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A B S T R A C T

People often have to make decisions under uncertainty—that is, in situations where the probabilities of ob-
taining a payoff are unknown or at least difficult to ascertain. One solution to this problem is to infer the
probability from the magnitude of the potential payoff and thus exploit the inverse relationship between payoffs
and probabilities that occurs in many domains in the environment. Here, we investigated how the mind may
implement such a solution: (1) Do people learn about risk–reward relationships from the environment—and if
so, how? (2) How do learned risk–reward relationships impact preferences in decision-making under un-
certainty? Across three experiments (N=352), we found that participants can learn risk–reward relationships
from being exposed to choice environments with a negative, positive, or uncorrelated risk–reward relationship.
They were able to learn the associations both from gambles with explicitly stated payoffs and probabilities
(Experiments 1 & 2) and from gambles about epistemic events (Experiment 3). In subsequent decisions under
uncertainty, participants often exploited the learned association by inferring probabilities from the magnitudes
of the payoffs. This inference systematically influenced their preferences under uncertainty: Participants who
had been exposed to a negative risk–reward relationship tended to prefer the uncertain option over a smaller
sure option for low payoffs, but not for high payoffs. This pattern reversed in the positive condition and dis-
appeared in the uncorrelated condition. This adaptive change in preferences is consistent with the use of the
risk–reward heuristic.

1. Introduction

In March 2016, James Stocklas won $291million in the Florida
Powerball lottery. Most people know that winning such a huge jackpot
is a pretty unlikely event. Now consider his brother, Bob Stocklas. Bob
bought a ticket for the same lottery at the same time as James and won
just $7 (Newsome, 2016). Most people know that winning this kind of
sum is far more likely than winning the jackpot. And, of course, most
people are also painfully aware that not winning anything at all is much
more likely than either of these events. While this story illustrates the
strange vicissitudes of fortune, for our purposes it also illustrates just
how comfortable people are with estimating the probability of winning
from payoff magnitudes alone. How do people “know” how to estimate
the chances of winning the lottery? Why do they associate the highest
payoff with the lowest probability? Here, we argue that the key to
understanding how the mind generates such estimates lies not within
the mind alone, but how the mind is adapted to its environmental
context (Anderson, 1991; Gibson, 1979; Gigerenzer, Hertwig, & Pachur,
2011; Marr, 1982; Perkovic & Orquin, 2017; Shepard, 1987; Simon,
1956; Stewart, Chater, & Brown, 2006).

Beyond the lottery, risks and rewards, or payoffs and probabilities,

are linked in many choice environments. Across choice environments,
probably the most frequent and recurrent link between them is an in-
verse relationship: The higher rewards that we desire are unlikely to be
obtained (Pleskac & Hertwig, 2014). However, the strength of the re-
lationship also varies across different domains. Monetary gambles in
casinos, for instance, show a near perfect (though biased) inverse re-
lationship between payoffs and probabilities. In other domains, such as
where to submit a scientific manuscript (trading off impact factor
against acceptance rate), the risk–reward relationship is less strong.
Moreover, a risk–reward relationship is not always given. For instance,
no relationship between risk and reward is to be expected in newly
forming markets, that have not yet reached an equilibrium (Pleskac &
Hertwig, 2014).

After identifying the ecological structures in which the mind usually
operates, one can try to establish how the mind comes to terms with
those ecological structures (Brunswik & Kamiya, 1953; Simon, 1956):
Risk–reward structures can be exploited in decisions under un-
certainty—where people have to choose between options whose payoffs
are known but probabilities are not (Knight, 1921; Luce & Raiffa, 1957;
Wakker, 2010). Pleskac and Hertwig (2014) offered participants a
gamble that gave them a chance to win x$ at the cost of $2, and asked
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them to estimate the probability of winning x$ . Different participants
were asked to consider different magnitudes of x. As the magnitude of
the potential payoff increased, the estimated probabilities of winning
decreased. That is, participants inferred the probabilities to be inversely
related to the magnitude of the payoff. Moreover, the estimates ulti-
mately influenced what participants chose.

Inferring a probability from the magnitude of the potential payoff
might be an adaptive solution to decision-making under uncertainty—a
solution that Pleskac and Hertwig (2014) refer to as the risk–reward
heuristic. Here, we investigate two of its requirements: First, the mind
has to be sufficiently sensitive to the relationship between the key
variables in an environment (Brunswik, 1955; Gigerenzer, Hoffrage, &
Kleinbolting, 1991; Gibson, 1979; Marr, 1982; Simon, 1956; Stewart
et al., 2006) or even mirror the relationship from the environment
(Anderson & Schooler, 1991; Shepard, 1967, 1987). Second, people
should be willing to harness the structure flexibly, as the ecological
regularity varies across environments (Todd & Gigerenzer, 2007). That
is, there should be a link between the estimates people give and an
environments’ risk–reward structure. This link also means that, for in-
stance, people should withhold from estimating a high payoff to be
unlikely if appropriate (e.g., in a newly forming market). This argument
can be developed further: Payoffs and (subjective) probabilities de-
termine the value of an option, and ultimately choice. Therefore, dif-
ferent risk–reward environments should not only affect the estimates
themselves but also decisions under uncertainty.

Fig. 1 provides an overview of the assumed relationships between
risk–reward structures and choice that we take in this paper. Next, we
develop our hypotheses in more detail, before reporting three experi-
ments to test them.

1.1. How can people learn risk–reward structures?

In most domains, people are not explicitly told about the presence
and/or direction of a risk–reward relationship. They also often do not
have the luxury to learn about the relationship from explicit feedback.
In this case, a risk–reward relationship would need to be acquired as
people go about their primary objective when making decisions. In
other words, the risk–reward relationship would seem to be learned in
an unsupervised manner (without corrective feedback; Love, 2002),
and incidentally (when learning is not the primary objective; Brooks,
1978; Dulany, Carlson, & Dewey, 1984; Nelson, 1984; Ward & Scott,
1987; Wattenmaker, 1991; Whittlesea, 1987).1

Prior research suggests that via such incidental learning, people can
be remarkably well attuned to statistical structures of their choice en-
vironments. For instance, they are quite good at learning the fre-
quencies of events, even when that is not their central task (Hasher &
Zacks, 1979; Hasher, Zacks, Rose, & Sanft, 1987; Zacks, 2002). People
also appear to encode the prices of goods and to use those prices later to
evaluate the subjective worth of new values (Brown, Gardner, Oswald,
& Qian, 2008; Olivola & Sagara, 2009; Stewart et al., 2006; Ungemach,
Stewart, & Reimers, 2011), or use marginal distributions of either

payoffs or probabilities in subjective evaluations thereof (Stewart,
Reimers, & Harris, 2015; Walasek & Stewart, 2015). However, the ri-
sk–reward relationship is different from encoding and using (marginal)
distributions of probabilities/frequencies and payoffs in that it requires
people to learn a statistical regularity between probabilities and payoffs
(i.e., a joint distribution). It is well known that people can learn asso-
ciations between two variables (e.g., between a cue and a criterion, see
Cooksey, 1996), and sometimes fairly quickly (Kareev, 2000; but see
Anderson, Doherty, Berg, & Friedrich, 2005). It is not known whether
these findings extend to preferential choice in general; and (maybe even
more importantly) to what extent people can learn that there is no
correlation in their environment, as people may be biased to detecting
structures where there are none (Langer, 1975; Olivola & Oppenheimer,
2008).

To test people’s ability to learn a risk–reward relationship in an
unsupervised, incidental manner, we created a learning phase in which
participants encountered gambles where payoffs and probabilities were
negatively correlated, positively correlated, or uncorrelated. Across
experiments, we tested participants’ ability to learn from different types
of gambles: In Experiments 1 and 2, participants were asked to evaluate
risky monetary gambles of the form “p chance of winning x, otherwise
nothing.” In Experiment 3, we examined to what extent participants
learned different risk–reward structures from epistemic events when
the probabilities were subjective (see also Tversky & Fox, 1995; Tversky
& Wakker, 1995). Across experiments we also examined how different
response types impacted learning with participants either choosing
between gambles (Experiment 1) or stating the price for which they
would be willing to sell individual gambles for (Experiments 2 and 3).

Finally, we examined in what form the risk–reward relationship is
represented. In Experiments 1 and 2, we asked participants if they re-
cognized specific gambles from the earlier learning phase. In so doing,
we tested whether the risk–reward structure was learned as a “ri-
sk–reward rule” or via memory of specific gamble exemplars (Erickson
& Kruschke, 1998): If it was learned via exemplars, participants should
be able to recognize specific gambles from the learning phase (but not
similarly structured foils).

1.2. (How) are different risk–reward structures exploited in decisions under
uncertainty?

If risk–reward structures are used in decisions under uncertainty to
infer the values of missing probabilities, then this can give rise to en-
vironment–dependent preferences. To see this, consider an environment
with a negative risk–reward relationship where high payoffs are un-
likely. Someone exposed to this environment is offered a choice be-
tween an uncertain gamble with a very high payoff or a smaller, say
half-as-large, certain payoff. He or she should prefer the certain payoff
(i.e., the sure thing). This is because, according to the risk–reward
heuristic, he or she will estimate the chances of obtaining the high
uncertain payoff to be quite low and as a result the sure outcome (x)
will outweigh the uncertain outcome (y) multiplied by its inferred
probability ( > ×x p yinferred ). The decisions of someone who has
learned that risks and rewards are positively related can be expected to
show the opposite pattern. Lastly, someone who has learned that risks
and rewards are uncorrelated can be expected to make decisions as if
the probability estimates assigned to events were independent of their
payoffs. He or she may adhere to the principle of indifference, assign a

Fig. 1. Summary of the assumed relationships among risk–reward structures in the world and how they ultimately shape preferences under uncertainty.

