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Understanding hydrodynamization in microscopic models of heavy-ion collisions has been an im-
portant topic in current research. Many lessons obtained within the strongly-coupled (holographic)
models originate from the properties of transient excitations of equilibrium encapsulated by short-
lived quasinormal modes of black holes. The aim of this paper is to develop similar intuition for
expanding plasma systems described by, perhaps, the simplest model from the weakly-coupled do-
main, i.e. the Boltzmann equation in the relaxation time approximation. We show that in this
kinetic theory setup there are infinitely many transient modes carrying at late times the vast ma-
jority of information about the initial distribution function. They all have the same exponential
damping set by the relaxation time but are distinguished by different power-law suppressions and
different frequencies of very slow, logarithmic in proper time, oscillations. Finally, we analyze the
resurgent interplay between the hydrodynamics and transients. In particular, show that there are
choices of relaxation time dependence on temperature for which the asymptotics of the divergent
hydrodynamic series is dominated not be the least damped transient, but rather by an unphysical
exponential correction having to do with non-analyticities of the equation of motion in complexified
time variable.

1. Introduction.– The success of hydrodynamics as a
part of the phenomenological description of data ob-
tained in ultrarelativistic heavy-ion collision experiments
at RHIC and LHC has triggered significant theoreti-
cal interest in understanding the transition to hydro-
dynamic regime – hydrodynamization – from a micro-
scopic standpoint [1–3]. There are two kind of setups
in which this outstanding problem has been addressed to
date: strongly-coupled models based on holography (also
known as AdS/CFT correspondence or gauge-gravity du-
ality) [4–6] and weakly-coupled setups based on kinetic
theory (Boltzmann equation), see, e.g., Refs. [7, 8] for
a review of some of these developments. The aim of the
present paper is to apply intuitions developed using holo-
graphic methods to expanding plasma setups described
within kinetic theory.

We will be studying longitudinally expanding plasma
systems in 1+3 dimensions with the assumption of boost-
invariance along the expansion axis z, see Ref. [9], and
conformal equation of state relating matter energy den-
sity E and its equilibrium pressure P as E = 3P. Assum-
ing local thermalization at late proper time τ =

√
t2 − z2,

the energy-momentum tensor of matter is fully charac-
terized by one dimensionful number Λ setting the pref-
actor in the asymptotic scaling of energy density with
proper time [10]

E
∣∣∣
τ→∞

=
Λ4

(Λ τ)
4/3

. (1)

As reviewed in Sec. 3, power law corrections to the above
equation have an interpretation as a hydrodynamic gra-
dient expansion and, at least superficially, do not re-
quire new information about initial conditions. This
raises the puzzle encapsulated by the title of our pa-
per. The microscopic dynamics in the setup of interest
is captured by the distribution function f(x, p), which

is a non-negative function of spacetime position xµ (in
the present setup only τ will matter) and the on-shell
particle 4-momentum pµ (we are assuming here for sim-
plicity massless microscopic constituents). The energy-
momentum tensor of the underlying matter is given by
the second moment of the distribution function

Tµν =

∫
dP pµ pν f(x, p), (2)

where dP stands for the phase space measure defined in
Eq. (16). Local energy density E(τ) in Eq. (1) is simply
equal to −T ττ .

The distribution function itself solves a first order par-
tial differential equation (the Boltzmann equation) of the
form

pµ∂µf(x, p) = C[f ], (3)

where the collisional kernel C depends only on the dis-
tribution function f at a given spacetime point xµ. As
a result, in order to solve the initial value problem one
needs to know the distribution on some time-like hyper-
surface (here taken to be a hypersurface of constant τ) as
a function of 4-momentum pµ. Such an initial condition
contains infinitely many data (dimensionful parameters),
which is in stark contrast with the late time behaviour
captured by Eq. (1). Even with a simplifying assump-
tion of rotational invariance in the transversal plane, the
initial distribution function is an arbitrary non-negative
function of two variables. To rephrase our title: what
kind of corrections to Eq. (1) carry information about
initial conditions set by the initial distribution function?

