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1. Abstract 

Psychiatric diseases such as schizophrenia, bipolar disorder and autism spectrum disorders 

are considered neurodevelopmental synaptopathies. Compelling evidence obtained from 

large-scale genome-wide association studies, identified a plethora of genetic variations 

within hundreds of genes encoding components of the post-synaptic compartment and 

calcium signaling mediating excitation-transcription-coupling. This synapse-to-nucleus 

signaling is thought to be particularly important for synaptic plasticity and learning and 

memory. In the last decade, tremendous progress has been made in neuroscience research 

when employing an array of molecular and cellular techniques to study the impact of 

individual genes on synaptic plasticity. Nevertheless, neuroscience methodology lags behind 

the field of cancer research in terms of large scale functional genetic screens, e.g. mediated 

by RNA interference (RNAi). The underlying cause is likely due to both the difficulties of 

culturing post-mitotic neurons and the phenotypic complexity. In this regard, 

comprehensively identifying genes involved in neuronal excitation and synapse-to-nucleus 

signaling may not only deepen our understanding of the corresponding biological processes, 

but might also be key in unearthing promising targets for psychiatric drug discovery.  

I have developed a functional genomics tool that is applicable to primary neurons and 

combines the throughput of a pooled RNAi screen with the sensitivity of a pathway reporter 

assay based on the synaptic activity-response element, modified from the Arc enhancer. 

This thesis describes a proof-of-concept study in which an AAV-based RNAi library was 

screened for regulators of neuronal excitation and synapse-to-nucleus signaling. The assay 

principle relies on molecular barcodes, which serve as quantitative reporters, while at the 

same time also functioning as unique identifiers of the targeted genes. Upon synaptic 

stimulation, the screen identified a multitude of known genes involved in glutamatergic 

synapse-to-nucleus signaling, as well as previously unknown candidates like the chemokine 

receptor XCR1. The technical approach’s reproducibility has been verified by substantial 

overlap of gene hits during three independent screens. Later in the thesis, I also present the 

principal applicability of CRISPR-Cas9 tools in neurons, which may improve performance for 

genetic interference screens in the near future. 

This assay seeks to enhance the analytic toolbox used for analyzing regulatory processes 

during neuronal signaling and for the identification of novel targets in psychiatric drug 

discovery. 
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2. Introduction 

2.1. Synaptic plasticity and excitation-transcription coupling in higher brain 

function 

The human brain contains over 80 billion neurons (Azevedo et al., 2009). Those neurons are 

connected with each other via thousands of synaptic connections in order to transmit 

electrical signals for communication (Williams and Herrup, 1988). During brain development 

neurons of various types organize into distinct brain regions (e.g. cortex and hippocampus) 

and form local circuits (Hensch, 2005). Spatially separated circuits are connected by hubs of 

neurons that mediate long-range communication (Bullmore and Sporns, 2009). Although the 

exact mechanisms by which information is stored and processed in the brain is still unknown, 

neuronal plasticity is key to higher brain function during learning and memory (Amtul and 

Atta-Ur-Rahman, 2015). This involves strengthening of synaptic contacts, their maintenance 

as well as their weakening. Neuronal plasticity thereby modulates the intrinsic excitability of 

neurons and the strength of their synaptic connections. The persistence of such 

modifications at the cellular level depends on whether the intensity and duration of activity 

triggers a transcriptional response and the expression of new synaptic proteins (Kandel, 

2001). The molecular mechanisms of this excitation-transcription coupling are intensively 

studied and key players have been identified (Bading, 2013; Greer and Greenberg, 2008; 

West et al., 2002). Emphasizing the importance of neuronal plasticity for higher brain 

function, it is not surprising that many neuropsychiatric diseases are associated with synaptic 

dysfunction (West and Greenberg, 2011). 

 

2.1.1. Forms of synaptic plasticity 

Synaptic plasticity integrates various kinds of responses to activity leading to changes in 

synaptic strength and efficacy. Such modifications play a key role during experience-driven 

information-processing and -storage in the brain. In general, one can categorize the synaptic 

modifications into forms of short-term and long-term synaptic plasticity (Citri and Malenka, 

2008). 

Although, the presented study mainly deals with the molecular program leading to long-

lasting synaptic changes, concepts of short-term plasticity will be introduced briefly for the 

sake of completeness. Short-term plasticity covers changes that persist for milliseconds to 

several minutes and they mainly involve modifications of the neurotransmitter release 

probability at the presynaptic terminal (Thomson, 2000). The release probability can be 

either facilitated or depressed as a consequence of trains of stimuli and this seems to 

depend on the frequency of stimuli and the recent history of stimulation at the synapse 
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(Zucker and Regehr, 2002). Stimulation in short intervals of less than 20 ms commonly elicit 

a reduced response to the second stimuli compared to the first one, a phenomenon called 

paired-pulse depression. The counterpart, paired-pulse facilitation can occur at longer 

intervals of 20-500 ms. Furthermore, facilitation is rather observed if the synapse had a low 

neurotransmitter release probability prior to the stimulus and vice versa for depression 

(Dobrunz and Stevens, 1997). Regulators of the release property are, for example, 

presynaptic ionotropic receptors, such as the kainate receptor and the nicotinic acetylcholine 

receptor, which act as autoreceptors by sensing the neurotransmitter content at the synaptic 

cleft and eliciting feed-back mechanisms (Engelman and MacDermott, 2004). In addition, 

postsynaptic depolarization can lead to the release of retrograde messengers (e.g. 

dopamine, glutamate, BDNF, oxytocin, and endocannabinoids) from the postsynaptic 

compartment to modify presynaptic properties (Kombian et al., 1997; Nagappan and Lu, 

2005; Nugent et al., 2007; Zilberter, 2000). The regulation of neurotransmitter release 

probability seems to play an important role as high-pass- and low-pass filters during 

information processing (Abbott and Regehr, 2004). 

Long-term plasticity refers to mechanisms which result in synaptic remodeling that persist for 

hours, days, and longer (Citri and Malenka, 2008). Hence, these mechanisms are crucial for 

the development of neuronal circuits and for information storage as long-term memory 

(Segal, 2005). The two most studied phenomena of long-term plasticity are long-term 

potentiation (LTP) and long-term depression (LTD). Both have been primarily investigated at 

glutamatergic synapses in the CA1 region of the hippocampus, which involve activation of N-

methyl-D-aspartate (NMDA) receptors (NMDARs) (Lüscher and Malenka, 2012; Martin et al., 

2000). Important for the induction of LTP and LTD are the different channel properties of α-

amino-3-hydroxy-5-methyl-4-isoxazole propionic acid (AMPA) receptors (AMPARs) and 

NMDARs, the two major ionotropic glutamate receptors at excitatory synapses (Benke et al., 

1998; Mayer et al., 1984). Activation of AMPARs by presynaptic glutamate release leads to 

an influx of the monovalent cations sodium and potassium and generates the excitatory 

postsynaptic response. NMDARs, in contrast, are blocked by magnesium at resting 

membrane potential and this block is only released upon strong depolarization of the 

postsynaptic membrane and simultaneous activation by glutamate (1984; Nowak et al., 

1984). If this occurs, sodium and calcium can pass the NMDAR channel into the 

postsynaptic compartment. It is believed that the level of calcium within the dendritic spine 

regulates the switch between depression and potentiation (Malenka and Nicoll, 1993). High-

frequency synaptic stimulation leads to a strong increase in calcium concentration and the 

induction of LTP, whereas repetitive low-frequency stimulation causes a moderate increase 

in calcium and finally LTD (Sabatini et al., 2002). A crucial switch might be the timing of 

presynaptic action potential input and the backpropagating potential coming from the 

dendrites. LTP is evoked if the presynaptic spike slightly precedes the backpropagating 
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action potential at the synapse, and vice versa for LTD (Stuart et al., 1997; Waters et al., 

2005). Calcium inside the dendritic spine triggers a number of signaling events leading to 

rapid changes in postsynaptic AMPAR content (‘early-phase’ response) and with some delay 

to local dendritic protein synthesis and induction of gene expression in the nucleus (‘late-

phase’ response) (Greer and Greenberg, 2008; Henley and Wilkinson, 2016). The latter will 

be discussed in more detail below.  

 

2.1.2. Synapse-to-nucleus signaling 

Long-term potentiation is thought to be a molecular correlate of learning and memory and 

long-term memory consolidation requires ‘late-phase’ LTP including gene expression 

(Adams and Dudek, 2005). This excitation-transcription coupling makes it inevitable that the 

signal generated during synaptic transmission is propagated to the nucleus in order to 

induce the expression of activity-dependent genes. The communication between the 

synapse and the nucleus is of great importance and multiple routes have been identified 

(Bading, 2013; Nakamura et al., 1999; Xia et al., 1996) (illustrated in figure 1). As mentioned 

earlier, neurotransmitter release at glutamatergic synapses can elicit a calcium influx into the 

postsynaptic compartment through the opening of the NMDAR channel. Although this rise in 

calcium concentration through NMDARs mainly remains restricted to the dendritic spine, 

several lines of evidence indicate that calcium is the key second messenger for 

communication between synapse and nucleus (Bading et al., 1997; Chawla, 2002; Greer 

and Greenberg, 2008; Redmond, 2008; Sheng and Greenberg, 1990). Furthermore, 

experiments with nuclear calcium indicators demonstrated that changes in nuclear calcium 

concentration correlate with synaptic activity and specific quenching of nuclear calcium 

prevented the induction of 43% of all activity-dependent genes (Bengtson et al., 2010; 

Hardingham et al., 1997; Zhang et al., 2009). Thus, by which mechanisms does the calcium 

signal propagate to the nucleus and what are alternative routes? The first mechanism 

involves voltage-gated calcium channels (VGCC). Upon membrane depolarization those 

channels open and calcium fluxes into the cell (Fatt and Katz, 1953; Llinás et al., 1976). 

Calcium influx through VGCCs located in the membrane of the cell soma and the dendrites 

rapidly increases the intracellular calcium concentration caused by a steep gradient across 

the membrane (McBurney and Neering, 1987). Calcium can enter the nucleus by diffusion 

and activate downstream effectors such as calcium/calmodulin-dependent protein kinase IV 

(CaMK4). Through phosphorylation, CaMK4 passes the signal to cAMP-responsive element-

binding protein (CREB), one of the key activity-dependent transcription factors, and its 

interaction partner CREB-binding protein (CBP) (Chawla et al., 1998; Impey et al., 2002). 

Together, they induce expression of a huge set of activity-dependent genes (e.g. FOS, ARC, 

BDNF) (Kim et al., 2010; Pfenning et al., 2007). Recent data suggest that the CaMK2 
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subunits alpha, beta, and gamma are playing an important role for inducing neuronal 

plasticity-coupled gene expression as well. In this model, calcium influx through the VGCC 

Cav1.2 first mobilizes actin-bound CaMK2α/β and, subsequently, a voltage-dependent 

conformational change of the channel causes an accumulation of CaMK2α/β (Li et al., 2016). 

This in turn activates CaMK2γ by phosphorylation and CaMK2γ shuttles calcium-loaded 

calmodulin (CaM) into the nucleus where it induces CREB-CBP activation via CaMK4 (Ma et 

al., 2014). Voltage-dependent calcium channels are not the only regulators of intracellular 

calcium concentrations. The calcium signal might be amplified from the endoplasmic 

reticulum (ER), which can function as a high capacity calcium store (Berridge, 1998). For 

instance, ryanodine receptors can release calcium from the ER (Kuwajima et al., 1992). In 

addition, inositol triphosphate (IP3) receptors line up at the ER membrane along the 

dendrites and sequential receptor activation might generate a propagating calcium wave 

through calcium release from the ER. Activation of IP3 receptors occurs when synaptic 

transmission activates G-protein coupled receptors (GPCRs) which stimulate the generation 

of IP3 and diacylglycerol (DAG) via phospholipase C (PLC) (Jaffe and Brown, 1994; 

Nakamura et al., 1999; Watanabe et al., 2006). After a calcium wave has occurred, 

cytoplasmic calcium concentrations are brought back to a low level by exporting calcium 

through calcium ATPases and sodium-calcium exchangers located at the plasma membrane 

and via sarcoendoplasmic reticulum calcium ATPases into the ER (Verkhratsky, 2004). 

CREB-dependent gene expression upon synaptic stimulation may also be induced by cAMP, 

another prominent second messenger (Mayr and Montminy, 2001; Montminy, 1997). It is 

produced by adenylate cyclases and the activation of some adenylate cyclases is dependent 

on calcium/CaM signaling (e.g. Adyc8) (Nicol and Gaspar, 2014). cAMP activates 

proteinkinase A (PKA) thereby stimulating CREB-mediated transcription. Pharmacological 

and genetic perturbations of the cAMP pathway in vivo caused deficits in cognitive tasks, 

thus establishing a link between cAMP signaling and learning and memory (Wang and 

Storm, 2003). However, to what extend cAMP signaling is contributing to activity-dependent 

gene expression remains unclear. 

Calcium flux through NMDARs and VGCCs also activates the mitogen-activated protein 

kinase (MAPK) cascade including the key players ERK1/2 (Dolmetsch et al., 2001; 

Hardingham et al., 2001; Xia et al., 1996). Besides calcium/calmodulin-dependent kinases 

and PKA, MAPKs are the third kinase class that is important for long-term synaptic plasticity 

(Shalin et al., 2006; Sindreu et al., 2007). Entry-point for the MAPK pathway is the small 

GTPase Ras and evidence suggests that Ras is activated by Ras guanyl-nucleotide 

releasing factors (Ras-GRFs) complexed with calcium-loaded CaM (Ebinu et al., 1998; 

Farnsworth et al., 1995). Ras activity in the postsynapse is controlled by the CaMK2-

dependent Ras-GTPase activating protein SynGAP, a risk gene for intellectual disability, 

epilepsy and autism spectrum disorders (ASD) in humans (Jeyabalan and Clement, 2016). 
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Active Ras induces indirectly the phosphorylation of Raf isoforms (e.g. ARAF) which in turn 

phosphorylate MEK1/2. Unphosphorylated MEK1/2 traps ERK1/2 in the cytoplasm, but 

phosphorylation releases ERK1/2 and activates it. ERK1 and ERK2 have multiple cellular 

substrates, such as ribosomal protein S6 kinase 2 (RSK2), mitogen- and stress-activated 

kinase 1 (MSK1), and Elk-1 a transcriptional co-factor of serum-response-factor (SRF) 

(Arthur et al., 2004; Gille et al., 1995; Xing et al., 1996). Activation of MAPK-signaling upon 

synaptic stimulation is reported to have local and global effects on neuronal function 

(Wiegert and Bading, 2011). As pointed out earlier, calcium influx through synaptic NMDARs 

remains locally confined to the dendritic spine. This is also observed for activated ERK1/2 at 

the synapse which have been shown to participate in the regulation of AMPAR cycling 

between the PSD and endosomes (Kim et al., 2005; Zhu et al., 2002). In addition, MAPK 

signaling at the soma and inside the nucleus is also required for synaptic plasticity and 

memory formation (Shalin et al., 2006; Sindreu et al., 2007). However, little is known how 

synaptic activity is connected to active ERK1/2 in the soma and nucleus. A possible scenario 

may involve a rise in somatic and nuclear calcium concentrations upon opening of VGCCs 

leading to a global activation of MAPK signaling (Adams and Dudek, 2005; Wiegert et al., 

2007). A cytoplasmic substrate of activated ERK1/2 is for example RSK2 which induces 

CREB-dependent gene expression. Besides its role in transcription factor activation, nuclear 

ERK1/2, together with MSK1, also regulates activity-dependent gene expression more 

broadly by chromatin remodeling through histone 3 phosphorylation (Brami-Cherrier et al., 

2007). 

At last, the induction of activity-dependent genes occurs downstream of the presented 

signaling pathways from the synapse to the nucleus. Description of the activity-dependent 

transcriptome and epigenome by RNA-seq and ChIP-seq, respectively, provided insight into 

the transcriptional program underlying long-term synaptic plasticity (Kim et al., 2010; Malik et 

al., 2014; Zhang et al., 2009). The transcriptional response itself has multiple layers. Signals 

from the synapse are activating pre-existing transcription factors (e.g. CREB, MEF2, SRF) 

and chromatin remodeling factors (West et al., 2002). This regulates the expression of 

immediate-early-genes (IEGs), a class that contains multiple transcription factors itself (e.g. 

FOS, EGR1, c-JUN) (Murphy et al., 1991). Subsequently, those IEG transcription factors 

induce the expression of late-response genes (e.g. BDNF, HOMER1) which function at the 

synapse and thus exert long-lasting modulations of synaptic contacts in neuronal circuits 

during LTP and LTD (Barco et al., 2005; Sala et al., 2003). Recent findings indicate that 

particularly the late response gene expression differs between excitatory- and inhibitory 

neurons due to different sets of active enhancer regions (Spiegel et al., 2014). How exactly 

differential signaling and the combinatorial action of various transcription factors dictate the 

cellular response to experience-driven activity remains elusive and requires further 

investigation. Furthermore, it is likely that so far unrelated protein networks directly or 
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indirectly contribute to the regulation of neuronal function and thus represent an untouched 

pool of potential targets for drug discovery in the field of central-nervous system (CNS) 

diseases. 

 

 

Figure 1: Regulatory pathways in synaptic plasticity and activity-dependent gene 
expression. 

Presynaptic release of glutamate can initiate multiple signaling cascades in the postsynaptic 

neuron. Trafficking of AMPARs at the postsynapse directly modulates synaptic strength during LTP 

and LTD. Long-term synaptic plasticity requires activity-dependent gene expression of synaptic 

proteins. Calcium is thought to be the main second messenger from the synapse to the nucleus, 

for instance via calcium/calmodulin-dependent kinases (CaMK). The calcium signal might be 

enhanced through calcium influx from the ER or by voltage-gated calcium channels (VGCC) 

located in the plasma membrane. Kinases, such as CaMK4, PKA, and RSK2, phosphorylate 

various regulators of the activity-dependent gene expression program, like CREB and CBP (for 

citations see main text). Adapted from (Bading, 2013; Ebert and Greenberg, 2013). 
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2.2. Synaptic dysfunction as a converging point of psychiatric diseases 

The etiology of psychiatric disorders like schizophrenia, bipolar disorder (BPD) and ASD 

remains in large parts unknown although great progress has been made over the last 

decade in the field of brain imaging and risk factor identification (Ripke et al., 2013; Sarkar et 

al., 2015). In addition, neurons established from induced pluripotent stem cells (iPSC) 

represent a new source to explore molecular and cellular processes that might be altered in 

patients (Haggarty et al., 2016). A substantial body of evidence from various methodologies 

suggests that synaptic dysfunction and calcium-signaling play a central role in multiple 

psychiatric diseases (West and Greenberg, 2011). The following sections review findings at 

different levels starting with alterations in neuronal circuit function and ending with the 

multitude of genetic mutations accounting for disease susceptibility. 

 

2.2.1. Evidence at the circuit level 

Studies that aimed to decode the structural and functional connectivity of the brain using 

imaging (functional MRI) and electrophysiological (EEG/MEG) techniques suggest that the 

brain connectome has small-world topology (Uhlhaas and Singer, 2012). This implicates that 

neuronal micro-networks in spatially distant brain areas communicate via few highly 

connected hubs (Bullmore and Sporns, 2009). Communication between prefrontal cortex 

and hippocampus, for instance, is thought to be required for information processing and 

long-term storage (Brincat and Miller, 2015; Igarashi, 2015) Such higher brain functions are 

dependent on various kinds of oscillatory activity of neuronal groups and their 

synchronization over short and long distances (Varela et al., 2001). While long-range 

communication rather involves theta (4-7 Hz), alpha (8-12 Hz), and beta (13-25 Hz) 

oscillations, local oscillatory activities tend to be at higher gamma-band frequencies (25-200 

Hz) (von Stein and Sarnthein, 2000). Electrophysiological studies with schizophrenia patients 

have revealed reduced cortical gamma-oscillations during cognitive tasks like working 

memory (Haenschel et al., 2009) (Figure 2). In addition, altered theta- and alpha-oscillations 

have been recorded during sensory-gating in patients with schizophrenia (Hong et al., 2010). 

Oscillatory activity is the result of a precisely tuned interplay between groups of excitatory 

neurons and inhibitory interneurons within neuronal circuits (Wang and Buzsáki, 1996). In 

the cerebral cortex such circuits are formed by excitatory glutamatergic pyramidal cells and 

inhibitory GABAergic interneurons (Whittington et al., 1995). Those inhibitory neurons, in 

particular fast-spiking parvalbumin (PV) positive interneurons, are responsible for the fine-

tuning of gamma-frequency oscillations during cognitive tasks (Bartos et al., 2007). The 

physiological basis for impaired high-frequency gamma-oscillations in schizophrenia patients 

is therefore likely a dysbalance between excitation and inhibition (E/I) (Sohal et al., 2009). 
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This causality is supported by various studies in pharmacological rodent models for 

symptoms of schizophrenia. Administration of the NMDA receptor antagonists Ketamine or 

MK-801 into the prefrontal cortex of mice and rats leads to decreased evoked gamma-

oscillations and finally a schizophrenia-like phenotype (Homayoun and Moghaddam, 2007a; 

Saunders et al., 2012). Notably, it has been observed that a NMDA receptor hypofunction 

leads to reduced inhibitory control of glutamatergic output neurons, resulting in cortical 

excitation (Homayoun and Moghaddam, 2007b). Finally, optogenetic elevation of the E/I 

balance within the prelimbic/infralimbic cortex of mice caused impairments during learning 

and social behavior paradigms (Yizhar et al., 2011). Taken together, these findings indicate 

that the modulation of glutamatergic neurotransmission might be relevant for the treatment of 

schizophrenia and ASD. 

 

 

Figure 2: Alteration in cortical circuit function in schizophrenia. 

Schizophrenia patients are showing morphological and cellular hallmarks of disturbed 

neurodevelopment and circuit formation such as decreased dendritic arborization, reduced spine 

density, and decreased interneuron-marker (PV, GAD67) expression (for citations see main text). 

Adapted from (Marín, 2012; Pratt et al., 2012). 

