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Abstract

The iCLIP and eCLIP techniques facilitate the detection of protein–RNA interaction sites at high resolution, based on
diagnostic events at crosslink sites. However, previous methods do not explicitly model the specifics of iCLIP and
eCLIP truncation patterns and possible biases. We developed PureCLIP (https://github.com/skrakau/PureCLIP), a
hidden Markov model based approach, which simultaneously performs peak-calling and individual crosslink site
detection. It explicitly incorporates a non-specific background signal and, for the first time, non-specific sequence
biases. On both simulated and real data, PureCLIP is more accurate in calling crosslink sites than other state-of-the-art
methods and has a higher agreement across replicates.
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Background
The interactions between RNAs and RNA binding pro-
teins (RBPs) play essential roles in both transcriptional
and post-transcriptional gene regulation. RBPs bind on
several sites of both coding and non-coding RNAs with
a more or less strong binding affinity for both RNA
sequence and structure. To understand fully the regula-
tory processes mediated by RBPs, it is crucial to deter-
mine accurately the full landscape of interactions for a
protein of interest. State-of-the-art technologies using
crosslinking and immunoprecipitation combined with
high-throughput sequencing (CLIP-seq) allow genome-
wide binding site detection with high resolution. Themost
commonly used protocols in this field are HITS-CLIP [1],
photoactivatable ribonucleoside-enhanced CLIP (PAR-
CLIP) [2] and since 2010, individual-nucleotide CLIP
(iCLIP) [3]. All methods use UV light, which causes the
formation of crosslinks at protein–RNA interaction sites.
These crosslinks subsequently increase the probability for
base transitions, deletions, and truncations during the
reverse transcription. Such diagnostic events can be used
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to localize the crosslink position. However, due to the lig-
ation of an adapter at the 5′ end of the RNA fragments, the
HITS-CLIP and PAR-CLIP methods capture only cDNAs
that are entirely read by the reverse transcriptase, i.e.,
not truncated. The fraction of truncated and thus, lost
fragments is typically over 80% [4].
iCLIP-seq uses a cleavable adapter in combination with

an additional circularization step, which allows all cDNA
fragments to be amplified and sequenced. As a conse-
quence, valuable information about the exact crosslink
site can be retained from truncated cDNAs, or more
precisely from the read start sites they cause. Recently,
various improvements to the protocol were proposed
to alleviate previous limitations [5, 6]. Another protocol
called eCLIP was published in 2016 [7]. Like iCLIP, it pro-
vides single-nucleotide resolution by capturing truncated
cDNAs but, due to the optimization of several steps, it
improves the specificity of called binding sites. To date,
eCLIP datasets for more than 120 different proteins have
been published by the ENCODE consortium [8, 9]. While
previous CLIP-seq experiments often had matched IgG
control experiments, which suffer from sparsity and high
amplification rates [7], the eCLIP-seq protocol is designed
to generate a size-matched input control. This input con-
trol is sampled prior to the immunoprecipitation and thus,
contains the signal of a non-specific background.
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To infer target-specific RBP binding regions from
iCLIP/eCLIP data, it is crucial to account for differ-
ent sources of biases, such as transcript abundances,
crosslinking sequence preferences [4], and mappability.
The crosslinking sequence bias can also be observed
within the eCLIP input data, since it “represent[s] RNAs
crosslinked to many different RBPs and should reflect
the sequence preferences at crosslink sites that are com-
mon to a mixture of RBPs” [5]. Haberman et al. showed
that certain polypyrimidine-rich k-mers, which they call
crosslink-associated (CL)motifs, are enriched at read start
sites in both input and target eCLIP data compared to
upstream regions [5].
Besides background noise, such as the signal from sticky

RNA fragments or non-specific crosslink events within
CL motifs, the binding of background proteins is a major
challenge in the analysis of CLIP-seq data. A recent
study analyzing previously published PAR-CLIP datasets
showed that if no control dataset is used for correction, up
to 45% of the called binding sites overlap with background
binding sites [10]. Background binding regions that are
common to several CLIP-seq datasets have been system-
atically identified [11] and can be used to validate called
binding sites. These findings demonstrate the importance
of control experiments, such as input experiments, to
reduce the number of false positives at such regions.
Several tools have been developed for the computa-

tional analysis of HITS-CLIP and PAR-CLIP data [12–14],
but very few tools have been developed that are tailored
for the specific analysis of iCLIP/eCLIP data. In addi-
tion, previous methods for CLIP-seq data analysis do not
fully take into account possible sources of bias, such as
transcript abundances and non-specific CL motifs, which
heavily affect iCLIP and eCLIP data [5, 15], thereby they
return a high number of false calls. The tool Piranha
[13] performs strand-specific peak-calling. It supports the
incorporation of covariates, but does not explicitly nor-
malize for a non-specific background signal. It models
the underlying bin-wise read count distribution to com-
pute a genome-wide significance threshold above which
peaks are called. CLIPper [7] is also a strand-specific peak-
calling method designed by members of the ENCODE
Consortium to analyze published eCLIP datasets. It incor-
porates annotations from the reference genome and com-
putes significance thresholds gene by gene. Both tools,
Piranha and CLIPper, are peak-calling methods that do
not detect individual crosslink sites. Their limitation is
that they potentially miss low-affinity binding regions
with a clear iCLIP truncation pattern due to the arbitrary
setting of a threshold on the number of reads. In addi-
tion, they are sensitive to call peaks, which is caused, for
example, by artifacts within high abundant RNAs. The
CITS method on the other hand aims to call individ-
ual crosslink sites from iCLIP-seq data [16]. It clusters

reads based on their start sites and uses a statistical test
to detect sites within such clusters containing a signifi-
cant fraction of read starts. A drawback of this method
is that it does not explicitly model the relation between
read start counts and the read coverage generated by
pulled-down iCLIP fragments. As a result, it might also
be sensitive to artifacts within highly abundant RNAs. In
contrast, PIPE-CLIP [17] is an online pipeline for the anal-
ysis of HITS-CLIP, PAR-CLIP, and iCLIP data designed to
call peaks and crosslink sites separately, which are sub-
sequently merged. Although constituting a powerful idea,
one drawback of this method is that it is not designed to
include control experiments in the analysis. In addition,
being designed to be an online method, its application
for transcriptome-wide analysis is not practically feasible.
As described above, both CLIP-seq peak-calling meth-
ods and individual crosslink site detection methods have
advantages and disadvantages, but currently no method
exists that addresses peak-calling and individual crosslink
site detection simultaneously while correcting for possible
biases.
We have developed PureCLIP, a method to cap-

ture target-specific protein–RNA interaction footprints
from iCLIP/eCLIP-seq data. PureCLIP calls individual
crosslink sites considering both regions enriched in
protein-bound fragments and iCLIP/eCLIP specific trun-
cation patterns. Our method uses a non-homogeneous
hidden Markov model (HMM) to incorporate additional
factors into the model, such as a non-specific background
signal from input experiments and CL motifs, to reduce
the number of false positives. We have exhaustively val-
idated the superiority of PureCLIP over several existing
methods in various settings. First, we designed a realis-
tic iCLIP/eCLIP simulation setup and demonstrated that,
over a wide range of simulation parameters, PureCLIP
is up to 7–15% more precise than other methods in
detecting target-specific crosslink sites. Second, due to
the lack of an experimental gold standard, we selected
four datasets of published iCLIP/eCLIP data for evalu-
ation where the RBP motif or the predominant binding
region of the RBP is known.We consistently observed that
PureCLIP is better than other methods in determining
bona fide binding site locations. In particular, the incor-
poration of covariates, such as the input signal and CL
motifs, increases the precision of PureCLIP up to 8–10%
compared to previousmethods. Third, the replicate agree-
ment of target-specific crosslink sites called by PureCLIP
is up to 8–20% higher than other methods, indicating that
PureCLIP is highly specific in crosslink site detection.