As already anticipated, we will be interested in answer-
ing this question using intuitions developed in the holo-
graphic studies of heavy-ion collisions. In fact, holog-
raphy shares one key feature with the present setup:
the microscopic description is naturally formulated us-
ing variables living in more dimensions than observables
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(there: correlation functions of operators, here: moments
of the distribution function). In holography, if one ne-
glects nonlinear effects, one finds that Eq. (1) is supple-
mented by a discrete set of infinitely many corrections of
the form

δEj
∣∣∣
τ→∞

= bj τ
αj e−γj (Λ τ)2/3

cos
(
ωj(Λ τ)2/3 + φj

)
, (4)

which encapsulate transient excitations undergoing expo-
nential decay with oscillations [11, 12]. Then, at least su-
perficially, an infinite set of amplitudes bj and phases φj
offers a possibility of encoding information about initial
conditions set in the higher dimensional gravitational de-
scription. Furthermore, decay rates γj and oscillation fre-
quencies ωj are related to positions of single-pole singu-
larities in complexified frequency and at zero momentum
in the Fourier-transformed retarded two-point function
of the energy-momentum tensor in global thermal equi-
librium [11]. The character of these singularities being
single poles has been understood as the hallmark feature
of strongly-coupled setups, see, e.g., Ref. [13]. On the
gravity side, these singularities are the aforementioned
transient quasinormal modes of dual black holes [14].

Preliminary results from Ref. [15] (see also recent
Ref. [16]) confirm general expectations that the relevant
singularities in kinetic theory are of branch-cut type. Our
paper, therefore, is all about understanding how Eq. (4)
gets modified in the simplest kinetic theory model, con-
sidered for example by Ref. [15]. The only “microscopic”
parameter in the collisional kernel, the relaxation time,
is considered to exhibit a general power-law dependence
on temperature (but not on quasiparticles momenta, as
in Ref. [16]), see Eq. (9). Therefore, our study includes
some of the results of Refs. [17–20] as special cases.

We believe the issue we are raising and the setup we
are using to address it are interesting for a number of
reasons. First and foremost on the motivational front:
if one were to search for transient phenomena in heavy-
ion collisions, one would naturally search for excitations
of a type given by Eq. (4) rather than perturbations
of global equilibrium. Furthermore, interplay between
hydrodynamics and transients has become a topic of
significant interest in the past decade. This includes
formulating effective theories of hydrodynamics with a
view towards better phenomenological description of ex-
perimental data [12, 21–26], applications of resurgence
techniques to non-equilibrium setups in which transient
modes act as analogues of non-perturbative effects and
hydrodynamics represents asymptotic perturbative ex-
pansion [17, 18, 27–31], as well as viewing hydrodynamics
beyond gradient expansion as a set of special attractor
solutions [8, 20, 28, 31–35]. Our work is also motivated
by ongoing efforts to bridge weak- and strong-coupling
approaches using holography with higher-derivative cor-
rections [36–40], extrapolating kinetic theory predictions
from weak to realistic/larger couplings [18, 41]. Last
but not least, our studies are also motivated by at-

tempts to use kinetic theory to map early time dynam-
ics in heavy-ion collisions to hydrodynamics [42]. The
interested reader is invited to consult recent review arti-
cles [7, 43, 44] for an extended discussion of some of these
developments.

2. Kinetic theory models of interest.– Following earlier
studies in Refs. [15, 17–20, 34, 45, 46] we consider ex-
panding plasma systems governed by kinetic theory with
the collisional kernel C[f ] in the so-called relaxation time
approximation (RTA). In our presentation we will follow
the conventions of Ref. [46].

The RTA ansatz was introduced originally in Refs. [47,
48] and constitutes perhaps the simplest kinetic theory
model with hydrodynamic behavior. Within this ansatz,
the collisional kernel is linear in the distribution func-
tion and vanishes when the latter takes the equilibrium
form feq(x, p):

C[f ] = p · U(x)
f(x, p)− feq(x, p)

τrel
. (5)

This theory contains one adjustable “microscopic” vari-
able, the relaxation time τrel, and requires specifying the
relevant equilibrium distribution function feq(x, p).

Regarding the equilibrium distribution func-
tion feq(x, p), we take it to be of the Boltzmann
form, i.e.

feq(x, p) =
1

(2π)
3 exp

[
−p · U(x)

T (x)

]
. (6)

Generalizations to Dirac-Fermi and Bose-Einstein dis-
tributions are straightforward. In Eq. (6), and also in
Eq. (5), T (x) is the effective temperature, i.e. the tem-
perature of the equilibrium state with the same local en-
ergy density E . In the present case they are related by

E =
3

π2
T 4. (7)

Furthermore, the unit timelike four-vector U(x) is the
flow velocity defined by the Landau frame (Landau
matching) condition for the energy-momentum tensor
given by Eq. (2):

Tµν U
ν = −E Uµ. (8)

The last part in specifying the model is defining the
relaxation time. We will specialize to models with the
relaxation time τrel exhibiting power-law dependence on
the effective temperature

τrel = T (τ)−∆, (9)

where the overall constant, dimensionful for ∆ 6= 1, was
set to unity and can be always restored based on dimen-
sional analysis / physical grounds. Two values of ∆ stand
out: ∆ = 0 for which the relaxation time is constant and
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the theory significantly simplifies and ∆ = 1 for which
the theory is conformally-invariant. Gradient expansions
(at large orders) in such RTA models were considered
earlier, respectively, in Ref. [17] and Ref. [18].