2.2.2. Evidence at the cellular level 

At the cellular level multiple studies provide evidence for alterations in neuronal maturation 

and synaptic plasticity in schizophrenia patients (Penzes et al., 2011). Schizophrenia 

subjects show shorter and less branched dendrites (Black et al., 2004; Guidotti et al., 2000; 
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Selemon and Goldman-Rakic, 1999). Furthermore, a reduced spine density has been 

observed on pyramidal neurons of the primary auditory cortex and on CA3 dendrites of the 

hippocampus (Kolomeets et al., 2005; Steen et al., 2006; Sweet et al., 2009) (Figure 2). Until 

recently, psychiatric research was strongly limited by the unavailability of neuronal material 

from patients and restricted to postmortem tissue and pharmacologic as well as genetic 

mouse models. The seminal work by Takahashi and Yamanaka, who for the first time 

reprogramed human fibroblasts into iPSCs, paved the way towards patient-derived induced 

neurons (iNeurons) (Takahashi and Yamanaka, 2006). Such iNeurons harbor the complex 

genetic burden of the patient and thus represent a unique cellular model to study 

neuropathology. A study by Brennand and colleagues provided the first evidence that 

iNeurons established from schizophrenia patients reflect cellular correlates of the disease 

(Brennand et al., 2011). Those cultures showed reduced connectivity compared to iNeurons 

from healthy controls and decreased expression of synaptic proteins like PSD-95 and 

glutamate receptor subunits (GRIK1, GRIK4, GRM7, GRIN2A). In addition, dysregulated 

cAMP and WNT signaling activity was detected (Brennand et al., 2011). Moreover, altered 

energy metabolism has been reported for schizophrenia patient-derived neuronal progenitor 

cells and glutamatergic neurons derived from patients suffering from BPD (Mertens et al., 

2015; Paulsen et al., 2013). Cultures from patients with a DISC1 (Disrupted-in-Schizophrenia 

1) loss-of-function mutation showed neurodevelopmental abnormalities, synaptic deficits and 

gene expression changes (Wen et al., 2014). 

Taken together, current evidence from various sources of morphological studies highlight 

that schizophrenia, BPD, and ASD are most likely neurodevelopmental disorders with a 

significant synaptopathology. As a consequence, disturbed neuronal circuit function and 

unbalanced E/I are detected, which seem to be putative causes for symptoms like cognitive 

deficits, social isolation, and hallucination. A major challenge still is to decipher the link 

between genetic susceptibility for psychiatric disorders and the occurrence of symptoms as 

well as the response to medications. Psychiatric genomics made great progress in the 

identification of risk loci over the last years and current knowledge will be discussed in the 

following chapter. 

 

2.2.3. Evidence at the molecular level 

In schizophrenia and BPD both genetic and environmental factors have an impact on 

disease vulnerability. Family and twin studies have estimated a heritability of ~80% and 

~60% for schizophrenia and BPD, respectively (Song et al., 2015; Sullivan et al., 2003) 

(Figure 3). Attempts to link genetic variations to schizophrenia by classical human genetics 

delivered only few solid associations. Worth mentioning in that context are the 22q11.2 
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micro-deletion and the involvement of DISC1. The 22q11.2 micro-deletion, which in most of 

the cases occurs de novo, results in the disruption of 30-60 genes on chromosome 22 and 

leading to a high risk of 25% to develop schizophrenia (Bassett et al., 2008; Karayiorgou et 

al., 2010). DISC1 was linked to schizophrenia in a genetic study of a Scottish family that had 

an unusual number of cases with mental illness (St Clair et al., 1990). A chromosomal 

translocation was detected which disrupts the DISC1 gene. Great progress has been made 

in the field of psychiatric genetics since the advent of genome-wide-association-studies 

(GWAS) and in particular with the collaborative approach by the Psychiatric Genomics 

Consortium (PGC). This permitted screening of a sufficient number of patients and healthy 

controls to detect associations between common variants (frequency >1-5% in the 

population) and psychiatric disorders at genome-wide significance (Cross-Disorder Group of 

the Psychiatric Genomics Consortium et al., 2013; Ripke et al., 2013). It became apparent 

that the genetic background of schizophrenia is highly heterogeneous and polygenic 

(Schizophrenia Working Group of the Psychiatric Genomics Consortium, 2014). Thus, so far 

undetermined combinations of multiple genetic variants seem to build the genetic 

vulnerability, where each variant only has a small effect size (Franke et al., 2016). In the 

case of schizophrenia the latest release from the PGC describes 108 loci which reach 

genome-wide significance by comparing 36,989 cases with 113,075 controls (Schizophrenia 

Working Group of the Psychiatric Genomics Consortium, 2014) (Figure 3). Since most of 

those loci lie within regulatory and not exonic regions, usually the proximal genes are 

reasoned to be involved in disease susceptibility (Maurano et al., 2012). The GWAS data is 

an excellent basis for studies on disease etiology and drug discovery for psychiatric 

disorders and it is now required to analyze putative risk genes in greater depth. This might 

finally bridge the gap between genetic susceptibility and the clinical symptoms. As a first 

step, genes at or near associated loci for schizophrenia have been analyzed whether they 

converge into common biological processes. The most recent releases of the PGC report on 

an enrichment of genes affecting calcium signaling (e.g. CACNA1C, CACNAB2, CACNA1I), 

glutamatergic transmission and synaptic plasticity (e.g. GRM3, GRIN2A, SRR, GRIA1) and 

targets of MIR137 (e.g. TCF4) (Ripke et al., 2013; Schizophrenia Working Group of the 

Psychiatric Genomics Consortium, 2014). Furthermore, the major histocompatibility complex 

(MHC) locus, comprising over 200 genes with known functions in T-cell immune response, 

has been the first and since then the strongest genetic risk association for schizophrenia 

(Charles A Janeway et al., 2001; Stefansson et al., 2009). Overall, enhancers that are active 

in tissues with immune function harbored an enriched number of schizophrenia associations, 

however, it has long been elusive what kind of role these common variants play in the 

pathophysiology of schizophrenia (Ripke et al., 2013; Schizophrenia Working Group of the 

Psychiatric Genomics Consortium, 2014). Recently, complement component 4 (C4), a 

member of the classical component cascade, was identified as the main schizophrenia risk 
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gene at the MHC locus and a function in synapse elimination during postnatal development 

has been reported (Sekar et al., 2016). 

Similar to the blurred boundaries between symptomatic manifestations of various psychiatric 

disorders, genetic data is challenging the distinction as the genetic correlations between 

schizophrenia, BPD and major depressive disorder (MDD) is in the range of 0.4-0.6 (Maier et 

al., 2015). Besides common variants, rare copy number variations (CNVs), which are less 

frequent but have higher penetrance, seem to play an important role in disease etiology for 

schizophrenia and also for ASD (Figure 3). Such structural variants (SV), including 

microdeletions and microduplications of more than 500 kilobases, affect the expression of 

dozens of genes (Levinson et al., 2011; Vacic et al., 2011). Figure 3 summarizes the current 

data for heritability, GWAS loci, and structural variants for four major mental illnesses 

(Geschwind and Flint, 2015). 

 

 

Figure 3: Summary of genetic associations for MDD, BPD, ASD, and SZD. 

Left, estimated heritability from twin and family studies. Errorbars (sem). MDD, major depressive 

disorder; BPD, bipolar disorder; ASD, autism spectrum disorder; SCZ, schizophrenia. Middle/right, 

the number of identified genome-wide significant loci and associated structural variants (SV). The 

number of analyzed patients within the largest study for a disorder is given on the y-axis. Adapted 

from (Geschwind and Flint, 2015). 

A systematic detection of rare variants (allele frequency <0.5-1%) within protein-coding 

regions by exome sequencing (exome-seq) is now possible, as costs for next-generation-

sequencing are falling. However, similar to GWAS, large sample numbers are inevitable to 

gain statistical power (Tennessen et al., 2012). Two recent large scale exome-seq projects 

have identified a significant enrichment of disruptive rare variants within sets of voltage-

gated calcium ion channel genes (e.g. CACNA1C, CACNA1B, CACNA1H), genes of the 

post-synaptic density (PSD), and genes of the ARC-complex and the NMDAR-complex (e.g. 

DLG1, DLG2, CaMK2A/2B, SLC25A3, ABLIM1, SYNGAP1) (Fromer et al., 2014; Purcell et 

al., 2014). In addition, target genes of the ASD-associated RNA-binding protein FMRP, 

which controls translation at the synapse, have been enriched significantly (Darnell et al., 

2011; Tang et al., 2015). The concept that many psychiatric disorders primarily represent 

synaptopathies is further supported by a thorough characterization of the human synapse 
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proteome. A mapping to known disease-associated mutations revealed that over 200 genes 

connected to the synapse cause changes in synapse physiology, and are related to over 130 

human brain diseases (Bayés et al., 2011). 

In conclusion, genetic studies on psychiatric disorders are revealing the highly complex 

polygenicity for disorders like schizophrenia and BPD. The genetic associations are enriched 

within synaptic genes, genes involved in calcium signaling and immune function and the 

overlap, both in terms of genetics as well as symptoms, is high for schizophrenia, BPD, and 

MDD. Hence, it is likely that assay development for research on neuronal function will have 

an impact on a broad range of CNS diseases in general, and neuropsychiatric disorders in 

particular. 

 

2.3. Inventory of the high-throughput toolbox in neuroscience 

Development of high-throughput methods for applications in neuroscience is generally 

lagging behind other biomedical research areas like oncology. This is not surprising as the 

cellular systems as well as the phenotypes of interest are highly specialized. Nonetheless, 

immense progress has been made to increase, for example, the throughput through 

advanced high-content assays, but pooled genetic assays are still absent from the high-

throughput toolbox in neuroscience. 

 

2.3.1. Cellular systems 

Neurons are highly specialized cells which is reflected by the complexity of regulatory 

physiological processes and how frequent perturbations lead to pathological states. Given its 

unique repertoire of cellular functions it is inevitable that the regulation of neuronal excitation 

and synapse-to-nucleus signaling needs to be studied in a differentiated and mature neuron 

population. This has also been only recently acknowledged by the pharmaceutical industry 

after suffering a series of failures during clinical trials for drugs that originated from classical 

biochemical target-based drug discovery projects (Scannell and Bosley, 2016). In this 

scenario, the predictive validity of an in vitro assay, which is the ability to yield good answers 

and good treatments based on, for example, profiles of cellular activities, is strongly 

dependent on the biological relevance of the cell culture system (Vincent et al., 2015). 

Primary neurons from mice and rats are for a long time a well-established cellular system to 

study neuronal differentiation and signaling in the dish. Neuronal maturation in this system is 

relatively fast, resulting in an extensive network with functional synaptic connections already 

at day-in-vitro (DIV) 12-15 (Figure 4) (Baj et al., 2014). At that time, spontaneous network 
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activity can be recorded and synaptic activity can be strongly induced by blocking the 

inhibitory input of the network using the GABAA-receptor antagonist bicuculline (BIC). In 

addition, for functional genomics studies, it is of advantage that sufficient cell numbers of 

high purity can be obtained from embryonic animals. 

 

 

 

Figure 4: Maturation stages of murine primary neurons. 

Maturation stages of primary neuron from DIV 1 till 15. Staging was done using murine primary 

hippocampal neurons, but is most likely similar for cortical neuron cultures. Within two weeks 

mature neuronal cultures are generated. Adapted from (Baj et al., 2014). 

An alternative and highly valued source for neuronal cell culture assays are iNeurons, which 

have been differentiated from iPSCs of a given human donor (Dimos et al., 2008). This 

technique has attracted much attention as it allows studying cell biology of a neuron that 

harbors the genetic information of the donor (Mertens et al., 2016). Thus, it represents a 

unique source for cells with the highly complex set of genetic variations present in a 

psychiatric patient (Brennand et al., 2011; Habela et al., 2016; Haggarty et al., 2016; Krey et 

al., 2013; Topol et al., 2015; Wen et al., 2014). However, this method is relatively new and a 

variety of iNeuron-differentiation protocols are available which strongly differ in cell yield, 

purity, and maturation state of the culture (Mertens et al., 2016). In general, human-derived 

iNeurons tend to differentiate and mature much slower compared to rodent primary neurons 

and a decent extent of functionally mature synapses is usually only achieved by co-culture 

with astrocytes over several weeks (Nicholas et al., 2013). Nevertheless, differentiation 

protocols are improving rapidly and as soon as yield, purity, and the number of functional 
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synapses have increased, iNeurons will likely become the cell-type of choice for functional 

genomics screens in neuropsychiatric research. 

 

2.3.2. High-content screens 

High-content assays are one of the most advanced high-throughput assays in general and in 

particular in neuroscience. Their power lies in the multi-parametric analysis of cellular 

phenotypes using automated microscopy (Boutros et al., 2015). However, assay design is 

not trivial as the molecular correlates of a given phenotype need to be stained with high 

specificity or transgenic labels must be available in order to enable robust segmentation of 

cellular features by automated image analysis. The most frequently used marker is neuronal 

viability and thus neuroprotection has been the main focus so far (Anderl et al., 2009; 

Schulte et al., 2011). More sophisticated parameters are neurite length and arborization as 

well as changes in synapse number (Harrill et al., 2011; Ofengeim et al., 2012; Radio, 2012). 

In the last years significant progress has been made in order to streamline and facilitate the 

image acquisition (Caicedo et al., 2016). This has led to a growing number of users and the 

pharmaceutical industry is using high-content assays in phenotypic drug discovery for CNS 

diseases (Haggarty et al., 2016; Hunsberger et al., 2015). While high-content compound 

screens are feasible with neuronal cultures, genetic interference screens are more 

challenging (Harrill et al., 2011; Ofengeim et al., 2012). A reason is the poor transfectability 

of primary neurons, which as a consequence implies the use of viral transduction. However, 

the generation of large-scale arrayed viral libraries for the expression of thousands of 

shRNAs (short hairpin RNA) or cDNAs is extremely expensive and laborious and usually not 

feasible for a single academic group. To my knowledge, only one single high-content RNAi 

has been published until now with primary neurons (Nieland et al., 2014). This screen used a 

relatively small scale arrayed lentiviral RNAi library of 607 shRNA vectors to screen for 

regulators of synaptogenesis. High-content assays and pooled genetic screens can be 

considered somewhat as complementary. A high-content screen using the top hits from a 

pooled genetic screen may, for example, represent a very powerful orthogonal secondary 

validation tool. 

 

2.4. Functional genomics 

Functional genomics is a research field that is investigating the impact of the genotype on 

molecular or cellular phenotypes at genome-scale. This involves for example the study of 

dynamic changes in the transcriptome, the proteome, and the epigenome as well as large-

scale loss- and gain-of-function studies. In recent years functional genomics approaches in 
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neuroscience have delivered a wealth of data about the neuronal activity-dependent 

transcriptome and epigenome, as well as the cellular and synaptic proteome (Bayés et al., 

2011; Kim et al., 2010; Malik et al., 2014; Sharma et al., 2015; Zhang et al., 2009). 

Systematic large-scale approaches to study gene function during neuronal activity are, 

however, missing. 

 

2.4.1. Genetic perturbation by RNA interference and CRISPR-Cas9 

Understanding gene function is one major quest in molecular biology. Early after the 

discovery of the post-transcriptional mRNA abundance control mechanism called RNAi in the 

nematode Caenorhabditis elegans in 1998 and later in mammals, RNAi became the prime 

method for loss-of-function studies (Jinek and Doudna, 2009; Winter et al., 2009)(Fire et al., 

1998). The endogenous RNAi pathway takes place within the nucleus and the cytoplasm 

and involves two major cleavage steps (illustrated in figure 5). miRNAs are typically 

transcribed as gene-clusters by RNA polymerase II (Borchert et al., 2006; Lee et al., 2004). 

The generated transcripts, termed primary miRNA (pri-miRNA), are capped, polyadenylated, 

and usually comprise several hundred nucleotides in length. Pri-mRNAs fold into 

characteristic hairpin structures containing imperfectly base-paired stems (Carthew and 

Sontheimer, 2009). The fold of the transcript is important for its proper processing. The first 

of the two major maturation steps occurs within the nucleus where the stem-loop (hairpin) of 

the pri-miRNA is cleaved-off by a microprocessor complex containing the RNase III enzyme 

Drosha (Lee et al., 2003). This cleavage occurs co-transcriptionally and generates the 

miRNA precursor (pre-miRNA) which is ~70 nt in length and consists of a stem which 

harbors the crucial ~22 nt miRNA sequence and a terminal loop. The pre-miRNA is exported 

into the cytoplasm by the transport factor Exportin-5 in complex with Ran-GTP (Yi et al., 

2003; Zeng and Cullen, 2004). Thus, the second major processing step occurs in the 

cytoplasm and involves the multi-protein RISC loading complex (RLC) (Gregory et al., 2005). 

The RLC consists of the RNase III Dicer, the double-stranded RNA-binding proteins TRBP 

(Tar RNA binding protein). PACT (protein activator of PKR), and the core component 

Argonaute-2 (Ago2). The terminal loop of the pre-miRNA is cleaved-off by Dicer, creating the 

mature ~22 nt long miRNA duplex (Chendrimada et al., 2005). This double-stranded RNA 

consists of the guide strand and the passenger strand. While the guide strand contains the 

sequence complementarity to the mRNA target and thus has to be used for gene regulation, 

the passenger strand must be degraded. After cleavage of the pre-miRNA, Dicer and its 

interactors TRBP and PACT dissociate from the miRNA duplex. The active RNA-induced 

silencing complex (RISC) is formed by an asymmetric guide strand selection by Ago2 (Frank 

et al., 2010; Khvorova et al., 2003; Schwarz et al., 2003). The active RISC is then guided to 

its mRNA target mainly by position 2 to 8 of the guide strand which is defined as the seed 
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region of the miRNA (Rajewsky, 2006). The extent of complementarity of miRNA and mRNA 

are thought to be a key determinant of the regulatory mechanism. While a perfect match 

induces Ago2-mediated cleavage of the mRNA, central mismatches rather promote 

repression of mRNA translation (Filipowicz et al., 2008).  

The usage of RNAi for loss-of-function studies is easy and fast. Usually, short double-

stranded RNA molecules are transfected into cells where they are processed into small 

interfering RNAs (siRNAs) of about 22 nucleotides in length. These siRNAs can silence gene 

expression in a sequence specific manner. A second strategy is based on the expression of 

shRNAs, an endogenous-like early intermediate RNA of the RNAi pathway. These shRNAs 

can be expressed from RNA polymerase II promoters or RNA polymerase III promoters (e.g. 

human U6 promoter) (Li et al., 2007; Mohr et al., 2014). This feature was a critical milestone 

for the development of pooled RNAi screens, as it allows viral delivery and stable shRNA 

expression over long cultivation periods. The principle of pooled genetic screens will be 

discussed in chapter 2.4.3. 
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Figure 5: Gene silencing by RNAi 

Exogenous RNAi reagents like shRNAs and siRNAs can enter the endogenous RNAi pathway at 

different steps. shRNAs are expressed from plasmids or viral genomes and mimic precursor 

miRNAs (pre-miRNAs). Therefore, they need to be processed by the RNase III Dicer (not shown) 

before the guide RNA (in red) gets incorporated into the RNA-induced silencing complex (RISC). 

siRNAs are RNA duplexes which can be delivered by transfection. They directly enter RISC, but 

only allow transient gene silencing. In case of perfect complementarity of the guide strand to the 

target mRNA, the target transcript is cleaved. Otherwise, translational repression is triggered by a 

partial complementarity (not shown). Adapted from (Mohr et al., 2014). 

In 2011, a groundbreaking publication by Charpentier and colleagues described how the 

prokaryote Streptococcus pyogenes uses clustered regularly interspaced short palindromic 

repeats (CRISPR) as a defense mechanism against invading prophage DNA (Deltcheva et 

al., 2011). This mechanism has evolved into a new tool for genome editing and gene 

expression regulation (Jinek et al., 2013). The CRISPR locus of Streptococcus pyogenes 

is transcribed into a precursor CRISPR RNA (pre-crRNA), which is processed by RNase III 

enzymes into short CRISPR RNAs (crRNA). A second small RNA, called trans-activating 

crRNA (tracrRNA), brings the crRNA and the Cas endonuclease together to form a trimeric 

complex. Guided by the crRNA towards invading prophage-DNA, Cas protein cleaves the 

foreign DNA and thereby protects the bacterium (Deltcheva et al., 2011). Somewhat 
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afterwards, additional work figured out that Cas9 is the only Cas protein required for this 

mechanism and that the tracrRNA and the crRNA can be fused into a single short guide 

RNA (sgRNA) (Jinek et al., 2012). The sgRNA harbors a 20 nucleotide long sequence 

complementary to the target DNA and a hairpin-forming region for Cas9 binding. Cas9 itself 

contains two critical endonuclease domains (HNH and RuvC-like), which cleave both strands 

of the target DNA (Jinek et al., 2012). Another important feature of the system is the 

protospacer-adjacent-motif (PAM). The PAM represents just a few bases adjacent to the 

target sequence and is recognized by Cas9 directly. Studies on other prokaryotes revealed 

that CRISPR-Cas is a conserved bacterial defense system and each Cas9 orthologue has its 

own PAM sequence specificity (Leenay et al., 2016). Thus, on-target specificity results 

from the interplay between sgRNA-target complementarity and the PAM sequence. The in-

depth knowledge about sgRNA and Cas9 function made the CRISPR-Cas9 system the next-

generation tool for genome engineering. To date a variety of applications using CRISPR-

Cas9 exist (Hsu et al., 2014). The most classical is to induce a double-strand break at the 

gene-of-interest in order to trigger non-homologous end-joining which can lead to a gene 

knock-out or to create a knock-in by homologous recombination of a donor DNA fragment 

(Figure 6A) (Jinek et al., 2013). Characterization of the endonuclease domains of Cas9 led 

to Cas9 mutants (D10A, H840A) without endonuclease activity, so called dead-Cas9 

(dCas9) (Qi et al., 2013). The dCas9 variant can be used to shuttle additional effector 

domains to a specific genomic locus (Figure 6B). By fusing transcriptional activators (e.g. 

VP64) or repressors (e.g. KRAB) to Cas9 and targeting the fusions close to the 

transcriptional-start-site it is possible to regulate the expression of virtually any gene-of-

interest. These applications are also referred to as CRISPR activation (CRISPRa) and 

CRISPR interference (CRISPRi) (Gilbert et al., 2014; Larson et al., 2013). Recent 

advancements allow enhancing the regulatory effect through targeting multiple effector 

domains to a single locus (Konermann et al., 2015; Tanenbaum et al., 2014). One 

interesting tool is the synergistic-activation-mediator (SAM) system , that uses engineered 

sgRNAs (sgRNA2.0) containing two additional hairpin-structures (MS2 stem-loops), which 

act as RNA aptamers and bind the corresponding RNA-binding domain (MCP domain) 

(Konermann et al., 2015). Multiple effector domains can be fused to the RNA-binding domain 

for strong regulatory effects (Figure 6C).  
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Figure 6: Overview of CRISPR-Cas9 applications 

A. Ternary complex of Cas9 protein, sgRNA and target DNA including the PAM sequence. Cas9 

cleaves the target DNA at both strands (arrowheads). The cell will repair this double-strand break 

either by non-homologous end-joining or if a donor DNA fragment is present by homologous 

recombination. B. Fusion of an effector domain to Cas9 without endonuclease activity (dCas9) 

allows visualization (e.g. GFP fusion) or gene expression regulation (e.g. VP64 or KRAB fusion) at 

a specific genomic site. C. The SAM system recruits effector domains via sgRNAs containing RNA 

aptamers (e.g. MS2 stem-loop) that recruit proteins containing specific RNA-binding domains (e.g. 