Results
Overview of the approach
PureCLIP aims to detect individual crosslink sites origi-
nating from interactions between RNAs and the protein
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targeted by the experiment. To accomplish this, we
address two objectives: (1) detecting regions enriched in
mapped reads caused by pulled-down RNA fragments and
(2) detecting crosslink sites where a significant fraction of
read starts accumulate at the same position, originating
from truncated cDNAs (Fig. 1a).
In the following, we give an overview of how we

derive this information, assuming that the given data are
iCLIP/eCLIP-seq reads that have been mapped to either
a genome or a transcriptome and that polymerase chain
reaction (PCR) duplicates have been removed. The output
of PureCLIP consists of individual crosslink sites asso-
ciated with a score. Since multiple crosslink sites can
occur within one binding region, the crosslink sites are
optionally merged.

HiddenMarkovmodel
CLIP-seq data feature a spatial dependency between
neighboring positions. Inferring crosslink sites from the
observed data can be considered to be a segmentation
problem and we address this using a HMM. The HMM
has a single-nucleotide resolution and each position can
be categorized either as non-enriched or enriched, indi-
cating whether the position is enriched or not in protein
bound fragments. In addition, each position can also

be categorized as non-crosslink or crosslink, indicating
whether it represents a crosslink site or not. This com-
bination results in four hidden states: (1) non-enriched +
non-crosslink, (2) non-enriched + crosslink, (3) enriched +
non-crosslink, and (4) enriched + crosslink (Fig. 1). State
(2) corresponds to non-specific crosslink sites and it is
included in the model for mathematical completeness.
We are interested in all sites with a hidden state (4), i.e.,
sites that are enriched in pulled-down RNA fragments and
show the truncation pattern (Fig. 1a).
To detect enriched + crosslinked sites, PureCLIP uses

two signals derived from the mapped reads: (1) the
pulled-down fragment density, which is a smoothed signal
derived from the read start counts and holds information
about the enrichment within the current region, and (2)
the read start counts themselves, which hold information
about potential truncation events (Fig. 1). Importantly,
for the first signal (1), we do not use position-wise read
counts, since for iCLIP/eCLIP data these are strongly
influenced by truncation events in the neighborhood. On
the other hand, using counts within larger bins would not
be very accurate in estimating the position-wise signal of
the pulled-down fragments. To address this problem, we
compute a Gaussian kernel density estimate [18] for each
position based on the raw read start counts. Then one

a)

b)

c)

Fig. 1 Overview of the PureCLIP approach. a PureCLIP starts with mapped reads from a target iCLIP/eCLIP experiment and derives two signals: the
pulled-down fragment density and individual read start counts. Based on these two observed signals, it infers for each position the most likely
hidden state. The goal is to identify all sites with an enriched + crosslinked state. Individual crosslink sites can then be merged to binding regions. b
Additionally, information from input control experiments can be incorporated. Its fragment density is used to correct for a non-specific background
signal, which reduces the number of false calls. c Furthermore, PureCLIP can incorporate information about CL motifs to reduce false calls caused by
non-specific crosslinks. CL crosslink-associated
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type of distribution is used to model these pulled-down
fragment densities, with one set of parameters for the
non-enriched state and one for the enriched state, assum-
ing that the enriched state is more likely to cause high
fragment density values than the non-enriched state. Simi-
larly, read start counts are modeled under the assumption
that the crosslink state is more likely to generate a higher
fraction of reads starting at one position than the non-
crosslink state. To account for differently covered regions,
the parameters of the read start count distributions at
individual positions depend on the pulled-down fragment
density.
The fragment density distributions and the read start

count distributions are combined to obtain the emission
probabilities of each of the four hidden states. For each
position, we can then address the question: which of the
four hidden states most likely caused the observed data?

Incorporation of additional factors into the PureCLIPmodel
The observed signals can be biased by a number of differ-
ent factors, such as transcript abundance or crosslinking
sequence preferences. An important feature of PureCLIP
is the incorporation of position-wise external data into
the HMM framework to correct for such biases. We do
this using generalized linear models, while distinguishing
between different types of covariates.
We expect regions within highly abundant RNAs to

show more read start counts than regions within less
abundant RNAs. This holds for both target binding
regions and for regions with non-specific background
noise. To normalize for this, information from input con-
trol experiments can be included to influence the emission
probability distributions of the non-enriched and enriched
states. With this, we aim to reduce the number of false
positives for highly abundant RNAs (see Fig. 1b) while
increasing the sensitivity for less abundant RNAs.
Furthermore, we expect a higher number of read start

counts, for example, at positions within CL motifs. Thus,
to correct for the crosslinking sequence bias, informa-
tion about CL motifs can be incorporated (see Fig. 1c) to
influence the non-crosslink and crosslink emission distri-
butions.

Evaluation of the performance of PureCLIP in comparison
to previous strategies
Evaluating a method’s performance in analyzing CLIP-
seq data is not trivial, since no gold standard of bind-
ing regions or crosslink sites exists. To address this:
(1)We assess the precision and recall of PureCLIP in basic
mode, i.e., without additional covariates, in calling indi-
vidual crosslink sites on simulated data. (2) We then use
real iCLIP and eCLIP datasets of proteins with known
binding characteristics, such as known sequence motifs
or known predominant binding regions. We assess the

ratio of sites called by each method that fall within these
motifs or inside those binding regions. Called crosslink
sites within such regions are defined as true positives.
Here we applied PureCLIP in four different settings: in
basic mode, incorporating the input signal, incorporat-
ing CL motifs, and incorporating both the input sig-
nal and CL motifs simultaneously. Although extremely
valuable, this evaluation approach is limited since it is
unknown how far the protein of interest can also bind
to alternative motifs or outside the defined bona fide
binding regions. For this reason, (3) we also assessed
the agreement of called crosslink sites between eCLIP
replicates.
We compared PureCLIP with a range of previous strate-