Let us now specialize to the boost-invariant case [9].
This flow is easiest to study using coordinates proper
time (τ) and spacetime rapidity (y) defined by

t = τ cosh y and z = τ sinh y. (10)

Under longitudinal boosts, τ stays invariant and y gets
shifted by a constant. In proper time - rapidity coordi-
nates, components of tensors (e.g. pµ, Uµ or Tµν) are
boost-invariant as long as they do not depend on y.

The kinematics of this simple flow dictates that

U = ∂τ (11)

and that T be a function of τ only. The symmetries of the
problem leads to an energy-momentum tensor Tµν with
three different components, T ττ , T yy and T 1

1 = T 2
2 defin-

ing (minus) local energy density E(τ), longitudinal pres-
sure PL(τ) and transversal pressure PT (τ) respectively.
They are further related by tracelessness (note mass-
less particles) and conservation equations of the energy-
momentum tensor, implying

PL(τ) = −E(τ)−τ E ′(τ) and PT (τ) = E(τ)+
1

2
τ E ′(τ). (12)

The natural observable, and a measure of deviations from
local thermal equilibrium, is the pressure anisotropy nor-
malized to what would be the equilibrium pressure at the
same energy density [7, 49], i.e.

A =
PT (τ)− PL(τ)

E(τ)/3
. (13)

Moving on to the microscopic level, one can take the
distribution function to be a function of proper time τ ,
dimensionless combination τ py ≡ p̂y and the magnitude
of the transversal momentum pT . In this parametriza-
tion, the Boltzmann equation takes a particularly simple
form

∂τf(τ, p̂y, pT ) =
feq(τ, p̂y, pT )− f(τ, p̂y, pT )

τrel(τ)
, (14)

where we remind the reader that the relaxation time in
the general case will be time-dependent and

feq(τ, p̂y, pT ) =
1

(2π)3
exp

−
√

(p̂y)
2

+ τ2p2
T

τ T (τ)

. (15)

Lastly,let us remark that the measure factor in the phase
space integration dP reads

dP =
2π pT
τ pτ

dp̂y dpT , (16)

where

pτ =
1

τ

√
(p̂y)2 + τ2p2

T (17)

and, as a result, the energy density takes the form

E(τ) =

∫
dP (pτ )

2
f(τ, p̂y, pT ) =

2π

τ2

∫ ∞
0

dpT

∫ ∞
−∞

dp̂y pT

√
(p̂y)2 + τ2p2

T f(τ, p̂y, pT ). ,(18)

Let us now move on to the initial value problem. As
anticipated in the introduction, solving Eq. (14) requires
knowing f as a function of two variables, p̂y and pT ,
at some initial time τ0. One can see it in two steps.
First, one can write a formal integral solution for the
distribution function of the form

f(τ, p̂y, pT ) =D(τ, τ0)f(τ0, p̂
y, pT ) +∫ τ

τ0

dτ ′

τrel(τ ′)
D(τ, τ ′)feq(τ ′, p̂y, pT ), (19)

where

D(τ2, τ1) = exp

[
−
∫ τ2

τ1

dτ ′

τrel(τ ′)

]
. (20)

Note that the above expression is exponentially sup-
pressed for τ2 � τ1.

In Eq. (19), one should bear in mind that the relax-
ation time can depend on the effective temperature, see
Eq. (9), and, through Eqs. (7) and (18) on the distribu-
tion function at a given instance of proper time. This
is resolved by taking the second moment of both sides
of Eq. (19) with respect to pτ , as in Eq. (18), since this
leads to an expression depending only on the effective
temperature T (τ). Indeed, one then obtains the follow-
ing integral equation

E(τ)D(τ, τ0)−1 = E0(τ) +

+
1

2

∫ τ

τ0

dτ ′

τrel(τ ′)
E(τ ′)D(τ ′, τ0)−1H

(
τ ′

τ

)
, (21)

where

H(q) = q2 +
arctan

√
1
q2 − 1√

1
q2 − 1

(22)

and

E0(τ) =
2π

τ2

∫ ∞
0

dpT

∫ ∞
−∞

dp̂y ×

×pT
√

(p̂y)2 + τ2p2
T f(τ0, p̂

y, pT ). (23)