1 One might also classify this as a case of implicit learning (see, e.g., Cleeremans,
Destrebecqz, & Boyer, 1998; Frensch & Rünger, 2003; Reber, 1967; Reber, 1989; Seger,
1994; Shanks & St. John, 1994). However, a typical condition for implicit learning is that
individuals lack awareness of what is learned. We are thus hesitant to use this concept, as
it seems that people are aware of the risk–reward relationship (Pleskac & Hertwig, 2014).
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probability of .5 to each outcome (Fox & Clemen, 2005; Fox &
Rottenstreich, 2003), and choose the uncertain alternative equally often
across payoff magnitudes.

Alternatively, preferences might be stable and simply revealed as
people are asked to make decisions (i.e., revealed preference theory)
(McFadden, Machina, & Baron, 1999). A cornerstone of revealed pre-
ference theory is the principle of description invariance where the
preferences and beliefs should be invariant to the description of the
event (Tversky & Kahneman, 1986; Tversky, Sattath, & Slovic, 1988):
Given a choice between an uncertain gamble and a half-as-large certain
payoff, inferred probabilities and ultimately preferences should not
depend on the magnitudes of the payoffs (e.g., 1 for sure vs. 2 with an
unknown probability should elicit the same preference as 1000 for sure
vs. 2000 with an unknown probability). Consequently, the risk–reward
environment should not impact preferences at all.

A last prediction on how risk–reward structures might impact how
people deal with missing probability information in decisions under
uncertainty can be derived from research on the desirability or opti-
mism bias (Bar-Hillel & Budescu, 1995; Edwards, 1962; Irwin, 1953;
Krizan & Windschitl, 2007; Sharot, 2011; Windschitl, Smith, Rose, &
Krizan, 2010). Here, as payoffs become more desirable, they (or the
event with which they are associated) are perceived as more likely. This
prediction could either hold irrespective of the statistical relationship
between risk and reward or contribute to people’s en-
vironment–dependent inferences. The affect heuristic, according to
which more positive overall affect towards high payoffs can mitigate
perceived risk (Pachur, Hertwig, & Steinmann, 2012; Slovic & Peters,
2006; Slovic, Finucane, Peters, & MacGregor, 2004), would yield a si-
milar prediction. That is, both the optimism bias and the affect heuristic
may support the belief that—probably within limits—high payoffs are
by no means unlikely.

1.3. Overview of experiments

We conducted three experiments, each consisting of a condition-
dependent learning phase and a test phase (Table 1). In Experiments 1
and 2, learning environments consisted of gambles of the form “p
chance of winning x, otherwise nothing.” In Experiment 3, the gambles
were about an epistemic event, namely, whether the maximum tem-
perature in Berlin on a particular day in 2011 fell within a given range.
This design allowed us to examine how well participants learned ri-
sk–reward structures from gambles in which the probabilities were not
explicitly stated.

In all three experiments, environments were constructed such that
across the gambles probabilities and payoffs were either negatively
correlated, positively correlated, or uncorrelated. Importantly, partici-
pants were neither informed about the risk–reward structures nor asked

to attend to them; instead they merely experienced the structure by
evaluating monetary gambles. After the learning phase, we tested how
exposure to different risk–reward environments impacted participants’
preferences among uncertain options. Participants then completed
payoff-probability estimation tasks, which we used to test whether they
had learned the risk–reward structure. In Experiments 1 and 2, they
also completed a gamble recognition task that tested whether the
structure was learned via memory of specific exemplars of gambles or
as a rule.

2. Experiment 1: Do people learn negative vs. uncorrelated
risk–reward environments and exploit them in decisions under
uncertainty?

Our first experiment had an exploratory focus. We designed it to
examine how the risk–reward structure impacts decision making under
both risk (probabilities given) and uncertainty (probabilities missing).
To this end, we exposed participants to different risk–reward environ-
ments, asking them to choose between two nondominating gambles of
the form “p chance of winning x, otherwise nothing.” Between parti-
cipants, the gambles were selected from one of two environments. In
the negative environment, there was a negative (linear) relationship
between payoffs and probabilities across all possible gambles. In the
uncorrelated environment, payoffs and probabilities were randomly
paired. We hypothesized that participants would learn about the ri-
sk–reward structures as a consequence of their primary task, which was
to choose the alternative they preferred.

To examine how the different risk–reward structures impacted de-
cision making under risk, about halfway through this learning phase we
included gambles common to both conditions, including eight gambles
designed to examine the certainty effect (Fig. 2). However, we found
very little differences between the conditions with respect to choices
under risk. For instance, we found the certainty effect in both condi-
tions. As our article is focused on decisions under uncertainty, these
analyses on decisions under risk are reported in the Supplementary
Material (see also Leuker, Pachur, Hertwig, & Pleskac, 2018; Leuker,
Pleskac, Pachur, & Hertwig, 2017).

After the learning phase, participants completed three tasks that
were identical across both conditions (test phase) (see also Table 1).
The first task was the decision making under uncertainty task designed
to test the environment-dependent preference prediction of the ri-
sk–reward heuristic. We then tested to what extent participants learned
the respective risk–reward structure by explicitly asking them to esti-
mate probabilities when presented with new payoffs. Finally, we ad-
ministered a recognition task to investigate whether participants re-
membered specific gambles (exemplars) or whether they had extracted
a “risk–reward rule” from the learning phase.

Table 1
Overview of experiments and conditions.

Experiment Learning phase Test phase (condition-independent) Aim of experiment

Task Conditions

1 Choice Negative
Uncorrelated

Decisions under uncertainty
Payoff-probability estimation

Recognition

Incidental learning of risk–reward structures
Influence on decisions under risk and uncertainty

2 WTS Negative
Positive

Uncorrelated

Decisions under uncertainty
Payoff-probability estimation

Recognition
Probability-payoff estimation

Incidental learning of a positive risk–reward structure
Influence of type of learning phase task
Influence on decisions under uncertainty

3 WTS Negative risk
Positive risk

Negative uncertain
Positive uncertain

Decisions under uncertainty
Subjective probability estimation
Payoff-probability estimation

Gambles with epistemic events
Incidental learning under risk vs. uncertainty

Influence on beliefs about events

Note. Learning phase stimuli were condition-dependent. All test phase tasks were condition-independent. WTS: Willingness to sell.
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2.1. Method

2.1.1. Participants
We set a target sample size of 60 participants. In total, the sample

comprised 62 adults (32 females, mean age=25.6, =SD 3.4, propor-
tion students = .93) from the participant pool maintained at the Max
Planck Institute for Human Development (32 in the negative condition,
30 in the uncorrelated condition).2 All experiments were approved by
the IRB of the Max Planck Institute for Human Development. Partici-
pants gave signed informed consent prior to the experiment; they were
paid a fixed rate of 10€/h plus a bonus contingent on their choices.

2.1.2. Decisions under risk (learning phase)
During the learning phase, participants repeatedly chose between

two monetary gambles of the form “p chance of winning x, otherwise
nothing.” All payoffs across all three conditions were expressed using
an experimental currency, E$. We did this with the goal of minimizing
the impact of outside norms associated with specific currencies on the
experiments. Each individual gamble was selected from either a nega-
tive or uncorrelated risk–reward environment (Fig. 2). The experi-
ment’s negative risk–reward environment consisted of 200 gambles (but
100 nondominated gamble pairs) that followed a negative linear
(though slightly noisy) risk–reward environment. Precise details on
how the gambles were created and paired can be found in the
Supplementary Materials (plus code on the OSF).

For the uncorrelated condition, we took the 200 gambles (100
gamble pairs) used in the negative condition, but now randomly linked
probabilities and payoffs. If any of the gamble pairs had stochastically
dominated options (i.e., > >p p x xandA B A B), we switched the
probabilities of gambles A and B. We did this to maintain the marginal
distributions of payoffs and probabilities across both conditions (see
Stewart et al., 2006, 2015).

In both conditions, we included five dominated options that we used
as ‘catch trials’ to identify participants who did not pay attention. In
addition, 14 identical gamble pairs appeared in both conditions. Ten of
these pairs were created based on the procedure for the negatively
correlated risk–reward environment. The other four pairs were de-
signed to examine the certainty effect (see Supplementary Materials).

Across participants, we randomized the positions of the gambles on
screen, and counterbalanced the location of payoffs and probabilities
(top/bottom).

2.1.3. Decisions under uncertainty (test phase)
We drew 20 random payoffs (range E$1–1000) and gave them a

probability of “?”. Each uncertain payoff y was then matched with a
half-as-large certain option (probability 100%). For example, one pair
of gambles asked participants to chose between a 100% chance of
winning E$50 and a “?” chance of winning E$100. We also included 20
filler trials, in which the certain payoffs were also smaller, but created
using different fractions of the uncertain payoffs. We did this to ensure
that participants attended to payoffs, probabilities and uncertainty in
each trial. The location of the uncertain option was counterbalanced
across participants. The location of the payoffs and probabilities (top/
bottom) matched the location used during the learning phase.

