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Oxygen vacancies at ceria (CeO,) surfaces play an essential role in catalytic applications. However, during
the past decade, the near-surface vacancy structures at CeO,(111) have been questioned due to the contradictory
results from experiments and theoretical simulations. Whether surface vacancies agglomerate, and which is the
most stable vacancy structure for varying vacancy concentration and temperature, are being heatedly debated. By

combining density functional theory calculations and Monte Carlo simulations, we proposed a unified model to
explain all conflicting experimental observations and theoretical results. We find a novel trimeric vacancy structure
which is more stable than any other one previously reported, which perfectly reproduces the characteristics of
the double linear surface oxygen vacancy clusters observed by STM. Monte Carlo simulations show that at
low temperature and low vacancy concentrations, vacancies prefer subsurface sites with a local (2 x 2) ordering,
whereas mostly linear surface vacancy clusters do form with increased temperature and degree of reduction. These
results well explain the disputes about the stable vacancy structure and surface vacancy clustering at CeO,(111),
and provide a foundation for the understanding of the redox and catalytic chemistry of metal oxides.
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I. INTRODUCTION

Ceria (CeQ,) is akey component in catalysts for automotive
exhaust treatment, production and purification of hydrogen,
oxidative dehydrogenation, and many other applications, with
the reducibility of the system being crucial for its function
in such applications [1-8]. Surface oxygen vacancies are
the most relevant ceria defects that may not only act as
anchoring sites for catalytically active metal species, but
also influence the structure and charge of supported metal
clusters, which in turn influence catalytic activity [7,9-19].
The knowledge of the defect structure of ceria surfaces is
therefore crucial toward the fundamental understanding of
the reactivity of ceria-based systems. Consequently, oxygen
defects at the reduced CeO,(111) surface have been widely
studied by scanning tunneling microscopy (STM) [20-24],
dynamic force microscopy (DFM) [22,25-28], and density
functional theory (DFT) calculations [20,24,28-42]. In 2005,
Esch et al’s seminal work [24] presented high-resolution
STM images at high temperature, leading to three major
observations: (1) On the moderately reduced surface, isolated
single surface oxygen vacancies (SSVs) and subsurface ones
(SSSVs) are both abundant with comparable percentages,
indicating a similar stability between the vacancy species,
whereas the surface vacancies agglomerate with increasing
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degree of reduction. (2) First-neighbor surface oxygen va-
cancies form predominantly linear clusters (LSVCs) along
with some triangular trimers (SVTs), which suggests that
linear arrangements are more stable than triangular ones.
(3) Subsurface vacancies are essential for LSVC nucleation.
Thus, for example, a double linear surface vacancy cluster
(dLSVC) consists of three first-neighbor vacancies, namely,
two SSVs and one SSSV. The key feature of all the linear
clusters observed in the STM is the existence of a pair of rim
O atoms that face each other, which are both laterally shifted
toward the inside of the defect as well as vertically displaced
from the unperturbed surface, one above and one below. Yet,
this breakthrough work initiated a decade of heated debate
on whether surface vacancies agglomerate (see Table 1). In
contrast to Esch ef al.’s STM results [24], Torbriigge et al. [27]
employed DFM and observed mostly subsurface vacancies on
the slightly reduced CeO;(111) surface at 80 K, with a (2 x 2)
local ordering. Moreover, Ganduglia-Pirovano et al. [34] and
Li et al. [35] carried out DFT calculations and showed that
isolated subsurface vacancies are more stable than surface ones
with multiple local minima with respect to the sites on which
the excess electrons—driving the Ce**(4f°) to Ce’*T(4f!)
reduction—Ilocalize, the existence of which has been asserted
in the STM study by Jerratsch ez al. [20]. Furthermore, recent
DFT work by Murgida et al. [40] stands out in evidencing
the high stability of a (2 x 2) ordered subsurface vacancy
structure. As yet, the studies of surface vacancy aggregates are
relatively scarce and with contradictory results about the inter-
actions between vacancies [15,24,25,33,37,38,43]. Few works
explicitly reported on the surface vacancy-vacancy interaction
[37,38], among which all but one [38] found it repulsive, hence
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TABLE I. List of experimental and theoretical debated results about the near-surface vacancy structures at the reduced CeO,(111) surface
and their relative stability. SSV, SSSV, SVT, dLSVC, and ms-dLSVC stand for single surface vacancy, single subsurface vacancy, surface vacancy
trimer, double linear surface vacancy cluster, and most stable double linear surface vacancy cluster, respectively (cf. Fig. 1). ®: Concentration.

