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Abstract.
We present the component structure of the superconformal gravity invariants in six

dimensions, which was recently elaborated in arXiv:1701.08163.

1. Introduction
Conformal gravity invariants appear in the study of conformal field theories on an arbitrary
curved background in even spacetime dimensions, where they correspond to certain conformal
anomalies. The conformal anomalies express the tracelessness of the energy-monentum tensor
in correlation functions and have been classified by Deser and Schwimmer long ago [1]. It is
known that there are two main types: type A and type B. There is always one type A anomaly
corresponding to the topological Euler invariant but an increasing number of type B anomalies
in increasing spacetime dimension. For instance, there is one type B anomaly in four dimensions
and three type B anomalies in six dimensions (6D). The type B anomalies correspond to the
conformal gravity invariants, being Weyl invariant expressions constructed from the curvature
tensors and its covariant derivatives.

In six dimensions, the conformal gravity invariants may be written as spacetime integrals of
the form

Ii =

∫
d6x eLi , i = 1, 2, 3 , (1.1)

where

L1 = CabcdC
aefdCe

bc
f , (1.2a)

L2 = CabcdC
cdefCef

ab , (1.2b)

L3 = Cabcd(δ
a
e�− 4Re

a +
6

5
δaeR)C

ebcd + total derivative , � := DaDa . (1.2c)

Here Da is the covariant derivative, Cabcd is the Weyl tensor satisfying the properties

Cabcd = C[ab][cd] , C[abc]d = 0 , D[aCbc]
de = −2

3
DfC[ab

f [dδ
e]
c] , (1.3)

1 Based on the talk presented by JN at ISQS25 (Prague, Czech Republic, 6 – 10 June, 2017).

http://creativecommons.org/licenses/by/3.0
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and Rab and R are the Ricci curvature and scalar curvature, respectively. The Lagrangian L3

can be completed by adding a total derivative (which we suppress for simplicity) in such a way
that it transforms homogeneously under Weyl transformations as L1 and L2. The properties
of the curvature tensor implies that all conformal gravity invariants are described by the linear
combination

I = c1I1 + c2I2 + c3I3 , (1.4)

where ci are arbitrary coefficients.
In the context of superconformal field theories, which exhibit invariance under the

supersymmetric extension of conformal symmetry, conformal field theories in six dimensions
become more intriguing. Remarkably, the structure of the superconformal algebra implies that
6D is the highest spacetime dimension in which superconformal field theories can exist [2]. On the
other hand, the only known non-trivial unitary conformal field theories in 6D are supersymmetric
and arise in string theory, realizing either N = (1, 0) or N = (2, 0) superconformal symmetry.
These properties place 6D superconformal field theories in a special class in the space of
conformal field theories. Their type B anomalies should be supersymmetric and correspond
to superconformal gravity invariants. Therefore, the construction of superconformal gravity
invariants helps one elaborate on the anomaly structure of the 6D superconformal field theories.

Supersymmetry imposes constraints on the structure of the superconformal invariants, which
now involves additional fields such as the gravitini. Thus one typically expects the number of
independent superconformal invariants to reduce with more supersymmetry. The corresponding
superconformal algebras exist for N = (n, 0) but are usually limited to the n ≤ 2 cases to ensure
that superconformal gravity does not contain higher spin fields. In regards to the supersymmetric
type B anomalies, there are two obvious points that should be addressed for the corresponding
invariants. These include the number of independent conformal gravity invariants that one can
extend to the supersymmetric case and the other is their full supersymmetric forms when coupled
to the rest of the Weyl multiplet of superconformal gravity whose structure in components was
first described in [3]. In principle, these points can be addressed indirectly by computing the
conformal anomaly of various (1, 0) or (2, 0) matter multiplets coupled to (super)gravity. Such
computations have been limited to only the purely gravitational parts, see eg. [4, 5, 6], from
which one can deduce the following constraints on the coefficients ci for the (1, 0) and (2, 0)
cases, respectively:

c1 − 2c2 − 6c3 = 0 N = (1, 0) , (1.5a)

c2 − 3c3 = 0 N = (2, 0) . (1.5b)

The above constraints tell us that we expect two independent invariants in the (1, 0) case and
only one independent invariant in the (2, 0) case.2 Their purely gravitational form is given by
eq. (1.4) with coefficients restricted by the constraints (1.5). Despite this information, very
little is known from the computation of the purely gravitational parts of these invariants about
their supersymmetric completions.