MCP). Modified from (Shalem et al., 2015). 

2.4.2. Advances through molecular barcoding and its application 

The ability of viral delivery and long-term expression of shRNAs was not the only important 

milestone towards pooled genetic screenings. A second major advancement was the 

development of oligonucleotide arrays and later the progress in next-generation sequencing 

(NGS). Oligonucleotide arrays are glass slides onto which thousands of defined single-

stranded DNA oligonucleotides are printed using a high-definition inkjet DNA synthesis 

procedure. Prior to next-generation-sequencing, such arrays have been used as microarrays 

to study differential gene expression by hybridization of fluorescently labeled cDNA to the 

arrayed immobilized oligonucleotides (Schena et al., 1995). Notably, it is also possible to 

release the synthesized oligonucleotides from the glass slide, thereby creating an enormous 

pool of synthetic DNA bricks for gene synthesis or large-scale shRNA/sgRNA and molecular 

barcode libraries (Bassik et al., 2009; Collins et al., 2009; Tian et al., 2009). Currently, all 

academic and commercial pooled shRNA/sgRNA libraries have been created by parallelized 

on-chip synthesis of custom designed shRNA or sgRNA sequences. 
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Molecular barcoding describes a methodology which uses unique synthetic DNA sequence 

tags, coupled to a second functional genetic element, for an unambiguous parallelized 

readout. Already over 20 years ago this method was used to analyze bacterial virulence 

genes in a parallelized manner by insertional mutagenesis of transposons carrying a DNA 

barcode (Hensel et al., 1995). Only slightly later, a similar approach has proven to be useful 

for the generation of a library of yeast gene-deletion mutants covering 96 % of all annotated 

Saccharomyces cerevisiae open reading frames. Each deleted gene was replaced by a DNA 

barcode sequence to identify individually deleted strains within a pooled quantitative survival 

assay (Giaever et al., 1999, 2002; Winzeler et al., 1999). Years later, the concept of a pooled 

loss-of-function assay was brought into mammalian cells by using pooled lentiviral shRNA 

libraries (Ngo et al., 2006; Paddison et al., 2004; Schlabach et al., 2008; Silva et al., 2008). 

Here, either a DNA barcode linked to the shRNA or one half of the shRNA hairpin was read 

in order to deconvolute the pooled assay. In the early days this was done using DNA 

microarrays and later by next-generation sequencing.  

A second application for molecular barcodes are multiplexed cis-regulatory reporter assays. 

In this approach, RNA barcode reporters, which are under control of regulatory promoter 

elements (e.g. enhancers, transcription-factor binding sites, minimal promoters), replace 

classical protein reporters like GFP and luciferase. This enables tremendous multiplexing 

and principally activity measurements of all annotated cis-regulatory elements in a single 

experiment. Barcoded reporters have been first used to profile pathway activities 

downstream of ERBB signaling, an approach named EXTassay (Botvinnik et al., 2010). 

Later by the use of on-chip oligonucleotide synthesis of thousands of enhancer fragments, it 

was used as massively-parallel reporter assays (MPRAs) to dissect the activities of 

enhancers (Melnikov et al., 2012). During this project, a pooled cis-regulatory reporter gene 

assay has been used to compare the response of multiple barcoded sensors to synaptic 

activity. 

 

2.4.3. Pooled RNAi/CRISPR-Cas9 screenings 

Pooled genetic screens were invented to circumvent the highly laborious, time-consuming 

and expensive working steps associated with arrayed screens. As pointed before, pooled 

screens allow rapid generation of viral shRNA libraries for loss-of-function studies at 

genome-wide scale. Additionally, well-to-well variability is eliminated since all knockdowns 

are examined under the very same experimental conditions. 

To date, three different screening paradigms exist. These have been very much influenced 

by the needs in cancer research, as first screens were performed in this field and still the 

majority of published screens are related to cancer (Ngo et al., 2006; Paddison et al., 2004; 
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Schlabach et al., 2008; Silva et al., 2008). The three screening paradigms are hereafter 

called ‘rescue screen’, ‘drop-out screen’, and ‘FACS-based screen’ and the key steps are 

illustrated in figure 7 (Shalem et al., 2015). A rescue screen aims to discover genes which 

confer resistance to a cytotoxic treatment. Hence, those genes are potentially required for 

sensitivity to the treatment. In drug discovery, this assay is frequently used to identify the 

target or mode-of-action (MoA) of a compound (Deans et al., 2016; Fennell et al., 2014; 

Wagner and Schreiber, 2016). The second paradigm, a drop-out screen, is performed to 

identify essential genes for cell survival and proliferation. As the name suggests, its goal is to 

remove those cells from the test population where the knockdown impairs viability (Shalem 

et al., 2015). This usually requires long-time culture periods in order to gain sensitivity. An 

interesting and often used subtype of a drop-out screen is a synthetic-lethal screen, a 

method aiming to unravel combinatorial effects of the knockdown and a second genetic or 

pharmacological perturbation, for example an oncogenic mutation or a compound (Luo et al., 

2009). FACS-based genetic interference screens represent a class that differs from the first 

two paradigms by its ability to study phenotypes other than cell viability or proliferation. Here, 

the cell pool is treated with a stimulus and the cellular response might be captured by an 

endogenous marker or a fluorescent reporter. The cell pool is then sorted into bins of strong- 

and weak-responding cells. If a knockdown is interfering with signal propagation of the 

stimulus to the downstream marker or reporter, the corresponding cells are expected to be 

enriched in the weak-responding cell population (Parnas et al., 2015). Conversely, cells 

where the knockdown results for example in an enhanced response to the stimulus should 

be rather enriched in the strong-responding cell pool. This paradigm has been used recently 

to dissect the response of dendritic cells to bacterial LPS (lipopolysaccharide) at 

unprecedented accuracy (Parnas et al., 2015). In all three paradigms, the genomic DNA of 

the cell pools is extracted and the shRNA/sgRNA abundances are determined by next-

generation sequencing. In rescue- and drop-out screens, the endpoint sample is usually 

compared to an initial reference sample for the identification of hits. In FACS-based screens, 

the strong- and weak-responding cell pools are compared directly for hit nomination. 

Overall, pooled genetic interference screens have demonstrated its value for the discovery of 

new putative drug targets, MoA identification and pathway deconvolution. Recently, the 

methodology made an important move from the dominating cancer field to primary cells 

(Parnas et al., 2015). However, to date, no pooled screening strategy has been described for 

post-mitotic primary neurons to identify regulators of neuronal plasticity. 
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Figure 7: Current paradigms for pooled genetic screens. 

Three general paradigms for pooled genetic screens have been described: (i) rescue- , (ii) drop-

out-, and (iii) FACS-based screens. All methods share steps of infecting cell pools with a lentiviral 

shRNA/sgRNA library (step 1) and selecting for positively transduced cells (step 2). The cell pool 

after selection represents the reference sample (step 3). For a rescue screen, cells are treated with 

a toxic agent and only cells with a shRNA/sgRNA-mediated resistance remain in the cell pool (step 

4, left). A drop-out screen can identify essential genes as the cells with the corresponding 

perturbation are lost over time from the population (step 4, middle). In a FACS-based screen, cells 

are stimulated and sorted based on their response (step4, right). Finally, relative shRNA/sgRNA 

abundances will be determined by NGS. For rescue- and drop-out screens, endpoint samples are 

compared to reference samples, and for FACS-based screens, the strongly responding candidates 

are compared to the weakly responding ones (for citations see main text). 
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2.5. Objectives  

Pooled RNAi screens represent a powerful tool to investigate gene function at the systems 

level. Its full potential to dissect any relationship between genotype and phenotype has so far 

only partially been addressed. The lack of innovative strategies to study phenotypes other 

than cell survival or proliferation precluded the development of resourceful experimental 

approaches for a long time. The aim of this thesis is to break this deadlock by combining the 

throughput of a pooled RNAi screen with the sensitivity of a genetic sensor that regulates the 

defined expression of molecular RNA barcode reporters. The hypothesis is that this 

approach could broaden the application spectrum of pooled genetic screens in terms of cell-

types and the cellular phenotype of interest in general. For a proof-of-concept study primary 

neurons were selected as a challenging and meaningful cellular system that is of particular 

relevance for plasticity-related as well as neurodegenerative disorders. Moreover, primary 

cultured neurons are, because of technical reasons, a mainly untouched landscape for high-

throughput assays in the field of drug discovery. Genome-wide association studies in 

psychiatric disorders, like schizophrenia, BPD, and ASD, have uncovered a plethora of risk 

genes that mainly converge into pathways involved in synaptic plasticity and calcium-

mediated synapse-to-nucleus signaling. Current neuropharmacology is, however, only 

focusing on a few targets, for example the dopamine 2 receptor in the case of anti-

psychotics. Hence, it was the aim to develop an assay that can dissect the networks 

underlying neuronal excitation-transcription coupling, which in the future hopefully brings 

new potential drug targets into focus. In addition, psychiatric drug discovery is increasingly 

focusing on hit identification by phenotypic compound screens. Those assays might have a 

better predictive validity than classical biochemical assays, but the protein target of a drug is 

often unknown. Thus, there is a strong need for assays that allow target identification and 

pathway activity deconvolution. Pooled RNAi screen are already used for this purpose in 

different disease areas and the sensor-coupled pooled RNAi screen might enable target 

identification of drugs for CNS diseases. 

At the time when the project was launched RNAi was the well characterized gold-standard 

technique for loss-of-function studies in cell culture systems. Recent studies of CRISPR-

Cas9-mediated genetic perturbation argue to integrate this tool into the barcoded sensor 

assay introduced here. A process that has been initiated in this thesis. 
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3. Materials 

3.1. Equipment 

Arium 611 Water Purification System 

Picodrop Spectrophotometer 

Vortex Genie 2  

Mini Centrifuge Model sprout  

Heraeus Centrifuge Fresco 17  

Heraeus Megafuge 16  

Thermomixer BioShake iQ  

Thermocycler T3000  

Thermocycler TGradient  

Rotor-Gene Q cycler 

Electrophoresis power supply  

UV Gel documentation system  

Genepulser Xcell Elektroporationsgerät  

Ultra‐low temperature lab freezer U725  

Sartorius 

Picodrop Limited 

Bender + Hobein 

Biozym 

Thermo Fisher Scientific 

Thermo Fisher Scientific 

Biometra  

Biometra  

Biometra  

Qiagen 

Pharmacia LKB 

INTAS 

BioRad 

New Brunswick Scientific 

 

Cell culture 

Hera Cell incubator  

Hera Safe Workbench  

Nalgene freezing Container “Mr. Frosty” 

Microscope Axiovert 25 

Microscope Observer Z1 

 

 

Thermo Fisher Scientific 

Thermo Fisher Scientific 

Sigma‐Aldrich 

Zeiss 

Zeiss 

 

Luciferase measurements 

Tumbling Table WT17 

Microplate Reader Mithras LB 940 

32‐Channel Luminometer LumiCycle 32 

 

 

Biometra 

Berthold Technologies 

ActiMetrics 

 

Next-generation-sequencing 

Ion OneTouch2 System 

Ion Personal Genome Machine (PGM) 

Ion Proton 

Ion Torrent Server 

Ion Torrent Server 

Qubit 2.0 Fluorometer 

UV Airclean Workstation 

 

 

Ion Torrent 

Ion Torrent 

Ion Torrent 

Ion Torrent 

Ion Torrent 

Invitrogen 

LTF Labortechnik 
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Software 

Microsoft Windows Professional 7 

Microsoft Office 2007 

Acrobat Reader 9.5 

Illustrator CS5 

Photoshop CS5  

Lasergene 8.0  

MicroWin 2000 

Fiji ImageJ 

R Version 3.2.3 

R‐studio Version 0.99.484 

Tinn‐R Editor Version 2.3.7.1 

Lumicycle Version 1.4 

Zotero 

 

 

Microsoft 

Microsoft 

Adobe 

Adobe 

Adobe 

DNA Star Inc. 

Berthold Technologies 

Freeware 

Freeware 

Freeware 

Freeware 

ActiMetrics 

https://www.zotero.org 

 

3.2. Chemicals and consumables 

3.2.1. Drugs used in experiments 

4-aminopyridine (4-AP) 

D-APV 

(-)-Bicuculline methiodide (BIC) 

Glycine 

Phorbol-12-myristat-13-acetat (PMA) 

Rotenone 

Strychnine hydrochloride 

Tetrodotoxin (TTX) 

Abcam (ab120122) 

Tocris (0106) 

Abcam (ab120108) 

Abcam (ab120050) 

 

Sigma (R8875) 

Abcam (ab120416) 

Abcam (ab120055) 

 

3.2.2. Antibodies and cell stains 

Rat anti-HA 

Mouse anti-Flag-M2 

Rabbit anti-synaptophysin 

Mouse anti-Map2 

Goat Alexa488 anti-mouse 

Goat Alexa647 anti-rabbit 

Goat Cy3 anti-rat 

HRP-goat-a-mouse monoclonal IgG (H+L) 

Roche (11867423) 

Sigma (3165) 

Abcam (ab52636) 

Sigma (M1406) 

Dianova (115-545-006) 

Life Technologies (A21245) 

Dianova 
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HRP-goat-a-rat monoclonal IgG (H+L) 

Prolong Gold Antifade reagent  

Hoechst 33342 

Jackson Immuno Research Labs 

Jackson Immuno Research Labs 

Thermo Fisher Scientific 

Life Technologies 

 

3.2.3. Commercial kits 

Direct-zol RNA MiniPrep Kit 

Qiagen AllPrep DNA/RNA Mini Kit 

NucleoSpin Plasmid Quick Pure 

NucleoBond PC100 Midiprep 

NucleoSpin Gel and PCR Clean‐up 

Zymo Reseach 

Qiagen 

Macherey‐Nagel 

Macherey‐Nagel 

Macherey‐Nagel 

 

3.2.4. NGS Reagents & Chips 

Qubit dsDNA HS Assay Kit 

Ion PGM Template OT2 200 Kit 

Ion PGM Sequencing 200 Kit v2 

Ion PGM Hi‐Q™ OT2 Kit 

Ion PGM Hi‐Q™ Sequencing Kit 

Ion PI™ Template OT2 200 Kit v3 

Ion PI™ Sequencing 200 Kit v3 

Ion Sphere Quality Control Kit 

Dynabeads MyOne Streptavidin C1 

DNA LoBind Tubes (1.5 ml) 

Ion 318 Chip Kit v2  

Ion PI™ Chip Kit v2 

Invitrogen 

Ion Torrent 

Ion Torrent 

Ion Torrent 

Ion Torrent 

Ion Torrent 

Ion Torrent 

Ion Torrent 

Invitrogen 

Eppendorf 

Ion Torrent 

Ion Torrent 

 

3.2.5. Enzymes 

HotStarTaq Plus DNA Polymerase 

PWO Polymerase 

BP Clonase II 

LR Clonase II 

Qiagen 

Roche 

Thermo Fisher Scientific 

Thermo Fisher Scientific 
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LR Clonase II Plus 

SuperScript III Reverse Transcriptase 

TURBO DNase 

Restriction enzymes 

2x RotorGene SYBRgreen PCR Master Mix 

NEBNext High-Fidelity 2x PCR Master Mix 

T4 DNA ligase 

Benzonase 

Proteinase K 

Thermo Fisher Scientific 

Thermo Fisher Scientific 

Thermo Fisher Scientific 

New England Biolabs 

Qiagen 

NEB 

NEB 

Sigma 

Roth 

 

3.3. Eukaryotic cell lines 

PC12 tetOFF 

Rat adrenal pheochomocytoma cell line expressing tetracycline regulated transactivator tTA 

(Clonetech)  

HEK293wt 

Human Embryonic Kidney immortalized cell line (ATTC) 

HEK293FT 

Human Embryonic Kidney immortalized cell line (ATTC) 

SH-SY5Y 

Human neuroblastoma cell line 

N2a 

Murine neuroblastoma cell line 

 

3.4. Bacterial strains 

Escherichia coli transformation competent cells: 

MegaX DH10B electro‐competent cells 

One Shot Mach1 chemical‐competent cells 

One Shot ccdB survival 2 T1R chemical‐competent cells 

Mach1 chemical‐competent cells 

 

Thermo Fisher Scientific 

Thermo Fisher Scientific 

Thermo Fisher Scientific 

Self-made 
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3.5. Buffers and solutions 

AAV cell lysis buffer 

150 mM NaCl 

50 mM  Tris-HCl (ph 8.5)  

 

ICC blocking solution 

2 g BSA in 80 ml dH2O, 2 ml FBS, 2 ml fishgelatine, 10 ml 10x PBS  

add up to 100 ml with dH2O 

 

3.5.1. Solutions for western blotting 

Triton-X Lysis buffer 

50 mM  Tris pH7.5 

150 mM NaCl 

1%  Triton-X100 

1 mM   EGTA 

Protease inhibitors: Complete tablet (Roche), 10 mM NaF, 1 mM ZnCl2, 1 mM Na3VO4, 4.5 

mM Na4P2O7 

 

3.5.2. Solutions for luciferase assays 

Firefly luciferase assay buffer 

20 mM  Tricine 

1.07 mM (MgCO3)4*Mg(OH)2*5H2O 

2.67 mM MgSO4 

0.1 mM EDTA 

33.3 mM DTT 
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270 µM Coenzyme A 

470 µM D‐Luciferin, free base 

530 µM ATP 

For dissolving of magnesium carbonate titrate the pH with HCl until the solution is clear. 

Then adjust the pH to 7.8 with NaOH. Add luciferin and ATP at last and control the pH. The 

buffer is stored at ‐20°C in the dark and thawed at room temperature. 

 

Renilla luciferase assay buffer 

Prepare KxPO4 (pH 5.1) solution: adjust the pH of 1 M KH2PO4 solution to 5.1 using    2 M 

KOH. 

1.1 M  NaCl 

2.2 mM Na2‐EDTA 

0.22 M  KxPO4 (pH 5.1) 

0.44 mg/ml BSA 

1.3 mM NaN3 

Adjust the pH to 5.0 with KOH. Then add 1.43 mM Coelenterazine (dissolved in100% EtOH). 

The buffer is stored at ‐20°C in the dark and thawed at room temperature. 

 

3.5.3. Solutions and media for cell culture 

NeuroCulture medium 

Neurobasal medium, 2% B27, 1% GlutaMax 

HEK293/N2a medium 

DMEM(4.5 g/l glucose), 10% FBS, 1% GlutaMax (maintenance medium) 

DMEM(4.5 g/l glucose), 1% FBS, 1% GlutaMax (starvation medium) 

PC12 medium 

DMEM(1 g/l glucose), 10% FBS, 5% HS, 1% GlutaMax (maintenance medium) 
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DMEM(1 g/l glucose), 1% FBS, 1% GlutaMax (starvation medium) 

SH-SY5Y medium 

50% DMEM(4.5 g/l glucose), 50% F12, 10% FBS, 1% GlutaMax (maintenance medium) 

50% DMEM(4.5 g/l glucose), 50% F12, 1% FBS, 1% GlutaMax (starvation medium) 

 

3.6. Oligonucleotide 

Oligonucleotides were made by the AGCTlab of the MPI of Experimental Medicine in 

Göttingen or purchased from Eurofins in Munich. 

cDNA synthesis: 

Oligo(dT) 

Random nonamer (N9) 

 

qRT-PCR: 

Tcf4 fwd (Mm) 

Tcf4 rev (Mm) 

Arc fwd (Mm) 

Arc rev (Mm) 

Rpl13a fwd (Mm) 

Rpl13a rev (Mm) 

WPRE fwd 

WPRE rev 

hU6p fwd 

hU6p rev 

 

 

IonTorrent sequencing: 

qDec1.2 fwd 

qDec2.2. rev 

Dec fwd 

Dec rev 

PGM_A_IXcodeX_AFA_s 

 

 

 

 

PHO-TTTTTTTTTTTTTTTTTTTT 

NNNNNNNNN 

 

 

CTGGAGCAGCAAGTTCGAG 

TTCTCTTCCTCCCTTCTTTTCA 

AGGGGCTGAGTCCTCACA 

GACTTCTCAGCAGCCTTGAGAC 

ATCCCTCCACCCTATGACAA 

GCCCCAGGTAAGCAAACTT 

 

ACTGTGTTTGCTGACGCAAC 

AGTCCCGGAAAGGAGCTG 

tttcaagttacggtaagcatatgatagt 

caaggctgttagagagataattggaat 

 

 

CCGAGTAGAATTAACCCTCACTAAA 

CGCGTCTACTAATACGACTCAC 

AGCTAGTTGCTAAGTCTGCCGAGTAG 

TCGTACATGCATTGACTCGCGTCTAC 

CCATCTCATCCCTGCGTGTCTCCGACTCAGNNNNNNNNNNNNTCCTC

ACTAAAGGGTAGGTGACAC 
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shRNA library cloning: 

hU6 fwd 

Dec rev 

BC35 rev 

SpA 

 

 

BC35 

 

 

 

PGM_trP1_hU6_as 

 

TCTCagagagagacagagacagatcc 

GTAGACGCGAGTCAATGCATGTACGA 

GAGActtaagatATCGGATCCAGCTAGTTGC 

GTAGACGCGAGTCAATGCATGTACGATCTAGACAATAAAAGATCTTT

ATTTTCATTAGATCTGTGTGTTGGTTTTTTGTGTGACTAGTCTCGTA

TGCCGTCTTTTGCTTGCC 

cttaagatATCGGATCCAGCTAGTTGCTAAGTCTGCCGAGTAGAATT

AACCCTCACTAAAGGGTAGGTGACACTATHHHGHHHGHHHGHHHGNN

TVVVTVVVTVVVTVVVTCCTATAGTGAGTCGTATTAGTAGACGCGAG

TCAATGCATGTACGATCTAGAC 

CCTCTCTATGGGCAGTCGGTGATcttgtggaaaggacgaaacacc 

 

shRNAs: 

Tcf4 (target sequence) 

Adcy3 

 

Il2rb 

 

Camk2d 

 

Cacna1f 

 

Bhlhe40 

 

Calm1 

 

Tacr2 

 

Gphn 

 

Disc1 

 

Cacna1h 

 

 

TTCTAATTACCGGATATTGAAT 

CCGGGCCATCTTTCTCAGGTTATTTGTTAATATTCATAGCAAATGACCT

GGGAAAGATGGCTTTTTT 

CCGGCCCTCCAAACTTAATTATCCAGTTAATATTCATAGCTGGATGATT

AAGTTTGGAGGGTTTTTT 

CCGGGACGGGATGTTCTATGCAAATGTTAATATTCATAGCGTTTGCATG

GAACATCCCGTCTTTTTT 

CCGGCCCTCATCTACTGCTTAATAAGTTAATATTCATAGCTTATTGAGC

AGTAGATGAGGGTTTTTT 

CCGGGTCAGCACAATTAAGTAAGAAGTTAATATTCATAGCTTCTTGCTT

AATTGTGCTGACTTTTTT 

CCGGGCCGCTATACTTCTTTATTATGTTAATATTCATAGCATAATAAAG

AAGTATAGCGGCTTTTTT 

CCGGCCACAGGCAATGTTGATATAAGTTAATATTCATAGCTTGTATCAG

CATTGCCTGTGGTTTTTT 

CCGGGCATACAAGATAGTACTAGATGTTAATATTCATAGCATCTGGTAC

TATCTTGTATGCTTTTTT 

CCGGGACTGGCTTATTTGAGAGAAAGTTAATATTCATAGCTTTCTCTCG

AATAAGCCAGTCTTTTTT 

CCGGGCTAGAATGTAGTGAGGATAAGTTAATATTCATAGCTTATCCTCG

CTGCATTCTAGCTTTTTT 
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sgRNAs: 

SV40-promoter 

Arc-promoter 

Target sequence 

GAATAGCTCAGAGGCCGAGG 

CCTACTCGCTCCCCTCCCGT 

 

3.7. Plasmids 

ID: 

V1739 

V1740 

V1741 

 

 

V66 

 

 

V825 

 

 

 

 

 

V1337 

V1338 

V1301 

 

 

V1785 

V1787 

 

 

AAV production: 

pFdelta6 (adenoviral helper proteins) 

pRV1 (serotype 2 capsid protein) 

pH21 (serotype 1 capsid protein) 

 

Luciferase assays: 

phRL-TK 

 

cis-regulatory sensor assay: 

pAAVspace_DEST_luc2_WPRE 

 

SARE sensor: 

pAAV_SARE-ArcMin-luc2_WPRE_pA 

 

PATHscreener: 

Cellecta Decipher Mouse Module 1 library 

AAV E-SARE PATHscreener (with shRNA) 

AAV E-SARE PATHscreener (shRNA stuffer) 

 

CRISPR-Cas9: 

pAAV_Syn1p-dCas9 

PATHscreener2.0 (sgRNA stuffer) 

sgRNA-SV40 

pSV40-luc2 

 

 

 

 

 

 

 

 

 

Cloning vector 

 

 

1-6x SARE 

 

 

 

Library or single shRNA 

Non-targeting control 

 



Methods 

34 
 

4. Methods 

4.1. Culturing of eukaryotic cell lines 

The cell lines PC12, SH-SY5Y, N2a, HEK293, and HEK293FT were cultured in the 

appropriate growth medium at 37°C in a humidified incubator at 5% CO2. After reaching 80-

90% confluency, cells were passaged using standard protocol including treatment with 

0.05% trypsin-EDTA. For all experiments, cells were seeded into the appropriate cell culture 

plate one day prior to the beginning of the experiment. Maintenance of the cell culture 

stocks, including passaging and test for mycoplasma contamination, has been done with the 

help of Beate Kauschat and Nadia Gabellini (Molecular Neurobiology, Department of 

Psychiatry, LMU Munich). 