T: Temperature.

Relative stability
linear vs triangular surface

Pairing features of oxygen
ions neighboring linear

Stable vacancy structure vacancy structures vacancy

Experiment
Esch’s STM Moderately reduced: Isolated SSVs and SSSVs
(573-673 K) [24] Highly reduced: Linear and triangular clusters linear > triangular YES
Torbriigge’s DFM Slightly reduced: SSSVs — (2 x 2) ordered - -
(80 K) [27] structure
Theory
Oxygen vacancies SSSVs — (2 x 2) ordered structure
[33-35,37,40,43,45] SSVs— repulsive interaction SVT (triangular)> dLSVC (linear) NO
F-surface impurity F impurities agglomerate
model [44,48] 300 K, ® = 5%—15%: compact structures triangular > linear NO

600-900 K, ® = 5%—15%: open clusters linear > triangular
OH model [45-47] SSVs + Hg,, agglomerate linear > triangular NO
This work
Oxygen vacancies Low T, low ®: SSSVs— (2 x 2) ordered structure

High T, high ©: Linear and triangular clusters ms-dLVC (linear) > SVT (triangular) YES

theoretical studies are inconsistent with the STM observations
by Esch et al. [24]. Even more confusion resulted from the
contradictions between experiments and calculations concern-
ing the relative stability between linear- and triangular-shaped
surface vacancy aggregates [15,24,25,33,43]. All calculations
[15,33,43] predicted that SVTs are by about 0.5 to 1.0 eV more
stable than dLSVCs, against the experimental observations
[24].

Recently, in order to explain the surface defect clustering
(cf. Table I), new models were theoretically proposed [44—438].
Kullgren et al. [44,48] suggested that the observed surface
defects were fluorine impurities, but did not address the
existence of subsurface defects. Moreover, the most recent
DFT calculations show that triangular fluorine trimers are
more stable than linear ones by ~0.05 eV [48], although
Monte Carlo simulations show a change from more compact to
linear-shaped fluorine aggregates for impurity concentrations
of 5% to 15% as the temperature increases from 300 to
600 K [48]. Another suggestion is that of the hydroxyl-vacancy
model proposed by Wu et al. [45-47], which predicts that
isolated surface oxygen vacancies aggregate in the presence of
subsurface hydroxyl species, with linear structures being more
stable than triangular ones. More importantly, both fluorine
impurity and hydroxyl-vacancy models cannot reproduce the
above-mentioned particular topological features of the STM
images of the linear defect structures [24]. Until now, there is
not a unique model consistent with all the key findings in Esch
et al.’s STM and Torbriigge et al.’s DFM experiments as well
as the existing theoretical results.

In this work we explain all conflicting experimental obser-
vations and theoretical results by combining density functional
theory calculations and Monte Carlo simulations. We consider
different oxygen vacancy structures—including surface and

subsurface sites—and locate a new double linear surface
oxygen vacancy structure as the most stable trivacancy cluster
(ms-dLSVC) that is more stable than a triangular-shaped one
and perfectly reproduces the key features in every LSVCs
imaged by STM [24]. Moreover, Monte Carlo simulations
show that vacancy concentration and temperature are essential
factors to explain the stability of the observed subsurface
vacancies with third-nearest-neighbor distance [27], as well
as the formation of first-neighbor linear surface vacancy
aggregates [24]. These findings solve the decade mystery about
the defect structure of the reduced CeO,(111) surface without
any assumption such as the existence of impurities, and provide
support for the interpretation of the most recent experimental
results [24,27].