2.1.4. Payoff–probability estimation task (test phase)
To test the extent to which (individual) participants had learned

about condition-dependent risk–reward relationships, we drew 10
random payoffs (range E$1–1000), and later asked participants for their
estimates of the associated probabilities.

2.1.5. Recognition (test phase)
Finally, to test whether participants recognized specific gambles

that did not fit the risk–reward structure of a condition (gambles “off”
the slope, see Fig. 2), we asked participants whether they recognized
(yes or no) gambles from the learning phase. The recognition task in-
cluded (1) certainty-effect gambles as a particular case of exemplars
that people may recall particularly well, (2) eight environment gambles
from the learning phase as a subsample of exemplars that people may
have encoded during learning, (3) eight environment gambles that did
not appear in the learning phase (but matched the gamble structure of
the condition), and (4) eight environment gambles that appeared in the
other condition (thus did not match the gamble structure of the con-
dition). This resulted in 32 cued-recognition trials (16 targets, 16 foils;
see triangles in Fig. 2).

2.1.6. Procedures
Participants were randomly assigned to either the negative or the

uncorrelated condition. Participants were told that they would be asked
to make a series of choices between monetary gambles in the first part

Fig. 2. Stimuli used in Experiment 1. The learning phase consisted of 200 condition–dependent gambles (depicted here) that appeared in 100 nondominated gamble pairs in the
experiment. Common gambles (10 pairs) and certainty-effect gambles (4 pairs) were randomly interspersed in the second half of the learning phase, allowing us to study condition-
dependent changes in decisions under risk. Dominated options not depicted.

2 Ten other participants also completed the experiment, but a coding error in the
computerized experiment corrupted their data.
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of the experiment, and that there would then be some additional
questions. All experiments were coded in PsychoPy (Peirce, 2007).
Screenshots of all experiments can be found in the Supplementary
Materials.

In the learning phase, participants saw a fixation cross (for 500ms)
before making a choice between two gambles. The chosen option was
highlighted for 500ms (by a red rectangle around the gamble), but
participants did not receive any feedback about their actual payoff until
the very end of the experiment. Participants took self-paced breaks after
blocks of 30 trials. Gambles were presented in random order. The
gambles common to both conditions were randomly interspersed after
50 condition-dependent learning trials.

To link the test phase with the learning phase, we told participants
that they would see gambles that were structured similarly to the
gambles they had experienced previously, and asked them to think back
to these gambles when completing the task given. The order of tasks in
the test phase was counterbalanced, with one constraint: Participants
always completed the probability estimation task after the decision
under uncertainty trials to minimize experimental demand effects in the
choice task (i.e., prompting participants to infer probabilities from
payoff magnitudes).

At the end of the experiment, we played out the chosen option of 20
randomly drawn trials of the learning phase. Bonuses (between 1.92€
and 7.74€, with E$1000= 1€) were added to the regular payment.

2.1.7. Analyses
We used a Bayesian approach to data analysis (Kruschke, 2014).

Specifically, we applied Bayesian Generalized Linear Mixed Models
using Stan in R for regression analyses with the rstanarm package (Stan
Development Team, 2016). Unless otherwise noted, we entered parti-
cipant as a grouping factor to account for individual variation beyond
condition-dependent effects. Choice data were analyzed using logistic
regressions; estimation data (restricted between [0,1]) were modeled
after response data had been transformed to a logit scale. When plotting
the posterior-predictive fits of the statistical model, we back-trans-
formed the estimates using the inverse logit. When analyzing prob-
ability estimates, we analyzed both the estimates and the logit trans-
formations of the estimates. For ease of interpretation, we report the
results from the analyses using untransformed estimates (both analyses
resulted in qualitatively identical conclusions).

We ran three chains using a Markov Chain Monte Carlo sampler to
draw from posterior distributions of parameters. Depending on model
complexity, we ran 10,000–30,000 samples per chain (to ensure an
effective sample size of> 10,000 for each regressor) and set a burn-in

of 500 samples. We investigated (convergence of) our posteriors
through visual inspection and the Gelman–Rubin statistic (Gelman &
Rubin, 1992). In general, we report the mean of the posterior dis-
tribution of the parameter or statistic of interest and two-sided 95%
equal-tail credible intervals (CI) around each value. Our focus is on
estimating the effects of particular conditions and our analyses reflect
this goal; in comparing the conditions, however, the crucial issue was
whether the credible values included 0 or not.

2.2. Results

2.2.1. Decisions under risk (learning phase)
We examined choices in the learning phase to see how different

risk–reward environments impacted decision making under risk. Four
participants chose a stochastically dominated option once, all in the
negative condition. The differences in expected values in these trials
were small (EVabs =E$60 and E$5), =EV 6.0%% and 0.5% and thus
potentially hard to detect. We therefore included these participants’
data in further analyses.

Choices between gambles were consistent with standard theories of
choice: Participants chose the higher expected value gamble in 79% of
all trials ( = =OR b5.38, 1.68, CI = [1.48, 1.89]), and this preference did
not differ between the environments ( = = −OR b.82, 0.19negative , CI =
−[ 0.68, 0.30]). Moreover, larger EV differences leading to more EV-
maximizing choices ( =b .008EV , CI = [.007, .009], in a logistic regres-
sion with EV differences, higher EV, and condition as predictors). This
pattern of results persisted when we compared choices in the subset of
common gambles only. In addition, there were no differences in par-
ticipants’ subjective evaluations of payoffs and probabilities as modeled
by prospect theory (Tversky & Kahneman, 1992) (see Supplementary
Material for further details and other hypotheses we tested). In sum, we
did not find evidence that manipulated risk–reward structures system-
atically impacted decision-making during the learning phase.

2.2.2. Decisions under uncertainty (test phase)
Did payoff levels shape preferences depending on the risk–reward

structure experienced? In decisions under uncertainty, participants in
both conditions preferred the sure option over the uncertain one

= =M b( .21, 1.89uncertain , CI = [1.44, 2.40]). However, as predicted, the
strength of preference depended on the learned risk–reward environ-
ment and the payoff magnitude offered in the gambles (Fig. 3A). Spe-
cifically, participants in the negative condition chose the gamble more
for low payoffs and less for high payoffs, in contrast to the uncorrelated
condition =b( 1.99, CI = [1.03, 2.97], payoff × condition interaction).

Fig. 3. (A) Proportion of times the uncertain option was chosen in the decisions under uncertainty task. Participants in the negative, but not the uncorrelated, condition chose the gamble
more for low and less for high payoffs. (B) Average estimated probabilities for each of the possible payoff levels in the payoff–probability estimation task. Participants in both conditions
estimated an overall negative risk–reward relationship. The solid lines are the posterior predicted means from the respective regression and the ribbons reflect the 95% posterior
predictive distribution.
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These choices are consistent with participants in the negative condition
inferring probabilities from payoffs, based on the risk–reward structure
experienced. In the uncorrelated condition, participants tended to
choose the sure thing irrespective of payoff magnitude =M( .19sure ,
gray line in Fig. 3A).

2.2.3. Payoff–probability estimation task (test phase)
Did inferred probabilities reflect previously learned risk–reward

structures? Fig. 3B shows participants’ estimates of the probability of
winning a range of payoffs. A negative risk–reward relationship was
observed in both conditions = −b( .78negative , CI =
− − = −b[ .84, .72], 0.57uncorrelated , CI = − −[ 0.63, 0.51]), but it was
stronger in the negative condition = −b( 0.22, CI = − −[ 0.30, .13], con-
dition × payoff interaction; in a regression with condition, payoff, and
condition × interaction as predictors, using a normal link function). The
results in the uncorrelated condition were unexpected in that the choice
data suggest that participants had a strong prior expectation that they
were not in an environment with a negative risk–reward structure.

To what degree did the learned relationship predict choices in the
uncertainty task at the individual level? To investigate this, we first
obtained a (risk–reward) slope for each participant through a random
participant term when regressing probability estimates onto payoff
magnitudes. This slope served as a measure of participants’ judged ri-
sk–reward relationship. Steeper slopes indicate a stronger decrease in
probability estimates as payoffs increase. This should lead to a stronger
tendency to prefer the sure thing in the decisions under uncertainty task
as the payoffmagnitude increased. To examine this prediction, we ran a
regression predicting choices from the risk–reward slopes, payoff, en-
vironmental condition, and the payoff × condition interaction. The
regression showed that steeper risk–reward slopes predicted a stronger
tendency to choose the sure thing as payoffs increased, but only for
participants in the negative condition (payoff magnitude × slope,

=b 2.58, CI = [0.34, 4.80]). Individual risk–reward estimates in the
uncorrelated condition were not associated with choosing the uncertain
option (payoffmagnitude × slope × uncorrelated interaction, = −b 2.09,
CI = −[ 4.79, 0.62]; modeled in a fixed effects logistic regression, results
plotted in Supplement Fig. S13A). This result speaks against the pos-
sibility that participants in the uncorrelated condition used their sub-
jective estimates across payoffs in decisions under uncertainty. Instead,
they estimated an overall negative risk–reward relationship but were
averse to uncertainty in their choices across payoffs.

