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    Chapter 13   

 In Silico Promoter Recognition from deepCAGE Data                     

     Xinyi     Yang     and     Annalisa     Marsico       

  Abstract 

    The accurate identifi cation of transcription start regions corresponding to the promoters of known genes, novel 
coding, and noncoding transcripts, as well as enhancer elements, is a crucial step towards a complete under-
standing of state-specifi c gene regulatory networks. Recent high-throughput techniques, such as deepCAGE or 
single-molecule CAGE, have made it possible to identify the genome-wide location, relative expression, and 
differential usage of transcription start regions across hundreds of different tissues and cell lines. Here, we 
describe in detail the necessary computational analysis of CAGE data, with focus on two recent in silico meth-
odologies for CAGE peak/profi le defi nition and promoter recognition, namely the Decomposition-based Peak 
Identifi cation (DPI) and the PROmiRNA software. We apply both methodologies to the challenging task of 
identifying primary microRNAs transcript (pri-miRNA) start sites and compare the results.  

  Key words     TSS  ,   Promoter  ,   microRNAs  ,   DPI  ,   PROmiRNA  

1      Introduction 

  Gene expression   is  regulated   at many levels, including chromatin 
packing,  transcription initiation  , polyadenylation, splicing,  mRNA 
stability  , and others. One of the most important regulatory steps is 
 transcription initiation  , which is coordinated by the binding of 
many  proteins   to gene promoters and enhancers. Combinations of 
binding sites determine the expression context of a certain gene 
and its activity in a certain tissue or condition [ 1 ,  2 ]. 

 The annotation of gene promoters, as well as other 
transcriptionally- active regulatory sequences is essential to under-
stand biological mechanisms underlying context-specifi c gene reg-
ulatory networks. But what is a promoter exactly and how can it be 
precisely defi ned? A promoter is not a clearly defi ned unit and to 
this question there is no unique answer, although scientists study-
ing  gene regulation   largely agree nowadays on the fact that a pro-
moter can be defi ned as the region surrounding the  Transcriptional 
Start Site (TSS)   of a gene which contains regulatory elements and 
 Transcription Factor   Binding Sites (TFBBs) necessary to initiate 
gene  transcription   [ 1 – 3 ]. 
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 The promoter structure of a eukaryotic organism is more com-
plex than a prokaryotic one, with the complexity increasing from 
 single  -celled yeast to mammals, and regulatory elements spread 
over large genomic space [ 1 ]. Although eukaryotes have different 
types of  RNA polymerases  , RNA polymerase II is responsible for 
 transcription   of mRNAs, as well other classes of  noncoding RNAs  , 
including some microRNAs and  long noncoding RNAs (lncRNAs)  . 

 The region of 30–100 nucleotides surrounding the  TSS   is gen-
erally referred to as  core promoter  (Fig.  1 ) and contains interchange-
able sequence elements and general  transcription factor   binding sites 
recognized by the preinitiation complex (PIC) which initiates  tran-
scription   from a loosely conserved Initiator site (Inr). The PIC 
includes, besides Polymerase II, general  initiation factors   such as 
TFIIA, TFIIB, a TATA box binding protein (TBP) which binds spe-
cifi c DNA elements about 25 base pair (bp) upstream of the  TSS  , 
and several TBP-associated factors (TAFs). This core promoter may 
also contain downstream elements like DPE and MTE (in fl y), BRE 
upstream or downstream elements or DCE, downstream core ele-
ment (in vertebrates) [ 2 ,  4 ].

   The region further away (up to 500 bp upstream of the gene 
 TSS  ) is usually referred to as  proximal promoter  and contains other 
promoter elements, such as the GC box and/or the CAAT box, as 
well as more specifi c TFBS necessary to coordinate  transcription   in 
a tissue- and developmental stage-specifi c manner. TFBSs can also 
occur in clusters, forming cis-regulatory modules (CRMs) [ 4 ,  5 ]. 

 Distal regulatory elements also infl uence  transcription  , including 
enhancers, active regions which enhance gene  transcription  , insula-
tors, which mark boundaries between DNA active regions, and 
silencers, regions which repress gene  transcription  . These elements 
are part of the so-called  distal promoter , which can extend up to sev-
eral kb from the  TSS   (upstream and/or downstream) [ 2 ,  4 ]. Finally, 
in most eukaryotic genomes,  chromatin   is made of basic units called 
nucleosomes. A nucleosome is composed of a segment of DNA 
wrapped around a histone core.  Chromatin   structure can be tightly 
wrapped or accessible to  proteins  : active promoters are usually found 
in accessible  chromatin   regions (or nucleosome-free regions) [ 2 ]. 

 Earlier experimental methods for promoter identifi cation, such as 
nuclease protection and primer extension can identify promoters on a 
gene-by-gene basis and cannot be extended genome wide. Later 
advances in promoter identifi cation are sequencing methods, such as 
RACE 5′-tag sequencing of cDNA or mRNA sequences, which rely on 
reverse  transcription  , fragmentation, and amplifi cation of cDNAs and 
alignment to the genome to get information about  TSS   location [ 6 ]. 
Other high-throughput experimental  procedures include hybridization 
methods, such as oligonucleotide tiling arrays [ 4 ]. 

 Back in early 1990s, experimental techniques for promoter 
identifi cation were costly, labor intensive, time consuming, and not 
really applicable genome wide. Hence, several in silico methods for 
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promoter predictions were developed to improve the genome 
annotation when experimental support was not available [ 7 ]. 