II. METHODS

The spin-polarized DFT calculations were carried out using
the generalized gradient approximation (GGA) of Perdew-
Burke-Ernzerhof (PBE) as implemented in the VASP code
[49,50]. The DFT+U methodology [51,52] with an effective
U value of 5.0 eV was used to describe the localized Ce 4 f
states (Ce®T), which is within the range of suitable values to
describe reduced ceria-based systems [53]. We used projector-
augmented wave (PAW) potentials [54] with Ce (4 f, 5s, 5p,
5d, 6s) and O (2s, 2p) electrons as valence states, and a
plane-wave cutoff of 400 eV. To locate the minimum energy
structure for different types of near-surface oxygen vacancy
clusters, numerous possible electronic configurations were
considered (Fig. S1 and Table S1 of the Supplemental Material
[55]). In view of the hundreds of configurations to be sampled,
the CeO,(111) surface was firstly modeled by p(5 x 5) unit
cells and three O-Ce—O trilayers (TL) separated by 15 A
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TABLE II. Average oxygen vacancy formation energy EY for SVT, SVT2, dLSVC, and ms-
dLSVC on CeO,(111) surface. Values are calculated for a p(6 x 6) supercell with different number
of trilayers (TL), sampling of the reciprocal space (k-points), and energy cutoff.

E{ (eV/atom)

I" point 2x2x1 k-points
Type 400 eV; 3 TL* 500eV; 3 TL 400eV; 4 TL 400eV; 3 TL
SVT 2.16 2.15 2.14 2.16
SVT2 222 2.21 2.20 222
dLSVC 2.63 2.63 2.61 2.62
ms-dLSVC 2.01 2.01 1.99 2.02

#This computational model and setup was chosen in all calculations of the lowest-energy structures
of single vacancies and vacancy clusters. Unless otherwise noted, all the energy values reported in
the main text of this paper are obtained using this setup.

vacuum space to avoid interaction between periodic images.
Due to the large supercell dimensions, the k-point sampling
was restricted to the I point. In all geometry optimizations, all
atoms in the bottom CeO, TL were fixed to their bulk-truncated
positions, whereas the rest of the atoms were allowed to fully
relax. Next, for the lowest-energy Ce** configuration for each
vacancy distribution, additional calculations using a 3 TL slab
with a p(6 x 6) supercell and the I" point were performed (cf.
Table S2 [55]). Moreover, in order to confirm the robustness
of the model and computational setup, selected calculations
were carried out employing a thicker 4 TL slab or a larger
k-mesh (2 x 2 x 1 k-points) or a larger cutoff of 500 eV, see
Table II. The STM images were calculated according to the
Tersoff-Hamman model [56].

In order to determine the ground-state configuration of oxy-
gen vacancies as a function of concentration and temperature
atthe CeO,(111) surface, the Monte Carlo method was applied
to a cluster-expansion model Hamiltonian [57], which was
parametrized using the energies of a set of 31 clusters (Figs. S1
and S2, and Table S2 [55]) computed by DFT calculations,
employing a slab with p(6 x 6) periodicity, 3 CeO; trilayers,
and the I' point. The energy E; of a configuration s is
described as E; = Z;VSM m,J, X, where the sum is taken
over all symmetrically inequivalent interactions (clusters). The
multiplicities m, indicate the number of clusters that are
equivalent by symmetry to « and J, are the effective cluster
interactions (the J, parameters (in eV) of the set of 31 clusters
(Fig. S1) are collected in Table S3 [55]). The values of Xj,
are the probability of finding the cluster a in the configuration
s. For example, for the configuration s as shown in Fig. S3
[55], the probability of finding the clusters J; in Fig. S1(a), J3
in Fig. S1(c), and Jy in Fig. S1(i) [55] are X; = 3/36 (actual
number of single surface vacancies divided by the total possible
number of isolated vacancies), X3 = 1/36 (actual number of
symmetrically nonequivalent surface vacancy dimers divided
by the total possible number of dimers), and X9 = 1/36
(actual number of trimers divided by the total possible number
of trimers), respectively, and the probability of finding all
the other clusters are zero. (For example, the probability of
finding the single subsurface cluster J, in Fig. S1(b) [55] is
0. Thus X, = 0.) The corresponding values of J, are J; =
75.703 eV, J3 = 2.121eV,and J9 = —0.019 eV, respectively,
and those of m, are m; = 1 (a single surface vacancy has

