, and [Ig. For this reason,
the NNs are trained to reconstruct the sum of
the modular currents /5 and Ig of an i-scan
rather than reconstructing the toroidal plasma
current.

Table 1: Planar currents In and Iy of OP1.1
t-scan experiment and simulation. The
number of distinct configurations in the
scan is labeled “# configs”.

Ia Iy # configs
experiment 0.13  [0.00,0.13] 6
simulation  0.13  [—0.05,0.18] 1001

On 2016/03/09 several experiments were con-
ducted, where a modest i-scan was made (see
e.g. [p]). Iy was varied from its standard
OP1.1 normalized value of 0.13 (correspond-
ing to 5kA per turn), down to 0 while I
was kept constant at 0.13. Strike lines from
this experiment were also simulated(cf.
with a much closer spacing than that obtained
with actual OP1.1 plasmas. The simulated
data also extends this range by 0.05 in both
directions. Table [ lists the normalized cur-
rents of this experiment as well as those of the
simulations.

2.4 Data Set Creation

In the following we discuss all steps necessary
for the generation of NN training data. First
the experimental IR data processing is dis-
cussed. Subsequently the process of strike line
simulation is described. For several reasons, a
post processing applied to both experimental
and synthetic data is necessary before the data
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Figure 7: Selection of eight frames from the
DIAS diagnostic, recorded during dis-
charge “20160509.007” at Iy = 0.13
in heat flux representation. The cho-
sen frames (respective frame numbers
written below) display the plasma build
up and break down. For this exper-
iment, a stable plasma-wall interac-
tion occures from frame 18 till 34.
The frames depicted only show that
half of the limiter which was observed
by the camera. For a comparison
of strike lines at different Ig, one
frame from discharge “20160309.035”
(Iz = 0.00) is shown on the right.

can be used as a NN input. This is elaborated

in Section 2.4.3]

2.4.1 IR Data Processing

The OP1.1 i-scan covers Iy specified in Ta-
ble 2] As mentioned above, two IR cameras
where installed in OP1.1 (cf. Figure [Ib]). One
long-wavelength (8 - 14 um) p-Bolometer cam-
era from the company DIAS, able to operate
in a 3'T magnetic field and a mid-wavelength
(3-5pm) CCD chip camera from the company
FLIR. Both observe only parts of the limiter
while other parts are shadowed (obstructed
views). The FLIR camera observes only the
center of the limiter. The DIAS camera faces
a full side of module 5 limiter (see Figure [84)).

(a) DIAS IR
temperature data

Figure 8: Pseudo-color

Table 2:

camera (b) Limiter heat flux
density correspond-
ing to Figure[8d in
three dimensions

display  of  raw
and processed data of discharge
“20160309.007”

Summary of available DIAS data for
OP1.1 i-scan from 2016/03/09. All
modular coil currents were equal, that
is Iy,---,Is = 1. Ip = 0.1300 for all
experiments of that day. Iy is given
in the first column. The following col-
umn gives the number of discharges
where reliable IR data were available.
The column labeled “# frames” denotes
the total number of frames with stable
plasma-wall interaction, i.e. durable
strike line.

I # discharges # frames
0.1300 3 52
0.1083 2 35
0.0867 2 42
0.0433 2 40
0.0217 2 29
0.0000 5 121
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Since the limiter strikeline is expected to be
symmetric about the center of the limiter, ob-
serving one side of the limiter is sufficient to
infer the full strike line. Thus we focus on the
DIAS camera as an input.

Each IR video is processed in several steps to
obtain the heat flux ¢ (in W/m?) [33].

Mapping 2D to 3D In order to account for
geometry effects, the sequence of such
IR pictures is mapped onto the 3D CAD
model of the limiter [34]. Result of this
procedure is a 3D temperature map, as-
suming the surface to behave like a perfect
black body with an emissivity of 1.

Emissivity correction In reality, the emis-
sivity of graphite is smaller than 1. Fur-
thermore, over the three months of OP1.1
the emissivity of the limiter tiles became
nonuniform. This effect was explained
in terms of surface layer depositions cre-
ated during plasma operation [35], was
quantified, and the data were corrected
accordingly, yielding absolutely calibrated
surface temperatures of the limiter as a
function of time.

Heat flux This surface temperature is the
result of the heat capacity and heat con-
ductivity of the graphite combined with
the time-history of the incident heat flux
on the carefully shaped limiter surface.
The THEODOR (THermal Energy Onto
DivertOR) algorithm [36] utilizes the
temperature-dependent material proper-
ties and the measured time-dependent
temperatures to deduce the heat fluxes.
This typically reveals a pair of strikelines
on either side of the limiter, one of which
is the subject of this analysis.

Interpolation As a last step, we interpolate
the resulting discrete heat flux map to
retrieve a continuous heat flux distribu-
tion on the limiter surface as shown in

figures [7] and [8b]

Dark frames are removed. Furthermore, the
plasma build up and break down is discarded

o W s Wy P

=t

X
ﬁ
-

(a) Heat load,
sented by
point density from
a field line diffusion
process

repre-(b) DIAS camera data

strike with mnine regions

defined for the NN
input (enclosed by
red lines) and p(F)
(black crosses)

Figure 9: Front views of heat load representa-
tions on limiter in module 5 at dis-
charge “20160309.007".

