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1 Introduction

Information theory provides us with a new view on the structure of quantum field theory
(QFT). Recently many attempts have given us more insights into the relations between the
two, e.g., [1]-[13]. For example: the entropic g-function [7] for 14+1 dimensional quantum
field theories can be derived from the relative entanglement entropy, the quantum null
energy condition can be obtained [5, 6] from the inequalities of entanglement entropy, and
authors of [8-13] use quantum information quantities to set up criterion of Eigenstate
Thermalization Hypothesis (ETH) in order to classify the chaotic behaviors of CFTs.
Among all the quantum information quantities, we will be interested in the Rényi and
entanglement entropies of locally excited states in (14+1)D conformal field theory(CFT).
The n-th Rényi entanglement entropy for a subsystem A is defined by SXL) = log Tr[p%]/
(1 —n), where py4 is the reduced density matrix of A.The subsystem A is chosen to be
the half plane x > 0 in this paper, for simplicity. The locally excited states are defined



by inserting operators on the vacuum of the theory, in the form O |0), where O can be
a primary or descendant operator, or even the product or linear combination of different
operators. The former cases have been extensively studied in the literature [9-11, 14-31],
while the latter is the focus of the current paper.

)

where the excited states are obtained by acting general product of different primary oper-

We mainly study the variation of SXL between the excited states and the ground states,
ators or linear combination of different operators. That is the state |¢), = [[;" Oi(x;) |0),
where O;(z;) is a primary or descendant operator located at point x;. We will consider the
time evolution of the variation of n-th REE, denoted by ASI(I). In the limit ¢ — oo, we
will show that the variation of Rényi entropy of state |¢), satisfies the following sum rule

AST (T i) 10)) = 37 AST (Oi(ai) [0). (1.1)

This sum rule tell us AS’I(:) (TI" Oi(zi) |0) ) depends only on individual state O; [0).

For operators in CFT, we expect the following operator product expansion (OPE), or
fusion rule O; xO; = >, ij Oy, where the entries of rank-three tensor Ni]; are non-negative
integers. For simplicity, we consider the case m = 2, the state [¢); = O1(z1)O2(x2) |0). In
(141)D CFT, we can rewrite O1(z1)O2(z2) as a linear combination of OPE blocks [35], i.e.,

O1(21)02(w2) = |21 — @ 2112 > Ciok Op(a;71), (1.2)
k

where h1, hy are conformal dimension of operator O7, Oy, C19 is the coupling constant for
3-point function, and Ok (ze;x1) is a non-local operator, in the sense that the two points
x1 and zo can have a nonlocal distance [36]. Here the sum is over all the possible fusion
channels. So we can define an equivalent state to |1);,

) g = |21 — @o| 721 Th2) Z C12k Ok(w2;71) [0) . (1.3)
k

The Rényi or entanglement entropy of state |¢) is denoted by Sgr. As a result, Sg
depends on the operator Of(x2;x1) and their linear combination coefficients explicitly.
Due to eq. (1.2), the entanglement entropy S, of the state |¢); should be equal to Sg.
Then the constraint Sy, = Sk provides a connection between different data of the theory.

For (141)D rational CFTs, Sz, is only associated with the quantum dimension of
operators O; and Oy which has been obtained in [14], while Si depends on the quantum
dimension of Oy and the fusion coefficients. It is difficult to get the complete form S by
replica trick. In this paper, we use the Schmidt decomposition approach to obtain the late
time behavior of Sgp. The constraint S;, = Sk will then leads to an identity (eq. (3.47)
in the main context), which can be proved using algebraic relations of F' symbols and
quantum dimensions. We examine Minimal models M (p,p’) as typical examples.

The layout of this paper is as follows. In section 2, we will give the general set-up. For
the locally excited state with many primary operators inserted, we prove the sum rule (1.1).
For the case of linear combination of different operators, we also obtain the Rényi entropy



by Schmidt decomposition. In section 3, we focus on the S; = Sg in rational CFTs and
obtain the identity. Minimal model examples are discussed in detail. In section 4, we prove
the identity. In section 5, we discuss the extension of the above analysis to large-c CFTs,
and the relation with (2+1)-D topological orders.

2 Entanglement of locally excited states

As reviewed in the introduction, the locally excited states we will focus on are of the form

1) :==0]0), (2.1)

where |0) is the vacuum of (14+1)D CFT, and O can be a primary operator, a descendant
operator, or the products or linear combinations of different operators. The former two
cases have been studied in papers [14, 16]. In this section we will study latter two more

complicated situations:
1. O is the product of primary operators.
2. O is linear combination of different operators.

We will mainly focus on rational CFTs, for which the result is robust. The first case
has already been studied in paper [23] in rational CFTs. We slightly generalize the result
to other (14+1)D CFTs and give the sum rule. As far as we know the second case has not
been discussed in literature.

2.1 Product of primary operator

Consider the state defined by

m

V) =N (& 11,0, In)e T 0i(1:,0) 0), (2:2)
i
where O;(l;,0) are primary operators located at x = —I; (I; > 0). We regularize the state by
introducing a UV cut-off € as usual, and N (¢;11,1la, ..., 1) is the normalization constant.
We shall further assume the distance between different operators |l; — ;| > € (i # j). At
time t, the state becomes

10(t)),, = N(e; 11,12, - 1m) H O;(wi, w;) |0), (2.3)

where w; = —I; +t+ie, w; = —l; —t — ie. In the following we will first consider m = 2 and
01 = Oy = O, it will be straightforward to generalize to arbitrary m. We would like to
study these locally excited states by calculating the entanglement entropy or Rényi entropy
of the subsystem A := {z > 0}. By using the definition of Rényi entropy and the replica
trick, we find the difference between the excited state |1)(t)), and ground state as

L (1 (TT5 OF (W), o, W, ) OT (W), 1, @], 1)O(ws 1, Ws 1) O(ws 2, Ws 2))R,,
1—n\ % (O (wh, @h)OF (w}, @) O (wr, 1) O(ws, w2))" ’

ASE(J4b(8))g) =
(2.4)



wy = —l1 +t+ie, w =—1l1 —t—ie wo = —lg + t + i€, Wy = —lo — t — i, (2.5)

wy = —ly +t—ie, W) =—ly —t+ie; wh=—ly+t—ie, Wh=—ly—1t+ie,
and (wsi, Ws i), (wg,;,w,;) (i = 1,2 and s = 1,2,...,n) are the replica of (w;,w;) and