2.2.4. Recognition (test phase)
Results from the decisions under uncertainty task imply that parti-

cipants were somewhat sensitive to the negative risk–reward relation-
ship. How did they learn that relationship? Did they memorize ex-
emplars from the learning phase? Results from the gamble recognition
task suggest that participants were overall unable to discriminate tar-
gets from foils.3 However, participants did show a bias toward stating
that they recognized specific gambles (i.e., saying “Yes”): Of the eight
gambles used to study the certainty effect, four fit the negative ri-
sk–reward structure (i.e., were “off” the slope) and four did not (see
Fig. 2A). For gambles that were inconsistent with a negative risk-re-
ward structure (i.e., structured as the bottom left and top right gambles
in Fig. 2), participants tended to indicate not having seem them pre-
viously = = − = − −M b( .28, 0.73, CI [ 1.25, 0. 22]yes ). This effect was
more pronounced for the negative condition = = −M b( .17, 1.14,yes CI
= − −[ 1.93, 0.37]; logistic regression using risk–reward structure, con-
dition, and their interaction as predictors, and participant as a grouping
factor).

Thus, it is unlikely that participants encoded specific exemplars
from the learning phase. Instead, participants in the negative condition
may have abstracted a rule that they then used to assess the degree to
which the stimuli were consistent with a negative risk–reward re-
lationship. One limitation of the results from the gamble recognition
task is that the stimuli set did not include any foils mimicking the
structure of the certainty-effect gambles (namely, gambles located at
the margins of the payoff–probability space). Instead, all of the extreme
gambles were targets. We addressed this issue in the next experiment.

2.3. Summary

Experiment 1 exposed participants to either a negative or an un-
correlated risk–reward structure. The risk–reward structure led to en-
vironment-dependent preferences under uncertainty. In the negative
risk–reward condition, participants were more likely to prefer the un-
certain option with lower payoffs, and their learned risk–reward re-
lationship explained this preference. In the uncorrelated condition,
choosing the uncertain alternative was unrelated to payoff magnitudes
and estimated risk–reward relationships. Finally, participants (in-
correctly) reported not having seen gambles when those gambles were
at odds with the negative risk–reward structure, suggesting that they
had encoded the overall risk–reward structure as a rule, rather than
encoding specific payoff–probability exemplars.

Surprisingly, a majority of participants in the uncorrelated condi-
tion estimated an overall negative risk–reward relationship in the es-
timation task. Though, we should emphasize, their estimates were less
extreme than the negative condition and their choices in the decision
making under uncertainty task did not reflect this pattern (both at the
individual and group level). Nevertheless, we offer two possible ex-
planations for the negative risk–reward relationship in the estimates for
the uncorrelated condition. First, participants in the uncorrelated con-
dition may have an ecologically informed bias to report a (negative)
risk–reward relationship even when none exists (c.f., Langer, 1975).
Second, although there was no risk–reward relationship across all
gambles in the uncorrelated condition, there was what might be called
a local risk–reward relationship within each trial of the learning phase.
As participants chose between stochastically nondominated options in
the learning phase, gamble A will always have a higher payoff but
lower probability than gamble B, or vice versa. Thus, participants may
have learned a risk–reward relationship from the local as opposed to the
global risk–reward relationship. This was similar in the uncertainty task
(the uncertain option was always larger than the sure thing). In Ex-
periment 2, we modified the learning phase so that a local risk–reward
relationship was not present.

3. Experiment 2: Do people learn and exploit a positive
risk–reward relationship?

Experiment 2 sought to replicate and extend the finding that par-
ticipants are sensitive to risk–reward relationships and harness them in
making decisions under uncertainty. To do so, we added an environ-
ment with a positive risk–reward structure creating a rather blissful
structure where the larger the payoff the more likely it is to occur.
Given such an idealistic structure is arguably less prevalent outside the
lab, it can provide a stronger test of how well participants adapt to
different risk–reward structures. The additional positive risk–reward
environment affords a stronger test of how risk–reward environments
may create environment-dependent preferences. Specifically, partici-
pants in the negative condition should prefer the uncertain option for
low payoffs and the sure thing for high payoffs. Conversely, participants
in the positive condition should prefer the sure thing for low payoffs
and the uncertain option for high payoffs. Additionally, preferences for
the uncertain option in the uncorrelated condition would be in-
dependent of payoff magnitudes.

To create a learning phase without a local risk–reward structure, we

3 Modeling the data in a signal detection theory framework makes this point clear: The
discriminability parameter ′d was centered at 0 =M( 0.0negative ,

= − = =M bCI [ 0.47, 0.47], 0.00, 0.00uncorrelated , = −CI [ 0.67, 0.67]). In addition, partici-
pants did not show any systematic response biases in either condition (criterion

=c M, 0.00negative , = −CI [ 0.27, 0.27]), = =M b0.00, 0.00uncorrelated , = −CI [ 0.41, 0.39]).
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asked participants—instead of choosing between two gambles as in
Experiment 1—to state the price for which they would be willing to sell
(WTS) a single gamble presented at each trial for. Based on our findings
from Experiment 1, we predicted that participants would learn about
risk-reward relationships incidentally while pricing the gambles.

Finally, we sought to better understand the degree to which parti-
cipants encoded the risk–reward relationship as a rule. We did so by
modifying the gamble recognition task so that target and foil gambles
were structured equally, especially at the four extremes (Fig. 4). We
hypothesized that participants would not distinguish between targets
and foils—which would be difficult to do—but would respond based on
the gambles’ fit with previously experienced risk–reward structures.

3.1. Method

3.1.1. Participants
We recruited 90 participants (53 females, mean age =SD24.7, 4.1,

proportion students = .72) from the participant pool at the Max Planck
Institute for Human Development. Each participant completed the ex-
periment in exchange for a show-up fee of 10€ and a performance-
contingent bonus. Participants in Experiment 1 were excluded from the
recruitment process.

3.1.2. Decisions under risk (learning phase)
The methods were largely the same as in Experiment 1; here, we

summarize key differences. We used a larger payoff range
(E$1.01–2500, disclosed conversion rate E$2500= 1€). Fig. 4 depicts
the three risk-reward environments used in the current experiment (150
gambles per environment with identical marginal distributions; see
Supplementary Material for details, and code on the OSF). Briefly, to
create the positive risk–reward condition, we took the gambles in the
negative condition and reversed the order of probabilities such that the
highest probabilities were now associated with the highest payoffs and
vice versa.

To study condition-dependent differences in how participants priced
(identical) gambles, we included 22 gambles common to all three
conditions (10 in the center, 3 at each margin; see triangles in Fig. 4). In
total, this procedure resulted in 172 risky gambles per risk–reward
condition while controlling for the marginal distribution of payoffs and
probabilities across all three conditions.

3.1.3. Decisions under uncertainty (test phase)
For the uncertainty task, we created gamble pairs with low

(E$1–250), intermediate (E$1125–1375), and high payoffs (E$2250–2500)
(10 pairs each). As in Experiment 1, the uncertain option’s payoff
(probability “?”) was half as big as the certain option’s payoff. In a
typical pair, participants chose between a 100% chance of winning E
$50 and a “?” chance of winning E$100. We included 30 filler trials in

which the certain option was created by scaling down the uncertain
option by a random factor between .1 and.9.

3.1.4. Payoff–probability estimation task (test phase)
We increased the number of trials such that participants estimated

the probabilities associated with 20 payoff magnitudes (range E
$1–2500). To investigate how well participants learned the bi-direc-
tional relationship between payoffs and probabilities, we also asked
participants to estimate the payoff associated with a given probability
at the end of the experiment (probability–payoff estimation task). We
drew 20 probabilities between 0 and 1 for this task (results mirrored the
results of the probability estimation task, and are reported in the
Supplementary Material).

3.1.5. Recognition (test phase)
We used the gambles common to both conditions in the learning

phase as targets and an equally generated set of gambles as foils (Fig. 4,
red triangles). Thus, foils were 10 gambles at the center and 12 gambles
at the margins of the payoff–probability distribution space (novel
random draws based on the recognition gambles procedure). This
broader set (relative to Experiment 1) of 22 targets and 22 equally
structured foils was used to test whether the risk–reward relationship
was learned via exemplars or a rule: If participants had learned the
relationship as a rule, they should not indicate having seen gambles that
did not fit condition-dependent risk–reward structure (and indicate
having seen gambles that did) irrespective of whether those gambles
were targets or foils.

3.1.6. Procedure
During the learning phase, participants indicated their WTS for one

gamble at a time. They took self-paced breaks after each of five blocks.
Common gambles were randomly interspersed after 100 condition-de-
pendent trials. The task was presented as a game show called “Keep or
Sell?” (“Behalten oder Verkaufen?”). To motivate participants to in-
dicate their true valuations of a gamble, we implemented a Becker-
DeGroot-Marschak auction (Becker, DeGroot, & Marschak, 1964). The
rules were as follows. Participants owned the right to play each gamble,
which they could sell to the experimenter at a price they determined
themselves. Prices were entered with a mouse click on a rating scale (E
$0–2500) and confirmed with a click on the value.

To incentivize the task, we informed participants that 10 gambles
would be randomly selected and played out at the end of the experi-
ment. The experimenter then offered a (computer-generated) buying
price between 0 and the maximum payoff from the gamble. If the ex-
perimenter’s price exceeded the participant’s selling price, the partici-
pant sold the gamble and earned the buying price. If the participant’s
selling price exceeded the experimenter’s buying price, the gamble was
played out (e.g., 50% chance of E$380). The dominant strategy in this

Fig. 4. Stimuli used in Experiment 2. The learning phase consisted of 150 condition-dependent gambles, and 22 common gambles (triangles).
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task is to price a gamble based on its subjective value: Higher prices can
prevent participants from selling unattractive gambles; lower prices can
lead to them selling attractive gambles under value. In other words, the
prices should approximate participants’ subjective certainty equivalents
for the gambles.