 

4.2. Primary neuron culture 

Primary mouse cortical neurons were prepared from E15.5 C57BL/6 mice embryos. Culture 

dishes were freshly coated with poly-L-lysine (PLL, 0.1 mg/ml in dH2O) overnight at room 

temperature. Dishes were washed twice with dH2O. For immunocytochemistry, acid-treated 

glass coverslips were placed into the culture dish and coating was done with PLL (0.1 mg/ml 

in borate buffer). Coverslips were washed twice with PBS. Immediately after washing, half of 

the final culture medium volume of neuronal plating medium (containing 5% FBS) was added 

to the coated culture dishes and placed into a cell culture incubator at 5 % CO2. In case of 

96-well plates, FBS was omitted from the initial plating in order to avoid the complete 

medium exchange on DIV1. Mouse cortices were dissected in cold HBSS/5 mM HEPES. Up 

to 16 pairs of cortices were dissociated in 2 ml pre-warmed Neurobasal medium containing 

Papain (20 U/ml) at room temperature for 13 min. Papain treatment was terminated by 

adding 10 ml pre-warmed and pH equilibrated DMEM(4.5 g/l glucose)/10 % FBS. The 

medium was replaced once with new 10 ml pre-warmed and pH equilibrated DMEM(4.5 g/l 

glucose)/10 % FBS and then with 2 ml pre-warmed and pH equilibrated neuronal plating 

medium. Cells were gently triturated with a P1000 pipette. The cell suspension was 

transferred through a 40 µm mesh (BD Cell strainer) to remove any cell clumps. Next, cell 

concentration was determined by counting trypan blue negative cells using a Neubauer cell 

counting chamber. Finally, cells were plated by adding the second half of the final culture 

medium volume to the cell culture dish. In all experiments a cell density of ~500 cells/mm
2
 

was used.  

Except for experiments in 96-well plates, where serum-free medium was used from the 

beginning, culture medium was completely replaced by serum-free neuronal culture medium 

on DIV1. Feeding of the neuronal cultures was done on DIV6-7 for the first time by replacing 
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half volume with pre-warmed and pH equilibrated neuronal culture medium. From then on, 

cultures were fed every 3-4 days until the end of the experiment. 

 

4.3. AAV production 

The production of AAV particles was done following the general published guidelines  with 

the assistance of Beate Kauschat (Molecular Neurobiology, Department of Psychiatry, LMU 

Munich) (McClure et al., 2011). In detail, this included the following steps: 

Transfection 

AAVs were produced using HEK293FT cells. For a single virus preparation, 12e+06 cells 

were seeded onto one PLL (0.02 mg/ml)-coated 15 cm cell culture dish the day before 

transfection. One hour prior to the transfection, the cell culture medium was replaced by 15 

ml HEK293 medium. The transfection mix was prepared as followed: Per 15 cm dish, 10 µg 

pFdelta6, 3.75 µg pRV1, 3.75 µg pH21,  and 4 µg pAAV (i.e. the custom AAV plasmid) were 

mixed in 0.5 ml OptiMEM medium. Polyethyleneimine (PEI) was used as a transfection 

reagent and added to the DNA/OptiMEM mix in a PEI:DNA ratio of 4:1. The transfection mix 

was thoroughly mixed and incubated at room temperature for 10 minutes. Next, the 

transfection mix was added drop wise to the cells. Four hours post-transfection, 15 ml 

HEK293 medium were added. The mix of two AAV capsid expressing plasmids pH21 

(serotype 1) and pRV1 (serotype 2) results in AAV particles with mixed capsid proteins form 

AAV serotype 1 and 2. This mix was determined to have superior infection efficiencies 

compared to either serotype alone (data not shown). 

AAV harvest 

Three days post-transfection, AAV particles were harvested from the culture. Therefore, the 

cells were detached from the cell culture dish by rigorous pipetting and the cell suspension 

was transferred into a 50 ml tube. Next, cells were pelleted by centrifugation at 1000 rpm for 

5 minutes and the supernatant was aspirated. The cell pellet was resuspended in 5 ml of 

AAV cell lysis buffer and cells were lysed by three freeze-thaw cycles between -80°C and 

37°C. In order to digest the genomic DNA, the cell lysate was incubated with benzonase (50 

U/ml) at 37°C for 30 minutes. Subsequently, the cell lysate was centrifuged at 1000  rpm for 

15 minutes to pellet the cell debris. Afterwards, the AAV-containing supernatant was passed 

through a 0.45 µM filter and transferred into an Amicon Ultra-15 centrifugal filter unit (100 

kDa membrane cutoff, Millipore) in order to ultra-filtrate and concentrate the viral particles. 

During this procedure 10 ml cold PBS was added twice to the AAV solution to exchange the 

buffer. The final volume after concentration was 0.25-0.5 ml and aliquots of the virus were 

frozen and stored at -80°C until usage. 
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Absolute quantification of the AAV genomic copies (GC) by quantitative PCR (qPCR) 

The quantification of the AAV GCs served as an approximate value to control the infection 

rate between experiments. For the quantification by PCR, the AAV genomes were first 

purified from the AAV preparation. Therefore, 5 µl AAV stock was mixed with 84 µl dH2O, 10 

µl 10x Turbo DNase buffer and 1µl Turbo DNase (2 U/L) to digest residual pAAV plasmid 

DNA. The mix was incubated at 37°C for 15 minutes and the TurboDNase was subsequently 

inactivated at 95°C for 5 minutes. Next, 5 µl proteinase K (10 mg/ml) were added and 

incubated at 55°C for 10 minutes to digest the AAV capsid and release the AAV genomic 

DNA. The AAV genome was purified using the NucleoSpin Gel and PCR Clean‐up kit 

(Macherey&Nagel) and eluted in 200 µl elution buffer. 

Absolute quantification was done on a Qiagen Rotor-Gene cycler using the 2x RotorGene 

SYBRgreen PCR Master Mix and the hU6p qRT-PCR primer pair. A pAAV plasmid serial 

dilution (1e+03 - 1e+06 copies/µl, plus non-template control) was used as a standard and 

always ran in parallel to the AAV genome sample. Final AAV GC titers in the range of 1e+09-

1e+10 GC/µl were usually obtained. 

Determination of the infectious AAV titer 

In order to correlate the AAV GC titer to the infection rate of murine primary neurons, cortical 

cultures were infected with a serial dilution of a GFP expressing AAV and GFP positive cells 

were counted by a microscopic analysis (Figure 8). This correlation was used to adjust the 

infection rate of the AAV shRNA library to a level where it can be assumed that the great 

majority of infected cells are only transduced by a single AAV particle. 

 

 

Figure 8: AAV infection rate 

AAV infection rate for primary neurons determined using a serial dilution of a GFP expressing AAV 

vector. 

 



Methods 

37 
 

4.4. Rotenone dose-response cell viability assay 

The response of primary neurons to various rotenone concentrations was determined by 

microscopy counting of cell nuclei, as well as quantification of genomic DNA (gDNA) and 

total RNA. Primary neurons were seeded onto PLL-coated 6-well plates. Rotenone was 

diluted in half-logarithmic steps in DMSO as 100x solutions (from 3.16e-07 M to 3.16e+10 M) 

and 1/100 volume of the final cell culture volume was added to the cells in duplicates or 

triplicates at DIV7. Cells were incubated at 37 °C in a humidified incubator at 5 % CO2 until 

DIV14. 

For the microscopic counting, cell nuclei were stained on DIV14 using Hoechst dye. Using a 

Zeiss Observer Z1 microscope, three images of the nuclear stain per well were acquired. 

Subsequently, the neuron cultures were lysed and gDNA as well as total RNA was isolated 

using the Qiagen AllPrep DNA/RNA Mini Kit. The gDNA and total RNA concentrations were 

determined using a UV spectrophotometer. The images of the nuclear stain were further 

analyzed using Fiji ImageJ software. For counting of all cell nuclei the Analyze Particle 

function was used, generating an output file with the individual nucleus areas. Discrimination 

between live and dead cells was done by applying a filter for pyknotic (dead) and non-

pyknotic (live) nuclei. First, the mean nucleus areas of pyknotic and non-pyknotic nuclei were 

determined manually and then used as thresholds to filter the microscopic nuclei count. 

Dose-response curves of all measurements were done using the R package drc. 

 

4.5. Multiplexed cis-regulatory sensor assay 

Cloning of the cis-regulatory sensor library 

The AAV-based cis-regulatory sensor library was cloned and provided by Dr. Ben 

Brankatschk (Molecular Neurobiology, Department of Psychiatry, LMU Munich). The general 

design is based on the previously published EXTassay approach, where cis-regulatory 

sensors drive the expression of unique molecular barcodes, so called EXTs (Botvinnik et al., 

2010). In brief, cis-regulatory sensors consist either of clustered transcription factor binding 

sites and response elements upstream of the minimal adenoviral major late promoter 

(minMLP) (termed cis-element-based sensors), or of 1-1.5 kb long endogenous promoter 

fragments which harbor the transcription start site (termed promoter-based sensors). The 

corresponding sequences were either synthesized by Genscript or PCR amplified from 

genomic DNA. Cloning was done using the MultiSite Gateway pro plus kit (Invitrogen) 

according to the manufacturer’s instructions. Thereby, three insert fragments were cloned 

into the pAAVspace_DEST_luc2_WPRE (V825) vector by recombination. For cis-element-

based sensor, the three fragments consist of the (i) clustered cis-element, (ii) the minMLP, 
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and (iii) the molecular barcode. In case of a promoter-based sensor, the three fragments are 

(i) a stuffer sequence, (ii) the promoter, and (iii) the molecular barcode (see figure 10A). All 

constructs were verified by restriction digest and sequencing of the insert. 

Cell culture 

E15.5 wt primary cortical mouse neurons were seeded in 6-well plates at 0.5 million 

cells/well. Cultures were infected on DIV5 with the AAV cis-regulatory sensor library with 

2500 AAV GCs per cell. A duplicate sample was silenced by treatment with 1 µM TTX and 

100 µM APV on DIV12. On DIV14, a duplicate sample was harvested as an untreated 

reference. The remaining samples were stimulated with 50 µM BIC, 100 µM 4-AP, 100 µM 

glycine, and 1 µM strychnine for 2, 4, and 8 hours in duplicates. All samples were finally 

harvested using Qiazol reagent. The RNA was purified using the Zymo Direct-zol RNA 

MiniPrep kit. Subsequently, the purified RNA was treated with TurboDNase to digest residual 

AAV genomes and cleaned up by a second column purification using the Zymo Direct-zol 

RNA MiniPrep kit according to the manufacturer’s instructions. 

 

The purified RNA was reverse transcribed as followed: 

Total RNA 

Random nonamer primer (120 µM) 

dNTPs (10 mM each) 

4.5 µl 

1 µl 

0.5 µl 

5 minutes at 65°C, followed by 1 minute on ice. Then add per reaction: 

5x First-strand reaction buffer 

DTT (0.1 M) 

SuperScript III RT 

2 µl 

1 µl 

1 µl 

Incubate first at 50°C for 30 minutes, followed by 15 minutes at 70°C. 

Following the cDNA synthesis, barcodes were amplified by PCR with Dec1/2 primers (250 

nM each) using HotStar Taq plus DNA polymerase (Qiagen). The cDNA input was 1 µl of a 

1/10 dilution into a 20 µl PCR reaction. In addition, an external barcode mix was added to the 

PCR reaction, which can be used for calibration between samples. The PCR was performed 

with an annealing temperature of 59°C and 30 cycles. The PCR product was verified by 

agarose gel-electrophoresis. 

In a second PCR, the adapter sequences for Ion Torrent sequencing were fused to the 

barcodes. The forward code primer contained the Ion-A adapter sequence required for Ion 

Torrent sequencing and a 12bp code sequence for multiplexing of samples in a single 

sequencing run. The reverse primer contained the Ion-P1 adapter sequence required for Ion 
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Torrent sequencing. The PCR was done using HotStar Taq plus DNA polymerase (Qiagen). 

The PCR product was verified by agarose gel-electrophoresis. The final PCR products were 

pooled and purified using the NucleoSpin Gel and PCR Clean‐up kit (Macherey&Nagel).  

Barcode libraries were sequenced on an Ion Torrent PGM sequencer using the 318 chip. 

The sequencing service was provided by Stefanie Behrens and Dr. Sabrina Galinski 

(Molecular Neurobiology, Department of Psychiatry, LMU Munich). All template preparations 

and enrichments were done according to the manufacturer’s protocols for the Ion PGM 

Template OT2 200 kit. Sequencing was done according to the manufacturer’s protocols for 

the Ion PGM Sequencing 200 v2 kit. Processing of the raw data was done in collaboration 

with Dr. Sven Wichert (Molecular Neurobiology, Department of Psychiatry, LMU Munich) 

using custom shell and R scripts. First, raw reads were split into individual samples using the 

12 bp code and subsequently mapped to a reference barcode library using a local BLAST. 

Thereby, reads were counted. Next, read counts were normalized to total read numbers per 

sample. Normalized read counts were standardized to read counts of a sensor which 

contains only the minMLP, but no cis-regulatory element. Finally, data was presented as a 

heatmap of log2-transformed fold changes relative to the untreated reference sample. 

 

4.6. Luciferase assays 

Firefly luciferase reporter gene assays were performed during the development and 

validation of the PATHscreener and PATHscreener2.0 vector and for the validation of 

individual candidates from the screen. 

Multiplate luciferase assays 

For multiplate assays, cells were seeded into 96-well plates and either transfected (for cell 

lines) or infected (for primary neurons). Cells were transfected using Lipofectamine2000 

(Invitrogen) according to the manufacturer’s instructions or infection by an E-SARE-

luciferase containing AAV. Infection was done with 500-1000 AAV GCs per cell. The assay 

always compares an unstimulated response with a stimulated response.  

Validation of individual shRNAs was done with primary neurons in 24-well plates. Neurons 

were infected with AAV PATHscreener vectors either expressing an shRNA or a non-

targeting control RNA. Cultures were treated the same way as the screening samples 

(BIC/4-AP vs. TTX/APV). At the end of the assay, cells were lysed using Passive lysis buffer 

(Promega). The luciferase activity was measured by a Mithras LB 940 Microplate Reader 

(Berthold Technologies) and the software MicroWin2000.  
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Luciferase assays using a 32‐channel luminometer 

Live cell luciferase activity was measured using the LumiCycle 32 apparatus. Therefore, 

primary neurons were seeded onto 3.5 cm culture dishes. The medium was supplemented 

with 1/1000 luciferin (Promega).  

 

4.7. Protein detection by immunocytochemistry 

Immunocytochemistry was used to quantify synapses in maturing primary neuron cultures 

and to verify the expression of CRISPR-Cas9 components. Therefore, primary neurons were 

grown on glass coverslips. The entire staining procedure was performed at room 

temperature. First, 1 vol. of 4% paraformaldehyde (PFA) was added to the cell culture 

medium for fixation and incubated for 15 minutes. Next, the neurons were washed three 

times with PBS. Neurons were permeabilized with 0.1% Triton-X-100 in PBS for 1 minute, 

followed by three washes with PBS. Subsequently, ICC blocking solution was applied for 30 

minutes. The neurons were then incubated with the primary antibody in 0.1% ICC blocking 

solution for one hour. Afterwards, neurons were washed three times for 5 minutes each with 

PBS. The secondary fluorescently labeled antibody was applied for one hour in 0.1% ICC 

blocking solution. Finally, the coverslips were washed three times with PBS for 5 minutes 

each, briefly rinsed in dH2O, and mounted onto glass slides using Prolong Gold Antifade 

reagent (containing DAPI for nuclei staining). 

Synapse staining 

Primary antibodies: mouse anti-MAP2 (1:200); rabbit anti-synaptophysin (1:250) 

Secondary antibodies: Alexa488 anti-mouse (1:500); Alexa647 anti-rabbit (1:500) 

CRISPR-Cas9 staining 

Primary antibodies: mouse anti-FLAG-M2 (1:100); rat anti-HA (1:100) 

Secondary antibodies: Alexa488 anti-mouse; Cy3 anti-rat (both 1:500) 

Image acquisition and analysis 

Images were acquired using a Zeiss Observer Z1 microscope in combination with the Zeiss 

Zen 2012 software. For the synapse quantification, images were analyzed with Fiji ImageJ 

using the ‘Find Maxima’ function. The synapse count was normalized to the mean intensity 

of the MAP2 staining. 
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4.8. Protein detection by western blot 

Western blotting was used to verify the expression of the CRISPR-Cas9 components dCas9 

(HA-tagged) and MS2-p65-VP64 (FLAG-tagged) in HEK293 cells. Therefore, HEK293 cells 

were seeded into 6-well plates (0.5 million/well) and transfected either with V1785 or V1787 

using Lipofectamine2000 (Invitrogen) according to the manufacturer’s protocol. The western 

blot was performed by Barbara Meisel (Molecular Neurobiology, Department of Psychiatry, 

LMU Munich). In brief, cells were washed once with PBS on ice and harvested by lysis in 1% 

Triton-X protein lysis buffer (containing protease inhibitors). The lysate was transferred into a 

reaction tube and centrifuged at 13,000 rpm for 10 minutes at 4°C to clear cell debris. Next, 

the protein samples were mixed with Loading/reducing buffer and proteins were denatured at 

70°C for 10 minutes. Proteins were separated on a Mini-PROTEAN TGX, 4-15% gel (Biorad) 

prior to blotting onto a PVDF transfer membrane Hybond P (GE Healthcare). Afterwards, the 

blot was first incubated with blocking solution (5% milk powder in TBS-T) followed by the 

primary antibody and the secondary HRP-conjugated antibody. Imaging of the blots was 

done using the ECL ChemoCam Imager (INTAS). 

Primary antibodies: rat anti-HA (1:1000), mouse anti-FLAG-M2 (1:5000), mouse anti-GAPDH 

(loading control, 1:1000) 

Secondary antibodies: anti-rat-HRP (1:5000), anti-mouse-HRP (1:5000) 

 

4.9. RNA detection by reverse transcription and qRT-PCR 

Relative mRNA quantification was used to determine the knockdown of an shRNA or the 

activation of gene expression by CRISPRa. In both cases, total RNA was isolated using the 

Zymo Direct-zol RNA MiniPrep kit according to the manufacturer’s instructions, including an 

on-column DNA digest. The first-strand cDNA synthesis was done using SuperScript III 

reverse transcriptase kit (Invitrogen). qRT-PCR assay primers were designed using the 

Roche Universal Probe Library assay design center. qRT-PCRs were performed on a 

Qiagen Rotor-Gene cycler using the 2x Rotogene SYBR green Master Mix. Rpl13a was 

used as a reference gene. The relative quantification was done with the Qiagen Rotogene 

software using the ΔΔCt-method (Schmittgen and Livak, 2008). 
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4.10. Design and cloning of the PATHscreener library 

Insert preparation 

The shRNA library template for the insert has been the Decipher Mouse Module 1 shRNA 

library by Cellecta. The insert was prepared by two consecutive PCRs in order to add the 

synthetic polyA signal (SpA) and the random barcode (BC35). 

PCR#1 

Decipher shRNA library (10 ng/µl) 

SpA oligo (2 nM) 

Dec rev primer (10 µM)* 

hU6 fwd primer (10 µM)* 

dH2O 

2x PWO Master Mix 

 

1 µl 

1 µl 

0.5 µl 

0.5 µl 

7 µl 

10 µl 

* add after first 5 cycles 

PCR parameters: 95°C 2 min, 95°C 20 sec, 59°C 20 sec, 72°C 30 sec (5 cycles), 95°C 20 

sec, 55°C 20 sec, 72°C 30 sec (20 cycles) 

The PCR product has been purified using the NucleoSpin Gel and PCR Clean‐up kit 

(Macherey&Nagel) and validated by 2% agarose gel-electrophoresis. 