gies, most importantly CITS [16], which, like PureCLIP,
can call individual crosslink sites rather than broader peak
regions. Additionally, since to date no other tool exists
that addresses both peak-calling and crosslink site detec-
tion simultaneously for truncation-based CLIP-seq data,
we combine the peak-calling methods Piranha [13] and
CLIPper [19] with CITS. More precisely, we use the inter-
section of the called peaks and the CITS crosslink sites.
While this intersection depends on the selected p value
thresholds for both methods, the resulting sites are scored
in two different ways, using either the score from the peak-
calling method (referred to as Piranhasc or CLIPpersc)
or from CITS (referred to as CITSsc) (for details see
“Methods”). With this, we aim to cover the range of
currently available strategies for detecting protein–RNA
interactions at single-nucleotide resolution. To ensure a
comparative assessment that is as impartial as possible,
we also compared PureCLIP with combinations based on
different p value thresholds and found that these do not
affect the results (see Additional file 1: Figure S14).
Additionally, we applied the simplest possible approach,

namely calling all sites with a read start count above a
certain threshold. This gives us an understanding of how
different methods perform in different scenarios com-
pared to this naive approach. In the following, we refer to
this as the simple threshold method.

PureCLIP outperforms previous strategies on simulated
iCLIP/eCLIP-seq data
Since the only available CLIP-seq simulator [20] is lim-
ited to PAR-CLIP and HITS-CLIP data, we implemented
our own simulation workflow to mimic the experimen-
tal steps of the iCLIP and eCLIP protocols. Starting from
real RNA-seq data and known binding regions of a certain
protein, our simulation aims to reproduce the charac-
teristics of iCLIP/eCLIP data as accurately as possible.
To simulate a target signal, our workflow uses aligned
RNA-seq data. It pulls down a certain fraction of the
fragments that cover a known binding region and then
applies truncations according to a given rate (for details,
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see “Methods”). Furthermore, the non-specific binding of
background proteins is simulated using published com-
mon background regions and random noise from RNA-
seq data is added.
To evaluate the performance of PureCLIP under differ-

ent conditions, we produced three different datasets. For
these, we used varying pull-down rates for the target sig-
nal, i.e., either 100 or 50% of the RNA fragments that
overlap a target binding region are selected and further
modified where required. Reducing the pull-down rate
enables us to get an idea for how the different methods
perform for proteins with overall lower binding affini-
ties. Additionally, we simulated non-specific background
binding for two of the datasets (see Fig. 2).
For the evaluation, we define a called crosslink site as a

true positive if a target crosslink site was simulated at the
same position. The precision of a method is calculated as
the fraction of true positives among the called crosslink
sites. We first investigated the precision versus the num-
ber of true positive crosslink sites. The results in Fig. 2
(top) demonstrate that PureCLIP reaches a higher preci-
sion in detecting individual crosslink sites than previous
strategies for all simulation settings. In particular for the
top-ranking sites, it has a far better precision compared
to other methods, while being comparable to CITSsc +
CLIPper for more sensitive settings. However, it is worth
mentioning here that sensitive settings that are charac-
terized by a precision below 50% are generally not of
interest.

Furthermore, we investigated whether the crosslink
sites called by PureCLIP could be used to recover tar-
get binding regions (i.e., known binding regions in which
crosslink sites were simulated) or if they cluster within
a few regions with high fragment density. A target bind-
ing region is counted as a true positive, if it could be
recovered with at least one called crosslink site. The pre-
cision is defined as the percentage of called crosslink sites
within target binding regions. For all simulation settings,
the results show that PureCLIP recovers binding regions
with higher precision compared to previous strategies
(Fig. 2, bottom).

PureCLIP detects bona fide binding regions with higher
precision compared to previous strategies
We used publicly available eCLIP (PUM2, RBFOX2, and
U2AF2) [7] and iCLIP (U2AF2) [21] datasets to mea-
sure the performance of the different strategies in call-
ing crosslink sites within bona fide binding regions. For
PUM2 and RBFOX2, these binding regions were defined
by their known sequence motifs (see Additional file 1:
Figure S1), while for U2AF2, we make use of its known
predominant binding region ∼11 nt upstream of 3′ splice
sites [21]. Here, a sequence motif based definition of
the binding region is not applicable, since U2AF2 binds
to poly(U) tracts, which coincide with non-specific CL
motifs.
For the PUM2 data, all strategies revealed an accumula-

tion of called crosslink sites at the 5′ end of PUM2 motif

Fig. 2 Performance on simulated iCLIP-seq data. Precision vs number of true positive crosslink sites (top) and vs number of true positive binding
regions, i.e., regions with at least one correctly called crosslink site (bottom) for three different simulation settings. The characteristics of each
simulation are reported below the plots. All strategies were applied using different sensitivity settings, i.e., different p value or score thresholds. The
leftmost point of each curve corresponds to the number of true positives associated with the lowest p value or the highest score the strategy can
report. The curves of Piranha + CITSsc overlap with those of CITS
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occurrences and another slightly weaker accumulation
towards the 3′ end (Fig. 3a, left panel). For RBFOX2 eCLIP
data, we observe an accumulation of called crosslinks at
the two guanines within the motif (Fig. 3b, left panel).
These crosslinking patterns are in agreement with pre-
vious studies [7, 16] and, since crosslinks do not pref-
erentially occur at guanines, are most likely caused by
target-specific protein–RNA interactions.

Performance of PureCLIP without incorporating external
data as covariates
We first investigated the precision of PureCLIP in basic
mode, i.e., without the incorporation of any covariates,
where calls are considered true positives if they fall within
the motif area or upstream of 3′ splice sites. We observed
that PureCLIP outperforms all other methods even with-
out covariates in three out of four datasets, as shown in
Fig. 3 (right panel). Interestingly, when applying strategies
that merge results from peak-calling tools and CITS using
the peak-calling scores for ranking (Piranhasc + CITS and
CLIPpersc + CITS), we always get a lower precision than
when using the CITS crosslink site detection score for
ranking (Piranha + CITSsc and CLIPper + CITSsc).

Incorporation of input control data improves crosslink site
detection
We expect the observed pulled-down fragment densities
to be biased by different factors, among others by RNA
transcript abundances. The published eCLIP datasets
have input control experiments [7], which provide infor-
mation about the non-specific background signal, i.e.,
RNA fragments crosslinked to background proteins. We
observe significant correlations between the fragment
density of the eCLIP target dataset and the input dataset
with Pearson correlation coefficients ranging from 0.36
to 0.42 (p values < 2.2 × 10−16) (see Additional file 1:
Figure S12a). Therefore, the incorporation of the input
signal into the PureCLIP framework gives us the possi-
bility to indirectly normalize for transcript abundances,
crosslinking preferences, and other local biases.
In detail, the PureCLIP framework uses the eCLIP input

signal to model the emission probabilities of the non-
enriched and enriched states for the observed data, i.e., the
pulled-down fragment densities. This means that instead
of using one global emission probability distribution for
the non-enriched or enriched states, the position-wise
input signal is used to model the expected mean param-
eter of each of the two emission probability distributions
(see Additional file 1: Figure S12b). With this, we aim
to reduce the number of false positives, for example,
within highly abundant RNAs while increasing the sensi-
tivity within lowly abundant RNAs. The evaluation based
on bona fide binding regions from real data shows that
incorporating the input signal improves the precision of

PureCLIP for all eCLIP datasets and over all sensitivity
thresholds (Fig. 3a–c, right panel). In particular, for the
top-ranking sites, this greatly improves the precision by
reducing the number of false positives in regions with a
high non-specific background signal.