Eq. (21) will play the central role in the analysis here. Be-
fore we move on to describing new results, a few remarks
are in order. First, Eq. (21) is an integral equation, i.e.
the effective temperature at a given instance of proper
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time depends on the whole temperature history till that
moment. Second, E0(τ) feeds in information about the
initial distribution function into the temperature profile
as a function of proper time. The late time expansion of
E0(τ) can be shown to be of the following form

E0(τ) =
ε1

τ
+
ε3

τ3
+
ε4

τ4
+ . . . , (24)

i.e. without the 1
τ2 -term and, in general, with infinitely

many independent coefficients εj . Third, the function
H(q) under the integral is evaluated only for q ∈ (0, 1],
but we showed with our collaborators in Ref. [18] its an-
alytic properties on the complex q-plane are, in fact, im-
portant. The coarse features of H(q) make it similar to
a simple linear function, i.e. 2 q, but, as we will see in
Sec. 3 and Sec. 4, its fine details directly translate into the
values of hydrodynamic transport coefficients and tran-
sient modes. Finally, Eq. (21) is in general a strongly
nonlinear equation for the effective temperature T (τ) or,
equivalently, local energy density E(τ) because of the
temperature-dependent relaxation time τrel(τ). However,
for constant relaxation time, i.e. for ∆ = 0 in Eq. (9),
Eq. (21) becomes a linear equation for E(τ). This sig-
nificant simplification will allow us in Sec. 5 to see some
beautiful resurgent relations between the hydrodynamic
and the transient parts of E(τ). Otherwise, Eq. (21) can
be solved numerically, which we will do in Sec. 6 using a
refinement of the method from Ref. [46].

3. Gradient expansion.– In the boost-invariant flow, the
hydrodynamic gradient expansion (i.e. expansion in the
Knudsen number) is a power series in the ratio of the
microscopic dissipation scale, here set by τrel, and size of
the gradient set by the kinematics to be 1

τ . We will call
this dimensionless ratio w:

w ≡ τ

τrel
. (25)

If we use our ansatz for the relaxation time, then w reads

w = τ T (τ)∆. (26)

In the conformally-invariant case, ∆ = 1, we recover the
w variable introduced in Ref. [49], which justifies the
name. In particular, when comparing different solutions
of Eq. (21) we will be looking at normalized pressure
anisotropy A defined in Eq. (13) as a function of w. Of
course, one can still treat w as a function of proper time,
i.e. w(τ), as we will often do below.

The energy density can therefore be formally ex-
panded as

E(τ) =
Λ4

(Λ τ)
4/3

(
1 +

e1

w(τ)
+

e2

w(τ)2
+ . . .

)
(27)

with coefficients ej fixed by ∆ and independent of the
initial condition. Alternatively, one can represent the

energy density in the equivalent late-time expansion as

E(τ) =
Λ4

(Λ τ)4/3

(
1 +

ẽ1

(Λ τ)1−∆/3
+

ẽ2

(Λ τ)2−2∆/3
+ . . .

)
, (28)

where comparison with Eq. (27) allows one to relate ẽj ’s
and ej ’s. One can deduce from Eq. (28) that the allowed
range of parameter ∆ is

∆ < 3, (29)

as otherwise the relaxation time at late times gets too
large to allow for a depletion of gradients and, instead,
enhances them.

Furthermore, expansions in Eqs. (27) and (28) trans-
late directly into the large-w expansion of the normalized
pressure anisotropy A:

A =
a1

w
+
a2

w2
+ . . . (30)

Again, it should be noted that the gradient expansion in
Eq. (30) does not contain any information about an ini-
tial state and in Eqs. (27) and (28) the only information
sits in the asymptotic scaling set by Λ. Regarding rela-
tion to transport coefficients, the term a1 is related to the
ratio of shear viscosity η to entropy density and the term
a2 is related to a combination of second order transport
coefficients τπ and λ1, see, e.g., Ref. [7] for details.

As noted in Ref. [18], the gradient expansion in RTA
kinetic theory can be generated using integration by parts
of the integral in Eq. (21). First, let us observe that

D(τ ′, τ0)−1 = τrel(τ
′)

d

dτ ′
D(τ ′, τ0)−1. (31)

The appearance of a derivative allows for repeated appli-
cation of integration by parts in Eq. (21). Focusing only
on the relevant integral one gets∫ τ

τ0

dτ ′

τrel(τ ′)
H

(
τ ′

τ

)
E(τ ′)D(τ ′, τ0)−1 =∫ τ

τ0

dτ ′H

(
τ ′

τ

)
E(τ ′)

d

dτ ′
D(τ ′, τ0)−1 =

H(1) E(τ)D(τ ′, τ0)−1 −H
(τ0
τ

)
E(τ0)