In this paper we present the results of [7] in which the full component structure of 6D
conformal supergravity invariants were given. Our goals will be the following: (i) to present
the direct path of [7] to constructing the component structure of 6D N = (1, 0) superconformal
gravity from superspace; (ii) to use the invariants to deduce information about the structure of
the (2, 0) invariant; and (iii) to verify the known constraints on the coefficients ci.

This paper is organized as follows. In section 2 we give a brief review of the superspace
formulation of 6D superconformal gravity in [8] and present the procedure of [7] in extracting
component expressions. In section 3 we present the N = (1, 0) superconformal gravity invariants

2 The (1, 0) constraint also holds in the (2, 0) case.
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in component form. Remarkably, as will be shown in section 4, the component bosonic action
of the N = (2, 0) superconformal gravity invariant can be almost completely recovered by
considering its truncation onto a N = (1, 0) invariant. Finally, conclusions are presented in
section 5.

2. From superspace to components
The N = (1, 0) superconformal tensor calculus was developed over thirty years ago in [3] for the
construction of general supergravity-matter systems. The formulation met with some success in
describing certain higher-derivative invariants, such as the supersymmetric Riemann curvature
squared term [9]. However, it has given little insight into the construction of further higher
derivative invariants, in particular the conformal supergravity invariants, which is the focus of
our presentation.

Apart from superconformal tensor calculus, there is another approach to N -extended
conformal supergravity for dimension D ≤ 6 based on using a curved N -extended superspace
MD|δ, where δ is the number of fermionic dimensions. Within the superspace setting, one can
choose to gauge only part of the superconformal algebra and rely on super-Weyl transformations
to realise the conformal structure, which leads to the conventional superspace approach. It
was developed for the 4D N = 1 and N = 2 cases in [10, 11] and presented for the 5D
N = 1 case in [12] which was extended to the 6D N = (1, 0) case in [13]. However, for
applications involving component reduction it is technically easier to make use of another
superspace formulation, known as conformal superspace [14, 15, 16, 17, 8]. It is based on
gauging the entire superconformal algebra and consequently makes more direct the connection
with the component formulation, superconformal tensor calculus.3 Conformal superspace has
already proved useful in the construction of higher derivative invariants, e.g. [17, 18, 19, 20],
and for this reason it provides an ideal formulation for the description of the higher derivative
superconformal gravity invariants.

In this section we briefly present the 6D N = (1, 0) conformal superspace developed in [8] and
demonstrate how the component fields within superconformal tensor calculus originate within
it following [7]. For the sake of brevity we refer the reader to [8, 7] for our conventions and
the superconformal algebra, which contains the supertranslations PA = (Pa, Q

i
α), the Lorentz

generators Mab, the dilatations D, the SU(2)R transformations Jij and the special conformal
transformations KA = (Ka, Sα

i ).

2.1. Gauging the superconformal algebra in superspace
To gauge the superconformal algebra one takes a N = (1, 0) curved superspace M6|8 locally
parametrised by coordinates zM = (xm, θμi ), where m = 0, 1, 2, 3, 4, 5, μ = 1, 2, 3, 4 and i = 1, 2.
One now associates with each generator Xa = (Mab, Jij ,D, S

γ
k ,K

c) a connection one-form

ωa = (Ωab,Φij , B,Fk
γ ,Fc) = dzMωM

a and with PA the vielbein EA = (Eα
i , E

a). They may
be used to construct the covariant derivatives

∇A = EA
M∂M − 1

2
ΩA

abMab − ΦA
ijJij −BAD− FA

j
βS

β
j − FAbK

b . (2.1)

It is important to note that the connections can be defined such that the generators appearing
in the structure group act on the covariant derivatives in the same way as they do on PA except
with PA replaced by ∇A.