(see Figure . The remaining frames i. e. time
spans of stable plasma-limiter contact, serve
as the basis for further processing.

2.4.2 Strike Line Simulation

The size of the training data set strongly deter-
mines the performance of the NN after it has
been trained. Since the amount of data for lim-
iter operation is low, especially for the OP1.1
subset of the i-scan (cf. Table [1)), the data set
is complemented by simulated strike lines. For
the proof of principle, we make use of several
approximations, described below. The input
creation can be broken down into sequential
parts.

B creation A fast algorithm based on the
Biot—Savart law generates B from the

W7-X coil currents. [-effects like Pfirsch-
Schliiter currents can be neglected since
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the discharge (g are small yet, where
b= % is the ratio of thermal to mag-
netic pressure. The coil geometry used
was created by modifying the ideal coil set,
taking into account preload and electro-
magnetic forces as well as dead weight
cool down at modular coil currents of
6 kA and planar coil currents of 2.3kA
each [37].

Field line diffusion The approach to sim-
ulate particles and heat transport from
the plasma core to the edge is as follows:
Pseudo-randomly distributed particles are
generated on the LCMS, assuming that
the energy flux across the LCMS is uni-
form on the surface. Then particles fol-
low their field lines, taking small random
steps perpendicular to the field to sim-
ulate cross-field diffusion. If a particle
trace intersects a material component the
trajectory is stopped and the particle is
registered as having hit the surface of the
object through which the particle entered
the object. The algorithm is described
in more detail in [38], and it neglects
the effects of magnetic drifts. The rele-
vant parameters for the diffusion process
are perpendicular diffusion coefficient D |,
collisional mean free path \ and velocity
v. Values assumed for these constants
are D; = 1m?/s, A = 0.1m and four
different values for v between 1.4 x 10°
and 2.8 x 10°m/s. They are empirically
justified in |31, Chapter 3.3|. A number
of 8000 diffusion traces proved to be fast
as well as robust in terms of strike line
characteristics.

DIAS emulation The strike zone is typi-
cally two strike lines, one on either side of
the limiter. As only one side is fully cov-
ered by the DIAS view, the field diffusion
points on the far side are mirrored (with
stellarator symmetry: © — —x, 2 — —2)
to that side. The simulation procedure
described above provides the strike line
heat load, represented by the strike point

density (e.g. Figure [9al).

2.4.3 Strike Line Partitioning

To make the NN robust towards noise, aver-
aging quantities are extracted from the strike
line and serve as input.

The raw simulation and experiment data are
significantly different because simplifying as-
sumptions were made in the simulation (cf.
Section [2.4.2). NNs trained on synthetic data
but applied to reality may perform poorly.
This problem is known in the machine learn-
ing community [39, Chapter 2.3.3|.

In the following, processing steps are described
to transform the simulated and experimental
data sets in such a way that the NN can hardly
distinguish them. The 80 % quantile is applied
to the IR data as the threshold limit ¢, for
the local heat load. For each triangle ¢ on
the CAD triangulated limiter, this threshold
is implemented by setting ¢; = 0 for ¢; < gtn,-
Each data set is split into nine regions, roughly
following the natural geometry of the nine
limiter tiles as shown in Figure [9b] For each
of those nine regions, we compute the center
of mass of the heat flux

n

1

= e > A 3

S A 2 0 ®
with n triangles per section, where each trian-
gle i has the properties centroid £;, area A;
and heat flux g;.

The NN inputs are

Aji = i~ fiet (9)

with fief = fi(Ig = 0), separately for experi-
ment and simulation. This processing is intro-
duced in order to be independent of the origin
of the coordinate system in each region and
diminish the offset between the two data sets.

As an example, Figure [10| depicts all three spa-
tial components of i = (i, fiy, )" for the
section corresponding to tile 4. Ay, and Ay,
show a similar behavior, except for a constant
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Figure 10: The images show three different NN
inputs depending on the planar coil
current. The data presented in each
graph are training set (blue), valida-
tion set (green) which are both based
on simulations, and the experimen-
tal test set (red). The training and
validation set are based on four dif-
ferent field line diffusion velocities
to illustrate different collisionalities

(cf. Section[2.4.3) which leads to dis-

tinguishable curves.

scaling factor. Since the NN will rescale the in-
put to a standard deviation of 1 (cf. 2.1]), this
factor vanishes. Thus only Ap, and Ap, are
given to the NN. As expected, we observe sys-
tematic differences between simulation and ex-
periment. For example, Ay, is slightly above
the mean simulation result for Iy < 0.05 while
it is below the simulation trend for the other
half.

The variability of Aji stems from the ran-
dom processes and different velocities used
for field line diffusion simulation described in

Section 2.4.2]

3 Results

In the following, we present the results of the
Iz prediction. They were created with the
same input parametrization (cf. Section
and NN architecture (see Section [2.1).