 The main goal of a promoter recognition algorithm is the 
computational identifi cation of genomic regions corresponding to 
5′ ends of genes in a fast and reliable way, and based on the idea 
that promoter regions differ in several features (sequence, context, 
structure) from other genomic features, such as exons, 3′UTRs 
and intergenic regions [ 7 ]. 
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  Fig. 1    Summary of regulatory elements and basal  transcription  al machinery at a eukaryotic RNA Polymerase 
II promoter in an open chromatin region. Boundaries between accessible  chromatin   states are marked by 
insulators. The region around the  Transcription Start Site (TSS)   is divided into Core Promoter, Proximal Promoter 
and Distal Promoter. The Core Promoter contains the regulatory elements necessary to recruit Polymerase II 
and basal transcription factors (e.g., TFIIA and TFIIB) necessary to activate  transcription  , as well as the TATA 
box element (TATA), the Initiator site (Inr) and the downstream core element (DCE). The location of such ele-
ments with respect to the  TSS   is shown here as boxes and their sequence patterns (for the TATA box and Inr 
only) as logos from the Jaspar database [ 12 ]. Some more sequence-specifi c  transcription   factors bind to some 
other sequence elements, such as the CAAT- and the GC box, other Transcription Factor Binding Sites (TFBSs) 
in the proximal promoter or in enhancer regions. TFBSs can occur in clusters to form cis-regulatory modules 
(CRMs). Proximal and distal regulatory regions are brought together at TSSs to control the  transcription   of 
target genes       
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 Promoter features can be sequence signals at core-promoter 
elements and TFBSs, or large-scale features such as CpG islands, 
k-mer frequency, DNA structure, TFBS density, nucleosome bind-
ing, and  chromatin   modifi cations. Methods for promoter recogni-
tion can be  discriminative , aiming at fi nding the optimal 
classifi cation boundary between promoters and nonpromoters 
based on some selected features, or  generative  and describe the 
generative process of the signal. Typical discriminative models use 
experimentally identifi ed promoter regions or TFBSs from data-
bases as training set for Artifi cial Neural Networks (ANNs) or sup-
port vector machines (SVMs) in order to differentiate promoters 
from nonpromoter regions. Generative models instead learn sig-
nals of promoter elements and/or distance between binding sites 
from experimentally identifi ed promoters, and apply it to fi nd 
other regions that score well against the model [ 7 ]. 

 Early 1990s’ computational methods for promoter prediction 
combine several sequence patterns (TATA box, Inr, DPE, and BRE 
 motifs  ) to classify promoter regions versus other genomic sequences 
[ 8 – 10 ]. Binding specifi city is characterized, either by consensus 
sequences that is, giving the most preferred base at each site position 
within a binding site, or by Position Weight Matrices (PWMs), which 
assign a weight to each nucleotide at each position of a putative bind-
ing site. New binding sites are scored according to the sum of the 
scores of the individual positions from the PWM model. Maintained 
collections of PWMs include TRANSFAC [ 11 ] and JASPAR [ 12 ]. 
Methods based on consensus sequences and PWMs might give poor 
results due to the fact that TFBSs are typically short (5–15 bp long), 
degenerate and several hits of their consensus/model sequence can be 
found quite often along the genome just by chance. It became clear 
during the years that most promoters only have one or a few of the 
patterns described above, and that some patterns are only found in a 
small proportion of vertebrate promoters. Therefore it became possi-
ble to describe some functional groups of promoters in great detail 
from TFBS consensus sequences, but the false discovery rate remained 
high when attempting to detect core promoters genome wide [ 2 ,  7 ]. 

 The late 1990s are signed from advances in algorithms or strat-
egies for pattern fi nding: promoter prediction methods are not 
based anymore only on a collection of putative binding sites, but 
the so-called  context features , i.e., k-mer content extracted from 
DNA sequences of promoters, are incorporated in both generative 
and discriminative models [ 7 ]. These algorithms are inspired by lin-
guistic and are based on the rationale that promoter and nonpro-
moter regions differ in their word content. K-mers may correspond 
to known biological signals (e.g., TATA box), but they might also 
correspond to yet unknown promoter signals. PromoterInspector 
[ 13 ] and Promoter2.0 [ 14 ] are tools which use k-mers with vari-
able gaps or wildcards to distinguish promoters from nonpromot-
ers. For a comprehensive list refer to [ 1 ] and [ 7 ]. 
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 Since 2001, with the fi rst genome projects and the sequencing 
efforts of the human genome, people realized that promoter rec-
ognition algorithms lack sensitivity and specifi city when applied 
genome wide [ 7 ]. The observation that promoter features can be 
so diverse between different promoter subclasses changed the per-
spective by which computational algorithms looked at promoter 
prediction. In particular, CpG islands, regions of vertebrate 
genomes defi ned primarily by the lack of methylation at CpG dou-
blets, were observed to be a large-scale signal present in about 70 % 
of the human promoters [ 2 ], and gained more and more interest. 
Also, classifi ers that analyze CpG-rich and CpG poor promoters 
separately achieve better sensitivity and specifi city as the two classes 
seem to have different properties at sequence level [ 7 ]. 

 In addition, people started appreciating that TFs recognize 
DNA-binding regions not only at sequence level, but that the con-
formation and structure of the DNA play a crucial role in guiding 
DNA-binding  proteins   to their sites and also infl uence promoter 
activity [ 7 ]. Hence, structural features, nucleosome positioning 
preferences, and others started being included, together with 
sequence patterns, into promoter prediction algorithms. Among 
them, the Eponine method, one of the best promoter prediction 
algorithms still nowadays, applies relevance vector machines to 
capture the most important sequence signals at promoters, repre-
sented by a collection of PWMs and positional constraints between 
them, together with CG content enrichment [ 15 ]. In this method 
category we fi nd McPromoter [ 16 ], ProSOM [ 17 ] and ARTS [ 18 ] 
superior among others. 