The supergravity gauge transformations of the covariant derivatives may be summarised as

δK∇A = [K,∇A] , K := ξA∇A +
1

2
ΛbcMbc + ΛijJij + σD+ Λi

αS
α
i + ΛaK

a , (2.2)

3 The conventional formulations can be obtained by partially fixing the gauge freedom.
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where the gauge parameters associated with K satisfy natural reality properties. It should be
mentioned that the supergravity transformations act on a tensor superfield U as δKU = KU .
The superfield U is said to be primary and of dimension Δ if KAU = 0 and DU = ΔU .

The above geometric setup contains too many fields to describe conformal supergravity
alone. In order to describe conformal supergravity it is necessary to impose constraints on
the covariant derivative algebra. These are algebraic constraints on the superspace curvatures
and their corresponding consequences due to the Bianchi identities. As in lower dimensions, see
[14, 15, 16, 17], it is natural to constrain the covariant derivative algebra to resemble those of
supersymmetric Yang-Mills. However, this will lead to the corresponding composite component
connections having non-trivial dependence on the covariant fields of the Weyl multiplet, which
unnecessarily complicates the corresponding component results. To remedy this, one can redefine
the vector covariant derivative∇a → ∇̂a by modifying the Lorentz andKA connections to remove
such dependence and result in the “traceless frame” of [7]. We present the resulting covariant
derivative algebra below.

The torsion and curvatures appear in the the (anti)commutation relations

[∇̂A, ∇̂B} ≡ −FAB = −T̂AB
C∇̂C − 1

2
R̂(M)AB

cdMcd − R̂(J)AB
klJkl

− R̂(D)ABD− R̂(S)AB
k
γS

γ
k − R̂(K)ABcK

c , (2.3)

where ∇̂A = (∇̂a,∇i
α), and the torsion and curvatures are constrained to satisfy the Bianchi

identities [∇̂[A,FBC}} = 0. The covariant derivative algebra is constrained in such a way that

all curvatures are expressed in terms of the super-Weyl tensorWαβ and its covariant derivatives.
The super-Weyl tensor [13] is a symmetric primary superfield of dimension 1,

Wαβ =W βα , KAW βγ = 0 , DWαβ =Wαβ , (2.4)

and satisfies the following superspace differential constraints4

∇(i
α∇j)

β W
γδ = −δ(γ[α∇

(i
β]∇j)

ρ W
δ)ρ , (2.5a)

∇k
α∇γkW

βγ − 1

4
δβα∇k

γ∇δkW
γδ = 8i∇αγW

γβ . (2.5b)

The covariant derivative algebra is given by

{∇i
α,∇j

β} = −2iεij(γc)αβ∇̂c − 2iεij(γa)αβW
abcMbc − 3

2
εijεαβγδX

γkSδ
k

−iεij(γa)αβ
(
1

4
ηacY − ∇̂bWabc +Wa

efWcef

)
Kc . (2.6)

The nontrivial torsion and curvature components in the commutator [∇̂a, ∇̂j
β ] are given by

T̂a
j
β
γ
k = −1

2
(γa)βδW

δγδjk , (2.7a)

R̂(D)a
j
β = − i

2
(γa)βγX

γj , (2.7b)

R̂(M)a
j
β
cd = iδ[ca (γ

d])βγX
γj − i(γa

cd)γδX
j
β
γδ + 2i(γa)βγ(γ

cd)δ
ρXj

ρ
γδ , (2.7c)

R̂(J)a
j
β
kl = 2i(γa)βγX

γ(kεl)j , (2.7d)

4 The superfield Wαβ is equivalent to an anti-self-dual superfield Wabc = 1
8
(γabc)αβW

αβ .
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R̂(S)a
j
β
k
γ = − i

4
(γa)βδ Yγ

δjk +
3i

20
(γa)γδYβ

δjk

− i

8
(γa)βδ∇̂γρW

δρεjk +
i

40
(γa)γδ∇̂βρW

δρεjk

− i

8
(γa)δε εβρτγ W

δρW ετεjk , (2.7e)