(w}, w}) on the s-th sheet of R,,. The denominator is the four point correlation function
on complex plane C, which is related to normalization constant N (e;l1,l2). In the limit
€ — 0, we have

(O (wh, wh) O (wh, @] )O (wy, 1) O (w3, W2)) (2.6)

_ _ _ _ 1
~ (O (wy, @) 0wy, @1)) (O (wh, @) O (ws, W2)) = (26)%80"
where Ao is the conformal dimension of operator O. Notice we have used the assumption
’ll — l2| > e.
To calculate the correlators on R, we could apply the conformal transformation w =
2", which maps R,, to the complex plane C. The correlation function on R, is mapped to

n
(TIO" (whn. 20" (w1, @, )0, 1) O, B2) )
S

n

= Cn< H OT(Z;,Zﬁ EQ,Q)OT(zg,lv Z;l)O(ZSJ, 2571)0(25’2, 23,2)>7 (27)

where C), is a constant of O(1), and the coordinates (ws;, Ws;), (W

44 W, ;) are mapped to

Ze1 = 627rzs/n g+t +ie l/n7 Zo1 = e—27rzs/n( | — 1t —ic

( ) )
Z./s,l — 627ris/n(_ll S+t iE)l/n, 2;71 — efQﬂiS/n( | —t+ i€ )
Zep =N (—ly bt ie)! )" g = e (—ly —t — Ze)l/n
Z;,2 _ 627ris/n(_l2 +t— iE)l/n, 5;72 — 6727r’is/n( o — 1+ 716)1/11 (28)

In this paper we are mainly interested in the result in the late-time region ¢ > [;. We find
zs1 — 2,11 ~ O(e), 752 = 219 ~ O(e),
Zs1 — Zg 1 ~ O(e), Zso — Zy o ~ Ofe). (2.9)

As we can see from (2.6), the numerator of (2.4) is divergent of O(1/¢3"0). Only the most

divergent term in the numerator of (2.4) will contribute to the final result. From (2.8) we
also find

/ /

|287i - th’ ~ O(l) > €, ’Zs,i - Zt,j| ~ 0(1) > €, |Zs,i - Zg,j’ ~ O(l) > €,

for i#£j (i,j=1,2;s,t =1,2,...,n). Therefore, the most divergent term comes from

the correlation between O(z, Zs.:) and O(2.;, 7, ;), which means

<H0*<z;,2,z;,2>o*<z;,1,z;,1>0<zs,1,zs,1>0<zs,2,zs,z>> (2.10)

:<ﬁOT 252> Z49)O(25.2, Zs2) ><HO Ze1:Z51) (2571,55,1)>+O(1).

s



Taking the above expression into (2.4) by using (2.7), we immediately obtain a sum rule
of Rényi entropy

ASS (|4 (1)))

B <Hn OT( Wg 9, W )0(ws,27ﬂ)s,2)>72n<1_[? OT(w;f’lawé,l)O(wt,lawt,l»Rn egnﬁo

g=iC @W%mmow%@»wmwawmemmw +o(@2))
( (IT2 OF (W) 5, W} )O(ws 2, s 2)) =, ([T} O (w} 1, @} ) O(we, 1, We1))w., +>

o8 o gy ) Otum a8 (0T(w}, @) 0w, @)

= AST(O(w1, 1) [0)) + AST (O(ws, w2) [0)), (2.11)

where AS(n)(O(wl,wl)\O» and ASI(XL)(O(U)Q,’LDQ)|O>) are the Rényi entropy of state
O(wq,w1) |0) and O(wg,w2)|0). The above analysis works for general CFTs. Specifi-
cally in rational CFTs, by 2(n — 1) times fusion transformation we could re-arrange the
order of holomorphic coordinates z,; into the order as follows,

(zi,Qa 21717 21,15 21,2)('2&,27 Zé,l: 22,15 22,2) s (Z’;L,27 Z;w,b Zn,1, ZTL,Q) (212>

— (259,251, 21,1, 21,2) (23,2, 23 1, 22,1, 22.2) - - - (21,95 2115 Zn,15 2n,2)

The correlation function would become

<1_[OJr 5,29 52 ( ;,1722,1)0(287175&1)0(2872728,2)> (2‘13)
F2=D00T (2, 5 )O(219, 21.2)MOT (2 1,2, )O(21.1, 2
Fao { (22,2, 21,2) (21,2, Z1,2))( (22,17 21,1) (211, 21,1)) - - -
<OT(Z1,2> 2n,2)0(2n.2,2n.2))(O(21 1, 20,1)O(21,1, Zn,1))
Finally we could obtain the result
ASY = —21og Fyy = 2log do, (2.14)
where dp is the quantum dimension [32, 33] of operator O.

2.2 Linear combination of operators

In this subsection we would like to explore the entanglement properties of a linear com-
bination of different operators. For a series of operators O, which could be primary or
descendant operators, we further assume they are orthogonal to each other in the vacuum
in the sense that (0] 0,0,/ |0) = 0 if p # p’. The state we would like to explore is then

W) ~ Y 0p()0), (2.15)

where the state is local at point z. We follow the same regularization methods as before
by defining

)Y e H0,(x,0)(0), (2.16)



where € is the cut-off, H is the Hamiltonian of CFT, and N (e) is the normalization constant.

In (141)D CFTs, we assume z = —[. The normalization constant N (e) is
1
, (2.17)
\/E b, 1) Op (w2, @)
where wy := —1 + i€, w1 := —1 — i€, wy := —1 — ie and Wy := —I + ie.

One could consider the time evolution of state (2.16), |¥(t)) = e "¢ |¥). We expect
the entanglement entropy of state |¥(¢)) has the following form in large ¢ limit:*

—> log Aplog Ay + > ApSp, (2.18)
where S, is the entanglement entropy of A for state O, |0), and A, is defined as

Ap = <O;’(;”1’w1_)0p(w2’ @) (2.19)
>_q{Oq(w1,01)Og (w2, w2))

This can be understood as the probability of state |p) in the superposition state (2.16).