Incorporation of CLmotifs greatly improves crosslink site
detection
Another major bias within CLIP-seq data is caused by
crosslinking sequence preferences, which also give rise to
non-specific crosslink events at sites with no direct inter-
action between the target protein and the RNA. Hence,
this bias influences the individual read start counts. Since
our method is designed to detect crosslinking patterns, it
also detects a certain fraction of non-target crosslink sites.
For PUM2 and RBFOX2, both having known sequence
binding motifs distinct from reported CL motifs [5], we
observed that 33 and 37% of the top 1000 sites called
by the basic version of PureCLIP overlap with regions
harboring a CL motif.
To reduce the number of such potential false posi-

tives, we incorporate information about CL motifs into
our model. This can be particularly helpful in filtering
out non-specific crosslink sites when the protein of inter-
est preferentially binds sequences that are clearly distinct
from CL motifs. For this purpose, CL motifs have to be
learned first and we do this directly from the data: (1)
we call crosslink sites in the eCLIP input data, (2) we
then learn CL motifs on these sites using DREME [22],
and (3) we apply FIMO [23] to compute the occurrences
of those motifs and their scores within the reference
genome or transcriptome. These position-wise scores are
then incorporated into the HMM framework of PureCLIP
to model the emission probabilities of the non-crosslink
and crosslink state for the observed data, i.e., the read
start counts. This enables a correction for the crosslinking
sequence bias at CL motif positions. As an example, the
four most enriched CL motifs from the analysis of PUM2
eCLIP input data are shown in Fig. 4.
The results demonstrate that for PUM2 data (Fig. 3a)

and, in particular, for RBFOX2 eCLIP data (Fig. 3b), the
incorporation of CLmotif scores greatly improves the pre-
cision in calling crosslink sites within bona fide binding
regions. Interestingly, the simultaneous incorporation of
the input signal and CL motif scores improves the preci-
sion of PureCLIP even further (Fig. 3a, b). Moreover, we
can see that for the protein U2AF2, whose sequence motif
coincides with CL motifs, the performance of PureCLIP
stays robust and is not impaired by the incorporation
of CL motif scores. Altogether, we could see that when
incorporating CL motifs, PureCLIP consistently performs
better than previous strategies in positioning called sites
either at the known binding motif or ∼11 nt upstream of
3′ splice sites for U2AF2 (Fig. 3a–d).
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a)

b)

c)

d)

Fig. 3 Accuracy in detecting bona fide binding regions (depicted by gray areas). Left panel: a Distribution of the distances of the top 1000 sites
called by each method to the closest PUM2 motif start position. b Same as (a), but for RBFOX2 motif start positions. c, d Distribution of the distances
of the top 5000 sites called by each method with respect to 3′ splice sites. Right panel: Precision of the called sites for all methods at different
sensitivity settings, i.e., using different p value or score thresholds. The leftmost point of each curve corresponds to the number of calls within the
bona fide binding region associated with the lowest p value or highest score the strategy can report
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Fig. 4 CL motif analysis of PUM2 eCLIP input data. Logo representation of the four top scoring motifs among the first 5000 PureCLIP crosslink sites
called on the input dataset. Motifs were detected with DREME and a 10-bp window around the crosslink sites. As previously reported [5],
polypyrimidine-rich motifs are overrepresented. CL motifs of the other datasets are shown in Additional file 1: Figure S13

Robustness of PureCLIP over a range of different
bandwidths
PureCLIP depends on the bandwidth used for the
smoothing of the read start counts when estimating the
pulled-down fragment density. The optimal bandwidth
depends on the coverage and the given cDNA length
distribution, e.g., the longer the cDNAs, the larger the
optimal bandwidth. For the evaluations in this study,
we used a bandwidth of 50 bp. The results shown in
Additional file 1: Figures S15 and S16 demonstrate that
PureCLIP reaches a higher precision robustly for a range
of different bandwidth parameters, compared to previous
strategies.

PureCLIP has a higher agreement of called sites between
eCLIP replicates compared to previous strategies
Besides using known binding regions for evaluation, we
aimed to assess the performance of the different methods
independently of that information, since in the end the
exact binding regions and crosslink sites remain unknown.
For this reason, we explored each method’s precision
based on the agreement of called crosslink sites between
eCLIP replicates, assuming that target-specific binding
events are more likely to be observed in both replicates
than non-specific noise. We applied all methods to the
individual eCLIP replicate datasets andmeasured for each
sensitivity threshold how many of the x called crosslink
sites in replicate 1 overlap with the top x ranking crosslink
sites in replicate 2.
Besides target-specific binding events, other factors

such as background proteins binding to highly abundant
RNAs or the crosslinking sequence bias (see Additional
file 1: Section 7) contribute to the measured replicate
agreement. We, therefore, count only those sites to the
agreement that are also enriched over the input and
located outside of regions that are known to be prone
to background binding (as published in [11]). Thus, we
avoid overestimating the precision of methods that con-
sistently call false crosslink sites in both replicates due
to systematic reproducible biases. This potentially also
excludes a certain number of true positives that cannot be
distinguished from non-specific background noise, but we

expect this to affect all methods more or less equally and
thus, still allow for a fair comparison.We refer to this mea-
surement as the bias-corrected replicate agreement (see
“Methods” for details).
To further prevent a contribution from common non-

specific crosslinks, for PUM2 and RBFOX2 we counted
only sites to the bias-corrected agreement that are not
located within CL motif occurrences. Since the target
motifs of these two proteins are clearly distinct from CL
motifs, we expect that we do not miss relevant target-
specific sites by this. The U2AF2 iCLIP data are excluded
from this evaluation, since no input control experiment is
available and thus, the bias-corrected replicate agreement
cannot be computed.
Our evaluations show that PureCLIP has a higher bias-

corrected replicate agreement for the top-ranking sites
compared to previous strategies, in all four PureCLIP
settings and over all three eCLIP datasets, as depicted
in Fig. 5. Furthermore, the performance of PureCLIP in
basic mode is at least comparable to the other methods,
while PureCLIP incorporating the input signal and CL
motifs strictly outperforms all other methods. While the
individual use of these covariates already improves the
agreement, the best results are obtained when both of
them are incorporated simultaneously.
Notably, the other strategies show a particularly low

bias-corrected replicate agreement within their top-
ranking sites. For strategies based on peak-calling scores,
this might be due to peaks corresponding to background
binding regions. However, except for the simple threshold
method, the top-ranking sites of all other strategies show
a lower agreement before this bias correction in compar-
ison to our method (see Additional file 1: Figures S17a,
S18a and S19a).