Participants completed five practice trials to ensure their proper
understanding of the WTS measure. If they indicated a selling price that
exceeded the maximum payoff from that gamble, participants would
see a screen reminding them that (i) they would only receive counter-
offers between 0 and the maximum amount to be gained in the gamble,
(ii) setting an accurate price would increase the likelihood of good
counteroffers, and (iii) good counteroffers would maximize the bonus to
be gained from the task. After this feedback, participants set a new price
for the same gamble. If they had no more questions, they proceeded to
the main part of the task, in which there was no feedback.

The test phase in Experiment 2 was equivalent to that in Experiment
1 (see Table 1 for an overview of the tasks and task order). The ex-
ception was that the decisions under uncertainty task was now in-
centivized. In particular, five choices from the uncertainty task were
randomly selected and played out. If the uncertain option was chosen,
then the condition-dependent probabilities were used to determine the
probability of the outcome. Participants were instructed about the in-
centivization scheme at the beginning of the task. At the end of the
experiment, we played out the randomly drawn trials from the learning
phase and the uncertainty task. Bonuses (between 1.99€ and 7.82€,
with E$2500= €1) were added to the regular payment.

3.2. Results

3.2.1. Decisions under risk (learning phase)
Across all gambles, including the environment gambles, prices were

strongly related to the gambles’ expected values (indicated by a credible
payoff × probability interaction, =b 0.88, CI = [0.85, 0.91]). Prices in the
positive condition deviated slightly more from expected values compared
to in the other two conditions (payoff × probability × positive condition,

= −b .07, CI = − −[ .12, .03]). However, these differences did not persist
when we modeled certainty equivalents given for the subset of gambles
common to all conditions (thereby controlling for condition-dependent
stimuli features). In addition, there were no differences in participants’
subjective evaluations of payoffs and probabilities as modeled by prospect
theory (Tversky & Kahneman, 1992) (see Supplementary Material). In
sum, and consistent with Experiment 1, participants seemed to evaluate
risky gambles in a similar manner across conditions.

3.2.2. Decisions under uncertainty (test phase)
How did the experienced risk–reward structures shape participants’

preferences under uncertainty? Fig. 5A displays the proportion of
choices of the uncertain option as a function of the possible payoff level,
separately for the three conditions. In general, participants were more
likely to choose the certain but smaller payoff option over the uncertain
option that offered a larger payoff = =M b( .63, 1.97sure , CI =
[1.43, 2.55]). However, this preference depended on the risk–reward
environment to which participants had previously been exposed and on
the payoff magnitude offered in the gambles. Consistent with our pre-
diction of environment-dependent preferences, the higher the payoffs,
the more often participants in the positive condition chose the gamble

=b( 3.04positive , CI = [2.41, 3.69], condition × payoff interaction). When
payoffs were high, participants in the positive condition chose the un-
certain option in as many as 59% of trials.

As Fig. 5A shows, the pattern of results was very different for par-
ticipants in the negative condition, who chose the gamble slightly more
for smaller payoffs and less for larger payoffs. Nevertheless, unlike the
results of Experiment 1, the effects in the negative condition were ra-
ther small, and the choices were not credibly different from those in the
uncorrelated condition = −b( .22negative , CI = −[ .84, .41]; all effects
modeled in a logistic regression with the uncorrelated condition as
baseline). This finding was unexpected: If participants had relied on the
learning phase and exclusively used the knowledge they expressed in
their probability estimates in the choice task, they should have been
much more risk seeking for low payoffs, which they would have learned
to be associated with high probabilities. As we will show shortly, this
may be due to (or linked back to) individual variability in the learned
risk–reward relationship.4

3.2.3. Payoff–probability estimation task (test phase)
Did participants’ estimates reflect risk–reward environments from

the learning phase? As Fig. 5B shows, the probabilities that participants
estimated varied as a function of the possible payoffs. Participants in
the uncorrelated condition estimated a weak positive relationship

=b( 0.11, CI = [0.06, 0.16]). Estimates from participants in the other
two conditions reflected the specific risk–reward structure to which

Fig. 5. (A) Proportion of times the uncertain option was chosen in the decisions under uncertainty task. Participants in the positive condition chose the gamble more for high and less for
low payoffs. Participants in the negative and uncorrelated conditions showed risk-averse behavior, with a low overall proportion of gamble choices. Error bars reflect the 95% posterior
predictive distribution; black triangles reflect the mean of the posterior predictive distribution. Note our analysis of choices in the uncertainty task treated payoff as a continuous variable,
but we binned this variable as low/medium/high for clarity in plotting the results. (B) Average estimated probabilities for each of the possible payoff levels in the probability estimation
task. Participants’ estimates reflected the risk–reward structures to which they had previously been exposed. The line reflects the mean of the posterior predictive distribution from the
linear regression; ribbons reflect the 95% posterior predictive distribution.

4 The choice patterns for the filler gambles were identical to these results (positive
condition choosing gambles more as payoffs increase; negative condition similar to un-
correlated condition); as expected, choices here also largely depended on the difference
between certain and uncertain payoffs = −b( 8.84uncertain/certain , CI = − −[ 9.56, 8.16]).
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these participants had previously been exposed. In the negative con-
dition, the estimates showed a negative relationship between payoffs
and probabilities = −b( 0.75, CI = − −[ 0.82, 0.68]). In the positive con-
dition, the reverse applied but the slope was much shallower =b( 0.35,
CI = [0.28, 0.42], in a normal link regression using condition, payoff,
and condition × payoff as predictors). The shallower slope was partially
driven by two participants in the positive condition who estimated a
negative risk–reward relationship, perhaps indicative of a possible ne-
gative risk–reward relationship ‘default’/prior.

As in Experiment 1, we also investigated the extent to which an
individual’s probability estimates predicted his or her choices in deci-
sions under uncertainty. To do so, we again obtained a (risk–reward)
slope for each participant through a random participant term when
regressing probability estimates onto payoff magnitudes. As Fig. 6
shows, the majority of slopes (plotted on the x-axis) reflected the con-
dition to which participants had been exposed: the negative condition’s
slopes fell in the negative range; the positive condition’s slopes fell in
the positive range. We then used the individual slopes to predict
choosing the uncertain over the certain option across different payoff
magnitudes. The risk–reward slopes predicted payoff-dependent pre-
ferences for the uncertain option in the two correlated conditions

=b( 2.01negative , CI = =b[0.27, 3.76]; 2.74positive , CI = [1.03, 4.45], slope ×

payoff × condition interaction in a fixed effects model using the un-
correlated condition as baseline). That is, following up on the degree to
which the risk–reward conditions impacted preferences, once in-
dividual variability in the learned risk–reward relationship is accounted
for, preferences in both the negative and positive condition were
credibly different (and in the predicted direction) from the uncorrelated
condition. Nevertheless, the link between estimates and choices was
weaker in the negative condition (red vs. blue slope in Fig. 6). As in
Experiment 1, risk–reward slopes in the uncorrelated condition did not
predict the choice of an uncertain option =b( .44uncorrelated , CI =
−[ .56, 1.43]).

3.2.4. Recognition (test phase)
Results from the decisions under uncertainty and estimation tasks

suggested that participants learned risk–reward structures in the first
phase of the experiment. But how did they represent the different
structures? A comparison of panels A and B in Fig. 7 shows that par-
ticipants responded similarly when the gambles presented were targets
versus foils, implying that they could not discriminate between them.5

When we broke responses down by whether or not gambles fit a
condition’s risk–reward structure (Fig. 7), the results resembled those of
Experiment 1: If gambles did not fit a condition-dependent risk–reward
structure, participants indicated that they had not seen them pre-
viously, irrespective of whether these gambles were targets or foils.
That is, a majority of participants in the negative condition reported not
having seen gambles that were consistent with a positive risk–reward
relationship = = −M b( .26, 1.40yes , CI = − −[ 1.80, 1.00]). Conversely, a
majority of participants in the positive condition reported not having
seen gambles that were consistent with a negative risk–reward re-
lationship = = −M b( .26, .85yes , CI = − −[ 1.25, .46]).

What is more, participants were also more likely to report having
seen gambles merely because their structure followed a condition’s ri-
sk–reward structure, again irrespective of whether these gambles were
targets or foils (see Fig. 7). That is, participants in the negative condi-
tion were likely to report having seen a gamble if the gamble was
consistent with a negative risk–reward relationship = =M b( .65, .84yes ,
CI = [.45, 1.23]), and participants in the positive condition were likely
to report having seen a gamble if the gamble was consistent with a
positive risk–reward relationship = =M b( .66, .52yes , CI = [.13, .90]; all
results from a logistic regression using condition × stimulus type as a
predictor, neutral gambles in the uncorrelated condition as baseline).
Responses to neutral gambles were identical across conditions. These
gambles were consistent with all risk–reward structures, which might
explain why people were equally likely to indicate that they had pre-
viously seen them (in all three conditions; =M .68yes , bars on the right
in Fig. 7A and B).