To prove above formula, let’s consider a general form like (2.16),

=S VA ), (2.20)

where we normalize 3 A, = 1 and assume (p|p’) = J,,7. Generally \p>_ is an entangled
state if we divide the Hilbert space into two sub-Hilbert space H, ® H,. By Schmidt
decomposition we could write

p) = Z af |pi,) ® |pi,) (2.21)
ip

where |p;,) and |p;,) are orthonormal basis of two Hilbert spaces, and «;, are the real
coefficients. In this basis EE of [p) is

— P2 P2
Spi=—Y (af )*log(a? ). (2.22)
ip
One could calculate the reduced density matrix of state |¢) (¢,
pr = trig ) (@ = (g, | 0) (@ g,) - (2.23)
'jvjq
With some algebra, this becomes
PH = Z >\ |plp <pzp‘ . (2.24)
p?’LP

The n-th Rényi entropy is

S .= logtr (@, m,) Pl _ log Zp,z'p )‘Z(afp)% (2.25)
B 1-n a 1—n ’ .

IThis expression has been used in paper [15] written by one of the authors without a proof.



which can be expressed as
log_, )\ge(lfn)sén)

1—n

g —

, (2.26)

(n)

where Sy’ is the Rényi entropy of the state |p). Taking the limit n — 1 of S (") we will

obtain the entanglement entropy (EE),
S==Y Nlogh+ > Sy (2.27)
We could write (2.16) as the form (2.20), |¥) = >\, |[¢p) , with A, defined as (2.19),

[1p) == Np(e)e T O, (x,0)]0), (2.28)

and Np(€) := 1/\/ (w1, w1)Op (w2, Wa)).

3 Identity from the constraint

In this section we would like to discuss the constraint S;, = Sgr as we have mentioned in
the introduction.

3.1 General discussion

Before we go on to the details of calculations, let’s explain the idea behind the constraint
Sr, = Sk and our motivations. We will study the time evolution of the state |i),
01(x1)O2(x2)|0), which is an excited state by inserting primary operators O; and O at
point z1 and x2. One could calculate the REE Sén) for a subsystem A := {z > 0}, the
EE Sp = limy,_4 Sj(:n). Sj(:n) depends on t, we expect it will approach to a constant in the
large t limit. Using the sum rule we have derived in section 2.1, we only need to know the
results for states O1(x1)|0) and Oz(22)[0).

On the other hand we could rewrite O1(z1)O2(z2) OPE blocks (1.2). Note that (1.2)
is an operator equality, so we may define a state [))r (1.3) by the OPE blocks. |¢)g and
|1) 1 can be seen as same states in the Hilbert space but with different basis. This fact

(n) _
mainly focus on Sy, = Sg. More importantly, ) explicitly depends on the CFT data

immediately leads to the constraint S SI(;) as well as S = Sg. In the following we
associated with the coupling constant Cig for the three point function (O1020%). |¥)r
is like the form (2.15) we discuss in section 2.2, therefore the final expression (2.26) for
Sgr will depend on Ci9;. However Sy, is given by the sum of the REE for O;(z1)|0) and
O2(x2)]0), which include different CFT data. The constraint S, = Sg actually can be seen
as a bridge between different CFT data.

Of course this constraint should be consistent with other constraints imposed by sym-
metry, such as crossing symmetry, modular invariance on torus, since here we only use the
OPE of local operators, which is expected to be true for CFTs.

In this section we will mainly focus on RCFTs. On the one hand, our calculations
for S;, = Sk can be seen as a check on the consistency of the replica method to calculate
REE for locally excited states. On the other hand it may give us more insight on the



physical explanation of local excitation. For RCFTs we know the REE is log dp for the
state O|0) [14]. But it is still not clear why the quantum dimension dp appears. It is
expected this should be related to the topological entanglement entropy for anyons in
(241)D [32, 33]. Our results give more support on this. We will briefly discuss their
relation in section 5.1.

3.2 The states

We continue discussing entanglement properties of the state
)1, = N(e)e” O (wr, @1)O(ws, w2) 0) (3.1)

with wy = w1 = —1 and wy = wy = 0. We have shown in section 2.1 that the entanglement
entropy for subsystem A (z > 0) in late time limit is 254. It is expected Sy is only related
to the information of operator O. But on the other hand the operator O(wy, w;)O(w2, w2)
can be expanded as follows in (1+1)D CFTs,

O(wl, wl)O(wg, wg) = ZCp(wl —’LUQ)hp_Qh(IUl —’IDQ)EP_QEE(wl —wz)Z(wl —’IIJQ)Op(’wQ, QI]Q),
p
(3.2)

with
£(w1, ’U_)Q) = Z(wl — wQ)Kﬁék}L,kl - Lkaa (3.3)
{k}

where K = ZZ]\L 1 ki, Ly, are the Virasoro generators, and B}{,k} can be fixed with the help
of Virasoro algebra. The right hand side of (3.3) seems complicated, but it should exhibit
the same conformal properties as the left hand side [35]. Let’s denote

Op(’wg, wWo; W1, 1171) = Cp(w1 — w2)hpf2h(u—}1 — 1172)hp72h£(w1 — wg)ﬁ_(wl — 'lI)Q)Op(U)Q, ’LTJQ).

(3.4)
Under conformal transformation w = w(z), w = w(Zz), the left hand side of (3.3) trans-
forms as

O(21,21)0(22, %) = < 11 ‘fg;)fL(i]:L ‘flzi>h0(w1,w1)0(w2,w2). (3.5)

i=1,2

Op(wa, wa; wy,w1) should transform by the same law as (3.5). We could define a state

) g = N(e) Y e O, (wy, w3 w1, 101) |0) . (3.6)

p

|9)  can be seen as locally excited state created by a linear combination of primary and
descendant operators, which are labeled by p. We have discussed the entanglement entropy
of this kind state above. This state depends on the details of the fusion rule of O x O and
the corresponding structure constants. Although the expression for entanglement entropies
of [¢), and |¢) R look different, they should be equal due to the consistency of OPE. This
equality, as we will see later, leads to an algebraic identity.