 More advanced classifi ers are ensemble methods, such as 
PromoterExplorer [ 19 ], CoreBoost [ 20 ], MetaProm [ 21 ] and 
EnsemPro [ 22 ], which combine results from multiple classifi ers on 
multiple features in order to achieve more robust predictions. 

 Although it had been suggested for several years that epig-
enomic features, such as histone acetylation, methylation marks, 
and nucleosome positioning can provide an extra layer of informa-
tion beyond DNA sequence features, only after 2001 such signals 
started to be systematically exploited for correctly locating gene 
promoters in open  chromatin   regions. Indeed, although promot-
ers differ in their  motif   content or GC content, properties such as 
nucleosome-free regions and epigenetic features around the  TSS   
are quite common to all active promoters [ 23 ]. 

 Promoter recognition methods also benefi t from the search of 
evolutionarily related sequences by looking for regions of conser-
vation upstream of annotated genes. However, such methods can 
only identify homologous promoters when sequence conservation 
is present, but might miss nonconserved promoters [ 4 ]. 

 The aforementioned methods predict promoters using various 
features but the true promoter usage has to be validated in a 
context- dependent manner. Recently, thanks to the advent of 
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next- generation sequencing technologies combined with 
Chromatin Immunoprecipitation ( ChIP  -Seq) technology [ 24 ], 
and nascent transcript capturing methods, such as Cap Analysis of 
Gene Expression coupled to NGS sequencing [ 25 ,  26 ] or Global 
run on sequencing ( GRO-Seq  ) [ 27 ], several promoter recognition 
methods have moved from being purely predictive approaches 
based on DNA sequence or structure-related features to be data-
driven, i.e., to use the observed genome-wide signals, to unravel 
mechanisms of  transcription  al regulation instead of pure sequence 
features. For example, the epigenetic mark H3K4me3 and the 
acetylation of H2 have been identifi ed as a hallmark of active pro-
moters, and computational methods for promoter recognition 
have begun exploiting this information systematically [ 28 ,  29 ]. 

 Comparative methods, as well as prediction methods based 
only on “fi rst principles” (DNA sequence and structure) do not 
identify the conditions where certain promoters are activated. Cap 
Analysis of gene Expression (CAGE) instead allows high-through-
put identifi cation of 5′ ends of capped mRNA in a tissue-specifi c 
manner, allowing the localization of the associate core promoters, 
as well as measuring promoter usage in different states [ 25 ,  30 ]. 

 In this chapter we will focus on the identifi cation of genome- 
wide signals from the CAGE technology and their importance in 
promoter recognition. Therefore, in the following we will introduce 
the CAGE technology and the different FANTOM Consortiums in 
detail, as well as the algorithms for reliable CAGE peak recognition. 
Subheading  3  describes in detail the steps of the in silico analysis of 
CAGE data, focusing on the DPI method for CAGE signal recogni-
tion [ 31 ], and the  PROmiRNA   software [ 32 ], for miRNA promoter 
predictions. Subheading  3.7  compares the two methods for the spe-
cifi c task of miRNA promoter recognition. 

   Cap Analysis of gene Expression (CAGE) allows the identifi cation 
of  transcription  al starting points genome wide by sequencing 5′ 
ends from full-length cDNA libraries and mapping back those 
sequences to the genome, thus determining regions corresponding 
to active promoters of coding and noncoding transcripts, as well as 
active  enhancers  . In detail, in its fi rst version the method uses cap- 
trapper full-length cDNAs to attach linkers to their 5′-ends. This is 
followed by cleavage of the fi rst 20 base pairs by class II  restriction 
enzymes  , PCR, concatamerization and cloning of the CAGE tags. 
Sequenced CAGE tags mapped to the genome are then used to 
identify the  TSSs   of annotated or novel  transcription  al units spe-
cifi c to each tissue, cell or condition, as well as the analysis of dif-
ferential promoter usage [ 25 ]. Compared to RNA-seq or 
microarray, CAGE allows the separate analysis of multiple promot-
ers linked to the same gene. In fact, most genes have more than 
 one   TSS and the regulatory inputs or TFs that determine  TSS   
choice and activity in a particular tissue are diverse. 

1.1  The CAGE 
Techniques 
and the FANTOM 
Consortium
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 FANTOM stands for the Functional Annotation Of Mammalian 
genome and is an international research consortium founded in 
the year 2000 to assign functional annotations to the full-length 
complementary DNAs (cDNAs) that were collected during the 
Mouse Encyclopaedia Project at RIKEN. Research at FANTOM 
has proceeded in three phases. FANTOM began with the estab-
lishment of an annotation pipeline that developed and expanded 
quickly into more transcriptome and functional analysis. 

 Only in the second phase, with the FANTOM3, the Consortium 
started using the CAGE technology to study transcriptional  initia-
tion   genome wide. FANTOM3, which focused on identifying tran-
scribed components of mammalian cells, improved the estimation of 
the total number of genes and their alternative transcript isoforms in 
both human and mouse, and revealed that about 70 % of the genome 
is transcribed as RNA, confi rming the existence of thousands of 
 noncoding RNAs (ncRNAs)   [ 30 ]. This led us to gain new insights 
into how  transcription initiation   works and to revise central dogmas 
of Molecular Biology, projecting us into an “RNA world,” whose 
functional implications are still partially to be discovered. 