PCR#2 

Product PCR#1 (2e+09 molecules/µl) 

BC35 oligo (4e+09 molecules/µl) 

BC35 rev primer (10 µM) 

hU6 fwd primer (10 µM) 

dH2O 

2x PWO Master Mix 

 

1 µl 

1 µl 

0.5 µl 

0.5 µl 

7 µl 

10 µl 

 

PCR parameters: 95°C 2 min, 95°C 20 sec, 55°C 20 sec, 72°C 30 sec (10 cycles) 

The PCR product has been purified using the NucleoSpin Gel and PCR Clean‐up kit 

(Macherey&Nagel) and validated by 2% agarose gel-electrophoresis. 

The purified product of PCR#2 was digested with BamHI and ClaI for 2 hours at 37°C and 

subsequently purified using the NucleoSpin Gel and PCR Clean‐up kit (Macherey&Nagel). 

The final insert concentration was determined using the Picodrop spectrophotometer. 
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Vector preparation 

The empty PATHscreener vector (V1301, 10 µg) was digested with BamHI and ClaI for 6 

hours at 37°C and purified by 1% agarose gel-electrophoresis and the NucleoSpin Gel and 

PCR Clean‐up kit (Macherey&Nagel). Additionally, the linearized vector was purified by 

phenol/chloroform/ethanol extraction. Therefore, 1 vol. of phenol was added, the solution 

was mixed by shaking for 20 times and centrifuged at full speed for 5 minutes. The upper 

layer was transferred to a new tube and 100 µl TE buffer was added to the phenol phase for 

re-extraction. Afterwards the two upper layers were pooled and the procedure was repeated 

with 1 vol. of chloroform. Finally, the linearized vector DNA was precipitated by adding 1/10 

vol. of 3 M sodium-acetate pH 5.2 and 2.5 vol. 100% ethanol. For precipitation it was 

vortexed and kept at -20°C for 1 hour. Subsequently, the DNA was pelleted by full speed 

centrifugation at 4°C for 10 minutes. The supernatant was removed and the pellet was 

washed once with cold 70% ethanol. After this washing step the pellet was air-dried for 5 

minutes and resuspended in 20 µl TE buffer. 

Ligation 

Ligation was done with 500 ng linearized vector and a vector:insert ratio of 1:3. Prior to the 

ligation, the mix of vector and insert was heated up to 55°C for 2 minutes and then snap-

frozen at -20°C for 10 minutes followed by thawing on ice. Next, 1 µl 10x T4 ligase buffer 

(NEB) and 1.4 µl T4 DNA ligase (NEB) was added (final vol. 10 µl) and the ligation reaction 

was incubated at 16°C over night. Before transformation, 10 µl H2O were added to the 

reaction in order to reduce the salt concentration and the T4 ligase was heat inactivated at 

65°C for 10 minutes. 

Transformation 

Transformation was done by electroporation. MegaX Dh10b E.coli (20 µl) were added to 2 µl 

ligation reaction. The mix was gently pipetted up and down and transferred to an ice-cold 

electroporation cuvette. Immediately the electroporation was done the bacteria were 

recovered by adding 1ml pre-warmed Recovery medium (included with MegaX Dh10b 

E.coli). The electroporated bacteria were incubated at 37°C for 1 hour with shaking. A 

dilution series from 1-10 µl was spread onto 10 cm LB-agar (ampicillin) plates for colony 

counting the next day. Twelve mini cultures were inoculated with individual colonies in order 

to verify the cloning. Colony number per volume was calculated and the volume for ~10,000 

colonies was spread onto a 15cm LB-agar (ampicillin) plate. In total 3 plates were inoculated 

in order to get a maximum number of ~30,000 different barcodes within the library. The next 

day, colonies from all 3 plates were collected and plasmid DNA was purified using the 

NucleoBond PC100 Midiprep Kit (Macherey-Nagel).  
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Sequencing of shRNA and barcode 

In order to assign the barcode sequence to the shRNA the region encoding the barcode and 

the shRNA was amplified by PCR using primers with Ion Torrent sequencing adapters 

(PGM_A_IXcode3_AFA_s fwd primer / PGM_trP1_hU6_as rev primer). The PCR product 

has a size of 345 bp and was sequenced on an Ion Torrent PGM sequencer using the 318 

chip. The sequencing service was provided by Stefanie Behrens and Dr. Sabrina Galinski 

(Molecular Neurobiology, Department of Psychiatry, LMU Munich). All template preparations 

and enrichments were done according to the manufacturer’s protocols for the Ion PGM 

Template OT2 400 Kit. Sequencing was done according to the manufacturer’s protocols for 

Ion PGM Hi-Q Sequencing Kit. 

The analysis was done using a custom R script which included the following steps: Raw 

reads were filtered by length (>231 bp) in order to cover the barcode sequence and the 

shRNA antisense strand. Using the Biostrings function matchLRPatterns() filtered raw reads 

were scanned for the barcode (left pattern) and the 8 bp adjacent to the shRNA antisense 

strand (right pattern). 5 mismatches were allowed in the left pattern without indels and 3 

mismatches in the right pattern with indels. Thereby, barcode sequences and shRNA 

antisense strand sequences were extracted. Next, shRNA antisense strand sequences were 

aligned by BLAST to the Cellecta shRNA library reference list. At this stage, a matrix with a 

barcode ID, the barcode sequence, the shRNA sequence, and the shRNA ID, and the 

Refseq ID of the shRNA target was created. This matrix was finally filtered for barcodes that 

were coupled to the same shRNA in more than 80% of the cases. The final barcode library 

was aligned to itself using a local megablast with varying parameters to determine optimal 

megablast stringency for barcode discrimination during the screen. These were an e-value 

threshold of 1e-10 and a word-size of 12. 

 

4.11. Pooled RNAi screen in primary neurons 

Cell culture 

Primary cortical neuron cultures were prepared from E15.5 wt mice. Neurons from 16-24 

embryos were pooled per screen. Per sample, 10 million or 5 million cells were seeded onto 

PLL-coated 15 cm or 10 cm tissue culture dishes, respectively. In parallel, PLL-coated 3.5 

cm dishes were seeded with 0.5 million cells to record the treatments in the Lumicycler. 2-4 

replicate cultures were prepared per treatment condition. Seeding was done in Neurobasal 

medium supplemented with 5% FBS, 2% B27, and 1% GlutaMax. On DIV1, the medium was 

replaced by Neurobasal medium supplemented with 2% B27 and 1 % GlutaMax 

(NeuroCulture medium; 20ml per 15cm dish, 10ml per 10cm dish). On DIV6, cultures were 
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infected with the AAV-PATHscreener library at an AAV particle to cell ratio of 1000:1. 

Simultaneously, cultures were fed by adding pre-warmed NeuroCulture medium (5 ml per 15 

cm dish, 2.5 ml per 10 cm dish, and 0.5 ml per 3.5 cm dish). On DIV10, all cultures were fed 

with pre-warmed NeuroCulture medium (5 ml per 15cm dish, 2.5 ml per 10 cm dish, 0.5 ml 

per 3.5 cm dish) and half of the cultures were in addition treated with 1 µM TTX and 100 µM 

APV to silence neuronal activity. The culture for real-time luciferase recordings were in 

addition supplemented with the firefly luciferase substrate luciferin and the recording using 

the Lumicycler was started. On DIV12, the cultures which have not been silenced were 

stimulated with a cocktail containing 50 µM BIC, 100 µM 4-AP, 100 µM glycine, 1 µM 

strychnine for 4 hours. 

Harvest 

For cell harvest of silenced and stimulated cultures the culture medium was aspirated and 

cells were rinsed once with cold PBS. Subsequently, QIAzol cell lysis reagent was applied 

for lysis (5 ml for 15 cm dishes, 2.5 ml for 10 cm dishes). Cell lysate was scraped from the 

dishes and transferred into a 15 ml tube. The lysate was kept at -80°C until RNA isolation. 

Total RNA isolation 

Lysates were thawed at room temperature and cell debris was pelleted by centrifugation at 

4000 rpm for 5 minutes. The supernatant was transferred into a new 15ml tube and the total 

RNA was isolated using the Zymo Direct-zol RNA MiniPrep kit according to the 

manufactures instructions with the following modifications. The lysate from 10 million cells 

was split onto 2 RNA purification columns in order to not exceed the RNA binding capacity of 

a column. Elution was done in 50 µl RNase-free H2O per column and the two eluates from 

10 million cells were pooled afterwards.  

The total RNA was quantified using a Picodrop spectrophotometer. ~60 µg or ~30 µg total 

RNA was obtained from 10 million or 5 million cells, respectively. 

In order to digest traces of co-isolated AAV genomes, total RNA was treated with 

TurboDNase for 30 minutes at 37°C. For ~60 µg total RNA this was done in a volume of 300 

µl using 6 µl TurboDNase. With less total RNA input the reaction was scaled down 

accordingly. The DNase-digested total RNA was subsequently cleaned-up by adding 1 vol. 

of 100% ethanol and using the Zymo Direct-zol RNA MiniPrep Kit for purification. One 

column was used per sample. Elution in 25 µl RNase-free H2O. Total RNA was again 

quantified using a Picodrop spectrophotometer. 
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cDNA synthesis 

The first-strand cDNA synthesis was done using the Invitrogen SuperScript III reverse 

transcriptase. The entire total RNA was reverse transcribed in multiple 20 µl reactions 

containing 5 µg total RNA each and using oligo(dT) primer. The reaction protocol was as 

followed: 

Total RNA 

Oligo(dT) primer (50 µM) 

dNTPs (10 mM each) 

H2O 

5 µg 

1 µl 

1 µl 

Up to 13 µl 

5 minutes at 65°C, followed by 1 minute on ice. Then add per reaction: 

5x First-strand reaction buffer 

DTT (0.1 M) 

H2O 

SuperScript III RT 

4 µl 

1 µl 

1 µl 

1 µl 

Incubate first at 50°C for 30 minutes, followed by 15 minutes at 70°C. 

Barcode quantification by qRT-PCR 

In order to validate the sensor induction during the screen, RNA barcode expression was 

quantified relative to Rpl13a expression or absolute using a plasmid standard with 1e+02 

copies – 1e+05 copies/µl. Primer pairs were qDec1.2/qDec2.2 for the barcode and the 

plasmid standard and qRT-PCR primer for Rpl13a. Analysis was done using the Qiagen 

Rotor-Gene Software with the ΔΔCt-method for relative quantification. 

2x RotorGene SYBRgreen PCR Master Mix 

Fwd primer (10 µM) 

Rev primer (10 µM) 

cDNA (pre-diluted 1:100) 

5 µl 

1 µl 

1 µl 

3 µl 

Default qRT-PCR cycling parameters. 

Dec PCR 

The ‘Dec PCR’ amplifies the barcode from the cDNA sample. Prior to the ‘Dec PCR’, the 

entire cDNA was purified using the Macherey&Nagel PCR clean-up kit und eluted with 20 µl 

elution buffer. Per sample 100 µl reactions were prepared, split into 2x 50 µl reactions for 

PCR and pooled again afterwards. 
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cDNA (purified) 

qDec1.2 fwd primer (10 µM) 

qDec2.2 rev primer (10 µM) 

H2O 

NEBNext 2x PCR MasterMix 

10 µl 

1.25 µl 

1.25 µl 

37.5 µl 

50 µl 

PCR parameters: 98°C 30sec, 98°C 10sec, 59°C 30sec, 72°C 30sec (20 cycles) 

The PCR product was confirmed by 2% agarose gel-electrophoresis. 

Code PCR 

The ‘Code PCR’ fuses sample specific 12bp code sequences to the ‘Dec PCR’ product in 

order to pool samples for next-generation sequencing. The forward code primer contains the 

Ion-A adapter sequence required for Ion Torrent sequencing and the 12bp code sequence. 

The reverse primer contains the Ion-P1 adapter sequence required for Ion Torrent 

sequencing. Code PCR reaction per screen sample: 

Dec PCR product (pre-diluted 1:10) 

Code fwd primer (10 µM) 

Code rev primer (10 µM) 

H2O 

NEBNext 2x PCR MasterMix 

5 µl 

0.625 µl 

0.625 µl 

18.75 µl 

25 µl 

PCR parameters: 98 °C 30 sec, 98 °C 10 sec, 58 °C 30 sec, 72 C  30 sec (10 cycles) 

The PCR product was confirmed by 2% agarose gel-electrophoresis. 

20-40 µl per sample were pooled subsequently and purified using the NucleoSpin Gel and 

PCR Clean‐up kit (Macherey&Nagel). 

Next-generation sequencing of barcodes 

Barcode libraries were sequenced on an Ion Torrent Proton sequencer using the PI chip. 

The sequencing service was provided by Stefanie Behrens and Dr. Sabrina Galinski 

(Molecular Neurobiology, Department of Psychiatry, LMU Munich). All template preparations 

and enrichments were done according to the manufacturer’s protocols for the Ion PI 

Template OT2 200 v3 kit. Sequencing was done according to the manufacturer’s protocols 

for the Ion PI Sequencing 200 v3 kit. One PI chip delivered on average 100 million raw 

reads. 

Processing of the raw data was done in collaboration with Dr. Sven Wichert (Molecular 

Neurobiology, Department of Psychiatry, LMU Munich) using custom shell and R scripts. 

First, raw reads were split into individual samples using the 12 bp code and subsequently 

mapped to a reference barcode library using a local BLAST. Thereby, reads were counted 
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and assigned to shRNAs and gene targets. Next, read counts were normalized to total read 

numbers per sample. If multiple barcodes are assigned to the same shRNA, corresponding 

read counts were summed. To control the correlation between replicates, similarities 

between all samples were estimated using pair-wise Pearson correlation coefficient and 

plotted as a heatmap with hierarchical clustering. Analysis was then continued by enhanced 

Z-score ranking or using the DESeq2 R package (Love et al., 2014). 

For the enhanced Z-score analysis, normalized read counts of replicates were collapsed to 

mean count values and log2 transformed. Log2 ratios were calculated between stimulated 

and silenced samples and normalized to enhanced Z-scores. In order to collapse to gene 

level, the barcode/shRNA with the strongest effect towards the positive- (for negative 

regulators) or negative direction (for positive regulators) was selected to represent a certain 

gene. 

The DESeq2 package allows testing for differential expression of a gene or in this case of a 

barcode. Therefore, normalized read count data with all replicates for the stimulated and 

silenced conditions was first processed using the DESeqDataSetFromMatrix() function. Next, 

data was analyzed using the DESeq() function which includes the Wald test for differential 

expression and correction by multiple testing using the Benjamini-Hochberg method 

(Benjamini and Hochberg, 1995). 

KEGG and Reactome pathway analysis 

Pathway analysis of the top positive regulators from the enhanced Z-score ranking was done 

using the KEGG database and the Reactome database (Fabregat et al., 2016; Ogata et al., 

1998). The KEGG analysis was done via the WEBGESTALT homepage 

(http://bioinfo.vanderbilt.edu/webgestalt/) and the Reactome analysis was done using the 

analysis function of the Reactome Pathway Browser 

(http://www.reactome.org/PathwayBrowser/). 

 

4.12. Cloning individual shRNAs and sgRNAs 

In order to validate screen results, selected shRNAs from the library were individually cloned 

into the AAV E-SARE PATHscreener vector (V1301). Pairs of oligonucleotides were 

synthesized by Eurofins with AgeI and EcoRI-compatible overhangs and annealed as 

followed. In 50 µl volume, 2.5 µg of each oligonucleotide were mixed together with 5 µl 10x 

T4 DNA ligase buffer (NEB). The mix was incubated at 90°C for 2 minutes and then slowly 

cooled down to room temperature to allow annealing of the two shRNA strands. The 

annealed oligonucleotides were diluted to 5 ng/µl and ligated into the linearized AAV E-

SARE PATHscreener vector. 
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shRNA oligonucleotide pairs were designed as followed: 

Forward: 5’-CCGG-shRNA forward sequence-3’ 

Reverse: 5’-AATT-shRNA reverse sequence-3’ 

Cloning of sgRNAs into the linearized PATHscreener2.0 vector was done using the same 

protocol as for shRNAs. For linearization, the PATHscreener2.0 vector was digested with 

BbsI, creating overhangs for the ligation. 

sgRNA oligonucleotide pairs were designed as followed: 

Forward: 5’-ACCG-sgRNA target sequence-3’ 

Reverse: 5’-AAAC-sgRNA reverse target sequence-3’ 
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5. Results 

5.1. General considerations for a pooled RNAi screen in neurons 

Until now the majority of pooled functional genetic screens (RNAi or CRISPR-Cas9) have 

been performed in oncology (Diehl et al., 2014; Shalem et al., 2015). This has an 

obvious impact on existing protocols and plasmid libraries. In oncology, the general goal is to 

screen for modifiers of cell proliferation/survival. To achieve the desired segregation of ‘hit-

cells’ from ‘non-hit-cells’ in terms of cell numbers within the total cell population, long 

cultivation periods over multiple passages are required. This implies the use of lentiviral 

libraries (shRNA or sgRNA) to generate stable integrations in the genome of the mitotic cell 

line of interest (Rubinson et al., 2003; Stewart et al., 2003). The long selection 

procedure in order to get a strong phenotype finally allows isolating the genomic DNA and 

counting the number of integrations per shRNA by next-generation sequencing. An 

alternative approach involves the use of reporter cell lines and flow cytometry as a strategy 

to segregate different phenotypes at the endpoint of the screen and to focus the readout to 

cellular functions other than proliferation/survival (Parnas et al., 2015). This strategy is 

closest to the technology presented within the following chapters. 

The aim to perform a pooled RNAi screen in a post-mitotic cell type, such as primary 

neurons, required certain adjustments to the classical protocols. Standard cell culture 

protocols for primary mouse neurons allow cultivation for not more than a few weeks and 

viability usually declines after two weeks in culture. Thus, the time window to produce a 

strong cell survival phenotype is relatively short. Nevertheless, to screen for modifiers of cell 

survival would be of great interest in terms of neurodegenerative diseases. Therefore, it has 

been initially tested how genomic DNA and total RNA abundance changes in response to 

cytotoxic stress within a primary neuron population. Cultures where treated with the electron 

transport chain inhibitor rotenone at different concentrations for 7 days and cell number, 

genomic DNA and total RNA was quantified. Surprisingly, the total nuclei count was only 

modestly reduced even at high rotenone concentrations (>100nM), although quantification of 

viable cells, by filtering out all pyknotic nuclei, revealed the toxicity of rotenone with an IC50 

of 14 nM (Figure 9A). This already indicated that an analysis based on a DNA barcode 

readout might lack the required sensitivity in a cell viability paradigm. In accordance to the 

cell count, it has been observed that only at rotenone concentrations above 100nM a 

reduction of the genomic DNA content by ~40% could be detected (IC50 40 nM). However, a 

more sensitive change in total RNA content with an IC50 (15 nM) comparable to the live cell 

count and a higher dynamic range compared to genomic DNA was measured (Figure 9B). 

Taken together, this indicated that without long-term culturing including cell passaging, a 

segregation of viable and non-viable cell pools based on a DNA reporter is not feasible. 
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Furthermore, RNA-based barcode readouts seem to be preferable in the case of primary 

neurons. 

 

 

Figure 9: Cellular RNA content is a more sensitive indicator of neuronal viability in the dish 
than DNA.  

A. Rotenone killing-curve. Primary neurons were treated with the indicated Rotenone 

concentrations from DIV7 till DIV14. Cells were counted by nuclear Hoechst stain. Either all 

Hoechst positive nuclei were quantified (All cells) or only non-pyknotic nuclei to discriminate viable 

from non-viable cells (Viable cells) (n=3 +-sem). B. Quantification of total RNA and genomic DNA 

content from primary neuron cultures in response to metabolic stress by Rotenone treatment (n=2 

+-sem). 

A second modification to current protocols was the viral system used to transduce primary 

neurons for a pooled RNAi screen. Primary neurons are post-mitotic cells and thus 

integration of the shRNA library is not needed for stable long-term transgene expression. 

Since the readout does not require stable barcode integration as well, it has been decided to 

use recombinant Adeno-associated virus (AAV). This has several practical and experimental 

advantages. AAVs require less safety precautions and are structurally more robust than 

lentiviruses (Bouard et al., 2009). More importantly, however, is that AAVs produced with 

certain capsid serotypes (e.g. serotype 1 and 2) have a natural tropism for neuronal cells 

and do not trigger a cellular immune response (McCown, 2005). Within the cell the AAV 

genome preferentially persists extrachromosomally (Nakai et al., 2001). This might reduce 

the risk of integration locus effects on shRNA and barcode expression and eliminates the 

possibility that coding or regulatory regions in the genome are destroyed due to integration 

(Moiani et al., 2012). 

However, the first attempt to use a pooled shRNA library in order to screen for modifiers of 

neuronal survival highlighted that the assay transfer from oncology to neuroscience is not 

trivial. The cytotoxic stress paradigm did not led to a strong quantitative shift of the shRNA-

coupled barcode abundances within the neuron population after one week of treatment (data 
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not shown). This emphasized that a highly sensitive readout is absolutely necessary for 

successful pooled loss-of-function screenings in primary neurons. Therefore, it has been 

hypothesized that a more promising readout option would be the use of a reporter which 

monitors a cellular state (e.g. pathway activity). This might not only improve sensitivity and 

robustness of the screen but would provide proof-of-principle for an interference assays that 

leverages a sensor-assisted approach (since sensors can be flexibly exchanged) to dissect 

signaling networks principally in any genetically amenable cell type with pathway specificity 

and at a genomic scale. 

 

5.2. A reporter for neuronal activity 

The response to synaptic stimulation involves a cascade of cellular events which propagate 

the signal from the synapse to the nucleus. Stimulation of excitatory synapses causes an 

influx of calcium through NMDA receptors and L-type voltage-gated calcium channels 

(Dolmetsch, 2003). The main signaling routes to the nucleus involve calcium-dependent 

activation of calcium/calmodulin-dependent protein kinases and of adenylate cyclases (Greer 

and Greenberg, 2008). This results in activation of CaMK4 and PKA. Activated PKA and 

CaMK4 phosphorylate a set of pre-existing transcription factors (e.g. CREB, MEF2) (Flavell 

et al., 2006; Hardingham et al., 1997). These transcription factors induce expression of 

activity-dependent immediate early genes (e.g. Fos, Arc, Npas4). This activity-dependent 

gene expression program has been studied in great depth using RNA-seq and ChIP-seq 

technologies (Kim et al., 2010; Malik et al., 2014; Zhang et al., 2009). However, already 

during the pre-omics era activity-dependent genes have been studied and the transcription 

factor Fos was one of the first identified immediate early gene that is induced by neuronal 

excitation (Greenberg et al., 1985; Morgan et al., 1987; Sheng and Greenberg, 1990). Since 

then, the Fos gene product or the Fos promoter (~1kb upstream sequence of the 

transcription start site) coupled to a reporter (e.g. GFP) have been extensively used to label 

and identify activated neurons (Garner et al., 2012; Schilling et al., 1991). While the induction 

of the Fos promoter is sufficient to discriminate cell populations of activated versus silent 

neurons, its dynamic range is relatively small and thus probably not sensitive enough as a 

quantitative readout for a high-throughput RNAi screen.  