3.3. Summary

Experiment 2 substantiated the findings from Experiment 1 that
participants could learn risk–reward structures in an unsupervised, in-
cidental fashion, and that they subsequently often exploited the re-
lationship to make decisions under uncertainty. In particular, we
showed that participants learned and used a positive risk–reward re-
lationship, although this structure stands in stark contrast to the ne-
gative risk–reward relationship present in many real-world environ-
ments. Moreover, in contrast to Experiment 1, where probability
estimates in the uncorrelated condition showed a negative association
with payoff levels, probability estimates were now independent of
payoff levels. Comparing Experiment 2 to Experiment 1 suggests that
this difference is due to the learning phase, in which participants now
evaluated one gamble at a time, removing any ‘local’ risk–reward
structure naturally built into a choice task with nondominated gambles.
In a payoff–probability estimation task participants used risk–reward
relationships to infer probabilities from payoffs—and that the risk–re-
ward relationship learned from pricing gambles dictated the direction
of the estimates. Finally, we found further evidence of environment-
dependent preferences in decisions under uncertainty. One qualifica-
tion to this result is that participants in the negative condition were not
as keen on choosing the uncertain option for low payoffs as we had
expected (despite estimating high probabilities for these payoffs).

Fig. 6. Individual variation in choice of the uncertain alternative (y-axis) based on esti-
mated payoff–probability relationships (x-axis). Each data point depicts one participant.
The participant-level β was estimated from a Bayesian regression with a random parti-
cipant intercept for (estimates ∼ payoff) and (choice ∼ payoff), respectively. Values above
0 indicate higher probability estimates with increasing payoffs (x-axis), and a preference
for the uncertain option with increasing payoffs (y-axis), and vice versa values below 0.
Payoff–probability estimates in the negative and positive condition, but not in the un-
correlated condition, predicted choice.

5 A signal detection analysis showed that participants did not discriminate between old
and new gambles across all three conditions ′ =d( 0.21uncorrelated , = −CI [ 0.17, 0.60];

′ = − = −d b0.16, 0.37positive , = −CI [ 0.89, 0.15]; ′ = − = −d b0.05, 0.26negative ,
= −CI [ 0.78, 0.27]). There were weak, but not credible, biases towards saying ‘yes’ in the

correlated conditions = −c( 0.10uncorrelated , CI = −[ 0.30, 0.08]), = =c b0.08, 0.18positive ,
= −CI [ 0.09, 0.45], = =c b0.03, 0.13negative , = −CI [ 0.14, 0.40]).
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Finally, the recognition task in Experiment 2 provided further evidence
that the risk–reward relationship from the learning phase was re-
presented as a rule rather than in terms of memorized gambles.

Across Experiments 1 and 2, the gambles used in the learning phase
presented risks in terms of explicit, single numbers. Outside the la-
boratory, in contrast, many gambles are about epistemic events, for
instance when betting on the outcome of a sporting event (e.g., a soccer
match). To gauge their chances of winning for such gambles, people
may rely on the prior knowledge they have about these events. In our
final study, we asked how well our results generalized to choices about
these epistemic events.

4. Experiment 3: Do people learn about and exploit risk–reward
structures from gambles about epistemic events?

In Experiment 3, we examined whether people learn risk–reward
relationships when the chances of winning depend on events about
which they have some prior knowledge. Specifically, in both the
learning and test phase, we used gambles in which winning was tied to
the maximum temperature in Berlin on a particular day in 2011 falling
within a certain range (e.g., “You win E$500 if the temperature on
August 20th, 2011, was between °C16 and25 ”). We adapted a proce-
dure from Tversky and Fox (Tversky & Fox, 1995) to create different
events using different widths and locations of temperature ranges, so
that participants should a priori have different subjective probabilities
of the events occurring (see also Tversky & Wakker, 1995). As in Ex-
periment 2, participants were asked to state prices for gambles in the
learning phase. To create different risk–reward relationships, we de-
termined the probability that a given interval would contain the max-
imum temperature based on the width of the interval and its proximity
to the mean August temperature. We refer to these probabilities as
historical frequencies. We paired them with payoffs between E$1.01 and
E$2500 to create either a positive or a negative risk–reward relation-
ship. Using these two conditions, we aimed to extend our finding that
participants learn risk–reward relationships incidentally from simple
monetary gambles to gambles with epistemic events.

Learning about risk–reward relationships from implied subjective
beliefs alone may be challenging. Moreover, in some situations, prob-
ability estimates about epistemic events are available, such as when an
meteorologist shares her belief that an event will occur. Thus, we fur-
ther differentiated the learning environments, with half the participants
being shown only the temperature range of the event but no explicit
probability information (‘learning under uncertainty’) and half ad-
ditionally being shown the historical frequencies (‘learning under risk’).

By comparing these two sets of conditions, we tested whether explicit
probability information is necessary to learn the risk–reward relation-
ship.

In the test phase, we assessed the influence of the risk–reward en-
vironments somewhat differently compared to the first two experi-
ments. Because the chances of the maximum temperature in Berlin
falling within a particular temperature range could be inferred from the
range itself, we tested for the effect of the risk–reward environment on
probability estimates and choices above and beyond the information
provided by the temperature range (historical frequencies). How can
environment-dependent preferences emerge here? In the negative ri-
sk–reward environment, the proportion of choices of the uncertain
option should increase for lower payoffs, and decrease for higher
payoffs—and vice versa for the positive risk–reward environment. A
similar pattern should emerge for probability estimates: When relying
on a negative risk–reward structure, probability estimates for an event
associated with a low payoff should be larger than probability estimates
for an (otherwise comparable) event associated with a high payoff.
When relying on a positive risk–reward structure, the opposite should
happen.

Lastly, we examined whether participants generalized learned ri-
sk–reward relationships to other contexts. To this end, we added tasks
in which participants made decisions under uncertainty and estimated
probabilities about the maximum temperature falling in a particular
range in Dushanbe, Tajikistan. Importantly, our results showed that
participants did not rely on risk–reward structures in a context they had
not been exposed to (for details see the Supplementary Material).

4.1. Method

4.1.1. Participants
We recruited 200 participants from the participant pool at the Max

Planck Institute for Human Development in Berlin (125 females, mean
age = =SD24.45, 4.3, proportion students = .84) to take part in the
experiment for a 10€ show-up fee and a performance-contingent bonus.
Participants in Experiment 1 and 2 were excluded from the recruitment
process. Due to the change in design, we expected smaller effect sizes
and therefore increased our sample from 30 to 50 participants per
condition. Participants were randomly assigned to one of four condi-
tions. Due to a computer error, the responses from two participants in
the uncertainty task were not saved (leaving =N 198).

4.1.2. Decisions under uncertainty vs. risk (learning phase)
During the learning phase, participants priced gambles based on the

Fig. 7. Proportion responding ‘yes’ to items in the recognition task, by stimuli characteristics and condition. Overall discriminability between targets and foils was low (similar response
patterns in panels A and B). Responses depended on whether gambles fit a condition-dependent risk–reward structure. Error bars reflect the 95% posterior predictive distribution;
triangles reflect the mean of the posterior predictive distribution.

C. Leuker et al. Cognition 175 (2018) 186–200

195



Berlin weather. To construct these gambles, we retrieved past weather
data on the mean = °M C( 22.7 ) and standard deviation = °SD C( 3.2 ) of
the maximum daily temperature in August in Berlin in 2011 from ac-
cuweather.com. We created 155 temperature ranges of varying width
and location on the temperature scale (see Supplementary Fig. S6).
Because the maximum temperatures were approximately normally
distributed, we calculated the historical frequency to approximate the
probability that the maximum temperature on a given date would fall
within the specified interval. We then constructed gambles such that
there was either a positive or a negative risk–reward relationship
holding the marginal distributions of payoffs and historical frequencies
constant across conditions (see Supplementary Material S7, code on
OSF).

In the learning under uncertainty condition, only the temperture
range and the corresponding payoff was shown for each gamble (e.g.,
“E$2300 if the maximum temperature was between °C13 and 15 on
Aug 29th”.) In the learning under risk condition, the historical (re-
lative) frequency was added to the gamble (e.g., “E$2300 if the max-
imum temperature was between °C13 and 15 on Aug 29th (p = 3%).”).
Screenshots are shown in Supplementary Material S8.

4.1.3. Decisions under uncertainty (test phase)
We created a decisions under uncertainty task in which participants

chose between an uncertain option that depended on the Berlin weather
event having occurred (“E$2000 if the maximum temperature was be-
tween 23 and 26°C on August 22nd”) and a smaller, sure thing (“700 E$
for sure”). We varied the payoffs on two levels, to be either high (E
$2000 vs. E$700 for sure) or low (E$100 vs. E$35 for sure). Participants
completed 15 different trials about Berlin weather.

4.1.4. Subjective probability estimation task (test phase)
This task consisted of two parts. First, participants were asked to

estimate their subjective probability (0–100%) of winning the gamble
(i.e., the event occurring) in the decisions under uncertainty task with
payoff information. Our key interest was the degree to which partici-
pants used the payoff information in their estimates. Participants were
therefore shown the actual gamble (e.g., “E$2000 if the maximum
temperature in Berlin was between °23 and 26 C on August 22nd”) and
asked to judge the probability that they would win.

In a second part, participants indicated their subjective probability
(0–100%) that the maximum temperature on a given day in August
would fall in a given temperature range without payoff information (e.g.,
“likelihood the maximum temperature in Berlin was between

°23 and 26 C on August 22nd”). The temperature ranges were identical
to those used in the decisions under uncertainty task and in the sub-
jective probability estimation task with payoff information.