 More in detail, in the FANTOM3 145 mouse and 41 human 
libraries are analyzed; CAGE tags of size 20–21 bp are derived 
from transcripts sequenced in proximity of the cap site. Amplifi ed 
tag libraries contain between 50,000 and 100,000 tags. Clones are 
sequenced with Sanger sequencing techniques and their unique 
mapping positions on the genome identify putative  TSSs  . Clusters 
of overlapping tags defi ne promoter strength and shape. Based on 
these data, Carninci  et al.  [ 30 ] classify tag clusters into different 
shapes, ranging from single-peak  TSSs   to broad or bimodal tag 
distributions, corresponding to different promoter contexts [ 30 ]. 
Given that the data constitute a quantitative profi ling of relative 
promoter usage across tissues and cell types, it is observed that 
alternative promoter usage is higher than expected, with the 
 majority of protein-coding genes having two or more alternative 
promoters, especially in brain tissues [ 33 ,  34 ]. 

 In the era of  high-throughput sequencing  , the FANTOM4 
Consortium develops deepCAGE (CAGE followed by deep 
sequencing of the tags). The CAGE method is adapted to the 454 
Life Sciences (Roche) GS20 sequencer and the main difference 
consists in the fact that cloning is no longer necessary, as after 
amplifi cation and concatenation the tags can be directly sequenced, 
generating libraries of up to two million tags [ 26 ]. The focus of the 
FANTOM4 also shifts from the recovery of transcribed elements 
to the integration of such components into biological networks for 
functional analysis in specifi c contexts such as Leukemia or mono-
cyte differentiation [ 35 ]. 

 In FANTOM5, the HeliScopeCAGE technique is introduced, 
an adaptation of CAGE to single molecule sequencing with the revo-
lutionary HeliScope Single Molecule Sequencer measurements [ 36 ]. 
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Such technique opens the door to detailed analysis of  gene expres-
sion   levels and rare cell populations, providing the community with a 
promoter expression atlas where expression profi les are determined 
at an unprecedented depth and high precision [ 31 ]. Unlike earlier 
sequencers, the Heliscope Sequencer does not employ polymerase 
chain reaction (PCR) amplifi cation to multiply DNA fragments, a 
process which can introduce biases into data, instead the reverse-
transcribed DNA is sequenced directly, enabling direct, high-preci-
sion measurements [ 36 ]. The latest CAGE dataset from FANTOM5, 
includes 573 human and 128 mouse primary cell samples, 152 
human post-mortem samples, 271 mouse developmental tissue sam-
ples and 250 different cancer cell lines sequenced to a median depth 
of four million mapped tags per sample [ 31 ]. 

 Given that promoter-distal regulatory regions such as enhanc-
ers are essential in controlling time- and cell-specifi c  gene regula-
tion  , and that they have been shown to be often transcribed by 
PolII, producing so-called  eRNAs  , FANTOM5 CAGE data are 
also used to detect actively transcribed  enhancers     . Based on the 
data from hundreds of cell lines and tissues, Andersson  et al.  iden-
tify more than 40,000  enhancer   regions, together with their activa-
tion levels across human tissues, marked by the presence of 
bidirectional capped transcripts [ 37 ].  

   Either CAGE data are used to locate active promoters of known 
genes, or to identify start sites of novel transcripts, or to locate 
active enhancers, appropriate computational methods are needed to 
analyze the NGS data and detect  transcription  al events above noise. 
As CAGE tags tend to be clustered, with more or less signal, at 
active  transcription   sites, the task of identifying signal-enriched 
regions is similar to the peak calling step in the analysis of  ChIP  - seq 
data. Peak calling methods, such as HOMER [ 38 ] can be applied to 
identify peaks corresponding to initiation events in CAGE data. 
However CAGE peaks/clusters possess specifi c features that distin-
guish them from  ChIP  -Seq data, so that dedicated methodologies 
have been developed in the past few years specifi cally for the analysis 
of CAGE data. Initial studies of CAGE dataset have employed basic 
methods for processing mapped CAGE tags and identifying CAGE 
 TSSs   [ 30 ,  34 ]. Active promoters have been reconstructed by means 
of different clustering approaches based either on the proximity of 
individual  TSSs   or their density [ 39 ]. With the increase of sequenc-
ing depth, in order to  perform   TSS- centered differential expression 
analysis, normalization approaches, and explicit noise modeling 
have been introduced [ 40 ]. In this chapter we will focus on the 
Decomposition-based peak identifi cation (DPI) method, especially 
designed for FANTOM5 CAGE data and methodology of choice 
for most of the FANTOM5 subsequent analysis (Subheadings 
 3.1 – 3.3 ). As CAGE data can locate both coding and noncoding 
transcript TSS, we describe the  PROmiRNA   software, especially 

1.2  Methods 
for the Analysis 
of CAGE Data
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designed for the challenging task of identifying miRNA promoters 
from either FANTOM4 or FANTOM5 data (Subhead ings 
 3.4 – 3.6 ). Although  PROmiRNA   has several analysis steps in com-
mon with other CAGE analysis methodologies (see below), its 
underlying statistical model is optimized for the de novo detection 
of lowly expressed  TSSs  , and this makes it particularly suitable to 
detect both intergenic and intronic  transcription initiation   events of 
transient miRNA  primary transcripts  , which undergo rapid process-
ing by the Drosha enzyme in the cell nucleus, yielding sparse CAGE 
tag coverage around true  TSSs  . 