3.3 Normalization

Let’s first discuss the normalization of state, which are closely associated with the entan-
glement entropy. From the definition (3.1) we obtain

1
N(e) = , )
( ) \/<OT(21, zl)OT(ZQ, 22)0(2’3, 53)0(24, Z4)> (3 7)

where z1 := wy — i€, 29 := w1 — i€, 23 := wy + i€ and z4 = wy + te. Note that the cross

ratio z = 212234/213224 = 1 + O(€?) . Because of the form of OPE in (3.3), the four point
appeared in the normalization constant A(€) can be written as sum of conformal blocks,

<OT(21, Zl)OT(ZQ, 22)0(23, 23)0(24, 24)> = (213224)_2h(213224)_QhG(Z, 5), (38)

with

G(2,2) =Y Fp(2)Fp(2). (3.9)
p

For the state |¢) ,, we rewrite it in the standard form (2.20). One could check (O\(’)};(’)p/ |0) ~
dppr and by definition

(0] OJ O, [0) = (213224) " (213224) 2" Fp(2) Fp(2). (3.10)

[¥) p can be rewritten as

[W)r=_VAlp), (3.11)

with
V= /\Afi((ee))’ ) == Np(e)e™H Op (w2, @a; w1, @1) [0) (3.12)

where N, (€) is the normalization constant of state |p). We can further simplify A, as

Ap = lim M
P Epfp(z)fp@y

where we take the limit z,Z — 1 because we would finally take ¢ — 0 which leads to

(3.13)

z,Z — 1. A\, will become a real number between 0 and 1, which can be interpreted as the
probability.
3.4 Rényi entropy of the state |p)

As we can see from (2.25), (2.27), to calculate the Rényi or entanglement entropy one need
to know the Sp" besides A,. The state [p) can be considered as a locally excited state by
the following descendant operators,

O(w,w) := L™ L™ O(w,w), (3.14)

with

L™ ::ZakHL_,ﬁ and L~ ;:Za;,ﬂi,k;, (3.15)
k 7 k' i/



where oy, and o, are dimensional parameters. In paper [16] the authors have calculated
the entanglement entropy of locally excited state by descendant operators for rational
CFTs. However, they only consider linear combination of descendant operators with fixed
conformal dimensions, i.e.,

[Lo+ Lo, L L ] =(K+ K)L L, (3.16)

where K := Y . k; and K := Y, ki, are some constant. By definition (3.4), the states”
considered in this subsection is quite different from that in [16]. But Op(w2, we; w1, W) is
organized as a special form such that it should satisfy the transformation law (3.5). This
allows us to use the replica trick as before to calculate the Rényi entanglement entropy.

Op(wa, wa; w1, w1) can be seen as a non-local operator associated with the coordinates
(w1, w1), (we, 7). Consider the state |p(t)) = e~ |p),

Ip(t)) = Np(€)Op (w2, w2; w1, w1)|0) (3.17)

where wqy = —l1 +t+ i€, wy = —ls +t + i€, Wy = —l1 —t — i€ and w9y = —Ily — t — ie. The
normalization constat N, is given by

1
Np(e) = : (3.18)
V/ (01 O} s wh, w0 (st 101 )
where w] = —l3 +t —ie, wh = —lo +t —ie, W) = =l —t +ie and Wy = —ly — ¢ + ie.

From (3.10) we have

(OF (wh, Wh wh, @7)Op(wa, @a; wy, @) = [wh — wi| ™M wy — wa| " F, (w) Fy(w),  (3.19)

where
w = (wp — wy)(wr — wp) ~1— 7462 (3.20)
(wh — wy)(wy — w2) (Ih —12)%’
I R S
(wh — w)(w) — w2) (Ih = 12)?

In the limit € — 0, w, w— 1. In this limit we expect the conformal block JF,,(w) ~ (1-w) 2" ~

e~ 4" where we only keep the most divergent term.?> Now we could use the replica method
to calculate the Rényi entropy for subsystem A, with > 0. We could express the difference

of Rényi entropy between state |p(t)) and vacuum state AS{S@(\p(t)}) as

( o (IT% O;(wé,m W 93 Wy 1, W 1) Op(Ws 2, Ws 25 Wy 1, ws,1)>7€n>
M

AS™ p(t))) =
Ap(1P(0)) (OF (wh, @h; w), ) O (wa, Da; wy, ©1))"

1—
(3.21)

2Here we consider the state is a summation of all possible descendant states.
3We will take some examples to illustrate this phenomenon in the following subsections. In rational
CFTs Fp(w) = 3_, FpqFq(1 —w) , the leading contribution comes from g = 0, thus Fp(w) =~ Fpo(1— w) ™2k,
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/
8,07

the s-th sheet of R,. We could make a conformal transformation w = 2", so that R,, is

where (w} ;,Ws;) and (ws, Ws;) (i = 1,2 and s = 1,...,n) are the replica coordinates on
mapped to the complex plane C. By using the transformation law of O, which is same
as (2.7), we have

n

A R o _
< H O;(ws,% Wg.2; Ws 15 ws,l)op(wS,Qa Ws,2; Ws,1, ws,1)>R

n

»

O;T;(Z;m Zs.2 25,1 Z51) Op(25.2, 75,25 25,1 53,1)>, (3.22)

Il
%
S
=}

where

= dwg ;i\ " dwy ; h dws ; —h dwy ; —h
n = 1:[ Zia ( dzs,; ) ( dz, ) < dZs,i > < dz, >
1 o — ! =!I \h
- 1 (712(@_752)> 1:[(257izs,izs7izs’i) ) (3.23)

Firstly, let’s consider ¢ < l;, as we can see from (2.8),

21€ _ 2i€

/ —/ _
Zg] — Buq X —————2 Zg] — Zuq X ————Z
s,1 s,1 n(l — t) s,1, s,1 s,1 n(l — t) s,1
2i€ _ _ 2ie  _
22 — z;Q ~ —mzsjg, Zso — 22’2 ~ mz&g. (3.24)
Therefore, the leading contribution is given by
n
Cn< H (9;2(2;,2, 5;,25 Z;,l, Z;,l)op(zs,% 25,25 %s,15 Zs,l) ~ e (3.25)
S

Taking the results into (3.21), we have ASX?;(\p(t») =0.