3.1 IR Data

A NN is trained and tested on all available
IR data from the OP1.1 i-scan. This means
in particular, only six different Iy values are
available for training, validation and testing.
Figure shows Ig, reconstructed from the
strike line, in dependence of the actual target
value of Igz. Here, as well as in all following
figures, the NN wvalidation is displayed by
means of red circles. The independent test
sets are depicted in terms of blue triangles.
In case of an optimal reconstruction, target
and NN output turn out equal, indicated by
the dashed line. It can be seen that the NN is
able to reconstruct Iy sufficiently well, since
the points for the test set scatter closely and
symmetrically around the target [g. This is
quantified by a rmse of only 0.010 for the
validation as well as the test set. Because
only six different magnetic configurations are
available here, the NN is not expected to
perform well for the interpolation between the
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Figure 11: NN performance, on IR data only.
Red circles represent the validation
set while blue triangles identify mem-
bers of the test set.

given currents. This can be seen in Figure[124]
where rmse for validation is 0.016 and 0.023
for the test set which is 40 % larger. As one
might expect, the rmse for extrapolation
differs by more almost one order of magnitude,
namely 0.007 for validation and 0.047 for the
test set. Figure shows this behavior.

3.2 Combination of IR and Syn-
thetic Data

To obtain a sufficient amount of training data,
we simulate the limiter i-scan described in
Section [2.3] As with the previous result on
experimental data, Iz is well reconstructed
by a NN, trained with simulated data leading
to an rmse of 0.014 in both validation and
test set. Additionally, the NN trained with
synthetic data can now be tested with IR data,
i.e. in the process of training, the NN was
never exposed to any subset of this test set,
neither implicitly (validation set) nor explicitly
(training set).

The test is performed with all DIAS frames
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(a) Interpolation performance, demonstrated by
training and validating with five out of the six
Iy, and testing on the remaining Iy = 0.04
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(b) Eztrapolation performance, demonstrated by
training and validating with the lowest four
out of the siz Iy, and testing on the remaining
two Ig values

Figure 12: NN performance on IR data corre-
sponding to Figure [11. Red circles
represent the validation set while blue
triangles identify members of the test
set.
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given in Table [l The green squares in Fig-
ure show the performance for this data set.
The experimental data follow the trend of the
dashed line with an rmse of 0.029. We observe
a small but clear and systematic underestima-
tion of Iy of —0.026 £ 0.001 on average; this
causes the larger rmse as compared to the
validation set. The reason for this offset is not
yet clear to us but is under investigation.
Though the test set does not perform as well as
the validation set, the performance can already
be considered a success, considering the rela-
tively small discrepancies and the complexity
of the problem (cf. Section [2.4.3).

We examine now whether training with a sub-
set of experimental data improves the NN per-
formance for such experimental data with no
corresponding target [y in neither training nor
validation set. The only change as compared
to Figure is introduced by adding all IR
data with target Iy below 0.1 to the training
and validation set. This way, the NN should
learn to neglect systematic differences between
simulation and experiment. The discrepancy
is significantly reduced as compared to the
only simulation trained NN, quantified by an
rmse of 0.023. Still, the reconstruction under-
estimates Ip.

Note that the validation rmse of 0.013 for this
NN is similar to that of the NN presented in
Figure [I3a] although it is trained with a mix-
ture of experimental and simulated data. In
Section [3.1] we demonstrated the poor inter-
polation as well as extrapolation ability of the
NN with few target Is. The NN presented here
clearly outperforms the extrapolation result
discussed in Section B.11

4 Conclusion

It was shown here that neural networks are
capable of reconstructing the magnetic configu-
ration in terms of its 7 value, with experimental
observations of limiter heat loads performed
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«  Simulation (Test) /
Experiment (Test)
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=)
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Neural Network reconstructed Ip
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—0.05  0.00 0.05 0.10 0.15 0.20
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(a) NN trained on simulation and tested with sim-
ulated and experimental data

0.20
o Simulation and Experiment e
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(b) Training and validation set are supported by
the full experimental data set with lower 2/3
of Iz to improve the reconstruction perfor-
mance of the NN extrapolating towards upper
1/3 of Is.

Figure 13: Performance of NN based on sim-
ulation data. Red circles represent
the validation set while blue triangles
and green squares identify members
of the test set.
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during an i-scan during the first experimental
phase of Wendelstein 7-X. The NNs operated
on real IR as well as simulated data. The NNs
trained on simulated data can reconstruct con-
figurations from IR data with sufficient accu-
racy. An even better performance is reached
when the NN training set is based on a combi-
nation of simulated and parts of the IR data.
It is expected that this approach will lead to
a capability of extracting key physics parame-
ters (of which 7 is perhaps the most important)
in real-time in future divertor operation, based
on IR camera data and possibly other diagnos-
tic signals as well. Such a system would play
a major role in a real-time divertor operation
control system on Wendelstein 7-X.

Further improvements in the ensemble of NN
architecture and the data parametrization are
subjects of ongoing work. In the upcoming
OP1.2 with installed divertors we plan experi-
ments with iota scans and non-negligible Ii,.
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