R̂(K)a
j
βc =

i

4
(γc)βγ∇̂aX

γj − i

4
(γacd)γδ∇̂dXj

β
γδ +

i

3
(γa)βδ(γcd)ρ

γ∇̂dXj
γ
δρ

− i

8
(γa)βγ(γc)δρW

γδXρj +
5i

12
(γa)βρ(γc)γεW

γδXj
δ
ρε

+
i

4
(γa)γρ(γc)βεW

γδXj
δ
ρε − i

2
(γa)γρ(γc)δεW

γδXj
β
ρε . (2.7f)

Here we have introduced the dimension 3/2 superfields

Xk
γ
αβ = − i

4
∇k

γW
αβ − δ(αγ Xβ)k , Xαi := − i

10
∇i

βW
αβ (2.8)

together with the dimension 2 descendant superfields:

Yα
βij := −5

2

(
∇(i

αX
βj) − 1

4
δβα∇(i

γX
γj)

)
= −5

2
∇(i

αX
βj) , (2.9a)

Y :=
1

4
∇k

γX
γ
k , (2.9b)

Yαβ
γδ := ∇k

(αXβ)k
γδ − 1

6
δ
(γ
β ∇k

ρXαk
δ)ρ − 1

6
δ(γα ∇k

ρXβk
δ)ρ . (2.9c)

The action of the spinor covariant derivatives, as well as the S-supersymmetry generators, on
the defined superfields may be found in [8]. The remaining commutator [∇̂a, ∇̂b] in the covariant
derivative algebra follows from the superspace Bianchi identities for the covariant derivatives.
Finally, the action of the generators Xa on the covariant derivatives is the same as their action

on PA with PA replaced with ∇̂A with one exception. The exception is [Sα
i , ∇̂a] which now

obtains explicit dependence on the super-Weyl tensor,

[Sα
i , ∇̂b] = −i(γ̃b)αβ∇βi +

1

10
Wbcd(γ̃

cd)αγS
γ
i −

1

4
Xα

i Kb

+
[1
4
(γ̃bc)

α
βX

β
i +

1

2
(γbc)β

γXγi
βα

]
Kc . (2.10)

It is important to stress that the entire covariant derivative algebra is expressed directly
in terms of the super-Weyl tensor and its descendents. In particular, it is trivial to see that
when Wαβ vanishes the supergeometry is superconformally flat. Furthermore, the standard
Weyl multiplet of 6D N = (1, 0) conformal supergravity is encoded in the superspace geometry.
The component fields can be readily identified as certain θ = 0 parts of the superspace gauge
one-forms and descendants of Wαβ , which we now turn to demonstrating.

2.2. Identifying the component structure
In contrast with conformal superspace, the superconformal tensor calculus framework [3]
involves gauging the superconformal algebra in spacetime. Associated respectively with local
translations, Q-supersymmetry, SU(2) R-symmetry, and dilatations are the vielbein em

a, the
gravitino ψm

α
i , the SU(2) gauge field Vmij , and a dilatation gauge field bm. The remaining gauge

symmetries are gauged by the spin connection ωm
cd, the S-supersymmetry connection φm

i
α, and
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the special conformal connection fma. These are composite fields, meaning that they are not
independent and are expressed in terms of other fields of the Weyl multiplet. To ensure that
the last three connections are composite, one imposes conventional constraints on the vielbein
curvature R(P )mn

a, the gravitino curvature R(Q)mn
α
i , and the conformal Lorentz curvature

R(M)mn
ab. Upon doing this it is necessary to introduce additional degrees of freedom since the

bosonic and fermionic degrees of freedom do not match. An off-shell representation is achieved
by introducing three covariant fields: a real anti-self-dual tensor T−abc, a chiral fermion χαi, and a
real scalar field D which modify the supersymmetry algebra, the curvatures and the constraints
imposed on the curvatures in a consistent way [3]. The component fields of the 6D N = (1, 0)
Weyl multiplet [3] can be identified within the geometry of conformal superspace, which begins
with a manifest off-shell gauging of the superconformal algebra from the very beginning. We
will elaborate further on this point below.