PureCLIP captures strongest interaction footprints, not
top-ranking peaks
All previous crosslink site detection strategies, and in
particular those based on peak-calling scores such as
Piranhasc + CITS and CLIPpersc + CITS, call more sites
in regions of high fragment density than PureCLIP in
both basic mode and with the addition of covariates (see
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a)

b) c)

Fig. 5 Agreement of called sites between replicates. For each eCLIP dataset (a: PUM2, b: RBFOX2, c: U2AF2), we report for each given number of
called sites x in replicate 1 (corresponding to a certain p value or score threshold), the percentage that were also called within the top x ranking sites
in replicate 2 after correcting for different biases (see “Results” and “Methods”). The leftmost point of each curve corresponds to the number of calls
associated with the lowest p value or highest score the strategy can report. rep1 replicate 1

Additional file 1: Figures S17f and S18f). Further, the
results show that these strategies also call far more sites
within known common background binding regions than
PureCLIP, even when not incorporating covariates. More-
over, the other strategies have far less bias-corrected
agreeing calls between the two eCLIP replicates (Fig. 5).
This indicates that the sites within the highest peaks do
not necessarily correspond to reproducible target-specific
crosslink sites. These findings are in line with the results
of the evaluation based on bona fide binding regions
(Fig. 3), where strategies based on peak-calling scores
(Piranhasc + CITS and CLIPpersc + CITS) perform
worse than corresponding strategies based on crosslink
site detection scores (Piranha + CITSsc and CLIPper +
CITSsc). In other words, most of the CITS sites within
top-ranking peaks are not located within regions match-
ing the known binding characteristics of the proteins, and
are, thus, likely to be false positives.

PureCLIP crosslink sites allow accurate detection of larger
binding regions
As most of the currently available strategies are designed
to call peaks rather than individual crosslink sites, we
investigated the performance of PureCLIP at the level
of called binding regions for the proteins PUM2 and
RBFOX2 using their known sequence motifs. The under-
lying assumption here is that for called regions, a higher
motif density corresponds to a higher accuracy. Therefore,

we computed region-wise motif scores, as described in
detail in Additional file 1: Section 8. PureCLIP computes
binding regions by merging crosslink sites within a certain
distance, and here we use the default parameter of 8 bp.
Additional file 1: Figure S20 shows that for PUM2, Pure-
CLIP calls regions with a strictly higher accuracy com-
pared to the other evaluated peak-calling methods. For
RBFOX2, PureCLIP has a clearly higher accuracy when
incorporating CL motifs, while showing a comparable
accuracy to other methods when run in its basic mode or
only incorporating the input signal. The results show that
PureCLIP can detect not only individual crosslink sites
but also binding regions around the target motifs with a
higher accuracy compared to the evaluated peak-calling
methods.

Discussion
The detection of target-specific protein–RNA interaction
sites from single-nucleotide resolution CLIP-seq data is
a remaining challenge. Previous methods for the analysis
of such data typically suffer from having a large frac-
tion of false positives, as they are sensitive to different
sources of biases. Peak callers such as Piranha, which call
regions enriched in read coverage without explicitly mod-
eling read start counts at truncation sites, are prone to
capturing a high background signal that does not originate
from target-specific crosslink events. On the other hand,
CITS calls sites with a significant fraction of read starts,
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but it cannot distinguish whether such sites are caused
by target-specific crosslinks or by non-specific crosslinks
within highly abundant regions. In addition, CITS does
not account for biases, such as different transcript abun-
dances or the crosslinking sequence bias, which can
increase the number of false positives.
To overcome these limitations, we propose a new statis-

tical approach called PureCLIP. PureCLIP calls crosslink
sites considering both regions enriched in protein-bound
fragments and the specifics of iCLIP/eCLIP truncation
patterns. It also explicitly models possible sources of bias,
such as a non-specific background signal and crosslink-
ing sequence bias to reduce the number of false positives.
Both these features, and in particular the incorporation
of CL motifs, which represent the non-specific crosslink
sequence bias, are an innovation in comparison to existing
methods.
A comprehensive evaluation based on simulated and

real data has shown that in basic mode, PureCLIP reaches
a higher precision compared to previous strategies in
almost all cases. Moreover, for real data, the incorpora-
tion of input signals and CL motifs additionally improves
the precision of PureCLIP in capturing crosslink sites
within bona fide binding regions. For the analysis of
PUM2 and RBFOX2 data, note that for the 50 top-ranking
sites (Fig. 3a, b, right panel), the precision of PureCLIP
including the input signal is much higher in compari-
son to PureCLIP in basic mode or to previous strategies.
The results indicate that the top-ranking sites called by
other strategies are likely to be caused by a non-specific
background signal, which is resolved by PureCLIP when
incorporating the input signal.
PureCLIP incorporating CL motif scores strictly out-

performs all other strategies over all four datasets. In
fact, PureCLIP’s precision in this setting increases, espe-
cially for the eCLIP datasets of proteins whose sequence
motifs do not coincide with CL motifs, namely PUM2
and RBFOX2 (Fig. 3a, b). For RBFOX2 eCLIP data, the
increase is particularly remarkable. This is also the only
dataset where PureCLIP without incorporating CL motifs
shows a lower precision than strategies that make use
of the CITS crosslink site detection score (Fig. 3b). The
main reason is that in basic mode, PureCLIP is more
sensitive than CITS in also calling non-specific crosslink
sites, in particular for this dataset (see Additional file 1:
Figure S18d). In general, a high sensitivity is desired, since
we also want to detect crosslink sites for low-coverage
regions, for example within lncRNAs or for proteins with
lower binding affinity. In addition, the number of false
positives can be reduced by incorporating CL motifs.
Interestingly, when incorporating both the input signal
and CL motifs simultaneously, the precision of PureCLIP
increases even further, highlighting the huge benefit of the
incorporation of both covariates into the model.