In order to identify a genetic sensor with a wide dynamic range upon synaptic stimulation, a 

multiplexed cis-regulatory sensor assay was performed. Each sensor within this assay either 

consists of a clustered transcription factor binding sites (cis-element) coupled to a minimal 

adenoviral major late promoter (minMLP) or a ~1 kb promoter fragment (Figure 10A). During 

the assay sensors are driving the expression of unique molecular RNA barcodes in response 

to cellular signaling events. Barcode transcripts are finally isolated and decoded by NGS in 
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order to measure sensor activities (Figure 10B). For the identification of a synaptic activity 

sensor, primary cortical neurons were infected with the AAV pool of 70 sensor vectors and 

the sensor activities were measured at DIV14 under neuronal silencing conditions, basal 

activity (i.e. untreated), and synaptic stimulation. Silencing of neuronal activity has been 

achieved through the application of the voltage-gated sodium channel inhibitor tetrodotoxin 

(TTX) in combination with the NMDAR antagonist D-(-)-2-Amino-5-phosphonopentanoic acid 

(APV) (McLennan, 1981; Narahashi et al., 1966). Neuronal activity of the culture has been 

evoked by blocking inhibitory synaptic transmission using the GABAA receptor antagonist 

bicuculline (BIC). In all experiments, BIC has been supplemented with the potassium 

channel blocker 4-Aminopyridine (4-AP), the NMDAR co-agonist glycine, and the glycine 

receptor antagonist strychnine (Curtis et al., 1970; Meves and Pichon, 1975). This 

stimulation cocktail is referred to as BIC/4-AP. Multiple sensors qualified as synaptic activity 

reporters as they showed reduced activity in silenced neurons and increased barcode 

expression after synaptic stimulation (Figure 10C). The largest dynamic range between 

synaptic silencing and stimulation was measured for a sensor consisting of an enhancer 

from the murine Arc promoter, called synaptic activity-responsive element (SARE) 

(Kawashima et al., 2009). The SARE sensor outperformed classical neuronal activity 

reporters such as the endogenous promoters of Fos and Egr1 (Figure 10C). 
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Figure 10: Multiplexed cis-regulatory sensor assay in response to neuronal silencing and 
synaptic stimulation. 

A. Schematic map of the cis-regulatory sensor vector. The barcode (BC) and the firefly luciferase 

(luc2) are driven by clustered transcription factor binding site (cis-elements) or endogenous 

promoters. B. Illustration of the assay design. Neuronal cultures are infected by a pool of sensor 

vectors packaged into AAV particles and the sensor response is measured by NGS of the barcode 

pool. C. Heatmap of 70 sensor responses to TTX/APV or BIC/4-AP at the indicated hours of 

treatment (log2 fold changes). Sensors are ranked by dynamic range of BIC/4-AP (4hrs) vs. 

TTX/APV (right heatmap). 
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The SARE enhancer is a ~100 bp sequence localized >6 kb upstream of the Arc gene and 

contains binding sites for three activity-dependent transcription factors (CREB, MEF2 and 

SRF) (Figure 11). The Arc gene is expressed in response to neuronal activity and ARC 

protein is enriched at the post-synaptic density of dendritic spines and exerts functions 

during synaptic plasticity via regulation of AMPA receptor endocytosis (Chowdhury et al., 

2006; Plath et al., 2006; Shepherd et al., 2006). Kawashima and colleagues have originally 

identified the SARE enhancer and characterized its sensitivity to synaptic stimulation 

(Kawashima et al., 2009). A genome-wide bioinformatics search for SARE-like sequences 

has revealed that this arrangement of transcription factor binding sites is not unique for the 

Arc promoter, but is found in promoter regions of many other neuronal activity-dependent 

genes (Rodríguez-Tornos et al., 2013). 

 

 

Figure 11: Genomic architecture of the murine Arc promoter. 

Top, the SARE and ArcMin regions are indicated by blue boxes. Evolutionarily conserved genomic 

regions are represented by white boxes. Bottom, sequence alignment of the SARE region between 

mouse, human and cow. Sequences of high conservation are highlighted in black boxes. Binding 

sites for CREB, MEF2 and SRF/TCF are indicated. Modified from(Kawashima et al., 2013). 

During the development of the sensor pool for the cis-regulatory assay, the SARE sensor 

has been optimized for highest signal-to-noise ratio by clustering of multiple SARE repeats in 

front of a 420bp minimal Arc promoter (ArcMin), similar to work by Kawashima and 

colleagues (Kawashima et al., 2013). Sensors with one, three, four, five, and six SARE 

repetitions were tested for a maximal dynamic range in the neuronal cell line SH-SY5Y upon 

stimulation with PMA (phorbol-12-myristat-13-acetat). A cluster of four SARE repetitions 

gave highest fold inductions and was therefore used in all subsequent experiments (Figure 

12A). This composite promoter is hereafter named enhanced SARE (E-SARE) sensor, in line 

with the nomenclature used by Kawashima and colleagues, although their construct contains 

five SARE repetitions. Next, the E-SARE sensor was further characterized in primary cortical 

neurons. Longitudinal recordings of E-SARE-driven luciferase activity from untreated, 

maturing primary neurons revealed that the baseline E-SARE activity recapitulates the 

course of increasing synaptogenesis, as determined by staining the presynaptic marker 

synaptophysin in maturing cultures (Figure 12B). The kinetics also match the staging by Baj 
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and colleagues shown in figure 4 (Baj et al., 2014). Finally, the E-SARE sensor not only 

responds to neuronal silencing (TTX/APV) and synaptic stimulation (BIC/4-AP), but can also 

be induced by brain-derived neurotrophic factor (BDNF) which is a well-established stimulus 

with functions in neuronal differentiation and plasticity (Figure 12C) (Park and Poo, 2013). 

The optimized and validated E-SARE sensor has been subsequently used for developing the 

pooled RNAi screen in primary neurons.  

 

 

Figure 12: Design and characterization of the artificial E-SARE sensor. 

A. Top, Schematic map of the sensor-luciferase vector with clustered SARE enhancers. Bottom, 

Comparison of luciferase activity of clustered SARE reporters after stimulation with PMA in SH-

SY5Y cells (n=6). A cluster of four SARE is hereafter called enhanced SARE (E-SARE) sensor. B. 

Longitudinal measurement of basal E-SARE activity in maturing primary neurons from DIV6-12 

(n=3 +-sem). Inset, Synapse quantification by staining of the presynaptic marker synaptophysin 

(n=3 +-sem). Top, representative images of primary neurons (DIV6-12) stained with antibodies 

against synaptophysin and MAP2. C. E-SARE activity in primary neurons upon silencing 

(TTX/APV), basal activity (untreated), and stimulation (BDNF, BIC/4-AP) at DIV14 (n=6 +-sd). 

5.3. Vector design for sensor-based RNAi screenings 

5.3.1. The principle of the screening approach 

The presented study aimed to combine a pooled shRNA screen with a sensitive and robust 

genetic sensor. This sensor should consist of an optimized synthetic promoter (as described 

in section 5.2) which regulates the expression of a RNA barcode upon pathway activation. 

The use of a barcoded genetic sensor has two major advantages over currently used 

readout options for pooled interference screens (RNAi or CRISPR-Cas9): (1) It allows to 

measure cellular phenotypes other than proliferation/survival which is the case if only the 

bare shRNA pool complexity is analyzed. (2) It is independent of cell sorting based on a 
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fluorescent reporter and therefore a direct quantitative readout. In order to achieve the 

combined approach of a pooled RNAi screen with a pathway activity readout, two libraries 

need to become one, the shRNA library and the sensor-coupled molecular barcode library. 

Each barcode within this library is controlled by the same genetic sensor and codes for an 

shRNA that is expressed from the same AAV vector (Figure 13A). The corresponding vector 

is hereafter named PATHscreener vector. 

The screen itself is based on the simplified hypothesis that a stimulus (e.g. receptor agonist) 

triggers a signaling cascade which induces the barcoded sensor and that interference (by 

shRNAs) within this pathway leads to an altered sensor induction compared to shRNAs that 

are not targeting the pathway (Figure 13B). Sensor activities are finally measured by 

counting of the corresponding barcodes using NGS. The screen is based on the assumption 

that each cell is only infected once in order to avoid cross-contamination of multiple shRNAs 

and barcodes. In addition, we consider it as extremely unlikely that even at infection rates 

slightly greater than one per cell, by chance two shRNAs act in a synergistic or opposing 

fashion and may therefore compromise the screen. 
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Figure 13: Principle of the sensor-based genetic interference screen. 

A Map of the AAV PATHscreener vector. The connection within the library between sensor, 

barcodes and shRNAs is indicated below. B Graphical summary of the working hypothesis for the 

sensor-coupled RNAi screen. Interference independent of a given pathway addressed with a 

corresponding sensor does not affect the readout (left), whereas shRNAs targeting the signaling 

cascade alter sensor activity (right). 

5.3.2. The shRNA expression cassette 

Soon after the discovery of the post-transcriptional regulatory mechanism called RNA 

interference, its use as a research tool for gene expression manipulation has rapidly evolved 

to a gold standard technique (Mohr et al., 2014). The expression of shRNAs by a strong 
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RNA polymerase III promoter (e.g. human U6 promoter) is the most commonly used method 

for stable RNAi. However, at the time when this project was initiated protocols and 

constructs have been published which allow shRNA expression from DNA polymerase II 

promoters (Li et al., 2007; Liu et al., 2010; Zuber et al., 2011). One advantage is the ability to 

use cell type specific promoters (please refer to section 2.4. for a detailed discussion on 

RNAi tools). The success and depth of a genetic interference screen relies on the efficiency 

of the genetic manipulation. As knockdown efficiency cannot be increased by multiple 

infections per cell during a pooled screen it is necessary to express optimized shRNAs from 

a strong promoter. In order to compare the impact of different promoters on RNAi efficiency, 

knockdown of a luciferase reporter by five different shRNAs driven by the hU6 promoter 

(hU6p or the DNA polymerase II promoters of synapsin-1 (Syn1p) or neuron-specific enolase 

(NSEp) were determined (Figure 14A). Overall, the hU6p-driven shRNAs showed superior 

knockdown efficiencies. In particular when the shRNA efficiency is suboptimal, the hU6 

promoter demonstrates its impressive strength to boost the knockdown (Figure 14A, 

shRNA#4). Moreover, only the hU6 promoter-mediated RNAi achieved knockdown 

efficiencies above 90% in this test. Hence, the hU6 promoter was selected to drive the 

expression of the shRNA library for screening irrespective of possible limitation given the 

absence of cell type specificity. 

In order to transduce primary neurons with the sensor-coupled shRNA library, AAV is the 

vector of choice as it has a natural tropism for neurons and does not evoke any cellular 

immune response (McCown, 2005). Whether the expression of a transgene or an shRNA is 

stable in primary neurons over time, was determined by infecting at DIV1 with an AAV which 

expresses GFP and an shRNA against Tcf4 and analyzing GFP fluorescence and Tcf4 

mRNA abundance at various time points until DIV14 (Figure 14B and C). Knockdown of the 

Tcf4 mRNA was first detectable at four days post-infection which is also the time needed for 

AAV (serotype 1/2) infection until reaching its maximum. The knockdown was increasing and 

remained stable until DIV14. In accordance to this observation are the results obtained from 

GFP imaging. GFP expression is first visible at two days post-infection and increases until it 

stays stable over the entire time course (Figure 14C). This indicates that the AAV system is 

well suited for the screening approach and that the risk of losing AAV genomes or epigenetic 

silencing of promoters over time appears to be probably negligible. 
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Figure 14: Efficient mRNA knockdown by hU6 promoter-driven shRNAs in neuronal cells. 

A. Efficacy of five shRNAs, targeting firefly luciferase, driven by the hU6p, Syn1p, or NSEp 

promoter. shRNA expression plasmids were co-transfected with a luciferase reporter plasmid into 

PC12 cells (n=6, +-sd). B. Quantification of Tcf4 mRNA expression in primary neurons infected 

with AAVs for shRNA expression against Tcf4 or firefly luciferase as a non-targeting control on 

DIV1. Tcf4 mRNA was quantified at the indicated days post-infection. C. Longitudinal imaging of 

GFP expression in primary neurons infected on DIV1 with AAV-Syn1p-GFP (serotype 1/2). 

In summary, the following milestones for the development of a sensor-coupled pooled RNAi 

screen were accomplished: (1) The E-SARE sensor gives a strong and robust induction in 

response to neuronal activity. (2) The hU6 promoter is the promoter of choice for efficient 

shRNA-mediated interference with gene expression. (3) AAVs are suitable vectors for stable 

transgene and shRNA expression in primary neurons. Next, the screening vector, as 

illustrated in figure 13A, needed to be generated and tested for functionality. 
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5.3.3. Combining sensor and shRNA expression 

In the previous chapters the general design of the screening vector and independent 

validations of the barcoded E-SARE sensor and shRNA expression cassette have been 

presented. Next, it has been crucial to determine how both parts function in parallel and in 

close proximity if cloned into the same AAV backbone, which has a capacity of ~4.8 kb. This 

distance between the two promoters is relatively small, compared to genomic scales of 

promoter regions and one major concern was that the sensor might be biased due to 

regulatory elements of the hU6 promoter (Das et al., 1988). To address this issue the E-

SARE induction upon PMA stimulation was determined in a luciferase assay with the 

complete AAV PATHscreener vector (containing E-SARE sensor and hU6p) or vectors 

where either the E-SARE sensor (w/o sensor) or the hU6p-shRNA cassette (w/o hU6p-

shRNA) were deleted. Comparison of the complete PATHscreener vector with the hU6p-

shRNA deletion vector ruled out the initial concerns and showed that the sensor is not 

compromised by the hU6 promoter (Figure 15A). Both vectors generated similar luciferase 

activities at baseline as well as upon stimulation by PMA. 

An essentially important requirement for the pooled RNAi screen is that the sensor shows 

uniform inductions across different constructs with variable barcode and shRNA sequences. 

To test this condition 10 constructs with different barcode and shRNA sequences were 

cloned. E-SARE induction for each clone was tested by PMA stimulation in rat PC12 cells to 

minimize the risk of a true shRNA effect on the sensor activity. Overall the inductions across 

all clones were similar and the variance was considered acceptable (Figure 15B). None of 

the clones deviated more than three median absolute deviations (MAD) from the median, 

which is a frequently used hit criterion in high-throughput screens (Birmingham et al., 2009). 

The two expression cassettes, sensor and shRNA, are directed towards each other which is 

defined by the library cloning procedure (described in chapter 5.4). Hence, the barcode is 

located downstream of the shRNA cassette, only separated by a synthetic poly-adenylation 

signal (SpA) and the T6 terminator (six thymidines) (see Figure 13A). Early research on the 

transcriptional termination from DNA polymerase III promoters has revealed that the 

termination is not always efficient and that run-through transcripts can occur (Campbell and 

Setzer, 1992). In case of the screening vector this might cause barcode transcription from 

the hU6 promoter (Figure 15C, dashed orange line). Since expression from the hU6 

promoter is strong even slight termination inefficiency could lead to a severe contamination 

problem during sequencing if those barcode sequences are transcribed into cDNA. To avoid 

such a contamination it might be sufficient to use an oligo(dT) primer during first-strand 

cDNA synthesis. This primer only hybridizes with poly(A)-tails of transcripts expressed by the 

sensor. In addition, a comparison of random primers with oligo(dT) primers for cDNA 
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synthesis indicated that the oligo(dT) primer is superior in this set-up and the data show that 

transcriptional run-through by DNA polymerase III is not a problem (Figure 15C). 

 

 

Figure 15: Functional validation of the PATHscreener vector. 

A. Validation of an unbiased sensor response in the dual-expression PATHscreener vector. PC12 

cells were transfected with the complete vector or a vector with an E-SARE sensor deletion or 

hU6p-shRNA deletion. Luciferase activity was measured for unstimulated and PMA-stimulated 

samples (n=6 +/- sd). B. PC12 cells were transfected with the PATHscreener vector expressing 10 

different random shRNAs. E-SARE-luciferase fold change upon PMA stimulation does not deviate 

more the three median absolute deviations (MAD) from the median (n=6 +-sd). C. Left, schematic 

of the vector with transcripts expressed by the sensor and by the hU6 promoter. The dashed line 

indicates DNA polymerase III run-through transcript. The oligo(dT) primer for cDNA synthesis is 

indicated as well as primer binding sites for barcode amplification at the decoding (Dec) PCR. 

Right, PC12 cells were transfected with the vectors shown in A and purified RNA was transcribed 

to cDNA either with random primers or oligo(dT) primers. A prominent Dec PCR barcode product is 

only detectable with cDNA transcribed using oligo(dT) primers. NTC, non-template control. 
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5.4. Library cloning strategy 

A high quality shRNA library is the basis for successful pooled RNAi screenings. Libraries 

can be custom-made by high-throughput synthesis of shRNA oligonucleotides or purchased 

from various suppliers. Libraries can be either genome-wide or focused regarding specific 

groups of genes. Parameters affecting the decision between a genome-wide or focused 

approach are the biological question of the screen and the required cell number in order to 

get robust results. Common sense is that a cell number to shRNA complexity ratio of 200-

1000:1 is required for robust screenings. For primary cells, cell numbers are often limited 

which argues for a focused library format. The aim of this study was to screen for regulators 

of neuronal excitation and synapse-to-nucleus signaling, hence the library should focus on 

signaling pathway genes in general. Such a library has been generated by Cellecta as part 

of the Decipher project (http://www.decipherproject.net/). The Decipher Mouse Module 1 

(MM1) shRNA library covers 4625 genes that were selected based on expert-curated 

pathway databases like KEGG and Reactome, the CSHL Cancer 1000 List, the Cancer 

Genome Atlas, FDA drug targets and MeSH. With nearly 5000 gene targets the library is 

perfectly sized for pooled RNAi screenings in primary neurons. The general design of the 

shRNA stem and loop region has been thoroughly optimized by Cellecta for highest 

knockdown efficiencies. To make use of a high quality shRNA library design we decided to 

use the Decipher MM1 shRNA library and to develop a cloning strategy for repurposing of 

commercial shRNA libraries in a different context. The cloning strategy requires the following 

steps (Figure 16A): (1) PCR amplification of the hU6p-shRNA library cassette from the 

original shRNA plasmid library and simultaneous fusion of a minimal SpA (Levitt et al., 

1989). The SpA will finally belong to the sensor cassette. (2) Fusion of the shRNA library 

PCR product with an oligonucleotide library containing random barcode sequences and 

amplification by PCR. (3) Large-scale ligation of the shRNA-barcode library insert into the 

sensor containing AAV backbone. (4) Sequencing of the vector region spanning the shRNA 

and the barcode in order to assign barcode sequences to shRNAs/gene targets (Figure 

16B). The Ion Torrent PGM which was used for deep-sequencing of the final library is able to 

sequence fragments up to ~400bp. This implies that shRNA and barcode must be in close 

proximity and as a consequence both expression cassettes are facing towards each other 

and the SpA was selected as one of the smallest available poly-adenylation signals (Levitt et 

al., 1989). During library cloning, 12 individual clones were isolated and analyzed by 

restriction digest and Sanger sequencing. All clones passed the restriction digest, only one 

clone contained a mutated insert and each clone had a unique shRNA and barcode 

sequence. This confirmed that the protocol is delivering reliable cloning products. The cloned 

library contains ~25,000 unique barcodes which code for ~13,000 different shRNAs covering 

~4500 genes (Table 1). Hence, after library repurposing ~97% of target genes are covered. 

An shRNA complexity of ~13,000 allows to perform a screen in a 15 cm cell culture dish with 
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10 million cells. With an infection rate of 60%, ~500 cells would be infected per shRNA on 

average. The barcode to shRNA ratio of ~2:1 results from a 2:1 ratio between barcode oligo 

and hU6p-shRNA-SpA fragment during PCR#2. This provides evidence that the cloning 

strategy by PCR is well tunable. A feature which makes this cloning strategy superior to 

protocols which are commonly used for library cloning in MPRA projects, for example. Those 

protocols require a barcoded backbone vector library into which an enhancer library is 

cloned. This usually results in higher numbers of different barcodes per enhancer. The 

generated E-SARE-shRNA library was successfully packaged into AAV particles (serotype 

1/2) and subsequently used for screenings in primary neuron cultures. 

 

 

Figure 16: Generation of the PATHscreener library. 

A Cloning workflow. Left, the shRNA expression cassette is amplified by PCR and extended by the 

SpA. A second PCR adds the barcode (BC) to the previous PCR product. The product of PCR#2 is 

finally ligated into the sensor containing AAV backbone. Right, verification of the PCR products by 

agarose-gel electrophoresis. B Final cloning product. The proximity of barcode and shRNA allows 

the barcode – shRNA assignment by next-generation sequencing using the ION-Torrent PGM with 

400bp chemistry. 
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Table 1: Complexity of the PATHscreener library. 

Colony no. Barcode no. shRNA no. Gene no. shRNAs/gene # 

30,000 25869 12780 4467 2.9 

#mean value 

 

5.5. Sensor-based pooled RNAi screen in primary neurons 

In order to broaden the cell types and cellular processes that can be studied using pooled 

RNAi screens towards relevant psychiatric risk pathways in primary neurons, a new 

barcoded genetic sensor readout has been developed. Using an AAV library that contains 

the E-SARE sensor and a focused shRNA library of ~4500 signaling pathway genes we 

aimed to perform the first pooled screen in primary neurons. The screen was designed to 

identify genes involved in neuronal excitation and synapse-to-nucleus signaling. The data 

presented in this thesis focus on two main questions. Firstly, does a pooled RNAi screen in 

primary neurons deliver meaningful hit lists? And secondly, is the screen reproducible? 

 

5.5.1. Proof-of-concept screen for regulators of neuronal excitation 

Initially two screens were conducted as a proof-of-concept. Those first two screens (A and B) 

were performed identically except that 10 or 5 million cells per sample were used, 

respectively. Each condition had 2-3 biological replicates. Cortical neurons were isolated 

from E15.5 wild-type mice and infected on DIV6 with the AAV pool at an AAV particle to cell 

ratio of 1000:1 (~60% infection rate). On DIV10 half of the samples were treated with TTX 

and APV to silence the spontaneous neuronal network activity and thereby reduce the E-

SARE activity to baseline. The remaining samples were stimulated with a cocktail containing 

bicuculline, 4-AP, glycine and strychnine (BIC/4-AP) on DIV12 to boost synaptic activity 

(Figure 17 and Table 2). The RNA harvest time point for a maximal dynamic range was at 4 

hours after BIC/4-AP application (Figure 18A). The kinetic of the RNA-based reporter is thus 

faster compared to the luciferase reporter which peaks at 8 hours after BIC/4-AP application 

(Figure 18B). All samples, silenced and stimulated, were subsequently lysed for total RNA 

purification. Barcode libraries were prepared for deep-sequencing on an Ion Torrent Proton 

sequencer. We hypothesized that the induction of a barcode, which codes for a hit shRNA, 

will be reduced or increased compared to the median induction of the total library. For hit 

nomination two analysis methods were applied: (1) Ranking by enhanced Z-scores of 

normalized fold changes between stimulated and silenced conditions and (2) a protocol 

analogous to differential gene expression analysis in RNA-seq using the DESeq2 package in 

R (Dai et al., 2014; Love et al., 2014).  
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Figure 17: Screening design and workflow 

Primary cortical neurons were isolated from E15.5 mice and plated in 15 cm (10 mio cells; Screen 

A and C) or 10 cm dishes (5 mio cells; Screen B). Neurons were infected with the AAV 

PATHscreener library at DIV6. At DIV10 reference samples were treated with TTX/APV for the 

following 48 hours to reduce sensor activity. Neuronal activity is induced in the remaining cultures 

at DIV12 using a BIC/4-AP cocktail for 4 hours. Subsequently cultures were lysed and total RNA 

was purified and processed for next-generation sequencing. 