The identification of the component one-forms is straightforward. We start with the vielbein
(em

a) and gravitini (ψm
α
i ). These appear as the θ = 0 projections of the coefficients of dxm in

the supervielbein EA,

ea = dxmem
a = Ea|| , ψα

i = dxmψm
α
i = 2Eα

i || , (2.11)

where the double bar denotes setting θ = dθ = 0.5 The remaining fundamental and composite
one-forms correspond to double-bar projections of superspace one-forms,

Vkl := Φkl|| , b := B|| , ω̂cd := Ω̂cd|| , φ̂kγ := 2 F̂k
γ || , f̂c := F̂c|| . (2.12)

The covariant matter fields are contained within the super-Weyl tensor Wabc and its
independent descendants as follows:

T−abc := −2Wabc| , (2.13a)

χαi :=
15

2
Xαi| = −3i

4
∇i

βW
αβ | , (2.13b)

D :=
15

2
Y | = − 3i

16
∇k

α∇βkW
αβ | . (2.13c)

The differential constraints on the superfield Wαβ do not allow for any other independent
descendents apart from those that correspond to curvatures but these are composites of the
already defined component fields.

By taking the double bar projection of ∇̂, we define the component vector covariant derivative
∇̂a to coincide with the projection of the superspace derivative ∇̂a|,

em
a∇̂a = ∂m − 1

2
ψm

α
i ∇i

α| −
1

2
ω̂m

cdMcd − b̂mD− V̂mklJkl − 1

2
φ̂m

i
αS

α
i − f̂maK

a . (2.14)

The projected spinor covariant derivative ∇i
α| corresponds to the generator of Q-supersymmetry,

and is defined so that if U = U |, then Qi
αU = ∇i

α|U := (∇i
αU)|. Note that there is no

ambiguity for the other generators as e.g. McdU = (McdU)|, and so local diffeomorphisms,
Q-supersymmetry transformations, and so forth descend naturally from their corresponding
rule in superspace.

The component supercovariant curvature tensors are defined by the expressions R̂(P )ab
c =

T̂ab
c| and R̂(Q)ab

γ
k = T̂ab

γ
k |, and with R̂(M)ab

cd, R̂(J)ab
kl, R̂(D)ab, R̂(S)ab

k
γ and R̂(K)abc

coinciding with the lowest components of the corresponding superspace curvatures. The
constraints on the superspace curvatures determine how to supercovariantize a given component

5 In what follows a single line next to a superfield denotes setting θ = 0.
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curvature. One first need to simply take the double bar projection of the superspace torsion and
each of the superspace curvatures. Upon doing so one finds [7]

R̂(P )ab
c = 0 , (2.15a)

R̂(Q)abk =
1

2
Ψ̂abk + iγ̃[aφ̂b]k +

1

24
T−cdeγ̃

cdeγ[aψb]k , (2.15b)

R̂(D)ab = 2ea
meb

n∂[mbn] + 4̂f[ab] + ψ[a
iφ̂b]i +

i

15
ψ[a

jγb]χj , (2.15c)

R̂(M)ab
cd = Rab

cd(ω̂) + 8δ
[c
[af̂b]

d] + iψ[ajγb]R̂(Q)cdj + 2iψ[ajγ
[cR̂(Q)b]

d]j

−ψ[ajγ
cdφ̂b]

j − 2i

15
δ
[c
[aψb]jγ

d]χj +
i

2
ψ[a

jγeψb]j T
−
e

cd , (2.15d)

R̂(J)ab
kl = Rab

kl(V) + 4ψ[a
(kφ̂b]

l) +
4i

15
ψ[a

(kγb]χ
l) , (2.15e)

where we have introduced the derivatives

D̂m = ∂m − 1

2
ω̂m

bcMbc − bmD− VmijJij , D̂a = ea
mD̂m , (2.16)

together with

Ψ̂ab
γ
k := 2ea

meb
nD̂[mψn]