Compared to previous strategies, PureCLIP achieves
higher agreement in calling RBP-bound sites between
eCLIP replicates for bona fide crosslink sites. These are
sites where the fragment coverage is enriched over the
input signal and they do not overlap known background
binding regions and, for PUM2 and RBFOX2, they are not
located within CL motif occurrences. Interestingly, the
simple threshold method, which detects crosslink sites by
applying a cutoff on the read start counts, has the worst
performance of all on both simulated and real data, as
expected, but by far the highest replicate agreement for
all datasets when not explicitly accounting for biases. This
indicates that, beside target-specific crosslink sites, other
factors also contribute to this raw replicate agreement,
and that to obtain a meaningful evaluation of all methods,
we need to compute a bias-corrected replicate agree-
ment. These results also strongly suggest that it would be
valuable in the analysis of iCLIP/eCLIP data to include
replicate information explicitly (as already suggested by
[15]) but, importantly, this needs to be done carefully
while addressing possible sources of biases.
It is also important to stress that for all analyzed eCLIP

datasets, PureCLIP calls far fewer crosslink sites within
regions of high fragment density (see Additional file 1:
Figures S17f, S18f, and S19f) and within known com-
mon background binding regions [11] (see Additional
file 1: Figures S17e, S18e, and S19e) compared to all
other strategies. This even holds for PureCLIP in basic
mode. Taken together with PureCLIP’s general higher pre-
cision, these findings demonstrate how important it is in
the analysis of CLIP-seq data not only to call peaks but
also to model accurately the counts of individual read
starts, which indicate potential truncation events. This
unique feature of PureCLIP enables a distinction to be
made between target-specific interaction footprints and
non-specific crosslink patterns within highly abundant
background binding regions.
Although the main objective of PureCLIP is to detect

individual target-specific crosslink sites, it is sometimes
desirable to identify larger binding regions for the pro-
tein under study. In the current version, PureCLIP can
merge crosslink sites into larger binding regions based on
their genomic distance. Further work is needed to address
this task in a more sophisticated manner. However, the
results for simulated data demonstrate that individual
crosslink sites also recover a large number of simulated
binding regions with higher precision compared to the
other strategies. Additionally, the results show that Pure-
CLIP can detect not only individual crosslink sites but also
binding regions around the target motifs of PUM2 and
RBFOX2 with higher accuracy compared to the evaluated
peak-calling methods.
Currently, PureCLIP allows us to incorporate covari-

ates that influence either the emission probabilities of the
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pulled-down fragment density or the read start counts.
Besides information on common background binding
regions and replicate agreement, mappability informa-
tion is a promising candidate that will be investigated
further inside the PureCLIP model. Furthermore, the
PureCLIP framework could be extended to model non-
homogeneous transition probabilities between states, for
example, if we want to include information about the
sequence or structure binding preferences of the tar-
get protein. Given the specifics of the PureCLIP model,
besides iCLIP and eCLIP data, it can be used to analyze
data from similar single-nucleotide resolution protocols,
such as irCLIP [24], iCLAP (cross-linking and affinity
purification) [25], and miCLIP (methylation iCLIP), a cus-
tomized version of iCLIP for capturing m5C methylated
sites on RNAs with nucleotide resolution [26]. Addition-
ally, PureCLIP could be adapted to model other types
of diagnostic events, such as mutations and deletions,
from the PAR-CLIP [2], HITS-CLIP [1], and CRAC [27]
protocols.

Conclusion
More and more high-resolution CLIP-seq datasets are
being generated, but the precise determination of
protein–RNA interaction sites from iCLIP/eCLIP has
been challenging so far. Extensive evaluations demon-
strated the superiority of PureCLIP over several previous
strategies in detecting target-specific crosslink sites, for
both simulated data as well as real datasets. PureCLIP is
able to capture protein–RNA interaction footprints pre-
cisely, while not relying on the highest peaks, and it is able
to correct for biases, such as transcript abundances, back-
ground binding, and crosslinking sequence preferences.
It, therefore, provides a promising method for analyzing
these datasets, and also for proteins with lower binding
affinities or proteins binding to low abundant RNAs, such
as lncRNAs.

Methods
Preprocessing of iCLIP/eCLIP datasets
We analyzed three published eCLIP datasets targeting
the proteins PUM2, RBFOX2, and U2AF2 and one iCLIP
dataset targeting U2AF2 (see Additional file 1: Table S1
for details).
First, any possible adapter contamination at the 3′

ends was removed using TrimGalore on the iCLIP
dataset [28] (v0.4.2, based on cutadapt), and by run-
ning cutadapt twice on the eCLIP datasets [29] (v1.12).
The latter was done to correct for possible dou-
ble ligation events [7]. Reads shorter than 18 bp were
discarded. Next, the reads were mapped against the
human genome (hg19) using STAR [30] (v2.5.1b), a
read aligner designed for RNA-seq data with setting
-alignEndsType EndToEnd, -scoreDelOpen -1

for gap penalty, and -outFilterMultimapNmax 1 to
discard reads mapping to multiple locations.
PCR duplicates were removed based on the read

mapping positions and the random bar-code sequences
(also called UMIs). This is important, as PCR amplifi-
cation rates are high, in particular for iCLIP datasets.
To address this, we used UMI-tools [31], a network
based de-duplicating method (with setting -paired),
which is able to handle errors within bar-code
sequences.
All evaluated datasets come as two replicates. When

assessing each method’s ability to recover bona fide
binding regions, we pooled the reads of the two repli-
cates, whereas they were analyzed separately when eval-
uating the agreement between called sites. Due to the
differences in the two library preparation protocols
[3, 7], we used either the 5′-end read (iCLIP) or the
3′-end read (eCLIP) of the sequenced fragment for the
analysis.

iCLIP/eCLIP-seq data simulation
To evaluate the performance of our method, we devel-
oped a workflow to simulate realistic iCLIP-seq data,
starting from aligned RNA-seq data and known binding
regions. The workflow simulates the main steps of the
iCLIP/eCLIP protocols (see Fig. 6), as follows:

1. Fragmentation: To obtain RNA fragment lengths
comparable to those of iCLIP experiments
(30–300 bp, as described in [6]), we first simulate new
fragment lengths using a normal distribution (mean:
165 bp, standard deviation: 50 bp).

2. Binding regions: We use genome-wide PUM2 motif
occurrences computed with FIMO [23] to obtain a
realistic distribution of binding regions (for details,
see Additional file 1: Section 2).

3. Crosslink sites: Within each binding region i, ci
crosslink sites are drawn uniformly (ci ∈ {1, . . . , 4}).

4. Pull-down: RNA fragments overlapping binding
regions are pulled down with a certain rate. For this
study, we used used a pull-down rate of either 1.0 or
0.5, i.e., all or half of the overlapping fragments are
used.

5. Reverse transcription: For each fragment, one of the
following modifications can be applied to the 5′-end
read:

a. The read start is shifted to one of the
simulated crosslink sites within the current
binding region according to a given truncation
probability (set to 0.7).

b. The read start is shifted to any other position
within the fragment according to a given
off-target truncation probability (set to 0.1).
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Fig. 6 Simulation of iCLIP/eCLIP data

6. Size selection: To obtain a broad range of cDNA
lengths, we keep reads with underlying fragment
lengths between 30 and 140 nt (as recently
recommended in [5]).

In addition to the RBP binding signal, we also simulated
background noise, which can be, for example, caused by
sticky RNAs or by the binding of non-specific background
proteins [10]. We did this by applying the steps described
for the list of known common background binding regions
published in [11], while varying pull-down rates, trunca-
tion probability, and the number of crosslink sites within
a region. We supplement those regions with reads ran-
domly sampled from RNA-seq data (1%). Further details
of the simulation used are described in Additional file 1:
Section 2.