 Although not described in this chapter, a relatively new software 
package which integrates several CAGE analysis workfl ows is the R/
Bioconductor package CAGEr [ 41 ]. CAGEr implements various 
methods for CAGE data processing, it provides several normaliza-
tion strategies, easy access to published CAGE dataset in several 
organisms and introduces a novel method for detection of differen-
tial  TSS   usage and promoter shifting in different tissues/contexts. 

 The main steps of the analysis of CAGE data, common to sev-
eral CAGE analysis pipelines, can be summarized as follows:

    1.     Library preparation and sequencing . The CAGE technology has 
evolved during the last 10 years and the different protocols for 
library preparation and sequencing have been discussed above.   

   2.     Read mapping . The fi rst step in the analysis of CAGE data is the 
mapping of the CAGE tags back to the genome. Depending on 
the sequencing protocols, different mapping tools and strategies 
have been employed for this task. In FANTOM3, still based on 
Sanger sequencing, CAGE tags of 20–21 nt are aligned on the 
genome using BlastN [ 42 ]. Tags mapping on multiple genomic 
regions are not used for subsequent analysis and only best align-
ments of at least 18 nt are kept for subsequent analysis [ 30 ]. The 
data from the FANTOM4 are mapped with different tools: for 
example Valen et al. [ 34 ] use BLAST/V alignment programs 
and only the longest matches without mismatches are selected, 
whereas matches shorter than 18 nt are discarded and multi-
mapping CAGE tags are included according to a computed pos-
terior probability for each mapping location [ 43 ]. Balwierz  et al.  
[ 40 ] use the same strategy for multi-mapped reads, but CAGE 
tags are aligned with the Kalign2 alignment tool, which maps 
tags in multiple passes [ 44 ]. Specifi cally, tags that do not map 
perfectly to the genome are given as input to a second step, 
where they are mapped with at most one mismatch or event to 
a third step, where they are mapped allowing  indels  . In 
FANTOM5, sequenced Heliscope reads have different lengths, 
without associated base quality values and high sequencing error 
rates (up to 5 %) [ 31 ]. After removal of reads corresponding to 
ribosomal RNA, all remaining CAGE reads are mapped to the 
genome using the probabilistic mapper Delve, which places reads 
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to single positions in the genome according to a computed prob-
ability of being a true match from a Hidden Markov Model [ 31 , 
 45 ].   

   3.    Analysis of CAGE tag peaks: the most important step in CAGE 
data analysis is the identifi cation of regions of signifi cant CAGE 
tag signal, equivalent to clusters of overlapping tags or highly 
dense tag regions. Most genes are transcribed in different iso-
forms that use different  TSSs   arranged typically in local clusters 
spanning regions from few to over 100 bps. Depending on the 
application, different methods deal differently with the ques-
tion: what defi nes a Tag Cluster (TC)? On the FANTOM3 data, 
Carninci  et al.  grouped individual CAGE tags that had identical 
sequences into a representative CAGE tag [ 30 ]. Representative 
CAGE tags with the same starting position defi ne a CAGE tag-
defi ned  transcription  al start site (CTSS) ( see   Note    1  ). As the 
focus of the FANTOM3 is to characterize all distinct  transcrip-
tion initiation   events, the authors simply cluster CAGE tags 
whose genomic mapping overlap by at least 1 bp in Tag Clusters 
(TCs) ( see   Note    2  ). The  PROmiRNA   methods (extensively 
described in Subheading  3.4 ) defi nes TCs in a similar way, 
except that it joins together in the same cluster also tags which 
do not overlap with each other, but are closer than 20 bp from 
one another. This allows recovering much more sparse tag signal 
as the one generated by transient microRNA  primary transcript   
 TSSs  . More sophisticated approaches to defi ne tag clusters 
include the Paraclu algorithm [ 39 ] and the method from 
 Balwierz  et al.  [ 40 ]. The Paraclu algorithm is based on the 
observation that core promoters do not have a single  TSS  , but a 
distribution of initiation sites clustered at multiple scales as a 
consequence of multiple regulatory processes. The Paraclu algo-
rithm aims at fi nding these clusters, at multiple scales, among 
 transcription initiation   events observed at specifi c locations in 
the genome by fi nding maximal scoring segments with a density 
of more than  d  events per nucleotide. Afterwards, an inhomoge-
neous HMM is learned from dominant  TSS   (clusters associated 
to at least fi ve  transcription initiation   events) to determine 
sequence preferences of  TSSs   and apply the trained model to 
discover new  TSSs   genome wide. The approach in Balwierz 
 et al.  takes into account expression profi les  of   TSSs across differ-
ent samples and fi nds clusters of nearby co-expressed  TSSs   by 
using Bayesian hierarchical clustering. More in detail, their goal 
is to defi ne Transcription Start Clusters (TSCs) of contiguous 
 TSSs   such that expression profi les of clustered  TSSs   are the same 
among tissues up to measurement noise. In FANTOM5, given 
the much higher sequencing depth compared to previous stud-
ies, a simple clustering procedure such as the one used by 
Carninci  et al.  or  PROmiRNA  , would generate very long clus-
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ters. In DPI [ 31 ] the authors fi rst group CTSSs ( see   Note    1  ) 
from different tissues into tag clusters according to the proce-
dure from Carninci  et al. , and then try to separate distinct  tran-
scription  al events inside each cluster by means of Independent 
Component Analysis (ICA,  see   Note    3  ). All steps of DPI analysis 
are described in detail in Subheading  3.1 .   