4.1.5. Payoff–probability estimation task (test phase)
Participants were presented with 20 different payoffs and asked to

think back to the gambles they had experienced in the learning phase.
They then estimated the likelihood of winning these payoffs in the
upcoming bonus trials. This task was used to test whether participants
had picked up on the risk–reward structures in the learning phase.

4.1.6. Procedure
Participants were randomly assigned to one of four learning conditions

(Negative Risk, Negative Uncertainty, Positive Risk, Positive Uncertainty).
They evaluated gambles about the maximum temperature measured on a
given day in August 2011 by indicating a WTS for each gamble. The in-
structions were adapted from Experiment 2. Here, participants were in-
formed that a gamble’s value was determined by the extent to which the
temperatures were in line with the true temperatures on a given day, and
by its possible payoff. The instructions for the risk conditions included an
explanation of the historical frequency information added to the gambles,
namely that the probability was based on typical August temperatures
(i.e., “45% is the likelihood that a typical August day will fall in the

temperature range given in the bet”). During the learning phase, partici-
pants took self-paced breaks between five blocks of 31 pricing trials each.
The learning phase was incentivized such that prices from 10 randomly
drawn trials were played out according to the Becker-DeGroot-Marschak
auction procedure described in Experiment 2, but now the outcome of the
gamble was determined by whether the event’s temperature range actually
contained the true maximum temperature.

The order of tasks in the test phase was identical across all parti-
cipants. We randomized the positions of sure things versus gambles in
the decisions under uncertainty task, as well as the position of the
payoff amount in the gamble (above or below the event) on the trial
level. The decisions under uncertainty task was incentivized such that
five randomly selected choices were played out. At the end of the ex-
periment, bonuses (between 1.28€ and 7.65€, with E$2500= €1) were
added to the regular payment.

4.2. Results

4.2.1. Decisions under risk vs. uncertainty (learning phase)
The prices suggested that participants traded off the payoff and the

historical frequencies of events (effect of EV, defined as historical fre-
quency × payoff: =b .46, CI = [.40, .53]). As expected, risky gambles
that included information about historical frequencies (negative risk
and positive risk conditions) were closer to the EVs of the bets than
their uncertain counterparts = −b( .66negative uncertain ,

= − − =bCI [ .76, .57], .58positive uncertain , =CI [.48, .67]; 3-way interac-
tion using a gamble’s EV × risk–reward relationship × type of learning).

4.2.2. Decisions under uncertainty (test phase)
Did the experienced risk–reward relationships shape preferences

under uncertainty? We expected this to be the case after “learning
under risk” (as in Experiments 1 & 2), in particular, but also (though
less strongly) after learning under uncertainty. We analyzed condition-
dependent choices after controlling for the events’ historical fre-
quencies.6 Fig. 8 shows the results of this analysis. Overall, participants
were less likely to choose the gamble over the sure outcome for high (E
$2000) than for low payoffs (E$100) across conditions = −b( 1.23E$2000 ,
CI = − −[ 1.62, .85]). Was this payoff effect moderated by learned ri-
sk–reward structures? Indeed, consistent with the risk–reward re-
lationship they had experienced in the learning phase, this payoff effect
was smaller for participants who had been exposed to a positive ri-
sk–reward relationship under risk (panel A). This effect was driven by
participants in the positive condition choosing the gamble less often
when the choice was associated with a E$100 payoff—a payoff that had
previously been associated with a low probability

= −M b( .12,gamble positive× = −E$100 .57, CI = − −[ 1.08, .05], all results
based on a mixed effects logistic regression controlling for historical
frequencies, using learning type [risk vs. uncertain] × risk–reward re-
lationship [negative vs. positive] × payoff level as predictors).

Learning under uncertainty did not affect choice. In sum, there is
some evidence for environment-dependent preferences, namely when
participants were exposed to the risk–reward relationship under risk.
Participants in the positive condition became less risk seeking for low
payoffs but not more risk seeking for high payoffs, as one would have
expected from Experiments 1 and 2.

4.2.3. Subjective probability estimation tasks (test phase)
Participants were also asked to estimate the chances that a maximum

temperature would fall within a given temperature range both within the
context of the gamble as a whole (including payoff information associated

6 Choices were well-adjusted to the events’ historical frequencies, with an almost linear
increase in the proportion of participants choosing the uncertain option as probabilities of
winning based on historical frequencies increased =b( 6.98probability , CI = [6.48, 7.51], see
Supplementary Material S11 for posterior predictions across different historical fre-
quencies).
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with the event) and without this payoff information. As we were interested
in how the estimates were affected by the risk–reward environments after
controlling for the historical frequencies associated with the events, we
report deviations from those historical frequencies.7 Did participants rely
on previously experienced risk–reward structures when gauging their
chances of winning a bet about the weather? Fig. 9 (A, B) shows that
participants’ subjective estimates were indeed guided by the payoff in-
formation. In line with our predictions and Experiments 1 and 2, in the
negative conditions (panel A, left bars), subjective probability estimates
were lower when temperature ranges were presented in a gamble context
that offered a E$2000 payoff = −b( .10, CI = − −[ .12, .07]) than in a
gamble context that offered a E$100 payoff.

This payoff effect—a difference in estimates for E$2000 vs. E$100
after learning under risk—was not observed in the positive condition
(panel A, right bars, = −b .04, CI = −[ .09, .03] modeled in a normal link
regression using learning type [risk vs. uncertain] × risk–reward re-
lationship [negative vs. positive] × payoff level as predictors). As Fig. 9
further shows—and contrary to our predictions—the payoff effect did
not flip (with higher payoffs leading to a positive deviation and lower
payoffs leading to a negative deviation). A bi-product of this was that
participants in the risky positive condition ended up with estimates
closer to the true historical frequencies (Fig. 9, panel A). For partici-
pants who had learned about risk–reward relationships under un-
certainty (panel B), the between-condition effects were comparable

(larger payoff effect in the negative condition, see panel B).
Did probability estimates in this task predict choices in the decisions

under uncertainty task? Indeed, we found a positive link between es-
timates and choices =b( 4.00, CI = [3.25, 4.78], main effect of estimate
in a logistic regression using historical frequencies, estimates, and their
interaction as predictors).

4.2.4. Payoff–probability estimation task (test phase)
To what extent did probability estimates reflect the experienced

risk–reward structures? Fig. 10 shows that, as expected, the estimates of
participants in the negative condition reflected the risk–reward struc-
ture from the learning phase (slope in the negative condition =

× = −b payoff .40negative , CI = − −[ .45, .35]). Estimates in the positive
conditions were regressive to 50% (slope = .02, × =b payoff .42positive ,
CI = [.35, .49], interaction effect using the negative condition as base-
line). Fig. 10 (panels A vs. B) also shows that the results were identical
for the risky and uncertain learning conditions =b( .02uncertain , CI =
−[ .03, .08], all estimates modeled in a normal link regression, using
learning type (risk vs. uncertain)×risk–reward relationship (negative
vs. positive) × payoff as predictors).

Did individual differences in learned risk–reward structures help to
predict choices of the uncertain alternative in the decision under un-
certainty task? As an index of the learned risk–reward structures, we
again estimated a risk–reward slope for each participant from the ri-
sk–reward task (payoff-dependent estimates with participant as a
grouping factor). There was a weak but not credible association be-
tween learned risk–reward relationships and the tendency to choose the
higher payoff gamble =b( .64positive , CI = −[ .04, 1.33], slope × payoff ×

condition interaction in a fixed effects model using the negative con-
dition as baseline, controlling for historical frequencies).

4.3. Summary

Experiment 3 revealed that participants could also learn different
risk–reward relationships when the probabilities were expressed in the
form of epistemic events. The evidence for learning was more pro-
nounced when the relationship was negative than when it was positive,
suggesting that the negative association may have been more in line
with participants’ initial ‘priors’. The learned risk–reward relationship
impacted subjective probability estimates about the likelihood of the
event occurring. Moreover, preferences in subsequent decisions under
uncertainty were to some extent environment-dependent. When parti-
cipants had explicit probability information available in the learning
phase—that is, when they learned under risk, choices were impacted in
the low-payoff condition as if participants used both their subjective
knowledge about the epistemic events and their knowledge of the ri-
sk–reward relationship to estimate subjective probabilities. We also
found that there were limits to the degree to which participants used
the risk–reward relationship: Subsequent choices were not impacted
when participants learned under uncertainty.

5. General discussion

Ecological structures between risks and rewards that are present in
many real-world environments afford people a solution to the problem
of unknown probabilities in decisions uncertainty: People can exploit
risk–reward structures to infer probabilities from the magnitude of the
payoff itself (Pleskac & Hertwig, 2014). Here, we investigated two re-
quirements of such a solution (1) that people are able to extract the
environmental structure and (2) that they use the structure adaptively,
as the ecological regularities can and do vary across environments. Our
findings from three experiments demonstrate that people can learn ri-
sk–reward relationships from the options they experience during pre-
ferential choice. Moreover, they learned the relationships without being
asked to attend to the structures (incidental, unsupervised learning).
Finally, the learned risk–reward relationships can guide the direction of

Fig. 9. Subjective probability estimation tasks. Plots show deviations of participants’
estimates after controlling for the gambles’ historical frequencies. Estimates perfectly in
line with the gambles’ historical frequency should have a deviation of 0. Participants gave
subjective probability estimates of winning a particular temperature bet including a
payoff (blue bars) or the probability of a given temperature range alone (gray bars). Bars
show posterior mean deviations from historical frequencies; error bars show 95% highest
density intervals (generated using historical frequencies of .5).