Table 2: Screens in this thesis: A / B / C 

Screen 
Cell 

no./sample 

AAV 

batch 
Infection Lysis 

Reference 

condition 
Test condition 

A 10 mio A59.1 DIV6 DIV12 TTX/APV BIC/4-AP 

B 5 mio A59.1 DIV6 DIV12 TTX/APV BIC/4-AP 

C 10 mio A59.2 DIV6 DIV12 TTX/APV BIC/4-AP 

 

 

5.5.2. Quality controls within the screening pipeline 

Multiple quality control measures have been implemented into the screening workflow. Sister 

cultures were used to monitor the sensor activity upon neuronal silencing and stimulation 

with the BIC/4-AP cocktail in live cells. A ~21 fold-change of the E-SARE sensor activity was 

measured at the peak of induction by live cell luciferase activity recordings (Figure 18B). At 

the cDNA level from the actual screening samples, the sensor response was controlled by 

qRT-PCR using barcode flanking primers (qDec primers). Relative and absolute 

quantification of the barcode cDNA using qDec primers verified the E-SARE stimulation upon 

BIC/4-AP during the screen (Figure 18C and D). After total read count normalization of the 

raw data, pair-wise Pearson correlation and unsupervised hierarchical clustering was used to 

identify potential outlier samples. All biological replicate samples of screen A and B 

correlated well and samples clustered together by condition (BIC/4-AP, TTX/APV; Figure 

18E). The highest correlations are observed between samples that were stimulated with 

BIC/4-AP. 
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Figure 18: Quality control measures from the pooled RNAi screen. 

A. Kinetics of the SARE-minMLP sensor response to TTX/APV and BIC/4-AP measured by 

barcode sequencing. The response for two individual barcodes is shown (average from two assay 

replicates; extracted from the multiplexed cis-regulatory sensor assay). B. Left, E-SARE sensor 

response to TTX/APV and BIC/4-AP determined by live cell luciferase activity measurement in 

sister cultures of screen A/B (n=4 +- sem). Right, maximal E-SARE luciferase induction by synaptic 

activity (time-point 8 hours of BIC/4-AP stimulation). C, D. Relative and absolute quantification of 

the barcode expression in screen A in response to TTX/APV and BIC/4-AP. E. Pair-wise 

correlation of normalized read counts from biological replicates of screen A and B. Clustering by 

unsupervised hierarchical clustering.  

5.5.3. Hit nomination by enhanced Z-score ranking and DESeq2 analysis. 

Data analysis and ranking of shRNAs and gene targets has been done by two independent 

methods. The knockdown effects on the E-SARE sensor activity were analyzed by an 

enhanced Z-score ranking and using the Bioconductor package DESeq2 (Love et al., 2014). 
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Since absolute abundances of individual vectors vary within the library pool, barcode counts 

in the stimulated samples are always normalized to the barcode counts in the unstimulated 

reference samples (Figure 17). Both methods are based on the assumption that the majority 

of shRNAs within the library do not alter the induction of the E-SARE sensor in response to 

synaptic stimulation by BIC/4-AP. This assumption is valid if a shRNA library of high 

complexity, as in this case, is used and which was supported by the analysis of 10 random 

shRNA constructs (Figure 16B). The enhanced Z-score method analyzes the effect of a 

knockdown by reporting the deviation of the corresponding sensor activity from the median 

sensor activity of the entire pool. The advantage of the enhanced Z-score is its robustness 

against outliers which in this case are the hits. A negative enhanced Z-score of a shRNA 

means that the target gene is a positive regulator of the measured phenotype, whereas a 

positive enhanced Z-score identifies genes that act as negative regulators. Sensor activity in 

the screen can be shifted in general towards both directions, hence, positive and negative 

regulators can be identified. However, more shRNAs have a negative than a positive 

enhanced Z-score above the thresholds of 3/-3 (209 shRNAs at enhanced Z-score < -3; 111 

shRNAs at enhanced Z-score > 3) and the overall amplitude is stronger at the negative scale 

(Figure 19A, left). Thus, the screen appears to be more sensitive for positive regulators, 

which is likely due to the strong stimulation applied during the screen. In order to collapse 

the hit list to the gene level, the shRNA with the strongest effect was selected to represent 

the corresponding gene target. At this level, 151 genes have an enhanced Z-score of less 

than -3 (Figure 19A, right) and can be considered as primary hits for positive regulators.  

A second powerful analysis strategy uses the Bioconductor R package DESeq2 (Love et 

al., 2014). This package was originally developed for the identification of differentially 

expressed genes in RNA-seq experiments. Nevertheless, it has been shown that the 

DESeq2 package as well as the similar edgeR package are also powerful tools for hit 

nomination, as genetic screening data and RNA-seq data are very similar and have a 

negative binominal distribution (Dai et al., 2014; Parnas et al., 2015). In this study, DESeq2 

was used for read count normalization between samples and identification of differentially 

expressed barcodes. Significance of differential expression was tested using the Wald test 

and corrected by multiple-testing using the Benjamini-Hochberg method (Benjamini and 

Hochberg, 1995). In accordance with the results from the enhanced Z-score analysis, the 

DESeq2 analysis identified more shRNAs where the sensor induction is significantly down-

regulated (335 at a false discovery rate (FDR) < 0.05) compared to shRNAs with an 

enhanced sensor induction (250 at FDR < 0.05) (Figure 19B). Hit lists generated by both 

methods show a substantial overlap (Enh. Z-score vs. DESeq2 log2FC 54/100; vs. DESeq2 

FDR 41/100) (Figure 19C) and the use of both strategies in parallel can increase the 

confidence in hit nomination. The following steps of analysis are based on the enhanced Z-

score ranking unless otherwise stated. 
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Figure 19: Enhanced Z-score  and DESeq2 analysis of the pooled RNAi screen A. 

A. Enhanced Z-score rankings. Left, For individual shRNAs from screen A. An enhanced Z-score 

of +3/-3 is indicated by a dashed line. Right. Collapsed to gene level by filtering for the shRNA with 

the most negative score per gene. The dashed line indicates a score of -3. Selected candidates for 

subsequent validation are highlighted in red. B. MA-plot compares for shRNAs the DESeq2 log2 

fold changes (screen A) to the mean expression of the corresponding barcode. shRNAs with 

differentially expressed barcodes are highlighted in red (FDR < 0.05). C. Overlap between the top 

100 positive regulators identified by enhanced Z-score analysis and by DESeq2 analysis (either 

ranked by log2 fold change or FDR). FDR was determined using the Benjamini-Hochberg method. 

Next, 10 candidates for positive regulators were selected from screen A, covering an 

enhanced Z-score range from -2 to -10 as indicated in figure 19A (right, red dots). These 

candidates are components of cAMP signaling (Adcy3), cytokine signaling (Il2rb), calcium 

signaling (Calm1, Camk2d, Cacna1f, Cacna1h, Tacr2), the circadian clock (Bhlhe40), the 

postsynaptic density (Gphn), and a schizophrenia risk gene (Disc1). They were selected to 

test the first step of validation by performing individual knockdown experiments. For each 
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gene the shRNA with the strongest effect in the screen was cloned into the PATHscreener 

vector and tested individually for its interference in BIC-induced synaptic signaling (Figure 

20). All tested shRNAs reduced the E-SARE induction compared to a non-targeting control 

(NTC) vector and 8 out of 10 shRNAs showed a significant effect (student’s t-test, p < 0.05). 

While this is the first validation step, additional orthogonal validation tools (e.g. 

synapse/dendrite stainings, electrophysiology) need to be implemented into the protocol and 

high-content analysis of hit candidates might be a powerful strategy. 

 

 

Figure 20: Individual validation of selected candidates. 

E-SARE activity in response to knockdown of 10 candidate genes relative to a non-targeting 

control (NTC). Primary cortical neurons were infected with individual PATHscreener vectors for 10 

different shRNAs selected from screen A and a NTC vector. In accordance to the screening 

conditions cultures were either silenced by TTX/APV (48 hrs) or stimulated by BIC/4-AP (4 hrs) 

and E-SARE activity was determined by luciferase measurement (n=3 +- sd). 

5.5.4. Hit ranking to biological function by KEGG and Reactome analyses 

The main focus of this proof-of-concept study lies on the quality assessment of the screening 

results by comparison to currently available data. One would assume that in particular a 

knockdown of synaptic genes and genes with known function in cAMP/calcium signaling are 

likely to affect synapse-to-nucleus signaling and therefore alter E-SARE induction. In order to 

systematically interpret and validate the output of the pooled RNAi screen for regulators of 

neuronal excitation and synapse-to-nucleus signaling, the two manually curated pathway 

databases KEGG and Reactome were used as a reference (Fabregat et al., 2016; Ogata et 

al., 1998). This analysis has been done with the top 140 positive regulators identified in 

screen A. Strikingly, pathway analysis using the KEGG database revealed an enrichment of 

genes associated with the categories “Long-term potentiation”, “Neurotrophin signaling”, and 

“Calcium signaling” (p < 0.05, hypergeometric test, Table 3). These associations confirm that 
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the screen produces reliable results and can be used to identify pathway genes in primary 

neurons. 

 

Table 3: KEGG Pathway analysis for the Top140 positive regulators 

KEGG Pathway R pValue# Genes 

Long-term 

potentiation 
4.15 0.0013 

Calm1, Ppp1ca, Adcy8, Araf, Camk2d, 

Ppp1cb, Camk4 

Neurotrophin 

signaling 
2.94 0.0032 

Calm1, Psen1, Camk2d, Nfkbie, Pik3cd, 

Mapk14, Csk, Camk4, FasI 

Calcium signaling 2.08 0.0374 
Calm1, Cacna1f, Slc25a4, Tacr2, Camk2d, 

Adyc8, Camk4, Adcy3 

Chemokine signaling 2.05 0.0406 
Pik3cd, Ccr5, Adyc8, Cxcr5, Xcr1, Csk, Cxcl2, 

Adcy3 

MAPK signaling 1.79 0.0519 
Dusp6, Cacna1f, Ppp5c, Fgf20, Fgf12, 

Mapk14, Fgf18, Daxx, Map3k12, FasI 

R Enrichment ratio; # hypergeometric test 

 

Along with pathways of known and well-established function in neuronal activity-dependent 

signaling, surprisingly, an enrichment for genes in the KEGG pathway ‘Chemokine signaling” 

was found (Table 3). The top hit list for positive regulators contains the chemokine receptors 

CC-motif-chemokine receptor 5 (Ccr5), CXC-motif-chemokine receptor 5 (Cxcr5), and 

chemokine (C motif) receptor 1 (Xcr1), as well as, the ligand chemokine (C-X-C motif) ligand 

2 (Cxcl2). In addition, the C-Src kinase (Csk), two adenylate cyclase isoforms 3 and 8 

(Adcy3/8), and the catalytic domain delta of PI3-kinase (Pik3cd) have been identified as 

components of chemokine signaling. 

A second line of evidence for the functionality of the screen comes from a pathway analysis 

using the Reactome pathway browser. Significant enrichments were found for multiple 

signaling events that involve the second messenger molecules calcium, diacylglycerol 

(DAG), and inositol triphosphate (IP3). In addition, the Reactome analysis reflects that in 

primary cortical cultures primarily the glutamatergic post-synapse is screened (Pathway: 

“Activation of NMDA receptor upon glutamate binding and postsynaptic events”, p=0.003). 

Finally, the Reactome pathway analysis revealed that the screen is also sensitive for 

perturbed neurodevelopmental processes like neurite outgrowth (Pathway: “NCAM signaling 

for neurite outgrowth”, p=0.004) (Table 4). 
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Table 4: Reactome Pathway analysis for the Top140 positive regulators 

Pathway pValue FDR 

Phospholipase C-mediated cascade; FGFR3/4/2/1 
6.69E-05 / 7.54E-05/ 

1.46E-04 / 9.14E-04 
0.022 

Activation of CaMK IV 4.36E-04 0.022 

PLC beta mediated events 5.66E-04 0.022 

G-protein mediated events 6.26E-04 0.022 

CaM pathway 6.76E-04 0.022 

Calmodulin induced events 6.76E-04 0.022 

Ca-dependent events 8.89E-04 0.022 

CaMK IV-mediated phosphorylation of CREB 9.71E-04 0.022 

DAG and IP3 signaling 0.001 0.026 

CREB phosphorylation through the activation of 

CaMKK 
0.002 0.031 

PLC-gamma1 signaling 0.002 0.031 

Post NMDA receptor activation events 0.002 0.034 

Activation of NMDA receptor upon glutamate binding 

and postsynaptic events 
0.003 0.050 

NCAM signaling for neurite outgrowth 0.004 0.062 

MAPK family signaling cascade 0.005 0.076 

CREB phosphorylation through the activation of 

adenylate cyclase 
0.005 0.076 

 

 

Figure 21 summarizes the major findings from screen A by mapping hit candidates along the 

synapse-to-nucleus route. Mapping was done using the KEGG pathway maps “Long-term 

potentiation”, “Glutamatergic synapse”, “Calcium signaling pathway”, “mTOR signaling 

pathway”, and “PI3K-Akt signaling pathway”. The map has been further complemented by a 

few entries based on additional literature. As expected from the KEGG and Reactome 

pathway analysis output many positive regulators that ranked high in the screen are involved 

in post-synaptic function. Along the route from the synapse to the nucleus multiple genes 

involved in calcium signaling, a schizophrenia risk pathway, were found (Cacna1f/h/g/c, 

Calm1/3, Camk2d/g, Camk4) and with Itpr1 an IP3 receptor involved in calcium wave 

propagation along the dendritic ER. Besides calcium regulators, several members of the 

mTOR and PI3K-Akt signaling pathways, which are associated to schizophrenia and ASD as 

well, ranked high in the screen (e.g. Pik3cd, Akt1, mTOR) (Kim et al., 2009; Sawicka and 

Zukin, 2012). Notably, the recently identified schizophrenia risk gene C4a, which is member 

of the classical component cascade, ranked high in the screen (rank 446, screen A; rank 50, 

screen B) (Sekar et al., 2016). 
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Figure 21: Screening hits along the synapse-to-nucleus pathway. 

Pathway mapping of positive regulators of neuronal excitability and synapse-to-nucleus signaling 

based on KEGG and manual literature mining. The color code indicates the enhanced Z-score 

ranking in screen A. 

5.5.5. Reproducibility of the screen 

The robustness of a screen and consequently the reproducibility of its results should always 

be a major concern during assay development. Nevertheless, the issue of insufficient 
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reproducibility in biomedical research is frequently raised in academia and industry 

(Freedman et al., 2015). The presented pooled sensor-based RNAi screen in primary 

neurons was performed three times in total in order to estimate the degree of reproducible 

results. Screen A and B were performed in parallel with the same batch of primary neurons 

and AAV preparation. Both screen only differed in terms of cell number (screen A: 10 mio 

cells/sample; screen B: 5 mio cells/sample). Screen C has been carried out completely 

independent. This means that primary neuron cultures were prepared on another day using 

different embryos, a new AAV batch was used, and multiple steps of the screening protocol 

were performed by another experimenter (e.g. primary neuron preparation, RNA isolation, 

cDNA synthesis). Each screen has been completed with 2-3 internal biological replicates per 

condition. Comparison of the enhanced Z-scores from the entire gene level results from 

screen A and B displayed that both datasets correlate with a spearman-rank coefficient (rho) 

of 0.567 (Figure 22A). A focused view at the top hits for positive regulators revealed a 

substantial overlap between screen A, B, and C. The 100 highest-ranked positive regulators 

from screen A and B share over 50% of genes when analyzed by DESeq2 and ranked by 

log2 fold-change (log2FC) or FDR (Figure 22B). Analysis by enhanced Z-score ranking 

displayed an overlap of 45 genes between screen A and B and 38 genes between screen A 

and C out of the top 100 (Figure 22C). 

The evaluation of all three screens indicates that in particular the discovery of positive 

regulators of neuronal excitation under strong synaptic stimulation is reproducible.  

 

 

Figure 22: Reproducibility of the pooled RNAi screen in primary neurons. 

A. Scatterplot of enhanced Z-scores from screen A and B. Data has been collapsed to gene level 

and filtered for positive regulators. The spearman-rank coefficient rho and linear regression are 

indicated. B, C. Venn diagrams for the overlap in the hit lists generated by DESeq2 analysis (B) 

and enhanced Z-score ranking (C). 
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5.5.6. Screening for negative regulators of neuronal excitation 

The identification of negative regulators of neuronal excitation and synapse-to-nucleus 

signaling is of great interest particularly for the discovery of new potential drug targets in 

order to restore hypoexcitability and synaptic function of neurons. As pointed out earlier, hit 

nomination for negative regulators is challenging due to a smaller dynamic range of the E-

SARE sensor under strong synaptic stimulation, hence, false-positives are more likely. 

Consequently, datasets from screen A, B, and C were used and compared in order to 

evaluate the screening performance for negative regulators. As expected, the pairwise 

overlap as well as the overlap between all three screens is smaller than for positive 

regulators. Within the top 100 potential negative regulators, screen A and B shared 15 

genes, screen A and C shared 11 genes, and screen B and C shared 10 genes (Figure 23). 

One gene is in common to the hit lists of all three screens. Among hits found in two 

independent screens are genes with known function in neuronal excitation and 

calcium/cAMP-signaling like the Na
+
/H

+
 antiporter Slc9a1, the ATPase Na+/K+ transporting 

subunit beta 3 (Atp1b3), and the cAMP-responsive element modulator (Crem) (Forrest, 

2014; Gu et al., 2001; Mellström et al., 1993; Xia et al., 2003). The only gene that is shared 

across all three hit lists for negative regulators is Katnb1 which encodes the noncatalytic 

regulatory p80 subunit of katanin, a protein complex involved in severing of microtubules 

(Hartman et al., 1998). Hence, Katnb1 knockdown might stabilize neurites, thereby 

enhancing the excitatory input.  

 

 

Figure 23: Comparison of identified negative regulators in screen A, B, and C. 

Venn diagram showing the overlap between the top 100 potential negative regulators from screen 

A, B, and C identified by enhanced Z-score ranking. 
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5.6. Adaptation towards CRISPR-Cas9-based screening in primary neurons 

Over the last three years CRISPR-Cas9 has evolved to the most popular and powerful tool 

not only for genome engineering but also for loss- and gain-of-function studies (Gilbert et al., 

2014; Jinek et al., 2013; Larson et al., 2013). Similar to the early days of pooled RNAi 

screens, it is no surprise that the cancer field is again at the forefront of functional genomics 

screens using CRISPR-Cas9. To date, multiple pooled CRISPR-Cas9 screens have been 

published. Most of them have been performed in cancer cell lines but recently one screen in 

primary dendritic cells using a pathway readout has been published (Parnas et al., 2015; 

Shalem et al., 2014, 2015; Wang et al., 2014). Direct and indirect comparisons between 

pooled RNAi and CRISPR-Cas9 screens have indicated that CRISPR-Cas9 has superior on-

target efficacy and reduced off-target activity (Evers et al., 2016a; Morgens et al., 2016; 

Shalem et al., 2014). Although most of the published screens are loss-of-function knockout 

screens, a major advancement is its use for gain-of-function studies. This for the first time 

allows genome-wide gain-of-function screens in mammalian cells and hence complements 

the loss-of-function toolbox (Konermann et al., 2015). 

Based on the acquired expertise from the proof-of-concept pooled RNAi screen in primary 

neurons, the adaptation towards a CRISPR-Cas9-based screening tool has been initiated. 

Transcriptional regulation by CRISPR-Cas9 relies on the recruitment of effector domains 

(e.g. p65, VP64 activator domains) into proximity of the transcriptional start site of the gene-

of-interest. It has been shown that recruitment of multiple domains to the same locus 

enhances activation of gene expression (Konermann et al., 2015; Tanenbaum et al., 2014). 

We therefore decided to use the CRISPR-Cas9-SAM (Synergistic Activation Mediator), that 

recruits multiple effector domains using a fusion of the sgRNA with two MS2 aptamer 

sequences and a second fusion of the MS2-binding domain with the effector domains (e.g. 

p65 and VP64) (Figure 24A). This increases the number of effector domains at the locus 

compared to a direct fusion of the effector domain to dCas9 (as illustrated in Figure 6B and 

C). Two AAV vectors have been cloned, one for dCas9 (Streptococcus pyogenes) 

expression and the second vector represents the CRISPRa PATHscreener2.0 vector with 

the following modifications to the RNAi-based PATHscreener vector: (1) The firefly luciferase 

was substituted by the shorter NanoLuc luciferase. (2) The shRNA is substituted by the 

sgRNA2.0. (3) A third expression cassette is introduced for MS2-p65-VP64 expression 

(Figure 24B, PATHscreener2.0). Multiple experiments have been performed until now to 

validate the CRISPRa PATHscreener2.0 vector. Expression of dCas9 and MS2-p65-VP64 

from the AAV backbone has been verified by western blot (Figure 24C). Stimulation of the E-

SARE sensor within the PATHscreener2.0 backbone by PMA in HEK293 cells showed 

comparable inductions as with the RNAi-based PATHscreener vector (Figures 15A and 

24D). The system is able to induce expression of a luciferase reporter as well as 
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endogenous Arc mRNA (Figure 24E and F). Primary neurons express both dCas9 and MS2-

p65-VP64 after AAV infection. This has been a critical step as the AAV-dCas9 genome 

slightly exceeds the optimal AAV packaging capacity of 4.8 kb. Importantly both proteins are 

localized in the nucleus (Figure 24G). 

 

 

Figure 24: Adaptation towards an AAV CRISPR screening vector. 