one orientation), ms = 3 (a surface vacancy triangle consists
of three differently oriented, but symmetrically equivalent,
surface vacancy dimers), and mg = 1 (a surface vacancy
triangle has one orientation), respectively. Thus, the predicted
ground-state energy for this configuration is E; = mJ; X1 +
m3J3 X3 +moJo X9 = 6.48¢eV, and the predicted average
oxygen vacancy formation energy is AEY = E /3 = 2.16¢€V,
which compares nicely with the true DFT-calculated average
oxygen formation energy, i.e., AE{ ; = 2.16eV. For more
details, see Ref. [56]. The mean square error of the cluster
expansion model is about 0.01 eV, which shows that the model
has a low overall error (cf. Table S2 [55]). As shown in Fig. S5
and Table S4, the predicted lowest average oxygen vacancy
formation energies (A E¢,) for a set of selected configurations
are very well consistent with the corresponding DFT-calculated
values (AEfgr), which shows the reliability of the cluster
expansion model [55]. For the Monte Carlo simulations, a
2D-periodic network consisting of two layers of 50 x 50
sites was employed. Each site was occupied by either an
O atom or an O vacancy. Each trajectory with five million
trial steps, starting from random states, were simulated using
the METROPOLIS algorithm [58] for a varying fraction of
near-surface vacant sites at a given temperature, as specified
below.

III. RESULTS

It is known that the excess charge localization highly influ-
ences the relative stabilities of near-surface oxygen vacancy
structures. Thus, in this study, different Ce?t configurations
were considered for a given vacancy distribution of monomers,
dimers, and trimers (Fig. S1 and Table S1 [55]). The most stable
single surface vacancy (SSV) and single subsurface vacancy
(SSSV) structures have the two excess electrons localized on
next-nearest-neighbor cerium positions relative to the vacancy
sites [Figs. 1(a) and 1(b), respectively], where SSSV is lower
in energy by 0.18 eV (cf. 1.91 and 2.09 eV for SSSV and SSV
vacancy formation energies, respectively), in good agreement
with previous calculations [59].

For trivacancy clusters, the SVT [Fig. 1(c)] and dLSVC
[Fig. 1(d)] structures were initially proposed by Esch er al.
[24] to explain their observed STM images of triangular
and double linear surface oxygen vacancy aggregates. The
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FIG. 1. Most stable single vacancy and trimeric vacancy structures on CeO,(111). Isolated vacancy: (a) surface (SSV) and (b) subsurface
(SSSV). Triangular shaped: (c) SVT and (d) SVT2, and linear shaped: (¢) dLSVC and (f) ms-dLSVC. Cerium, surface oxygen, and subsurface
oxygen atoms are depicted in white, red, and pink, respectively. Open circles represent oxygen vacancies. Cerium, surface oxygen, and subsurface
oxygen atoms are depicted in white, red, and pink, respectively. Open circles represent oxygen vacancies. For clarity, only the first O—-Ce-O
trilayer (TL) is shown. The spin density is shown as the gray clouds localized on cerium cations.

calculated average vacancy formation energies E¢ are used
to estimate the stability of different oxygen vacancy clusters
which are collected in Table II and Table S1 [55]. Here
E¢ = (EY,, — Efo) + 4Eo,)/n, where Eliy,, Efgl, and Eo,
are the total energies of the reduced surface with n oxygen
vacancies, the clean stoichiometric surface, and the gas-
phase O, molecule, respectively. Our calculations show that
dLSVC has a 0.47 eV /atom larger formation energy than SVT
(Table II), consistent with previous findings [33,43]. However,
the results contradict the observation in the high resolution
STM images by Esch et al. [24], where dLSVC aggregates
are much more frequent than SVTs. Given that the subsurface
oxygen vacancy species involved in the formation of linear
surface oxygen vacancy clusters (LSVCs) could not be directly
observed in the STM experiments, we explored all possible
arrangements for three neighboring near-surface vacancies—
and many configurations for the excess charge—and found that
a structure with two first-neighbor surface oxygen vacancies
and a subsurface vacancy at a fifth-neighbor distance within the
oxygen sublattice of bulk ceria [Fig. 1(f)], is the most stable
trimeric structure (Table S2 [55]), hereafter labeled ms-dLSVC
(most stable double linear surface vacancy cluster). The ms-
dLSVC has never been reported before and is more stable
than the triangular-shaped SVT by 0.15 eV /atom (Table II).
The higher stability of the ms-dLSVC with respect to the
SVT structure can be attributed to vacancy-induced lattice
relaxation effects, which relate to the larger distance between
vacancies in the linear structure as well as the predominant