−
∫ τ

τ0

dτ ′
d

dτ ′

[
H

(
τ ′

τ

)
E(τ ′)

]
D(τ ′, τ0)−1. (32)

Exactly the same logic can be applied to the final inte-
gral appearing in the above equation, which leads to an
iterative scheme that can be executed indefinitely. Ev-
ery subsequent integration by parts is going to generate
a term proportional to D(τ ′, τ0)−1 which at late times is
exponentially enhanced over the other term. Gathering
such dominant terms and neglecting others in the iter-
ated version of Eq. (21) leads to a differential relation
involving derivatives of H(q) at q = 1 and derivatives of
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E(τ) measured in units of relaxation time. As a result
one obtains

∞∑
j=1

(
−τrel(τ

′)
d

dτ ′

)j
H

(
τ ′

τ

)
E(τ ′)

∣∣∣∣∣
τ ′=τ

= 0 , (33)

which needs to vanish up to exponentially small correc-
tions (hence the equality in the equation above). Series
expanding this expression with the sum truncated at, say,
j = 3 allows us to determine, in this case, e1 and e2 in
Eq. (27) and, as a result, a1 and a2 in Eq. (30). The
result reads

a1 =
8

5
and a2 =

88

105
− 8

15
∆. (34)

Iterating this scheme further allows one to get higher or-
der transport. This approach works the best for the con-
stant relaxation time in which case one can get the lowest
1500 coefficients. We did this by first using Eq. (33) to de-
rive a recursive relation for coefficients ej from Eq. (27),
which, for ∆ = 0, happen to be the same as coefficients ẽj
appearing in Eq. (28), and solving this relation. Unfor-
tunately, the number of terms generated in Eq. (33) gets
significantly bigger and the whole approach slower for
generic values of ∆. However, in all the cases we checked
it was sufficient to demonstrate that the gradient expan-
sion has a vanishing radius of convergence, as expected
on general grounds [7]. For a temperature-dependent re-
laxation time the method from Refs. [7, 18] and, perhaps,
also Ref. [17] are better suited to get a significant number
of terms, e.g. 425 terms in the conformal case (∆ = 1)
considered in Ref. [18].

A standard way of dealing with asymptotic series is
Borel transform, which takes anw

−n to anζ
n/n!, and

Borel summation which at the level of a series inverts
the former operation, see e.g. Ref. [7]. In Fig. 1 we show
the structure of singularities of the Borel transform of
the truncated hydrodynamic gradient expansion for six
representative values of ∆. As a way of analytically con-
tinuing the Borel transform away from the origin we use
the standard symmetric Padé approximation. In Fig. 1
we always see poles on the real axis and for ∆ > 0, also
singularities further on the complex plane. As argued in
(version 2 of) Ref. [18], the latter are not really physi-
cal, but rather represent analytic properties of Eq. (21)
with contours of integration over τ ′ extended away the
real axis. In the present manuscript we will be concerned
with singularities lying on the real axis and their relation
to transient modes (Sec. 4) and resurgence (Sec. 5).

4. Transient modes.– We have seen that the gradient ex-
pansion is universal, independent of initial conditions. In
this section, we describe transient corrections to the uni-
versal late time behavior. These transient modes come
with an overall amplitude and phase that offer the pos-
sibility to encode initial information. To this end, we
discard E0 and set the lower limit of integration τ0/τ

FIG. 1. Singularities of the Borel transform of hydrodynamic
gradient expansion of A for sample values of allowed ∆, see
Eq. (29). As a method of analytic continuation we use Padé
approximants. The cases of ∆ = 0 and ∆ = 1 were stud-
ied before in, respectively, Refs. [17] and [18]. In the plots
sequences of poles represent branch cuts, a known feature of
Padé approximation, see, e.g., Ref. [50]. The singularities on
the real axis is physical and give rise to transients of the form
dictated by Eq. (35). The arguments in Sec. 4 make it clear
that this singularity is an infinite set of branch cuts with the
same branch point, but of a different order. The singularities
off real axis are unphysical and follow from contour deforma-
tions in the integral in Eq. (21), as explained for ∆ = 1 in
Ref. [18]. What is surprising is that these unphysical singu-

larities, whose location is at 1 + (−1)±∆/3, start controlling
the radius of convergence of hydrodynamic series for ∆ > 2.
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to 0. This may seem contradictory, as this removes all
initial data. We do this as we are only concerned with
demonstrating how data can be stored rather than the
particular way a given initial condition is stored. The
matching of initial data to late time modes is a complex
task which we at the moment can say very little about.
We present here the ∆ = 0 case as the general case in-
troduces mainly notational, not technical, difficulties.