γ
k , (2.17a)

R̂ab
cd := R̂ab

cd(ω) = ea
meb

n
(
2∂[mωn]

cd − 2ω[m
ceωn]e

d
)
, (2.17b)

R̂ab
kl := R̂ab

kl(V) = ea
meb

n
(
2∂[mVn]kl + 2V[mp(kVn]pl)

)
. (2.17c)

On the other hand, the superspace curvatures are constrained to imply

R̂(P )ab
c = 0 , (2.18a)

γbR̂(Q)abk = 0 , (2.18b)

R̂(M)ac
bc = 0 , (2.18c)

which explains why we called the choice of vector covariant derivatives the “traceless” frame
since these conditions are modified using a different choice of vector covariant derivative. The
conditions (2.18) allow one to solve for the composite connections as follows:

ω̂abc = ω(e)abc − 2ηa[bbc] −
i

4
ψb

kγaψck − i

2
ψa

kγ[bψc]k , (2.19a)

φ̂m
k =

i

16

(
γbcγm − 3

5
γmγ̃

bc
)(

Ψ̂bc
k +

1

12
T−def γ̃

defγ[bψc]
k
)
, (2.19b)

f̂a
b = −1

8
Ra

b(ω̂) +
1

80
δbaR(ω̂) +

1

8
ψ[ajγ

bcφ̂c]
j

− 1

80
δbaψcjγ

cdφ̂d
j +

i

16
ψcjγaR̂(Q)bcj +

i

8
ψcjγ

[bR̂(Q)a
c]j +

i

60
ψajγ

bχj

+
i

16
ψa

jγcψdj T
−bcd − i

160
δbaψc

jγdψej T
−cde . (2.19c)

One could now plug the above results into eqs. (2.15) to arrive at expressions for the curvatures.
Here we will simply refer the reader to [7] for the details. We also refer the reader there
for supersymmetry transformations of the independent component fields and expressions for
the curvatures R̂(S) and R̂(K). The above results represent the main results necessary for the
component reduction of the conformal supergravity invariants from their superspace description.
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3. The N = (1, 0) superconformal gravity invariants
It turns out there are exactly two independent N = (1, 0) superconformal gravity invariants that
were constructed in superspace in [8]. One of these invariants contains a certain combination of
C3 terms at the component level, while the other contains a C�C term at the component level.
Their construction is based on the use of the superform approach to constructing supersymmetric
invariants [22, 23, 24].

The superform approach to constructing supersymmetric invariants is a general approach
based on the idea that a closed super D-form automatically leads to a supersymmetric invariant
in D dimensions. In six-dimensions, the approach starts with a six-form J = 1

6!dz
M6 ∧ · · · ∧

dzM1JM1···M6 that is required to be closed dJ = 0. The supersymmetric invariant is given by

S =

∫
M6

i∗J =

∫
d6x e ∗J |θ=0 ,

∗J :=
1

6!
εmnpqrsJmnpqrs , (3.1)

where i : M6 → M6|8 is the inclusion map and i∗ is its pullback, the effect of which is to
project θμi = dθμi = 0. The closure of J , dJ = 0, ensures that the action (3.1) is invariant under
super-diffeomorphisms. It is also required that J transform by (at most) an exact form under all
gauge transformations. The component action may then be obtained as an expansion in higher
products of the gravitino fields by expressing the action in terms of the tangent frame6

S =

∫
d6x

1

6!
εm1···m6Em6

A6 · · ·Em1
A1JA1···A6 |θ=0 ,

=
1

6!

∫
d6x e εa1···a6

[
Ja1···a6 + 3ψa1

α
i J

i
αa2···a6 +

15

4
ψa2

β
j ψa1

α
i J

i
α
j
βa3···a6

+
5

2
ψa3

γ
kψa2

β
j ψa1

α
i J

i
α
j
β
k
γa4a5a6 +O(ψ4)

]
|θ=0 . (3.2)

Appropriate closed superforms describing the supersymmetric C3 and C�C invariants were
given in [8]. They were entirely built out of primary composite superfields that were in turn built
out the the super-Weyl tensor and their covariant derivatives. The correspondence outlined in
the previous section from superspace to components as well as eq. (3.2) allows one to convert
these superforms into their corresponding component actions. We do not provide the tedious
details of this procedure here and instead simply present a large sector of the bosonic terms.
We refer the reader to [7] for the details, including the full component actions.