occupation of next-nearest-neighbor sites to the vacancies
by the excess electrons (cf. Fig. 1). The energy required to
create the unrelaxed ms-dLSVC structure by cutting Ce—O
bonds of the clean CeO,(111) surface is larger than that to
construct the unrelaxed STV by 0.37 eV /atom. In the former
case, more Ce—O bonds are cut due to the presence of a
subsurface vacancy. However, the ms-dLSVC structure has the
largest energy gain of 1.92 eV /atom due to lattice relaxations,
compared to 1.40 eV /atom for SVT, which causes that ms-
dLSVChas 0.15 eV /atom energy preference compared to SVT
(Table II). It should be noted that besides the SVT structure with
the center on a subsurface oxygen atom, there is another SVT
configuration with the center on a cerium atom [Fig. 1(d)],
we term it as SVT2. However, experimental observations did
not point to the presence of SVT2-type clusters [24], which is
consistent with our results that the SVT is more stable than the
SVT2 by 0.18 eV.

To reveal whether the new-found ms-dLSVC structure is
consistent with the observed particular topological features
of the STM images of linear vacancy structures [24], atom
positions and simulated STM images were analyzed. In Fig. 2
we show that the ms-dLSVC structure nicely reproduces the
experimental observations with a pair of O atoms vertically
relaxing, one inward by —0.13 A (magenta ball/arrow) and
the other one outward by +0.15 A (cyan ball/arrow), in
remarkable agreement with the STM results [24]. We note
that in the lowest-energy configurations of the trimeric dLSVC
(first neighbor subsurface vacancy) and dimeric (no subsurface
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FIG. 2. Top panel: Vertical displacement of surface O atoms in
SVCs. Schematic representations of the vertical movement of the
oxygen atom pair formed by the cyan and magenta atoms upon
formation of vacancy clusters, namely, dimer, dLSVC, ms-dLSVC,
and long-LSVC. The outward and downward relaxations are denoted
with + or — signs, respectively. Values consistent with experimental
observation are highlighted in red. Bottom panel: Experimental image
of Ref. [24] (a) and simulated (b) STM images of vacancy structures on
reduced CeO,(111). The height of the tip in the constant-height mode
simulated images is ~0.6 A. The insert in (a) displays the simulated
STM image of the dLSVC structure by Esch et al. with all Ce** ions in
nearest-neighbor positions to the vacancies [24]. Experimental STM
image reprinted with permission from Esch ez al., Science 309, 752
(2005). Copyright 2005, American Association for the Advancement
of Science.

vacancy) structures, both oxygen atoms relax outward [cf.
Fig. 2; 4+0.05 A and +0.17 A (dLSVC), and +0.13 A and
+0.14 A (dimer)]. Note that a dLSVC configuration with all
Ce’* ions in nearest-neighbor positions to the vacancies, such
as that proposed by Esch er al. [24], is about 0.1 eV /atom
higher in energy than the one here considered (Table S1 [55]),
although it is characterized by one O atom relaxing inward
by —0.08 A and the other outward by +0.12 A (cf. —0.07 and
+0.10 /0%, respectively, in Ref. [24]). Moreover, the STM simu-
lation of a longer LSVC (long-LSVC) cluster with the removal
of an additional surface oxygen atom from ms-dLSVC (Fig. S6
[55]) also perfectly reproduces the characteristic oxygen pair
unit (Fig. 2) observed in every long LSVC imaged by Esch ez al.
[24]. At the same time, it is important to stress that the STM
simulations of the previously proposed models for double sur-
face defects, i.e., the fluorine impurity [44] and the hydroxyl-
vacancy [45] models, are not fully consistent with the experi-

mental observations, as no special relaxation pattern of the O
atoms around a defect border can be reproduced (Fig. S7 [55]).

Isolated single subsurface vacancies are known to repel
each other [40] and thus we consistently found that dimeric
as well as linear and triangular trimeric structures with first
neighboring subsurface vacancies are less stable than hav-
ing corresponding isolated species by 0.11 eV /atom for the
dimer and 0.12 eV/atom for the trimers (cf. Fig. S1d, z2,
z5, and Table S2 [55]). At low temperatures and vacancy
concentrations, vacancies are expected to occupy mostly the
subsurface with a (2 x 2) local ordering [40]. However, at
somewhat higher temperatures and concentrations, clusters
will inevitably form and ms-dLSVC, as the most stable cluster
structure with respect to 2 SSVs and 1 SSSV (by 60 meV),
should be more frequently observed. Here it should be noted
that the statement is robust with respect to the existence of
higher-energy electronic configurations. Specifically, E¢ for
the higher-energy electronic configurations of the ms-dLSVC
structure lie within the 2.04-2.12 eV /atom energy range, no-
tably lower in energy than the values for isolated single surface
and subsurface species that lie within the 2.14-2.29 eV /atom
and 2.10-2.22 range, respectively (Table S1 [55]). Hence,
ms-dLSVC-type structures should indeed preferentially form.