Since Eq (21) contains exponential suppression in the
form of D(τ, τ0), a natural ansatz for the energy density
is

E(τ) = Ege(τ) + σD(τ, τ0)Ept(τ), (35)

where Ege(τ) is the gradient expansion and Ept(τ) is a
power series with leading power β (as we will soon see,
in general, a complex number), i.e.

Ept(τ) = wβ
(

1 +
eβ,1
w

+
eβ,2
w2

+ . . .
)
. (36)

Inserting this into Eq. (21) and matching powers of w
leads to equations for β and eβ,k. In this section, β is the
object of interest. As described in (Sec. 5), for a given β,
the rest of the coefficients eβ,k are uniquely determined.
However, the equations leave σ undetermined. Hence,
each allowed value of β supplies one free parameter where
initial data can be stored. Also, it is implicitly assumed in
Eq. (35) that we sum over all allowed (as we will soon see,
infinitely many) values of β, each with an independent
value of σ.

One finds that the β’s are given by zeros of the function

M(z) ≡
∫ 1

0

dxH (x)xz. (37)

Note that the integral converges only for z > −1 and
that for such z, M(z) > 0. One must analytically con-
tinue M(z) to complex z to find any solutions. This can
be done by using series expansion for H or the represen-
tation

M(z) =
3F2

(
1, z

2
+ 2, z

2
+ 2; z

2
+ 5

2
, z

2
+ 3; 1

)
2 z2 + 14 z + 24

+
1

2(z + 4)
.

(38)

Solutions to M(z) = 0 are shown in Fig. 2. The string of
zeros seems to continue indefinitely, leading us to believe
that there are an infinite number of allowed β’s. One
is purely real and the rest come in conjugate pairs with
successively smaller real part.

Let us stress the difference between these solutions and
the Borel plane depicted in Fig. 1. The Borel analysis
reveals the exponential dependence i.e. the decay rate
(for an exponential decay in w) and oscillation frequency
(for oscillation in w). This analysis gives the subleading
power law correction. For the transients, the exponential
dependence is purely real, and one would be tempted
to conclude that there is no oscillation. However, the
imaginary parts of these solutions give rise to logarithmic
oscillations as

<(στβ) = τ<(β) cos(θ + =(β) log(τ)), (39)

FIG. 2. Points in the figure shows roots of the function M(β).
For ∆ = 0, each root gives rise to a transient mode of the form
e−ττβ . For other ∆, the modes behave as in Eq. (40). The
roots with the largest real part will be the dominant ones.
The first three are β1 ≈ −3.4313, β±2 ≈ −5.4584 ± 0.5614i,
β±3 ≈ −7.4746± 0.6648i.

for some θ. We were unable to find other transients in
the present setup and the fact that we nevertheless found
an infinite set of modes, in principle capable to capture
the whole information about the initial conditions, leads
us to believe that there are not any. Let us re-stress what
is said in the caption of Fig. 1. A generalization of the
argument from Ref. [18] shows that the other exponents
that can be read off from Fig. 1 are not physical modes.

Finally, we note that the argument presented above
generalizes in a simple manner to the case of arbitrary ∆.
In such a situation, the power law also gets contributions
from D(τ, τ0). To leading order in τ , transient contribu-
tions to E(τ) behave as

e−
w

1−∆/3w
β+ 4∆

45(1−∆/3)2 , (40)

where β satisfies M(β(1 − ∆/3) − ∆/3) = 0. In Sec. 6
we corroborate these results with numerical solutions.

5. Resurgence and initial conditions for constant τrel.–
When τrel is constant, Eq. (21) is linear. This is a great
simplification, which allows us to calculate the power se-
ries Ept. It satisfies

Ept(τ) =
τ

2 τrel

∫ 1

0

H (x) Ept(τx)dx. (41)

With a power series ansatz as in Eq. (36), we can match
powers and solve for the coefficients in the series. They
satisfy the recursive equation

eβ,k+1 =
eβ,k

M(β − k − 1)
. (42)

An immediate question arises: What is the large order
behaviour of eβ,k? Is it divergent and if so, will it tell us
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about additional transient modes? For large k,

eβ,k+1

eβ,k
= −k +

(
β +

4

3

)
+

16

45k
+ . . . . (43)

This can be turned into a differential equation and a solu-
tion of this equation is a function that at large w behaves
as

eww−β−4/3

(
1− 16

45w
− 424

14175w2
. . .