   4.     TSS  -centered differential expression: to quantify the expression of 
individual TSSs and enable comparison between samples, raw tag 
counts have to be normalized. Many studies based on deepCAGE 
use the number of tag per million (TPM) values, which is the 
simplest normalized measure also used on the FANTOM5 data 
and widely used in other  high-throughput sequencing tools   [ 46 ]. 
One of the more sophisticated approaches [ 40 ] is based on the 
observation that the reverse cumulative distribution of the num-
ber of tags per  TSS   follows a power-law distribution with a very 
good approximation. Therefore, CAGE tag counts across differ-
ent samples are transformed to match a common reference power-
law distribution. Normalization can be performed at promoter 
level (cluster tag counts are normalized) or at individual  TSS   level. 
For example, in order to take into account substantial differences 
in the total numbers of read counts,  PROmiRNA   counts the 
number of overlapping 5′-ends at each bp position and performs 
per-position quantile normalization across tissues, inspired by 
normalization methods for microarray analysis [ 14 ,  32 ]. After 
applying any of the aforementioned normalization procedures, 
normalized CAGE tag counts can be used to perform differential 
expression profi ling at single  TSS   or promoter level.   

   5.    Assignment of tag clusters to genes: unnormalized or normal-
ized CAGE tag clusters (also referred to as CAGE peaks) from 
a CAGE analysis tool can be used to defi ne  transcription start 
sites   of novel transcripts or assign active promoters to known 
genes. When trying to assign CAGE peaks to known annota-
tion, one needs to defi ne a distance cutoff to assign a peak to 
the closest gene. In [ 31 ] the authors assign a peak to a known 
transcript if its 5′ end is within 500 bp from the defi ned peak. 
Such distance cutoff is arbitrary and depends on the research 
application. Obviously it can happen that more than one peak 
is assigned to the same gene, or the same peak is within a cer-
tain distance to more than one transcript. Solutions to such 
situations differ according to the research motivation.       

2    Materials 

 The purpose of this chapter is to give details on practical aspects 
regarding the computational analysis of CAGE data and usage of 
the DPI and  PROmiRNA   software, with emphasis on the CAGE 
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peak calling step. As the analysis with these two software is based 
on raw or preprocessed data from the FANTOM4 and/or the 
FANTOM5 Consortium, in this paragraph we provide some details 
about data sources and specifi c data fi les. The  PROmiRNA   soft-
ware was originally designed to recognize miRNA human promot-
ers from FANTOM4 deepCAGE data, but can also be applied to 
data from the FANTOM5 in both human and mouse. 

 FANTOM4 raw data, mapped data, as well as tag count fi les 
and processed fi les containing the annotation of the detected pro-
moters can be downloaded at the following link:   http://fantom.
gsc.riken.jp/4/download/Tables/    . 

 To facilitate data interpretation and integration, as well as navi-
gate through the FANTOM4 dataset, Severin  et al.  developed the 
EdgeexpressDB database [ 47 ]. Such source not only collects alter-
native promoters and  gene expression   patterns across tissues, but 
also provides a regulatory network view of the data, including reg-
ulating factors and microRNAs. 

 All FANTOM5 data, including visualization and web-based 
tools, different data access points, CAGE raw data (fasta sequences), 
mapped CAGE data (bam fi les), as well as processed data from 
human and mouse samples, including position and expression of 
CAGE peaks, are precomputed and available on the following web-
site   http://fantom.gsc.riken.jp/5/    . In particular, two specialized 
tools allowing exploring relations between the data, namely 
ZAMBU, which is useful if one wants to investigate the relationship 
between CAGE tag distributions and expression profi les [ 31 ,  48 ], 
and STARR, a semantic tool to explore relationships between pro-
moters, genes, samples, and TFBSs [ 49 ]. 

 When interested in sample-specifi c CAGE peak information, 
one can download the corresponding CAGE tag starting site fi le 
(ctss fi le) from the aforementioned website, and then use DPI to 
identify CAGE peaks based on such input fi le. The GM12878 ctss 
fi les used as input to DPI for the example shown in this paper and 
the GM12878 CAGE bam fi le used as input for  PROmiRNA   are 
downloaded from   http://fantom.gsc.riken.jp/5/datafi les/latest/
basic/human.cell_line.hCAGE/    . 

 The DPI software (extensively described in Subheading  3.1 ) is 
available for download on Github   http://github.com/hkawaji/
dpi1/    . 

 The  PROmiRNA   software (extensively described in 
Subheading  3.4 ) can be freely downloaded at   http://promirna.
molgen.mpg.de     together with the  external_data.tar.gz  directory.  

3     Methods 

 This section will focus on computational methods for peak calling 
and promoter identifi cation from CAGE data. First, we will intro-
duce the Decomposition-based Peak Identifi cation (DPI) method, 
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especially designed for FANTOM5 CAGE data and applicable to 
both promoter and active enhancer recognition [ 31 ]. Second, we 
will introduce the  PROmiRNA   software, especially designed for 
miRNA promoter recognition from both FANTOM4 and 
FANTOM5 CAGE data [ 32 ]. Third, we will show as an example, 
the results from applying both DPI and  PROmiRNA   to identify 
miRNA promoter of expressed miRNAs in the Gm12787 
B-lymphoblastoid cell line. 

       The main steps of the DPI algorithm are illustrated in Fig.  2a  and 
described in detail below. The intermediate output fi les generated 
from each step are schematically described in Fig.  2b .