Fig. 8. Decisions under uncertainty. Plots show how much participants picked the un-
certain gamble after controlling for the gamble’s historical frequencies. Choice propor-
tions perfectly adjusted to the gambles’ historical frequency should have a 0 deviation.
Bars and triangles reflect the mean of the posterior predictive choice distribution (con-
trolling for historical frequency); error bars indicate the 95% posterior predictive dis-
tribution (generated using historical frequencies of .5).

7 All participants were sensitive to historical frequencies and provided estimates that
reflected these frequencies across contexts =b( .77, CI = [.76, .79], see Supplementary
Material S12).
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estimates and ultimately impact preferences in decisions made under
uncertainty. Next, we discuss our findings in detail and consider their
broader implications for adaptive approaches to cognition.

5.1. Learning risk–reward structures

Adaptive approaches to cognition seek to understand cognition
within the environmental context (Anderson, 1991; Gibson, 1979;
Gigerenzer & Todd, 1999; Marr, 1982; Shepard, 1987; Simon, 1956;
Stewart et al., 2006). In the words of Herbert A. Simon (Simon, 1956),
“…we might hope to discover, by a careful examination of some of the
fundamental structural characteristics of the environment, some further
clues as to the nature of the approximating mechanisms used in deci-
sion making” (p. 130). Taking this perspective means it is equally im-
portant to identify the ecological structures to which a mind may adapt
as it is to establish how the mind comes to terms with those ecological
structures (Brunswik & Kamiya, 1953; Simon, 1956).

People can only exploit a risk–reward structure if it has entered the
mind. There is good evidence that people are automatic processors of
frequency information (a proxy for probabilities) (Hasher & Zacks,
1979; Zacks, 2002), and distributions of payoffs (Brown et al., 2008;
Olivola & Sagara, 2009; Stewart et al., 2006; Ungemach et al., 2011).
The risk–reward relationship is, however, different in that it is the joint
distribution of these dimensions across different gambles. Moreover,
the central goal in most decision environments is to select the best
option(s), and not evaluate them based on their risk–reward relation-
ships. People are neither explicitly informed of those relationships nor
do they learn about them from explicit feedback. Instead, it would seem
that, if at all, the risk–reward relationship enters the mind via in-
cidental, unsupervised learning (e.g., Brooks, 1978; Love, 2002; Nelson,
1984; Ward & Scott, 1987; Wattenmaker, 1991). Across three experi-
ments, we showed that participants learn risk–reward relationships
from evaluating gambles. Crucially, participants even learned there was
no association between risks and rewards, especially when there was no
‘local’ risk–reward relationship (Experiment 2).

In addition, our results suggest that participants abstracted the re-
lationship as a rule. The strongest support for this conclusion comes
from the choice patterns and probability estimates in decisions under
uncertainty. Gambles in these tasks did not perfectly map onto learning
phase exemplars, yet participants’ choices and probability estimates
largely resembled the risk–reward rule they had learned previously.
Our data cannot, however, pinpoint whether this abstraction occurs
during or after encoding (Wattenmaker, 1991). Participants may have
used hypotheses about what they know from risk–reward relationships
to abstract a rule during encoding (Altmann, Dienes, & Goode, 1995;

Wattenmaker, 1999), or represented the stimuli as exemplars and re-
trieved a rule from these exemplars as they needed it (Wattenmaker,
1991).

Our findings point to some general factors that appear to affect how
easily risk–reward structures are learned. First, it seems that some ri-
sk–reward structures are more difficult to learn than others.
Specifically, there was evidence that positive risk–reward structures are
more difficult to learn than negative ones: Not all participants picked up
on the positive relationship, resulting in weaker positive risk–reward
estimates than in the risk–reward structure presented in the learning
phase. Since people do not come across positive relationships outside
the laboratory very often, they may require more evidence to acquire it.
After all, in the real world, there is usually “no free lunch.” They may
even use prior knowledge and assume that high bonuses are unlikely in
the experiment itself. Indeed, as Pleskac and Hertwig (2014) showed,
people assume a negative risk–reward relationship without prior
learning. Second, risk–reward structures seem to be learned more
readily with some response types than with others. A comparison of
Experiments 1 and 2 suggests that people are more likely to pick up the
risk–reward regularity when pricing gambles one-by-one than when
choosing between gambles. It is possible that pricing engages deeper
processing than choosing the subjectively better option, leading to
better encoding of the relationship. Another reason could be that when
people choose between two nondominated gambles for all conditions, a
‘local’ risk–reward relationship is experienced within the choice pair
(i.e., a higher payoff is associated with a lower probability relative to
the other gamble). A third factor that hampers learning, as Experiment
3 illustrates, is the level of uncertainty in the choices people learn from.
It could be that people need many learning trials to adapt to a new
environment under uncertainty. To some extent, such conditions may
reflect nonlaboratory environments (where there is both uncertainty,
but also continuous learning across many, many “trials”).

5.2. How risk–reward structures impact decisions under uncertainty

Payoffs and probabilities are the pillars of preference. This makes
decision making under uncertainty a vexing problem as one of those
pillars—the probabilities—is missing. People are commonly thought to
deal with this problem by intuiting subjective probabilities from their
knowledge and memory (Fox & Tversky, 1998; Tversky & Fox, 1995) or
by estimating statistical probabilities from samples of information
(Hertwig & Erev, 2009). Our results support still another ecologically
grounded solution, namely, that people estimate the missing prob-
abilities from their immediate choice environments via their learned
risk–reward relationships.

Fig. 10. Payoff–probability estimation task. Participants were asked to estimate the likelihood of winning different payoffs from learning phase bets. (A) Risk: The learning phase included
information about historical frequencies. (B) Uncertain: The learning phase did not include information about historical frequencies. Triangles indicate mean estimates at each payoff
level. Lines (ribbons) indicate the mean (95% HDIs) of the posterior predictions.
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More broadly, these findings fit the general processing assumptions
of a risk–reward heuristic. First, people do not seem to memorize ex-
emplars but abstract the risk–reward relationship as a rule. Second,
subsequent choice patterns speak for the subsequent use, or retrieval, of
this rule, and against algebraic calculation. Taken together, these
properties are consistent with the heuristic use of payoff information to
estimate probabilities, rather than with the use of more complex
methods. However, our experiments also identified some limitations on
the use of the risk–reward relationship as a heuristic. For instance, the
results of Experiment 3 demonstrate that at least under some circum-
stances, other information beyond the payoff information is used to
infer probabilities about epistemic events. Thus, it is unclear to what
extent people use the risk–reward relationship in a noncompensatory
manner. This is an important aspect, as ignorining information is
sometimes used as a defining characteristic of heuristics (Gigerenzer &
Gaissmaier, 2011).

Regardless, the exploitation of the environmental structure has
some immediate implications. One is that, as we have shown, experi-
enced risk–reward environments can create environment-dependent
preferences in decisions under uncertainty. In particular, participants in
negative risk–reward environments chose the sure thing more often as
payoffs increased, but the opposite occurred for participants in positive
risk–reward environments. In uncorrelated environments, preferences
were less extreme but still tended to track a negative risk–reward en-
vironment, perhaps reflecting the pervasiveness of negative risk–re-
ward environments outside the lab. This ecological dependency of
preferences brings a new perspective to the proposition that preferences
are constructed rather than revealed (Ariely & Norton, 2008;
Lichtenstein & Slovic, 2006; Payne, Bettman, & Johnson, 1992; Slovic,
1995). The construction of preferences has typically been understood as
the result of people selecting a specific procedure from a larger re-
pertoire of possible strategies to formulate a response (Brandstätter,
Gigerenzer, & Hertwig, 2006; Pachur, Hertwig, & Brandstätter, 2013;
Payne, Bettman, & Johnson, 1993; Tversky et al., 1988), the dynamic
nature of information accumulation that adjusts preferences over time
(Busemeyer & Townsend, 1993), or the ecological (marginal) distribu-
tion of monetary payoffs and probabilities (Birnbaum, 1992; Stewart
et al., 2006; Stewart et al., 2015; Walasek & Stewart, 2015). Here, we
have shown how experiencing different risk–reward environments can
result in substantial, environment-dependent preference shifts in deci-
sions under uncertainty.

These environment-dependent preferences are not indicative of a
fallacy, but represent an ecologically rational bet on the structure of the
environment. Such a bet is more accurate than ignoring probability
information altogether—for example, by using the principle of in-
difference and assigning equal probabilities to all outcomes (Keynes,
1921). Moreover, our results speak against overtly optimistic estimates
that increase as the payoff increases, as implied by the desirability bias
(Bar-Hillel & Budescu, 1995; Edwards, 1954; Krizan & Windschitl,
2007; Sharot, 2011) or the affect heuristic (Slovic & Peters, 2006). If
anything, participants adapted too little to positive risk–reward en-
vironments, perhaps due to the strength and pervasiveness of negative
risk–reward environments.

6. Conclusion

People often have to make decisions under uncertainty, when
probability information is not explicitly stated. In many natural en-
vironments, risks and rewards are systematically correlated. This reg-
ularity allows people to infer the probability of a payoff from its mag-
nitude, consistent with the use of a risk–reward heuristic. By adjusting
their preferences to the respective risk–reward structure, people often
manage to make highly adaptive choices under uncertainty.
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