A Schematic of the CRISPRa complex comprising the target DNA bound by the inactive Cas9 

(dCas9) and the sgRNA2.0 harboring two MS2 loops. MS2 loops are recruiting the MS2-binding 

domain fused to the p65 and VP64 transcription activator domains. B AAV maps of the dCas9 

vector (top) and the CRISPRa-PATHscreener vector (bottom). C Expression validation of dCas9 

and MS2-p65-VP64 in HEK293FT cells by western blot. D Validation of the E-SARE sensor 

response to PMA in the context of the CRISPRa-PATHscreener vector in HEK293 cells (n=6 +- 

sd). E Transcriptional activation of a SV40p-luciferase reporter by dCas9, MS2-p65-VP64 and 

sgRNA2.0-SV40 (n=6 +- sd). F Transcriptional activation of Arc gene expression in N2a cells by 

dCas9, MS2-p65-VP64 and sgRNA2.0-Arc (n=3 +- sd). G Validation of nuclear dCas9 and MS2-

p65-VP64 localization in primary mouse neurons after AAV infection of the vectors shown in B.
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6. Discussion 

Experience-driven neuronal activity is shaping the brain throughout life by modulating 

synaptic connections and the excitability of neurons within circuits. Aberrant neuronal 

connectivity and activity might result from a multitude of genetic defects and is likely 

causative for various CNS diseases including psychiatric disorders (Grant, 2012). The 

underlying molecular mechanisms of neuronal activity and synaptic plasticity in health and 

disease can be studied using primary neuronal cultures. While research over the last 

decades has identified many key components of synaptic transmission, plasticity, and 

signaling to the nucleus, it is likely that proper neuronal function is also dependent on various 

other biological processes. One example is the energy metabolism and control of redox state 

(Sada et al., 2015; Winkler and Hirrlinger, 2015). Elucidation of the networks which affect 

neuronal function can be a tedious endeavor. Pooled genetic loss-of-function screens are a 

tool that offers a rapid and holistic view at genes with essential functions during the 

development of a particular cellular phenotype. Until now, no strategy for a pooled genetic 

screen in primary neurons has been published. The presented work describes the first proof-

of-concept pooled RNAi screen in primary neurons, which is also the first screen using a 

post-mitotic cell type. The intention for this project was dual-purpose. Firstly, the assay 

should be useful for the dissection of signaling pathways. Most of the time, follow-up 

investigations of a screen only pursue a single candidate. This constrains the full capacity of 

a large-scale screen. An exception is the work by Parnas and colleagues who aimed to 

dissect the LPS/Tlr4-to-Tnf pathway in dendritic cells using a pooled CRISPR-Cas9 knockout 

screen (Parnas et al., 2015). This screen will be discussed and compared to the presented 

screen in more detail later. Secondly, an assay was to be delivered that complement the 

toolbox for psychiatric and neurodegenerative drug discovery in the future. 

 

6.1. Advancing the current screening strategies 

The current strategies for pooled genetic screens exclusively rely on a lentiviral-based 

approach where DNA barcodes or the shRNAs/sgRNAs itself are used for deconvolution of 

the cell pool by next-generation sequencing. This rather static reporter makes it 

indispensable to physically segregate cell populations according to their phenotype. For 

post-mitotic cell types or phenotypes other than proliferation it is therefore required to stain 

and sort cells by flow cytometry. In this work a new readout strategy for pooled genetic 

screens is presented which makes cell sorting unnecessary. Molecular RNA barcodes which 

are expressed by a pathway sensor and code for a specific shRNA allow direct 

deconvolution of the complete cell pool. The genetic E-SARE sensor has been empirically 

selected as a superior sensor for neuronal activity from a resource of 70 sensors, which is in 
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line with data obtained by others (Kawashima et al., 2009, 2013). This pool of genetic 

sensors together with additional putative sensors described in the literature represents a 

resource for the dissection of numerous cellular phenotypes in the future using a pooled 

screen. Interesting pathways/phenotypes in the context of psychiatric and neurodegenerative 

diseases would be antioxidant response (ARE sensor), hypoxia (HRE sensor), hippo 

signaling (TEAD sensor), Wnt signaling (TCF-LEF sensor), unfolded protein response 

(ERSE sensor), and apoptosis (TP53INP1 sensor). 

An inherent risk of high-throughput screens is the false-positive hit nomination due to 

interference with the assay system (e.g. reporter expression) itself. For genetic screens 

using reporters (e.g. GFP), this risk encompasses interference with transcription, mRNA 

transport and stability, translation, protein folding and degradation of the reporter protein. 

The integration of an RNA reporter system not only generates faster kinetics but also 

eliminates several of the above mentioned interference points associated to the expression 

of a protein reporter. 

 

6.2. Assay validity 

The main focus in data analysis of this proof-of-concept screen was to assess the validity of 

the assay. This has been done by mapping the hit list to the KEGG and Reactome pathway 

databases and a literature search for associations between screen hits and psychiatric 

disorders. 

 

6.2.1. Identification of genes with known function in synaptic plasticity 

Pathway analysis using KEGG and Reactome databases revealed that the screening hits 

are enriched for genes involved in regulation of synaptic plasticity and signaling from the 

glutamatergic postsynapse to the nucleus. It was expected that in particular regulators of 

calcium and cAMP signaling could be identified to provide evidence for the validity of the 

screen. This was indeed the case as multiple voltage-gated calcium channel subunits, 

calmodulin isoforms, adenylate cyclases, calcium/calmodulin-dependent kinases and 

downstream transcription factors were amongst the top-ranked genes. This confirms that the 

approach is suitable to dissect neuronal signaling pathways. Nevertheless, the screening 

results did not entirely recapitulate the pathway maps found for example in the KEGG 

database. This might have several reasons. First of all a focused shRNA library was used 

which does not cover the entire mouse genome. Second, if a certain regulator is covered but 

does not score in the screen, the knockdown might not be effective enough to produce a 

measureable phenotype. A third reason, which might contribute to false negatives, is 
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functional redundancy of proteins, a general challenge to loss-of-function studies. While the 

biological space of the screen can be increased relatively easily up to a genomic scale by 

expanding the library, studying protein redundancy and epistasis would require applying a 

second genetic perturbation on top of the shRNA library. Although, this has even been done 

in a systematic manner by generating a double-shRNA library, it rapidly increases the library 

complexity to a point where screenings in primary neuron cultures are not feasible anymore 

(Bassik et al., 2013) 

 

6.2.2. Hits with association to psychiatric disorders 

The identification of genetic risk loci for psychiatric disorders like schizophrenia, BPD and 

ASD by genome-wide association studies and exome sequencing has highlighted the 

synapse proteome as well as several regulatory networks (e.g. calcium pathway, 

PI3K/Akt/mTOR pathway) as being important for the pathophysiology (Cross-Disorder Group 

of the Psychiatric Genomics Consortium et al., 2013; Fromer et al., 2014; Geschwind and 

Flint, 2015; Schizophrenia Working Group of the Psychiatric Genomics Consortium, 2014). 

Common variants associated with psychiatric disorders are often found in regulatory 

elements (e.g. enhancers), hence, altering the expression level of a gene (Maurano et al., 

2012). Having the list of risk loci, it is about time to identify the genes underlying the risk 

association at a given locus. In patients it is the sum of numerous genetic variations which in 

the end might perturb brain function leading to the manifestation of psychiatric symptoms. I 

therefore wondered whether the knockdown of a single putative risk gene per neuron during 

the screen can be sufficient to generate a measureable phenotype using the E-SARE 

sensor. Strikingly, multiple genes are amongst the high ranking candidates which have a risk 

association to psychiatric disorders. Adenylate cyclase 3 (Adcy3), the top ranked positive 

regulator hit in screen A and B (enhanced Z-score rank: 2 and 1, respectively) is suggested 

to have a genetic association with major depressive disorder (MDD) (Wray et al., 2012). 

Although Adcy3 does not yet reach genome-wide significance in GWAS, it is likely to 

become a significant association with increasing case-control numbers. Several genes linked 

to schizophrenia, BPD, and/or ASD reduced synaptically-evoked E-SARE induction. These 

include for example Disc1, members of the PI3K/Akt/mTOR pathway (Akt1, mTOR), 

components of the metabotropic glutamate receptor 5 complex (Grm5, Aldoa), the dual-

specificity tyrosine-(Y)-phosphorylation-regulated kinase 1 A (Dyrk1a), and the actin binding 

LIM protein 1 (Ablim1) (Emamian et al., 2004; 2004; Kim et al., 2009; Kirov et al., 2012; 

Newell and Matosin, 2014; Nurnberger JI et al., 2014; Sawicka and Zukin, 2012). Notably, 

knockdown of multiple genes of the complement system (C4a, C4bp, C1s) ranked high as 

positive regulators. The notion that the classical complement cascade has a role in synapse 

biology is relatively new (Stephan et al., 2012). For a long time schizophrenia’s association 
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to the MHC locus could not be explained and the identification of the underlying risk gene 

was a challenge. Only very recently, C4a was identified as the main risk gene at the 

extended MHC locus (Sekar et al., 2016). The pooled RNAi screen supports this finding and 

the consent between both studies argues that pooled genetic screens might facilitate the 

identification of risk genes at GWAS loci. With presenilin 1 (Psen1), a prominent risk gene for 

Alzheimer’s disease (AD) can be found in the hit lists for positive regulators (Sherrington et 

al., 1995). Psen1 encodes one out of four core proteins that form the γ-secretase complex. 

The γ-secretase complex is involved in the generation of amyloid-beta peptide from amyloid 

precursor protein (APP), which is believed to be crucial in the pathophysiology of AD (De 

Strooper, 2007). Other γ-secretase substrates are notch and neuroligin 1 (NRG1). Notch 

signaling has a known function in neurite outgrowth and the NRG1-ERBB4 pathway is 

associated to schizophrenia (Berezovska et al., 1999; Stefánsson et al., 2003).How exactly 

Psen1 loss-of-function mutations finally contribute to AD, and which substrates are critical, 

remains uncertain. 

 

6.2.3. Chemokine signaling: Growing evidence for its role in neuronal activity 

Chemokine signaling is well known for its versatile function in the 

haematopoietic/lymphopoietic system in general, and in particular for its role in attracting 

leukocytes to sites of tissue lesions (Ma et al., 1999; Rossi and Zlotnik, 2000; Szekanecz 

and Koch, 2001). Approximately 50 chemokines and 20 chemokine receptors are described 

to date and the receptors are exclusively GPCRs (Bachelerie et al., 2014). Chemokine 

receptors can either be stimulated by a single, specific ligand (e.g. XCR1 and its ligand 

XCL1), or by multiple different chemokines (e.g. CXCR2 with six ligands, including CXCL2) 

(Tran and Miller, 2003). Downstream signaling of chemokine receptors can activate various 

intracellular substrates, such as adenylate cyclases, phospholipases, GTPases as well as 

the MAPK and PI3-kinase pathways (Balkwill, 1998; Mellado et al., 2001; Neves et al., 

2002). Hence, it is conceivable that chemokine-induced activation of these signaling 

pathways might play a regulatory role in neuronal plasticity, for instance. In the CNS, 

chemokine signaling has been mainly described in the context of neuroinflammation, which 

involves the recruitment of chemokine receptor-expressing microglia by chemokine-releasing 

neurons (de Haas et al., 2007; Ubogu et al., 2006). However, a body of evidence, from 

studies using various neuronal cell types (e.g. hippocampal, Purkinje, and dopaminergic 

neurons), suggests that chemokine signaling might modulate neurotransmission and 

synaptic plasticity (Bertollini et al., 2006; Giovannelli et al., 1998; Guyon et al., 2006; 

Ragozzino et al., 2002). In this case, chemokine signaling might occur between neurons or 

as autocrine signaling, which would be a possible scenario within a primary neuron culture 

during the pooled RNAi screen (de Haas et al., 2007). Amongst other components of 
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chemokine signaling, the screen has discovered XCR1, a chemokine receptor without a 

known link to neurons, as a positive regulator of neuronal activity. This finding is supported 

by replication in screen A and B, using both analysis methods (screen A: enhanced Z-score 

rank 21, FDR = 1.26e-19; screen B: enhanced Z-score rank 7, FDR = 5.47e-21). XCL1 (also 

known as lymphotactin) is the unique ligand for XCR1 and studies with calcium indicators in 

immune cells have revealed that XCR1 stimulation leads to calcium mobilization (Bachem et 

al., 2010; Yoshida et al., 1998, 1999). Calcium mobilization most likely results from calcium 

release from the ER by IP3 receptors upon activation of phospholipase C by XCR1-coupled 

G-proteins. Thus, it might be plausible that XCR1 contributes to calcium signaling during 

neuronal activity. Nevertheless, it requires additional investigations to validate this finding. 

 

6.2.4. Comparison with the screen by Parnas et al. 

Currently the most comprehensive pooled genetic screen has been published by Parnas and 

colleagues (Parnas et al., 2015). They have used a genome-wide CRISPR-Cas9 knockout 

library in order to study the response of primary mouse dendritic cells to bacterial LPS. 

Therefore they sorted the cell pool based on Tnf expression, which is downstream of the 

LPS/Tlr4 pathway. This allowed them to identify many known regulators of the Tlr4-to-Tnf 

pathway. In particular, CRISPR-Cas9-mediated knockout screens are believed to improve 

screen data quality due to higher on-target efficacy and more pronounced phenotypes 

compared to shRNA-mediated knockdowns (Evers et al., 2016a; Morgens et al., 2016). 

Although both screens differ in more aspects besides the screening technology (e.g. cell 

type, phenotype, readout strategy), some quality control parameters might allow a 

comparison. As a measure of reproducibility Parnas and colleagues present Pearson-

correlation coefficients of normalized read counts between two independent screen 

replicates in the range of 0.45-0.54. Correlation of replicate samples of the pooled RNAi 

screen presented in this thesis is in all cases above 0.95. The difference probably reflects 

the different readout strategies and might be evidence for the robustness of a RNA barcode 

sensor. Both screens were analyzed by Z-score ranking and using the DESeq2 package. 

Parnas and colleagues describe that 50 out of the top 100 positive regulators overlap 

between the two analysis strategies. The same comparison was done for screen A in this 

thesis and 41 common genes could be found in the top 100 hit lists from both rankings (see 

Figure 19C). Thus, by this parameter both screens do not differ a lot. Worth mentioning is 

that Parnas and colleagues carried out a secondary screen where they used the same cell 

number as in the primary screen but infected with a 5-fold smaller sgRNA library, focusing on 

an extended hit list from the primary screen. This further improved the data quality and 

seems to be a worthwhile strategy for large-scale screens when cell numbers are limiting as 

in the case of many primary cell types.  
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6.3. Limitations of the approach 

The power of pooled genetic screens lies in the rapid and straightforward identification of 

genes that modulate a certain phenotype. A pooled genetic screen is, however, not able to 

resolve temporal or spatial information. These dimensions can at least to some extend be 

inferred from additional data sources such as pathway and protein localization databases or 

need to be determined by additional experiments (Fabregat et al., 2016; Ogata et al., 1998; 

Sprenger et al., 2008). A second general limitation which is inherent to large-scale screening 

approaches using shRNA libraries is the wide range of shRNA efficacy. Although shRNA 

design algorithms have improved over the years, it is still necessary to include multiple 

shRNAs per gene into the library (Kampmann et al., 2015). In particular, with the limited 

access to primary cells it is thus always a tradeoff between the number of genes included in 

a screen and the number of shRNAs per gene. Recent findings argue that on-target efficacy 

of sgRNAs seems to be higher and more predictable which will be beneficial for the next 

generation of pooled screens in primary neuron cultures (Evers et al., 2016a; Morgens et 

al., 2016). 

In the case of a pooled RNAi screen using the E-SARE sensor under synaptic stimulation it 

was expected that the screen is blind for the presynapse/axonal compartment. This is 

because the main signaling route is from the postsynapse along the dendrites to the cell 

soma and nucleus and via the axon and the presynapse to a connected neuron. Except for 

neurotrophin-induced signaling endosomes that translocate long distances from the 

presynapse to the soma, little is known about presynapse-to-nucleus signaling (Fainzilber et 

al., 2011). A recent study claims that during neuronal activity signaling from the presynapse 

to the nucleus might exist as well and that it contributes to the regulation of activity-

dependent gene expression (Ivanova et al., 2015). Ivanova and colleagues found that the 

nuclear and the presynaptic localization of the co-repressor CtBP1 is interconnected and 

depends on neuronal activity and presynaptic NAD/NADH levels. In all three screens and by 

both analysis strategies CtBP1 is a hit as a positive regulator, supporting its function during 

neuronal activity. Which function CtBP1 exactly fulfills during neuronal excitation and 

whether the long-distance transport between presynapse and nucleus is really necessary for 

regulation will require further studies. Nevertheless, it might support findings of presynapse-

to-nucleus signaling and that components can be identified using the pooled RNAi screen. 

 

6.4. Future aspects of pooled genetic screens in neuroscience 

This study expands the existing toolbox in functional genomics (RNAi-, CRISPR-Cas9 

screens) by a new readout strategy in which pathway activities are monitored by a barcoded 

RNA reporter. Compared to previous strategies, pathway monitoring by a barcoded reporter 
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makes cell sorting dispensable. This broadens the application spectrum and facilitates the 

screening procedure of cell types with complex morphologies such as primary neurons, 

where flow cytometry is challenging and unfavorable. The assay has been validated in this 

proof-of-concept study and is already able to dissect neuronal regulatory networks at so far 

unprecedented throughput. Screening throughput can still be increased by designing 

genome-wide next generation libraries. Data quality might be further improved by the 

adaptation towards a CRISPR-Cas9 screening technology (Evers et al., 2016b). This will in 

addition provide access to gain-of-function screens (Konermann et al., 2015). The 

corresponding AAV vector for this approach has been presented and preliminarily validated 

in this thesis.  

As emphasized earlier, several genes with associations to psychiatric diseases have been 

identified by the pooled RNAi screen. The majority of common variants in psychiatric patients 

that have been discovered by GWAS analyses seem to lie in regulatory elements (e.g. 

enhancers, core promoters) (Maurano et al., 2012). Usually the most proximal gene is 

reported as a potential risk gene although empirical validation is missing in most cases. 

Mutations in enhancer and promoter regions can result in up- and down-regulation of the 

corresponding gene. A complementary screening approach using CRISPR-Cas9-mediated 

gain-of-function and shRNA- or CRISPR-Cas9-mediated loss-of-function might facilitate and 

accelerate the empirical identification of risk genes at genome-wide GWAS loci. 

 

6.4.1. Importance for psychiatric drug discovery 

The pharmaceutical industry has experienced reduced productivity and increasing costs for 

first-in-class drug discovery over the last decades (Scannell et al., 2012). Main reasons are 

high attrition rates for drugs during clinical trials due to lack of efficacy and safety issues. 

This repression is particularly visible in psychiatric drug discovery where for example most of 

the current medications for schizophrenia have been discovered decades ago (Agid et al., 

2007; Kapur and Mamo, 2003; Papassotiropoulos and de Quervain, 2015). The lack of a 

primary target in many psychiatric disorders has made target-based drug discovery attempts 

using biochemical binding assays highly inefficient. In the last years, however, hope is 

emerging from the progress made with phenotypic screenings (Haggarty et al., 2016; Kaiser 

and Feng, 2015). Phenotypic screening describes in the best case the testing of compounds 

using a cellular or even in vivo model of the disease, under physiological conditions and with 

a readout that has translational validity into the clinic (Vincent et al., 2015). The increased 

biological relevance of the approach is believed to enhance the predictive validity and it 

expands the biological target space (Scannell and Bosley, 2016). Consequently, the target of 

a hit compound identified by phenotypic screenings is usually unknown. A recent survey on 
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how new medications were discovered revealed that between 1999 and 2008 FDA-approved 

first-in-class drugs mainly originated from phenotypic screenings (Swinney and Anthony, 

2011). In the field of CNS diseases 7 out of 9 new molecular entities (NME) came from 

phenotypic drug discovery and many still do not have an identified target or MoA.  

Genetic interference screens (RNAi, CRISPR-Cas9, arrayed or pooled) are already part of 

the standard repertoire for target identification during drug discovery in oncology, for 

example (Fennell et al., 2014; Schenone et al., 2013). Thus, the presented assay delivers 

the missing tool for target identification in phenotypic drug discovery for CNS diseases. As 

elaborated earlier functional genomics is currently experiencing a transformation from RNAi 

towards CRISPR-Cas9 knockout screens. However, it should not been forgotten that both 

screening technologies have their unique properties (Deans et al., 2016). Knockdown of a 

drug target using shRNAs is expected to phenocopy the inhibitory action of the drug on that 

target. The incomplete knockdown efficiency of shRNAs, a frequently criticized feature, 

allows the study of epistatic interactions between shRNA-mediated knockdown and drug-

mediated inhibition of a protein. The power of both systems has been recently compared and 

used for target identification. This study highlighted that shRNA-mediated knockdown is well 

suited for the identification of essential genes for a given phenotype, whereas CRISPR-

Cas9-mediated knockout is advantageous for the discovery of non-essential genes (Deans 

et al., 2016; Morgens et al., 2016). 
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7. Abbreviations 

AAV 

AD 

Adcy 

AMPA 

ASD 

BC 

BDNF 

BIC 

BPD 

cAMP 

CNS 

CNV 

CRISPR 

crRNA 

DAG 

DIV 

E/I 

ER 

FACS 

FBS 

FDR 

GPCR 

GWAS 

HS 

IEG 

IP3 

iPSC 

LPS 

LTP/LTD 

MAPK 

MDD 

MoA 

MPRA 

NGS 

NME 

NMDA 

PAM 

Adeno-associated virus 

Alzheimer disease 

Adenylate cyclase 

α-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid 

Autism spectrum disorder 

Barcode 

Brain-derived neurotrophic factor 

Bicuculline 

Bipolar disorder 

3’,5’‐cyclic adenosine monophosphate  

Central nervous system 

Copy number variation 

Clustered regularly interspaced short palindromic repeats 

CRISPR RNA 

Diacylglycerol 

Day in vitro 

Excitation-inhibition balance 

Endoplasmic reticulum 

Fluorescence-activated cell sorting 

Fetal bovine serum 

False discovery rate 

G-protein coupled receptor 

Genome-wide association study 

Horse serum 

Immediate early gene 

Inositol‐1,4,5‐trisphosphate 

Induced pluripotent stem cell 

Lipopolysaccharide 

Long-term potentiation/depression 

Mitogen-activated protein kinase 

Major depressive disorder 

Mode of action 

Massively parallel reporter gene assay 

Next-generation sequencing 

New molecular entity 

N-methyl-D-aspartate 

Proximal adjacent motif 
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PGC 

PMA 

PSD 

PV 

RNAi 

sd 

sem 

sgRNA 

shRNA 

siRNA 

SV 

SV40 

tracrRNA 

VGCC 

Psychiatric Genomics Consortium 

Phorbol-12-myristat-13-acetat 

Post-synaptic density 

Parv-albumin 

RNA interference 

Standard deviation 

Standard error of the mean 

Short guide RNA 

Short hairpin RNA 

Small interfering RNA 

Structural variant 

Simian virus 40 

Trans-activating crRNA 

Voltage-gated calcium channel 
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