     1.     Input . The input to the DPI algorithm is represented by one 
or more ctss fi les ( see   Note    1  ) from tissue-specifi c mapped tags 
(Fig.  2a , Step 1). These correspond to CAGE profi les at indi-
vidual biological states. Only ctss supported by two or more 
CAGE 5′-end reads in a single profi le are used by DPI.   

   2.     Defi nition of CAGE tag clusters (TCs) . Cage tags are clustered 
based on proximity to each other. Input ctss from different tis-
sues are fi rst merged to produce an accumulated CAGE profi le 
(Fig.  2a , Step 2). Selected ctss, supported by no less than two 
reads are grouped together into the same cluster if they are 
within 20 bp from each other.   

   3.     TC Decomposition . Due to higher sequencing depth compared 
to previous CAGE dataset, step 2 may produce very long tag 
clusters, which might contain several  transcription start sites  . 
To correct for this, DPI uses Independent Component Analysis 
(ICA,  see   Note    3  ) on clusters wider than 50 bp (or with a cov-
erage higher than 50 tag counts), in order to decompose the 
overall signal into distinct  TSS   signals (Fig.  2a , Step 3). Within 
each cluster, ICA infers the number of underlying signals 
which correspond to 95 % of the signal variance (and up to a 
maximum of 5 independent components) and represent indi-
vidual ctss intensity patterns.   

   4.     Scaling . The signal in each inferred independent component is 
downscaled by 10 % of the intensity of its highest ctss. This step 
is performed in order to avoid detecting “too much signal” in 
proximity of very active  TSSs  , where a continuous but modest 
read coverage is observed (Fig.  2a  Step 4).   

   5.     Smoothing . At this stage, DPI applies a Gaussian kernel to 
smooth each independent signal component in each cluster 
and detect candidate peaks where the signal is higher than the 
median of each signal component (Fig.  2a  Step 5).   

   6.     Merging . Inferred peaks are merged if they overlap with each 
other (Fig.  2a  Step 6).   

3.1  The DPI 
Algorithm

In Silico Promoter Recognition from deepCAGE Data



184

   7.     Output . Finally, aggregated peak regions are reported together 
with short clusters (<50 bp) which were not selected in Step 3 
for ICA processing (Fig.  2a  Step 7). In order to minimize the 
fraction of peaks mapped to internal exons and enrich for pro-
moter regions, DPI applies a tag threshold to defi ne robust 
and permissive output peaks, based on the assumption that 
genuine  TSSs   have a higher number of 5′ tags starting at the 
same position than random regions along the transcript. A fold 
enrichment of at least 2.0 over random regions (equivalently 
peaks with a single ctss supported by at least 11 reads) defi nes 
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  Fig. 2    ( a ) Different steps of the DPI workfl ow, from parsing of the input ctss fi les to the fi nal CAGE peaks; ( b ) 
Intermediate and fi nal output fi les from the DPI pipeline. Adapted by permission from Macmillan Publishers Ltd: 
Nature [ 31 ], copyright 2014       
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the robust cutoff, while the more permissive cutoff corresponds 
to a fold enrichment of 0.7 (single ctss supported by at least 
three reads in at least one CAGE profi le). Both “robust” peaks 
and “permissive” peaks are reported by DPI.    

  Although it is not a part of the DPI pipeline, the detected 
peaks can be used to quantify tissue-specifi c expression of  tran-
scription   start regions. In [ 31 ] the authors, after applying the DPI 
pipeline to the FANTOM5 data, count the number of tags whose 
5′ ends start within the boundary of a “robust” peak in that tissue. 
In order to compare  TSS   activity between tissues, read counts are 
transformed into TPM (tag per million) values and normalizing 
factors are estimated using the relative log expression (RLE) 
method implemented in the EdgeR R package [ 50 ].  

   DPI runs on the Unix/Linux system with Grid Engine without 
installation. If Grid Engine is not available, one can still use it with-
out the decomposition step (see below). Before using it, one 
should insure that the following languages/software are available 
on the system: 

 Ruby (  https://www.ruby-lang.org    ) 

 R (  http://cran.r-project.org/    ) and the R package fastICA 
(  http://cran.r-project.org/web/packages/fastICA/index.html    ) 

 Command line bigWig tools (  http://hgdownload.cse.ucsc.edu/
admin/    ) 

 BEDtools (  https://github.com/arq5x/bedtools2    ) 

 Importantly, one should declare these tools in the system 
environment. 

 Download DPI from github using command line: 
       > git clone https://github.com/hkawa-
ji/dpi1.git  

 A packed shell script:  DPI_DIR/dpi1/identify_tss_peaks.sh  is 
included in the package. One can view detailed package informa-
tion, parameters, and output explanation by running this script: 

       > DPI_DIR/dpi1/identify_tss_peaks.sh  
 Before peak calling, prepare the following input fi les: 
 Chromosome size fi le in BEDTools (should be automatically 

provided): 
           BED_DIR/genomes/YOUR_SPECIES.ge-
nome  

 ctss fi les in bed format downloaded from FANTOM http://
fantom.gsc.riken.jp/5/datafi les/latest/ 

 After specifying the output folder, simply run: 
       > DPI_DIR/dpi1/identify_tss_peaks.sh 
-g genome -i CTSS FILE -o    OUTPUT_DIR –d 

Y/N  

3.2  Practical Usage 
of the DPI Software
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 where  -d  is an optional parameter and is set to “N” by default. 
When  –d  is specifi ed to  Y , the decomposition step will be per-
formed (see DPI algorithm from Subheading  3.1 ). In general, DPI 
takes as input multiple .ctss fi les: one can simply put all .ctss fi les in 
one folder and set the input parameter as: 