)
. (44)

To find the contribution to E(τ) we must into account
D(τ, τ0) and wβ in Eqs. (35) and (36). These cancel out
the exponential and the w−β respectively, leaving us with
a series whose leading power is −4/3. Given that in the
current case of ∆ = 0, w ∼ τ , one immediately recog-
nizes in it the famous Bjorken perfect fluid solution [9].
By the use of Eq. (12) and (13), one can calculate the
corresponding series for A. This turns out to be

8

5w
+

88

105w2
+ . . . (45)

Comparing with Eq. (34), and setting there ∆ to 0, we
see that this is in fact the hydrodynamic gradient expan-
sion. Note that this argument holds for every value of
allowed β.

This is an explicit demonstration of resurgent proper-
ties of these solutions, see Ref. [51] for an introduction
to resurgence and Ref. [52] for another example of resur-
gent phenomena in the context of integral equations. The
gradient expansion can be reconstructed from the large
order behavior of the transient, since in the constant re-
laxation case the only exponential contribution to E(τ)
with respect to each transient is the hydrodynamic series
itself.

6. Comparison with numerical solutions.– In previous
sections, we have calculated a family of transient modes,
each exponentially decaying with the same rate but with
different power laws. These powers were determined from
a rather high-level argument and additional checks are
required to be confident that they are physical modes.
Indeed, as observed in Ref. [18], the analytic structure
of H can give rise to unphysical modes. This section
presents numerical evidence that they are physical.

Our interest in looking at transients prompts the need
for very precise numerics. These transients make math-
ematical sense only at late times. However, since they
decay exponentially fast, this presents an obvious numer-
ical challenge. Finite difference methods have an error
that scales polynomially in the grid spacing which makes
them unsuitable for studying exponentially small effects.
More appropriate are spectral and pseudo-spectral meth-
ods which have an error that (for smooth functions) scales
exponentially in the grid spacing. See, e.g., Ref. [53] for
an introduction to these methods.

FIG. 3. The plots provide overwhelming evidence that Eq (48)
accurately describes the first transient mode. Note that
∆ = 0. (Top) All curves approach the exponential decay rate
of the transient modes -1. (Bottom) All curves approach the
power law decay rate of the first transient mode β1.

Given an initial distribution function, the integral
equation (21) can be solved by iteration. Choice of ini-
tial distribution function is made so that E0(τ) can be
calculated analytically. For ∆ = 0, we calculated so-
lutions on an interval from w = 5 to w = 170. This
means we need an accuracy of at least e−170 ≈ 10−74.
We achieved this by performing calculations in Mathe-
matica with 1350 grid points and precision 900, iterating
the equation until the maximal relative error between
subsequent iterations was less than 10−150. For each ini-
tial condition we required several hours of computations
on a powerful desktop computer. By a process of sub-
tracting solutions of different initial conditions, we are
able to study transients.

Independent of initial conditions, A behaves univer-
sally at late times, corresponding to the hydrodynamic
gradient expansion, see Eq. (34). Subtracting two solu-
tions will remove the universal behavior and leave only
the transient behavior. Taking also a logarithmic deriva-
tive will remove the overall amplitude and we are left
with a universal late time behavior corresponding to the
transient mode. This subtraction can be repeated and
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by defining

A0 = A (46)

Ak+1 =
d

dw
log (Ak −A′k) , (47)

where the prime denotes different initial conditions, we
get a sequence of functions whose behavior, up to A2, is
universal at late times. Ak will be related to the transient
corresponding to βk. Analytic calculation implies

A1(w) = −1 +
β1 + 7/3

w
+ . . . , (48)

where the −1 comes from the exponential decay rate. As
seen in Fig 3, both the decay rate and β1 approach their
predicted analytic values (red dashed line).

The next transient is supposed to exhibit oscillations
in logarithmic time. To leading order, A2 satisfies

wA2(w) = <(β2)−β1−1−=(β2) tan (θ + =(β2) log(w))

≈ −3.0271− 0.5614 tan (θ + 0.5614 log(w)) , (49)

where numerical values for β1 and β2 have been used.
This has characteristic singularities that should have
clear signals in the numerical solutions. However, cor-
rections coming from subleading transients could spoil
this if their amplitudes are large enough. Indeed, several
solutions do not show them. But some solutions seem
to be dominated by this transient. With only one ad-
justable parameter and fitting only to a small interval at
late times, one finds a remarkable agreement, see Fig. 4.
This is striking confirmation of the multiplicity of cuts
and demonstrates the physicality of oscillations in loga-
rithmic time.

In addition, one can also fit β2 to the data. The result
matches the analytic value to better than 1%.