3.1. The supersymmetric C3 invariant
Below we present the supersymmetric C3 invariant. For the sake of brevity we only give the
bosonic sector and suppress terms involving the covariant field T−abc. The component Lagrangian
is given by

LC3 = CabcdC
abefCcd

ef + 2CabcdC
aefcCb

e
d
f − 3

4
CabcdRab ijRcd

ij +
3

2
Rab

ijRac
i
kRb

c jk

+
3

16
εabcdefRabi

jRcdj
kRef k

i − 4

75
D3 − 1

10
DCabcdC

abcd +
8

5
DRab

ijRab
ij

+O(T−) + fermion terms , (3.3)

where O(T−) denotes the terms involving the covariant field T−abc. We have included the SU(2)
Chern-Simons form as the first term on line 2 since in this form the Lagrangian is completely
superconformally invariant.

6 The expansion should be slightly modified if J is not invariant under additional gauge transformations. We
refer the reader to [8] for the details.
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3.2. The supersymmetric C�C invariant
The C�C invariant can also be given and it is described by the following component Lagrangian:

LC�C = Cabcd(δ
a
e�− 4Re

a +
6

5
δaeR)Cebcd + 4CabcdC

aefcCb
e
d
f − Cab

cdCcd
efCef

ab

−3Rabij�Rabij + 3Ra
bRacijRbcij − 3

2
RRabijRabij + 6Ra

b
i
jRb

c
j
kRc

a
k
i

+6CabcdRab
ijRcd ij +

4
15 D�D +

4

75
RD2 + 8

75 D
3 + 2

5DCabcdC
abcd

−14
5 DRab

ijRab
ij +O(T−) + fermion terms + total derivative , (3.4)

where we have introduced the definition � := D̂aD̂a and for simplicity we have suppressed a
total derivative.

4. The N = (2, 0) superconformal gravity invariant
The N = (2, 0) Weyl multiplet of conformal supergravity was constructed in [21]. Many of the
formulae there could actually be fixed by considering their truncations from (2, 0) to (1, 0). In
a similar way, almost all of the bosonic terms of a (2, 0) conformal supergravity invariant can
be obtained. In this section, we show that there is at most one (2, 0) conformal supergravity
invariant and present a significant portion of its bosonic terms following [7].

We begin by recalling the component structure of the Weyl multiplet of N = (2, 0) conformal
supergravity [21]. In the off-shell gauging of the (2, 0) superconformal algebra, one associates
the following independent fields with the local translations, Q-supersymmetry, USp(4) R-
symmetry, and the dilatations: the vielbein em

a, the gravitino ψm
i, the USp(4) gauge field

Vmij , and the dilatation gauge field bm. The remaining gauge symmetries are associated
with composite connections, which include the spin connection ωm

cd, the S-supersymmetry
connection φm

i and the special conformal connection fma. An off-shell representation of the
conformal supersymmetry algebra is achieved by introducing three covariant matter fields:
Tabc

ij = T[abc]
[ij], χi,jk = χi,[jk] and Dij

kl = D[ij]
[kl] = Dkl

ij . Here Tabc
ij is anti-self-dual

with respect to its Lorentz vector indices and all covariant matter fields of the Weyl multiplet
are traceless with respect to the invariant antisymmetric tensor Ωij of USp(4). These covariant
fields are used to build the full covariant curvatures given in [21].