For t > [;, the coordinates (2, Zs;) would have a different behavior (2.9). O, can be
taken as a linear combination of descendant states like the form (3.14). The correlation
functions of descendant operators are associated with the correlation functions of primary
operators by means of linear differential operators, i.e.,

n
Y - . _
< H O;t(zs,% Z5,25 %51 2571)01,(25,2, 25,23 %s,15 Zs,1>>
S

- £Z< T[]0}z, 2. 22)O(zs.2. 5572)>. (3.26)
S

The L is a differential operator as a function L£(zs1 — 25,272’;,1 — 2;72) because of the

form (3.4). The action of anti-holomorphic operator £ on the anti-holomorphic partial
wave is the same as that of L.
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To simplify the notation let’s consider n = 2,and the generalization to arbitrary n is
straightforward. For n = 2, we have

=1 -/ - . - / =1 —/ - . —
<O;T;(Z 2aZ1,27Zl,lvzl,l)op('zl,Qa21727Z17172171)O;)(22,25Z2,27z2,1’ZQ,I)OZ)(Z272722,2522,1?Z271)>

)

— / / / / rl= = = — —/ —/ —/ —/
= L(z11 — 21,2, 221 — 22,2, 21,1 T R1,2,%2,1 T 2'2,2)5(21,1 —21,2,%2,1 T 22,2,%11 T #1,2:%2,1 — 22,2)

)

—~

O;(Z 2721 2) p(zl,2721,2)0;:[;(25,2’Zé,Q)OP(ZZ?aZ?,?»
=L(z1,1 — 21,2, %21 — 22,2, 211 — 212 %91 — Z09)L(Z11 — 21,2, Z2,1 — 222,211 — 219, %91 — Zh9)

> (O} 2)0p(21,2) Im) (m] OF (25,2)Op(22,2)) (O} (21 5) Op(Z1,2) [m) (m| Of(25,2) 0, (%2,2))

_ / ! A / A= = = = =/ =/ =/ =/
= L(21,1 — 21,2, 22,1 — 22,2, 21,1 T R1,2:%2,1 T 22,2)5(2'1,1 T R1,2,%2,1 T 222,211 T R1,2)%2,1 T 22,2)

Z 2(OF(21 2)Op(22,2) [n) (n| Of (25,2)Op (21,2){OF (21 2) Op(Z1,2) Im) (m| OF (25 5) Op(Z2,))
Z P 21,2§Zi,1>op(z2,2§22,1)‘"><”|O;;(Zé,2§Zé,l)op(zl,%21,1)><O;(53,2§21,1)Op(51,2§51,1)‘m>

(m| Of(2h.9: 251)Op(Z2,2: Z2.1)),
= F00<O (21, 25 21 25 2’1 15 751 1)O0p(22,2, 21,25 22,1, Z1,1))

}(OF (2,9, % 93 7 1, 7.1)Op(21,2, 22,15 21,1, Z2,1)) (3.27)

We will explain the above statement more clearly. In the first equality, we write the correla-
tion function of O, as correlation function on primary operators O, with some differential
operator. In the second equality, we write the correlation function of O, as conformal
blocks, |m) denote the m-th Virasoro module. In the third equality, we transfer the ex-
pansion into t-channel. Here we assume the theory is a rational CFT, so that different
expansion is related to each other by the fusion matrix Fh,. In the fourth equality, we
act the differential operators on the correlator again. The operators appeared in the cor-
relator are the corresponding descendant operators O,. Note that since we have changed
the position of coordinates in the third equality, the descendant operators O, will also
change according the right order of coordinates. Finally in the fifth equality, we keep the
leading contributions. Since we have the relation (2.9), only the identity channel gives
the most dominant contributions. In the last step we rearrange the holomorphic and anti-
holomorphic part together.

One could calculate the final quantity in (3.27) by (3.10). Taking the result into (3.21)
we find ASﬁ;ﬂp(t))) = —log F}, = log d,. It is straightforward to generalize the statement
into arbitrary n.

3.5 The induced equality from entanglement entropy

Using the result (2.27), we obtain the entanglement entropy Sg for subsystem A (z > 0)
in late-time limit,

= Aplog Ay + > NSy, (3.28)
p p
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where )\, is defined as (3.13), S, is the entanglement entropy of state |p). Since |p) is
the locally excited state by descendant operators defined by eq. (3.14). We have shown in
section 3.4 the entanglement entropy of this type of state is same as the primary state O,,.
In the rational CFT we know S, = log d,,, where d,, is the quantum dimension of operator
Op. Sp, =log d% only depends on the quantum dimension dp of operator O. So we have a
constraint by S; = S,

logdgy ==Y Nplog Ay + > Ay logd,. (3.29)
p p

The solution of above equation is A\, = d,/ d?). Therefore we obtain the following identity:

tim 2B b (3.30)
221 )0, Fp(2)Fp(2)  dg
Conformal blocks have the following transformation rule for rational CFTs,
Fp(2) :Zqu]:q(l - 2), ﬁp(i) = prqﬁq(l - 2) (3.31)
q q
where Fy, is the fusion matrix [37, 38].
In the limit z,Z — 1, we have
Fy(l = 2) = (1 — z)ta=2h, (3.32)

The leading contribution is ¢ = 0. Thus (3.30) can be further simplified to the relation
between fusion matrixes and quantum dimensions of operators

FpoFy dy
S 3.33
Zq quFqO d?) ( )

The Rényi entropy S(Ln) of 1), , which is independent of n in rational CFTs, equals to
the entanglement entropy. Actually combing (2.26), the solution \, = d,/d%, and the fact
Si(;") = log d,, in rational CFTs, we could obtain S](;),

5 _ log)_, dp/dZ

R = log d, (3.34)

1—n
where we use the equality of quantum dimensions Zp dp = d%. Therefore, we again obtain

a consistent result S(Ln) = Sl(%n).