To further explain the subsurface vacancy repulsion and sur-
face vacancy clustering in experimental observations [24,27],
as mentioned above, we performed Monte Carlo simulations
of the reduced surface with different near-surface vacancy
concentrations (10%, 15%, and 20%, i.e., a slight, moder-
ate, and high degree of reduction, respectively) and varying
temperature such as 80 K (same as in the DFM experiment
by Torbriigge et al. [27]) and 600 K (same as in the STM
experiment by Esch er al. [24]), based on our DFT results
(Table S2 [55]). Figures 3(a) and 3(d) display the MC simulated
vacancy structure for 10% vacancies. The 80 K simulation
gives an ideal vacancy distribution [Fig. 3(a)] for the slightly
reduced surface where isolated vacancies are located in the
subsurface, forming third-neighbor vacancy pairs and (2 x 2)
locally ordered patches, fully consistent with recent DFT
predictions [40] and experimental observations by Grinter et al.
[21] and Torbriigge et al. [27] for slightly reduced CeO,(111)
surfaces at low temperature. Heating a not too much reduced
CeO,(111) surface to elevated temperature [Fig. 3(d)] results
in the appearance of surface vacancies.

Up to a total concentration of 15% of near-surface vacancies
[Figs. 3(b) and 3(e)], most surface vacancies are isolated,
however, some vacancy clustering into mostly short linear
clusters is observed. These clusters are of the ms-dLSVC
type since a fifth-neighbor subsurface vacancy is involved
in their formation [Figs. 3(b) and 3(e)], and the observed
structure agrees well with the experimental findings by Esch
et al. [24]. For higher degrees of reduction such as 20%, a
great number of vacancy clusters appears [Figs. 3(c) and 3(f)],
mostly linear (LSVCs) but also some triangular shaped. The
long LSVCs appear in three different orientations, reflecting
the threefold symmetry of the substrate. Almost all of the
LSVCs involve a fifth-neighbor subsurface vacancy as in
the ms-dLSVC clusters, which can reproduce the special
relaxation pattern of O atoms around the defects in the STM
images by Esch et al. [24]. The next abundant surface vacancy
species after LSVCs are SVTs with the center on a subsurface
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15% 20%

(d)

(e)

FIG. 3. Monte Carlo simulated structures of a slightly (10%), moderately (15%), and highly (20%) reduced CeO,(111) surface. (a)—(c)
80 K and (d)—(f) 600 K. Images are to be compared with the experimental STM images in Ref. [24] (Figs. 1(a) and 1(b)). Oxygen atoms, surface
oxygen vacancies, and subsurface oxygen vacancies are represented as orange, black, and blue balls, respectively. Cerium atoms are not shown
for clarity. The ms-dLSVCs and long LSVCs are indicated with the black circles. The SVTs are indicated with the yellow circles.

oxygen atom. These results are perfectly consistent with the
STM experiments [24]. It should be noted that the kinetic
behavior of oxygen vacancies can also be crucial to the pro-
perties of ceria systems as exemplified by the case of the
Ce0,(100) surface [60] and bulk ceria [61]. However,
the previous STM and DFM studies are focused on the
thermodynamic equilibrium structures of the reduced
CeO,(111) surface [24,27]. Thus, in our MC simulations
the kinetic part is not included.

IV. SUMMARY

In summary, we employed the DFT4-U method and Monte
Carlo simulations to provide firm theoretical support for the
interpretation of the various experimental results and help
solve the long-time debate about the surface oxygen vacancy
structure between experiments and calculations. Our results
provide the foundations for understanding the nucleation of

surface vacancies on ceria surfaces, and therefore, considering
that such vacancies strongly affect the oxidation state, packing
motifs, and catalytic activity of supported metal clusters, they
should be useful in the design of more efficient ceria-supported
metal catalysts.
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