PureCLIP hidden Markov model
PureCLIP uses a HMM to infer crosslink sites from
aligned single-nucleotide CLIP-seq data. At each posi-
tion t, it utilizes two types of information (Fig. 7a): the
pulled-down fragment density Ct , which is used to infer
whether the position is enriched or non-enriched in pro-
tein bound fragments, and the read start count Kt , which
is used to infer whether it is a crosslink or non-crosslink
site. The four resulting hidden states are (1) non-enriched
+ non-crosslink, (2) non-enriched + crosslink, (3) enriched
+ non-crosslink, and (4) enriched + crosslink. For clarity,
we separate them into two state variables. One represents
the enrichment state:

S(1) =
{
0, if non-enriched,
1, if enriched, (1)

and one represents the crosslink state:

S(2) =
{
0, if non-crosslink,
1, if crosslink. (2)

Our goal is to identify positions that are enriched +
crosslinked (see state (4) in Fig. 7a). Transitions between
all four states are allowed and their probabilities are
assumed to be homogeneous over the transcriptome.
These transition probabilities are computed with the
Baum–Welch algorithm [32], as the expected number of
transitions based on computed posterior probabilities (for
further details, see Additional file 1: Section 3). For each
state, we model a distinct emission probability distribu-
tion, which is described in the next paragraph.

Joint emission probabilities and inference
We exploit the hierarchical structure of the two observed
signals, i.e., the pulled-down fragment density (Ct) and
the count of read starts (Kt), to specify the model. First,
we model the fragment density Ct , for both the non-
enriched and the enriched states. The fragment densities
are non-negative continuous values with a right-skewed
distribution, which can be approximately described by a
gamma distribution (see Additional file 1: Figures S2–S5).
Furthermore, we do not want to fit the model to the large
proportion of sites that have a very low density or no read
start to improve both the efficiency and the robustness of
the model (for details and the effect on the performance of
PureCLIP, see Additional file 1: Section 3.1). Accordingly,
we use a left-truncated gamma distribution (LTG), which
is fitted only to sites with at least one read start:

P
(
Ct = ct | S(1) = s1

)
= fLTG(ct ;μs1 , λs1 , tp), (3)

s1 ∈ {0, 1},
where μs1 and λs1 denote the mean and the shape param-
eter of the distribution and tp is the truncation point. The
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a) b)

Fig. 7 Summary of the hidden Markov model framework. a Starting from mapped reads (bottom), observations are deduced (individual read start
counts, which are further smoothed to obtain pulled-down fragment densities) and combined with additional covariates (top) to reconstruct the
most likely sequence of hidden states (middle). b Graphical representation of the corresponding non-homogeneous hidden Markov model. CL
crosslink-associated

corresponding probability density function is

fLTG
(
ct ;μs1 , λs1 , tp

) =
1

1 − γ
(
λs1 ,

λs1 ·tp
μs1

)
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(
λs1

)
·
cλs1−1
t exp

(
−λs1 ·ct

μs1

)
(

λs1
μs1

)λs1
�

(
λs1

) (4)

for ct > tp and μs1 , λs1 > 0,

where γ (λs1 , λs1 · tp/μs1) denotes the lower incomplete
gamma function and �(λs1) the ordinary gamma func-
tion. The parameters μs1 and λs1 need to be learned,
while tp is fixed (see Additional file 1: Section 3.1.2 for
details).
When looking at the read start counts Kt , we expect an

increased count at crosslink sites due to underlying trun-
cation events. Therefore, we model the read start counts
Kt for both the non-crosslink and the crosslink states. For
state s2, the probability of observing kt read starts is com-
puted given the number of trials nt and the probability
ps2 for each read to start at position t. To be precise,
nt is the number of fragments/trials from which a cer-
tain fraction results in reads starting at position t. In this
case, it is unknown. However, we can use a surrogate
value n̂t directly deduced from the position’s pulled-down
fragment density ct by a simple rescaling (for details, see
Additional file 1: Section 3.2.1 and Figure S7). We

model the emission probability distribution with a zero-
truncated binomial distribution (ZTB):

P
(
kt|ct , S(2)

t = s2
)

= fZTB
(
kt ; n̂t , ps2

)
, (5)

s2 ∈ {0, 1}.
The probability density function is

fZTB
(
kt ; n̂t , ps2

) ={
0, if kt = 0,

1
1−(1−ps2 )n̂t

(n̂t
kt
)
pn̂ts2

(
1 − ps2

)n̂t−kt , if kt ≥ 1. (6)

The probability parameters p0 and p1 need to be learned.
p1 reflects a protein-specific truncation rate at crosslink
sites. A zero-truncated binomial distribution is preferred
here as we do not want to fit the distributions to the large
number of sites with no read starting (for further details,
see Additional file 1: Section 3.2.2).
Given the described emission probability distributions,

we compute the probability of a joint observation. Note
that Ct and Kt are not conditionally independent, but
since n̂t is directly deduced from ct , the emission probabil-
ity for the joint observation can be factorized accordingly
(see Fig. 7b for a graphical summary):

P
(
ct , kt|S(1)

t = s1, S(2)
t = s2

)
= (7)

P
(
ct|S(1)

t = s1
)

· P
(
kt|ct , S(2)

t = s2
)

=
fLTG

(
ct ;μs1 , λs1 , tp

) · fZTB
(
kt ; n̂t , ps2

)
.
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Finally, we use posterior decoding to determine the
most likely hidden state for each position, and with that,
all enriched + crosslink sites (s1 = s2 = 1). Each such
called crosslink site has an associated score, namely the
log posterior probability ratio of the first and second most
likely state:

scoret = log
(
P(1st likely state|Y1:T )

P(2nd likely state|Y1:T )

)
, (8)

where Y1:T denotes the observed data for all positions.
In a second step, the called crosslink sites can be further
combined to binding regions based on their distance.
We use the Baum–Welch algorithm [33] to learn the

parameters of the HMM, i.e., the transition probabilities
and the parameters of the four emission probability distri-
butions (see Additional file 1: Section 3 for details of the
implementation). Moreover, to reduce the computational
costs, we trained the HMM on a subset of the chromo-
somes (Chr1–Chr3 for pooled data and Chr1–Chr6 for
individual replicates). This had no impact on the quality
of the estimates.

Estimation of the pulled-down fragment density
To model the fragment density, we cannot use positions-
wise read counts, since they will be strongly influenced
by truncation events in the neighborhood. Instead, we
smooth the read start counts k to estimate the density
of pulled-down fragments at each position. This is done
using a kernel density estimation [18] with a Gaussian ker-
nel functionK. The latter assigns a higher weight to nearby
read starts, while still considering read starts that are fur-
ther away, thereby providing a better estimate for the
underlying pulled-down fragment density. We compute
the smoothed signal at position t using

ct = 1
h

t+4h∑
i=t−4h

ki · K
(
t − i
h

)
, (9)

where h is the kernel bandwidth. Positions within four
bandwidths are considered.