7. Summary and outlook.– In the present article we an-
alyzed the non-hydrodynamic sector of kinetic theory
in the relaxation time approximation. The relaxation
time was taken to exhibit general power law dependence
on the effective temperature, see Eq. (9). Such a the-
ory was regarded here as a toy model of weakly-coupled
gauge theory dynamics. Moreover, we focused on ex-
panding plasma systems undergoing rapid longitudinal
expansion, similarly to ultrarelativistic heavy ion colli-
sions. We simplified our treatment by further assum-
ing boost-invariance along the expansion axis and no
transversal dynamics. Our chief motivation was to un-
derstand what imprint weakly-coupled transient effects
will have on the energy-momentum tensor of expanding
plasma. The fact that the Boltzmann equation requires
for solving the initial value problem specifying a function
not only of spacetime coordinates but also of momenta
indicated that there should be infinitely many transient
effects carrying information about a given initial condi-
tion to late times. This intuition turned out to be correct

FIG. 4. This figure compares numerical evaluated A2, i.e,
the second transient, with theoretical predictions for ∆ = 0.
Dashed red lines are of the form of Eq. (39), where θ is fitted
using data in the continuous red colored region at late times.
(Top) Eq (39) describes the curves very well. Fitting also the
value of β2, it differs from the analytical value by less than
1%. The vertical segments represent singularity of the tan-
gent function appearing in Eq. (49). (Bottom) Likely due to
interference from subleading transients with large amplitudes,
the fit does not work well.

and we discovered that in the expanding plasma system
in RTA kinetic theory there are infinitely many exponen-
tially suppressed contributions to the energy-momentum
tensor of the plasma with precisely the same decay rate
related to the relaxation time via Eq. (40), see Sec. 4.
What differentiates these transients from each other is
the subleading behavior. We show that it consists of
different power law decay and oscillations in logarithmic
time, see Eqs. (39) and (40), as well as Fig. 2. We cor-
roborate both findings with the analysis of large orders
of the hydrodynamic gradient expansion, see Sec. 3 and
Fig. 1, and explicit solution of the initial value problem,
see Sec. 6 and Figs. 3 and 4, noting very good agree-
ment. The latter was achieved by a very accurate way
of implementing the initial value problem given by the
pseudospectral methods and use of the iterative scheme
from Ref. [46].

Furthermore, similarly to the studies reported in
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Ref. [18], we see singularities of the Borel transform of
the hydrodynamic gradient expansion that do not cor-
respond to modes of the expanding plasma, see Fig. 1.
For ∆ > 3/2, these would represent the dominant con-
tribution to transient behavior in the initial value prob-
lem, something which we do not see. What is also in-
teresting is that for ∆ > 2, these singularities become
the dominant effects controlling the divergence of the hy-
drodynamic gradient expansion, as opposed to the least
damped transients in all the other known setups, see,
e.g., Ref [7] for a review.

Finally, let us note that for constant relaxation time
(∆ = 0) the integral equation for the energy density be-
comes linear, see Eq. (21). Here we find beautiful resur-
gent relations in which large orders of the hydrodynamic
gradient expansion carries information about the tran-
sient modes and the large order gradient expansion ac-
companying each transient mode is controlled by the hy-
drodynamic series, see Eq. (44). As a result, the trans-
series ansatz in this case consists only of two types of
contributions: the hydrodynamic series and a sum over
transient modes without any further nonlinear effects.

Our work raises some interesting questions. What kind
of transients in expanding plasma systems (or other se-
tups undergoing macroscopic motion) exists for other
collisional kernels and are their decay rates compara-
ble / the same. This is of relevance in the search for
transient effects in heavy-ion collision or cold atoms ex-
periments, see, e.g., Refs. [54, 55].

Another interesting question is if it is possible to de-
rive the properties of the transients directly from singu-
larities of the retarded two-point function of the energy-
momentum tensor studied in Ref. [15]. The reason why
we expect such a link to exist is, first, that similar anal-
ysis works out in holography, see Ref. [11], and, sec-
ond, that the properties of transients are related with
the properties of the function H(q) given by Eq. (22)
and the latter is related to properties of equilibrium, i.e.
the equilibrium distribution function given by Eq. (15).
Furthermore, the Green’s function analysis in Ref. [15]
reveals branch cut singularities with the imaginary part
of branch points, responsible for dissipation, being given
by the inverse of the relaxation time and this is precisely
what we observed here. Such a method of translating
from the singularities of the energy-momentum tensor
Green’s functions to expanding plasma systems may shed
light on how transient manifest themselves both for ki-
netic theories with more complicated collisional kernel,
see recent Ref. [16], and for more general flows.

On the latter front, it would be also interesting to gen-
eralize the present analysis to other flows, starting from
the most symmetric ones such as cosmological expansion
addressed in Ref. [56, 57] or (perturbations of) the so-
called Gubser flow [58] studied in the RTA kinetic theory
in Refs. [59, 60].
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