3.6 More general cases

We have considered the product state |¢), = 0102 |0) with O = Oy = O, it is not hard
to generalize to the case O1 # O2. Define the state

6(1)) = N (& |) ) e =M O1(~11,0)02(~12,0) |0), (3.35)
where we still assume |l; — l2| > €. The sum rule will be still right, for ¢ > [;, we have

AS (16(t)1)) =~ AST (01 10)) + AST (04 0)). (3.36)
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On the other hand we have OPE

O1(w1, w1)O2(we, w2) = Z O, (w2, Wa; wy, 1), (3.37)
P
with
O (w2, Wa; wy, 1) (3.38)
= Z Clgp(wl — wg)hp_hl_hQ (ﬂ)l — w2)hp_hl_h2£(w1 — ’u)g)[,_(ﬂ)l — wg)op(’wg, 71)2).
p
Define the state
6(t) g == N (e 10)g) Y €™ HOP(Ig, 1; 11, 11) [0)
p
= N(e Z (’)12 (wa, wa; w1, w1) |0), (3.39)
p
where wy = —l; +t+ i€, woy = —lo +t +1ie, wy = —l; —t —ie and w9 = —ly —t — ie. The

normalization constant N (e; @) ) is same as N (e;|¢); ), which is given by

1
N(e o)) = T - : (3.40)
V(O (wh, @) Ol (wh, )01 (w1, 01) Oa(uws, w2))
where w} = —l; +t — ie, wh = —lo +t — ie, W) = —l; — t + ie and W) = —ls — t + ie. For
the OPE block we have the normalization
(0] OX" (wh, why; wh, @) O (ws, wa; wr, 1) |0) (3.41)
= Jwh — wy |72 g — g THITR2) gy gy |2 g — gy |22 ) F2(00) 22 ()

where w := (wh — w}) (w1 —wa)/(wh —w1)(w) —ws), Fp?(w) is the conformal block. Define

1
Np(e: |d) g = . (3.42)
/(01 O3 (s, @l ) OF2(wn, s wr, ) 0)

We could rewrite |¢(t)) , as the standard form (2.16),

[6(0)r = /X2 1P)™ (3.43)
with
D)% := Np(€ [6) ) Oy (w2, w25 w1, @1 ) 0)
_ o N(E&lo)g )

Ap = lg%/v,( ) (3.44)

Using the similar argument in section 3.4, we have the Rényi entropy S;Q of state [p)
for t > I; is same as the locally excited state by primary operator O, which is logd, in
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rational CFTs. Comparing with the entanglement entropy of |¢(t)); and |¢(t))z, we have
the constraint,

log(dyds) = Z A2 log AL + Z A2 log d,, (3.45)
which gives
d
A= 3.46
Dy (3.46)

)\11)2 is only related to conformal blocks. Finally we have

L FRFRw) g,

wol Yo FR(w)FR2(0) — didy’

(3.47)

It is also straightforward to generalize to the general product state (2.3).

3.7 Some examples

In this subsection we will show some examples to check the relation (3.30), (3.33) and (3.47).

3.7.1 Free massless scalar field

Consider the vertex operator V,, = €'®?, which has the fusion rule V, x V5 = Va4p- So there
is only one fusion channel, the result is consistent with the fact the quantum dimension of
V, is one.

For operator O, := %(VQ +V_4), we have the fusion rule O, x O, = I + Oy,. The
four point correlation function of O,

(Oa(21,21)O0a(22, 22) Oal(23, 23) Oal24, Z4)) (3.48)
= (|z12llzga) 0w (|FF2 + | FF2 + | Foua ).

with

\Fi? = |F71? = [1 — 2| 7*0a 4|1 — 2| *hoa,
| Fo|* = 2|2[*"0a |1 — 2| 72h0a, (3.49)

where the fusion channel of I has two possible ways, we label them as 1 and 2. We have

Al = A7 = lim il _1 (3.50)
I I= in ].7:1|2+|]'—2‘2+‘f(92a|2 4’ ’

B ’}—oga\ 1

AD,, = lim =
O PP |FP [ Fou P2

d
d%%‘, where d; =1, do,, = do,, = 2.

This is consistent with A} = \2 = ddg—f and Ao, =
Oa
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3.7.2 Ising model or Minimal model M(p =4,p = 3)

Ising model [39] at critical point has three primary operator I, ¢ and o, which satisfy the
fusion rule,
exe=1I, oxo=I1+e (3.51)

The quantum dimension of € is 1, € X € has only one fusion channel, which is trivially
consistent with the result (3.30). The four point correlation function [40]

(0(21,21)0 (22, 22)0 (23, 23) 0 (24, Z4)) (3.52)
= (z12234)™ (1F1(2)P + Conel Fe(2)P).

with

Fi(z) =

1 — 2)3/8 1+V1-2 1/2 1— 2)3/8 1—Vi—z 1/2
(21/8\>/§ < 1_ 2 ) ) Fe(z):\/i( zl/g < - ) , (3.53)

One could check

Ar = lim = Fi(2)71(2) = :1
z,z2—1 f[(z)./r](Z) + ngefe(z)fé(z) 27
. C? fg(z)ﬁe(i) 1
N Cooe L 3.54
z,ggl J—"[(Z)]:[(f) + ngefe(z)"rﬁ(g) 2 ( )

D[ =

which is consistent with Ay = fllf = % and A\ = 5—5 =

QN

3.8 Operator ¢ 1)¢(. in Minimal model

In this subsection we consider an example which has product of different operators. We
choose the operators ¢(3 1y and ¢, ), with the fusion rule

¢(2,1) X (Z)(r,s) = ¢(r—1,5) + ¢(r+1,s)' (355)
We will consider the state ¢ (3 1)(rs) |0). The four point correlation function [35, 41, 42] is
<¢'(TT7S) (w/27 ’U_)é)¢1(-271) (w/17 u_/l)(z)(ll) (wh w1)¢(r,s) (wQa U_]2)>

sin(br) sin(2b + a)m
sin(a + b)m

sin(am) sin(bm)
sin(a + b)m

|11 (w;a,b) | + |Io(w; a,b)|?|, (3.56)

with
MN(—a—2b—1I'(b+1)

Il(w;avb): F(—a—b) 2F1(_b7_a_2b_17_a_b7w)7
T Hr+1
I(w;a,b) = wltet2b (I?(Zﬂ—)b(—l—;) ) oF (=ba+1,a+ b+ 2,w), (3.57)

where a := [p(1 —7) — p'(1 — 5)]/p’, b = —p/p’. The |Ir(w)|? part is associated with the
conformal block of ¢(,._ ),

sin(an) sin(bm)