PureCLIP non-homogeneous HMM
We aim to correct for different sources of biases that
influence the observed signals within iCLIP/eCLIP data.
Accordingly, we incorporate position-wise external data
as covariates into the HMMusing generalized linear mod-
els to obtain non-homogeneous emission probabilities.
Besides this, we currently assume that transitions proba-
bilities between the four states do not change along the
transcriptome. Numerical optimization techniques are
then used in the Baum–Welch algorithm to find the emis-
sion probability parameters that maximize the conditional
expectation of the data.

Incorporation of a non-specific background signal
Without additional information, we assume that for each
enrichment state s1, the fragment density ct follows a left-
truncated gamma distribution:

ct|S(1)
t = s1 ∼ LTG

(
μs1 , λs1 , tp

)
. (10)

If a non-specific background signal is given, e.g., from an
input control experiment, PureCLIP incorporates this as
position-wise covariates into themodel. This is done using
a (left-truncated) gamma generalized linear model. The
objective is to learn the correlation between the covariate
b and the mean parameter μs1 of each enrichment state
s1. The underlying multiplicative effect of the background
signal bt on the expectedmeanμs1,t is modeled using a log
link function:

log
(
μs1,t

) = αs1,0 + αs1,1bt . (11)

Note that we assume each enrichment state s1 to have
a constant shape λs1 across the entire range of covariate
values.
A numerical optimization is performed in the Baum–

Welch algorithm to learn the parameters αs1,0, αs1,1, and
λs1 (see Additional file 1: Section 4.1). In this study, we
used the log fragment density of the input experiments
as covariates, computed using a kernel density estima-
tion with the same bandwidth as used for target fragment
density, i.e., 50 bp.

Incorporation of CLmotif scores
Without additional given information, the read start
counts kt are modeled using a zero-truncated binomial
distribution:

kt|S(2)
t = s2 ∼ ZTB

(
n̂t , ps2

)
, (12)

for each enrichment state s2. If we assume that we
have learned m enriched CL motifs from the input data
(described in the next section), then we can compute for
each position t and motif i ∈ 1, . . . ,m a corresponding
motif match score xi,t ≥ 0, containing information about
the position’s crosslinking affinity. PureCLIP uses a logis-
tic regression for each crosslinking state s2 to model the
expected binomial probability parameter ps2 based on the
position-wise CL motif score xi,t :

ln
ps2,t

1 − ps2,t
= βs2,0 + βs2,ixi,t , (13)

i = arg max
j∈1,...,m xj,t , xj,t ≥ 0.

Since the majority of positions have no CL motif match,
i.e., a CL motif score of 0, we compute βs2,0 using these
sites as was done in the basic PureCLIP model. Further,
since we assume that each site matches only one CL
motif (i.e., the motif with the highest score is chosen),
the parameters βs2,1, . . . ,βs2,m are learned independently
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of each other using Brent’s method (see Additional file 1:
Section 4.2).

Computation of CLmotif scores
The computation of position-wise CL motif scores, which
can be used as covariates by PureCLIP, is done in a
preprocessing step:

1. We call crosslink sites on the input data using the
basic version of PureCLIP.

2. We run DREME (meme suite v4.11.3) [22] with the
parameters -norc -k 6 -4 on 10-bp windows
spanning the called input crosslink sites, while using
10-bp windows 20 bp upstream and downstream as
the control (DREME uses Fisher’s exact test).

3. We use FIMO (meme suite v4.11.3) [23] with the
parameters (-thresh 0.01 -norc) to compute
occurrences of those motifs within the genome and
their corresponding scores. If one position overlaps
multiple CL motif occurrences, the one with the
highest score is chosen.

Implementation
PureCLIP is a command-line tool implemented in C++
using SeqAn [34], the GNU Scientific Library [35], and
Boost [36]. OpenMP [37] is used for parallelization.

Comparison with previous crosslink site detection
strategies
We compared PureCLIP with the following methods:
simple threshold, CITS [16], Piranha [13], and CLIPper
[19]. Simple threshold and CITS detect crosslink sites at
single-nucleotide resolution and therefore, can be directly
compared with PureCLIP.
Piranha and CLIPper are strand-specific peak-calling

methods and cannot be directly compared to PureCLIP;
therefore, their performance was assessed in combi-
nation with CITS. In detail, we take the intersection
between peaks reported by Piranha (p value threshold
0.001) or CLIPper (default threshold) with CITS crosslink
sites (default p value threshold) and score the resulting
sites in two different ways: according either to the peak
caller (referred to as Piranhasc or CLIPpersc) or to CITS
(referred to as CITSsc).
The scores assigned were used to assess the perfor-

mance of the strategy for different sensitivity thresholds.
Further details of the method’s application and the param-
eter choice are described in Additional file 1: Section 5.

Evaluation on real data based on bona fide binding regions
To assess the performance of the different strategies in
detecting target-specific crosslink sites for the PUM2 and
RBFOX2 datasets, we used the sequence motifs that were
described for each of those proteins (Additional file 1:

Figure S1). FIMO [23] (-thresh 0.001 -norc) was
used to compute genome-wide motif occurrences. Next,
for each called crosslink site, the distance to the closest
motif start site was identified. The precision was defined
as the percentage of all called sites that are located within
2 bp of a motif occurrence (Fig. 3).
For the protein U2AF2, its known predominant bind-

ing site ∼11 nt upstream of 3′ splice sites was used for
evaluation. Ensembl release 75 annotations were used to
compute the distance of each called crosslink site to the
closest 3′ splice site. The precision is then defined as the
percentage of all called sites that are located 11 ± 4 nt
upstream of a 3′ splice site.

Computation of bias-corrected replicate agreement
For the evaluation based on the replicate agreement, only
sites with calls at the exact same nucleotide position in
both replicates were considered as agreeing. In all com-
parisons, the replicate dataset with the larger library size
was chosen as a reference for the evaluation and this is
referred to as replicate 2 in the following. We report for
each given number of called sites x in replicate 1 (corre-
sponding to a certain sensitivity threshold), the percentage
that were also called within the top x ranking sites in
replicate 2.
To compute the bias-corrected replicate agreement,

we count only sites that additionally (1) have sufficient
enrichment over the input signal and (2) are not contained
in common background regions [11] or in CL motifs (for
PUM2 and RBFOX2).
To determine the sites whose pulled-down fragment

densities are enriched over the input, we chose an
individual threshold for each protein dataset based on
its distribution of log-fold enrichment (for details, see
Additional file 1: Section 7). CL motif occurrences were
obtained with FIMO as described previously, while using
all matches with a score >0. Common background bind-
ing regions were taken from [11], using only regions
observed in at least six different CLIP-seq datasets,
and extending them upstream and downstream by
200 bp.

Additional file

Additional file 1: Additional figures and more detailed information about
the computational methods and the results. (PDF 1352 kb)
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