We now turn to outlining how to perform the truncation from (2, 0) to (1, 0). The (2, 0) Weyl
multiplet decomposes into a number of (1, 0) multiplets, including a Weyl multiplet on which
half of the supersymmetry is manifest, two gravitini multiplets associated with the extra spin-
3/2 gauge fields, and a Yang-Mills multiplet associated with the extra R-symmetry connections.
To obtain only the fields of the (1, 0) Weyl multiplet we truncate away the additional gravitino
multiplets and Yang-Mills multiplet as in [21]. We split the USp(4) indices i = 1, · · · , 4 to
(i = 1, 2, i′ = 1, 2) and switch off the third and fourth gravitini ψm

i′ = 0. We also identify

Vm
ij = V̂mij and switch off the other components of the USp(4) connection Vm

i′j′ = Vm
ij′ = 0.

These constraints induce restrictions on the covariant fields of the Weyl multiplet so that the
Q- and S-supersymmetry transformations are consistent. These constraints are given by

Tabc
ij = εijT−abc , Tabc

i′j′ = −εi′j′T−abc , (4.1a)

χi
jk = εjkχi , χi

j′k′ = −εj′k′χi , χi′
j′k =

1

2
δj

′
i′ χ

k , (4.1b)

Dij
kl = −εijεklD , Dij

k′l′ = εijεk′l′D , Di′j′
k′l′ = −εi′j′εk′l′D , (4.1c)

Dij′
kl′ = −1

2
δikδ

j′
l′ D . (4.1d)
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Now we are in a position to consider the (2, 0) uplift of our (1, 0) conformal supergravity
invariants. However, it becomes immediately apparent that each of the two (1, 0) invariants
can not be uplifted due to the presence of the term DCabcdCabcd in their Lagrangians. The
problem is that there is no scalar built out of the fields of the (2, 0) Weyl multiplet which will
truncate to this (1, 0) term. However, there is precisely one linear combination for which all
such problematic terms cancel and it corresponds to

IC�C + 4IC3 , (4.2)

which tells us that the (2, 0) combination must be unique. The (2, 0) uplift of the invariant
fixes almost all the bosonic terms except for a few involving the covariant field Tabc

ij . For our
purposes here, we will ignore all terms explicitly involving this covariant field. The result of the
uplift gives the following bosonic terms for the (2, 0) invariant:

L(2,0) = Cabcd(δ
a
e�− 4Re

a +
6

5
δaeR)Cebcd + 12CabcdC

aefcCb
e
d
f + 3Cab

cdCcd
efCef

ab

−3Rab
ij�Rab

ij + 3Ra
bRacijRbcij − 3

2
RRabijRabij + 6Ra

b
i
jRb

c
j
kRc

a
k
i

+3CabcdRab
ijRcd ij +

1

75
Dij

kl�Dkl
ij +

1

375
RD2 − 2

1125
Dij

klD
kl
pqD

pq
ij

−2

5
Dij

klR(V )abi
kR(V )abj

l +O(T ) + fermion terms + total derivative , (4.3)

where O(T ) represents terms involving Tabc
ij .

5. Conclusion
In conclusion, we presented the 6D N = (1, 0) conformal superspace formulation of conformal
supergravity constructed in [8] and showed how it encodes the component fields of the Weyl
multiplet. We presented the linearly independent component invariants for N = (1, 0) conformal
supergravity constructed in [7], which to date are probably the most complicated supergravity
actions in six dimensions. Remarkably, these results allowed us to obtain a great deal of
information about the component action of the N = (2, 0) conformal supergravity invariant
for which one can recover almost all its bosonic terms.

Using the results presented here, we can provide an independent derivation to the ones in
the literature of the relations (1.5). The argument goes as follows. A general conformal gravity
invariant may be written in terms of the purely gravitational parts of the (1, 0) and (2, 0)
invariants as

c1L1 + c2L2 + c3L3 = (c1 − 2c2 − 6c3)L1 + (c2 − 3c3)LC3 + c3L(2,0) . (5.1)

For the N = (1, 0) case, the first term on the right hand side must vanish since such a
combination cannot be supersymmetrised, which requires the first condition of (1.5). For the
N = (2, 0) case, the second term on the right hand side must vanish since LC3 cannot be
completed alone into a (2, 0) invariant, which gives the second constraint of (1.5). Thus the
constraints (1.5) follow directly from a completely supersymmetric argument.
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