_ N I )
f(b('rfl,s)f(ﬁ(rfl,s) Sin(a + b)ﬂ_ | 2(w)|

_ sin(b)7sin(2b + a)m 9
‘F¢(T+1,s)f¢(r+l,s) sin(a + b)r |11 (w)] (3.58)
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I(2)(w) satisfies the following transformation relation,

sin(a)m sin(bm)
I (w;a,b) = L(1—w;bya) — ——= (1 —w;b
1(w7a7 ) Sin(2bﬂ') 1( w; 7a) Sin(2b7r) 2( w; 70’)
sin(a + 2b)m sin(br)
I(w;a,b) = ——————0L(1 —w;b,a) — ——=<12(1 —w;b,a). .
2(71), a, ) Sin(2bﬂ') 1( w; ,CL) Sil’l(2b7‘[’) 2( w; 0, CL) (3 59)
By using all the result we have
sin(2b + a)m sin(a)
1) ’ Plr—1,9) sin(am) + sin(2b + a)7’ (3.60)

sin(am) + sin(2b + a)w
which can be simplified to

sin[(1 4 r)mp/p |7
sin[(1 + r)mp/p/]m + sin[(r — V)7p/p/]7’
sin[(r — 1)mp/p|7

Adr,) = sin[(1 + r)wp/p |7 + sin[(r — V)7wp/p]7’ (3.61)

)\(z)(r+1,s)

where we have used the fact s is an integer, so the result is independent on s. The quantum
dimension of operator ¢(, s in Minimal model is defined by [38]

S1,1),(r,s)
L= 3.62
0 T Saaa 50
where S, 1), (ra,s0) 18 the S-matrix of modular transformation. The S-matrix is given by
2 L (7D (T
S(rl,sl),(rg,sz) =2 pp/(—l) Tr2s1tTise Sin <p,7‘1’l”2> S1n (pslsg . (363)
We have
dy, = _Sifl(27rp/p’), dy, = (=) sin(rmp/p') sin(smp'/p) (3.64)
@b sin(mp/p’) () sin(mp/p’) sin(mp’ /p)
One could check the relations
dg dg
Appoyy = 54Dy, = e (3.65)
() d¢(2,1)d¢>(r,s) (r=te) d¢(2,1)d¢<r,s>

4 Proof of identity (3.47)

In this section, we prove the identity shown in egs. (3.31), (3.47) using the language of
modular tensor category. We will see that only the “tensor” part of the category is involved.
We start with reviewing some relevant concepts: a tensor category C is a set of data
{Obj(C),d, N, F'} that satisfy some consistency conditions. The set Obj(C) consists of
superselection sectors a,b,c---. Quantum dimension d, assigns a real number to each
sector a €Obj(C), and the rank-three tensor NS, describes fusion rules between the sectors:

axb=Y Nje. (4.1)
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a b c a b c

abe f a
=2 FLVeap)(fuw) v

Figure 2. Graphical representation of F-move.

Each entry N, is a non-negative integer counting the number of different channels that a
and b can be combined to produce the c. In rational CFTs, the fusion is finite which means
> NS, is a finite integer.

The quantum dimensions are consistent with the fusion rules,

dady =Y Nyde. (4.2)

Each fusion product axb — ¢ has an associated vector space V5 and its dual splitting space
V2. The dimension of this vector space is dimV5 = Ng,. There are two different ways to
fuse a, b and c into d, related by associativity in the form of the following isomorphism:

Vi.2Pvsevie Pvle v, (4.3)
e f

In terms of N tensor, this simply leads to
Y ONGNL =" NN (4.4)
e f

Finally, we introduce the F' tensor. We will use the following graphical representation in
figure 1 for the basis in Vcab and V3, where p=1,...,Ng:

The changing of basis in (4.3) are then realized through the F-moves in figure 2.
These F-moves are unitary transformations,

()], = [0 e = )

. 4.5
} (e;0.8)(fpv) (45)
Additionally, we have the useful resolution of identity as shown in figure 3.

(frmv)(e,0.)

For a tensor category, we should further require the F-moves to satisfy the Pentagon
equation corresponding to the associativity conditions involving five external legs in total.
For a modular tensor category, a consistent braiding structure, the Hexagon identity and
modularity of the S-matrix are required. We will omit the further details since they are
not necessary for the proof.
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a

b
a
— _ / _de
1ab - - ZC# dadb ¢
a

Figure 3. Resolution of identity.

Now we give the proof of the desired identity. For simplicity of narration, we assume
the fusion rules are multiplicity-free, i.e. N¢, € {0,1}, so that the indices «, 3,--- on the
vertices can be omitted. The most general case can be recovered straightforwardly by
adding them back and perform summations over these indices when appropriate.

FOOO]

In figure 2, we observe that in order for the F' symbol | 5 lpo to be nonzero, fusion

N(O)O must be nonzero. This would indicate O = O, so that we can omit the arrows in the

diagrams and suppress the external leg indices of the F' symbol: [FOOOO]p = [Fooo]po =
Fpo. The identity to be proved can then be rewritten as
dpF% = dyNbo Y FiNGo. (4.6)

q

We notice that in the graphical representations, one has freedom to add trivial lines
0 anywhere in any graph, as it has no physical consequence. Upon adding a trivial line 0
on the left hand side in the resolution of identity to connect the a and b lines, identifying
a=0b= 0, ¢c=p and comparing with the definition of F' symbols, one observes that the
coefficients on the right hand side of the resolution of identity in figure 3 exactly gives

[FgoO]Op
Fop = 1/ dp/d2NB. (4.7)

From the unitarity of the F' symbols in eq. (4.5), we have F@l = ng. Since the labels O
are self-dual, one can rotate the external legs as in figure 4, leading to

)" = (Fg,

FPOZ(FT Op

Op

Y = Fy, = \/dyp/dEND, (4.8)

P

Plugging in the above value for Fp to both sides of the target identity (4.6), we obtain

Lhs. = d,Nbo, rhs_ngOquNq (4.9)

Using (4.2) by identifying a = b = O and ¢ = ¢, one immediately observes that l.h.s.=r.h.s.
n (4.9). A parallel proof will follow if one consider a slightly more general case where the
four external legs are not all the same. The identity would have the form

dady[FY)3, = dpN?, Z Fpob)? (4.10)

The main physics involved in proving the identity is the manifestation of the fusion
rules in terms of quantum dimensions, (4.2). This should not come as a surprise: the
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Figure 4. One identifies Fp, with FO_pl from the above figure.

identity to prove (4.6) is derived under the physical constraint S;, = Sg, namely the two
procedures, doing OPE and calculating entanglement entropy, are interchangeable. In
other words, the entanglement should be consistent with OPE. From the categorical point
of view taken in this section, the entanglement stems from quantum dimensions, while the
OPEs are fusion rules. Since the same algebraic structure is shared by anyons and quasi-
particles (local operators) in RCFTs, we can use the language of anyon to prove (4.6). In
this sense, we do show the quasi-particles of locally excited state in rational CFT follows
the same rule as anyons. This can be seen as an example to realize anyons in RCFTs.

5 Conclusion and discussions

In this paper, we begin with same 1+1 dimensional setup with [14] and study the late time
behavior t — oo of Rényi entropy of the two equivalent locally excited states defined by
Lh.s. and r.h.s. of eq. (1.2) and obtain the Rényi entropy of a subsystem x > 0 in (141)D
CFTs. In the limit ¢ — oo, we prove that Sy, satisfies with a sum rule (1.1) by replica
method and showed that S;, depends on the information of individual operator O; in L.h.s.
of eq. (1.2). In general, Si is hard to obtain by replica method. In the late time limit,
we derive Sg of the excited states involving in r.h.s. of eq. (1.2) by making use of Schmidt
decomposition. It is associated with the fusion channels and conformal block presented
in r.h.s. of eq. (1.2). The constraint Sz, = Sk leads to an identity in (141)D CFTs. We
studied the Sr, Sg in rational CFTs as examples and proved the relation (3.30), (3.47).

From S;, = Sk with late time limit in our setup, we indeed used crossing symmetry to
obtain the entanglement entropy. Namely, we have made use of bootstrap equation from s
channel conformal block to t channel conformal block.
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5.1 Bulk-edge correspondence

We have seen that the modular tensor category language was used in section 4 to prove the
identity 3.47. On the other hand, anyons in topological orders share the same algebraic
structure of modular tensor categories, see for example [43, 44]. As noted in [47], the
non-chiral rational CFT can be viewed as the edge theory of (2+1)-D chiral topological
order in a strip [45, 46]. Insertion of operators in the rational CFT can be explained in the
bulk theory. Roughly, inserting of a primary operators O, at spacetime (z,t) in (1+1)D
rational CFT corresponds to creating a pair of anyons labeled as (a,a) at earlier time.
The state [1)), = O4(—1,0)04(0,0)|0) can be viewed as creating two pairs of anyons in
the bulk at some time ¢ < 0, and they pass the boundary at spacetime (—[,0) and (0, 0).
We can specify the possible values of the total charge of the two anyons by the fusion rule
a x a = NLyp. In the CFT side this is just the OPE of two operators O,.

Calculations of entanglement entropies with two pairs of anyons has been carried out
in (2+1)D [48], where the result shares similar structure as above. It would be interesting
to look at the general correspondence between the entanglement properties in the bulk and
on the boundary.

5.2 Large-c CFTs

We mainly focus on the (1+1)D rational CFTs in previous sections. In rational CFTs,
the spectrum and fusion rules are relatively simpler than the irrational ones, such as CFT
with a gravity dual or Liouville CFT. In rational CFTs, we can analytically calculate the
Rényi entropy of locally excited states and explain the evolution behavior by quasi-particles
picture.

In this section, we would like to briefly discuss the constraint S; = Sg in the CFTs
with a gravity dual, or large-c CFTs. Generally the time evolution of Rényi entropy can
be very different from the rational ones [27, 28], see also the case for Liouville CFT [30].
The feature of such theory is a logarithmic growth in the intermediate time [26-28]. But
we expect in the limit ¢ — oo the Rényi entropy or entanglement entropy to approach a
constant [27]. In rational CFTs this constant is related to the quantum dimension of the
inserted operator. However, for large ¢ CFT the quantum dimension is not so well defined
as rational CFT. As far as we know, this is still an unsolved problem at the moment.

In any CFT, the sum rule is still true for Sy, so one can obtain Sy, as long as the result
of locally excited states created by one primary operator is known. Two local operators
can still be expanded as OPE blocks as in (3.2), consequently Sg (3.28) can similarly be
calculated in large ¢ CFTs, except that the sum over p may be replaced by an integration
if the spectrum of the theory is continuous. By the definition of A, we know it is only
associated with conformal blocks. In large ¢ CFT, the details of the conformal blocks are
known for few cases [49, 50]. One of them is the correlator

(O} (21,21)0} (22, 22)O1 (23, 23)OL (24, 24)) ~ Y Fp(2) Fp(2), (5.1)
P

for the primary operator Oy, with conformal dimension hj, to be fixed in the limit ¢ — oo.
In this case, the Virasoro blocks reduce to representations of the global conformal group.
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The holomorphic Virasoro blocks [50] are
Fp(z) = 2" 2F1(hyp, hp, 2hy; 2), (5:2)

where h,, is the conformal dimension of the intermediate operator, which is also assumed
fixed in the limit ¢ — oco. If we consider the locally excited state by two light operators
0r(0,0)0L(—1,0)|0), the “probability ” X,, as shown in eq. (2.20) is well defined in this
case, since

lim Fi(hp, hy, 2hy; 2)

2—1 Fy (hp/, hp/, 2h/p§ Z) - C(hp)/c(hp’)’ (5'3)

where C(hy),C(hy) is only a constant depending on the conformal dimension h, and
hy [29]. In rational CFTs, we know that the ratio A\,/\, is associated with the the
quantum dimension dp/d,y. In the present case the constant C(hy),C(hy) may be an
alternative of quantum dimension in large ¢ CFT.

To check this claim, we will need to know the result of Rényi entropy for state Oy, |0)
in the limit ¢ — co. One more subtle problem is the entanglement entropy S, of the state
|p). For rational CFTs we show in section 3.4 that S, is equal to the entanglement entropy
of the state O, |0). It is not straightforward to generalize the result to large-c CFTs, due
to the lack of the simple fusion transformation.

Our setup depends on the leading behavior of OPE and success of the replica trick. The
identity might break down due to the two facts. Firstly, the constraint should be modified
for irrational CFTs, e.g. Liouville field theory. The spectrum of Liouville field theory is
continuous and no vacuum exists in the Hilbert space. The OPE involves integration over
continuous spectrum instead of discrete summation. Secondly, in the (z,z) — (1,1) limit,
the dominant conformal block to the REE is no longer identity block in this limit. The
author [30] have carefully studied the variation of REE of local excited states in late time
by same bootstrap equation, showing that the late time of REE is associated with fusion
matrix element instead of quantum dimensions.

It is also interesting to study the gravity dual of multiple local excitations, e.g., the
bilocal quench can be associated with black hole creation in AdSs [51, 52].
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