       -i’CTSS FOLDER/*.ctss.bed.gz’   

    After running DPI as shown above, the output consists of three 
folders:  outCounts ,  outTpm  and  outPooled. outCounts,  and  outTpm  
contain bigwig fi les for each individual input ctss fi le, with the 
value being tag counts and tags per million (TPM), respectively. 
Tags on forward strand (fwd) and reverse strand (rev) are reported 
separately. The  outPooled  folder contains the following result fi les 
for the intermediate steps illustrated in Fig.  2b : 

 bigwig fi les correspond to pooled individual ctss fi les (Fig.  2b  
Step 2): 

 ctss.[MaxCounts/MaxTpm/TotalCounts].[fwd/rev].bw 

 bed fi les for all/long/short tag clusters (Fig.  2b  Step 3): 
 tc.[-/long/short].bed.gz 

 If the decomposition parameter –d is specifi ed, bed/bedGraph fi les 
from decomposition step will be generated. (Fig.  2b  Step 4/5): 

           tc.long.decompose_

smoothing.*.[bed/bedGraph].gz  
 The merged peak fi les (Fig.  2b  Step 6/7): 
 peaks with robust threshold, i.e., more than 10 ctss tags and 

no less than 1 TPM (Fig.  2b  Step 6/7): 
           tc.[decompose_smoothing/spi]_
merged.[ctssMaxCounts11/ctssMaxCount11_

ctssMaxTpm1].bed.gz  
 peaks with permissive threshold, i.e., more than 2 ctss tags 

(Fig.  2b  Step 6/7): 
           tc.[decompose smoothing/spi]_

merged.ctssMaxCounts3.bed.gz   

       Due to fast  Drosha   cleavage in the nucleus, miRNA  primary tran-
script    TSSs   are hard to identify from sparse CAGE tag coverage 
with conventional methods. The PROmiRNA algorithm combines 
CAGE tag counts and several promoter sequence properties into a 
statistical model, in order to identify miRNA promoter at high 
sensitivity, while distinguishing them form  transcription  al noise. 
The main steps of the PROmiRNA methodology are illustrated in 
Fig.  3a  and described in detail below.

     1.     Input . The input to PROmiRNA is represented by more than 
one tag alignment fi le, one for each tissue, in bed format. 
These are used to build the tissue-specifi c CAGE tag profi les 
up to 50 kb upstream of annotated miRNA precursors. Such 

3.3  The DPI Output

3.4  The PROmiRNA 
Software
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  Fig. 3    ( a ) Different steps of the  PROmiRNA   workfl ow, from parsing of the input bed fi le to the fi nal list of CAGE 
peaks corresponding to miRNA promoters; ( b ) intermediate and fi nal output fi les from the  PROmiRNA   pipeline       

profi les represent CAGE read coverage (or tag counts) at 1 bp 
resolution (Fig.  3a , Step 1).   

   2.     Tag-count normalization . In order to make tag counts compa-
rable across tissues, row counts at each bp position are quantile- 
normalized. In detail, position-specifi c tag counts from each 
sample are transformed to match a common reference distribu-
tion, randomly chosen from the available libraries. Normalized 
tag counts can be interpreted as expression values at TSS level 
at 1 bp resolution (Fig.  3a , Step 2).   

   3.     Cage Tag clusters (TCs)—Identifi cation of putative promoter 
regions  .  CAGE tags are grouped into clusters if the overlap 
between their genomic coordinates is at least 1 bp (or they are 
within a distance of 20 bp from each other). Normalized tag 
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counts inside each cluster are summed up. Tag clusters whose 
genomic coordinates overlap with the TSSs of other annotated 
transcripts other than miRNA host genes are fi ltered out (not 
shown). Tag clusters located in the 50 kb region upstream of 
miRNA precursors which do not overlap any known TSS 
defi ne putative miRNA promoter regions in a tissue-specifi c 
manner. Tag clusters located in randomly selected intergenic 
regions are defi ned in the same way and are interpreted as non-
promoters, therefore assumed to represent background noise 
(Fig.  3a , Step 3).   

   4.     Sequence properties of tag clusters . The statistical model of 
PROmiRNA computes a prior probability for each TC of being 
a real promoter, based on the following sequence properties 
computed in the 1000 bp genomic regions around the center 
of each defi ned TC (Fig.  3a , Step 4): Normalized CpG con-
tent, computed as described in [ 32 ]; 

 Average PhastCons conservation score across on a 46-way ver-
tebrate alignment downloaded from the UCSC Genome Browser 
( see   Note    5  ); Affi nity for a TATA box protein, computed by means 
of the TRAP program (cite) and based on the position-specifi c 
scoring matrix (pscm) downloaded from the Jaspar database 
(  http://jaspar.genereg.net/    , Jaspar ID: MA01082); 

 Genomic proximity score of the defi ned TC to the miRNA 
precursor.   

   5.     PROmiRNA’s mixture model . Pooled TCs from all tissues, 
together with their normalized tag counts and computed 
sequence properties, are fed into a semisupervised mixture 
model which automatically learns, through an EM algorithm, 
the optimal separation between TCs corresponding to pro-
moters and TCs corresponding to background. TCs from ran-
dom intergenic regions are interpreted as “exact” negative 
examples by the model (supervised part), while TCs upstream 
of miRNAs are nonlabeled examples (unsupervised part) which 
might either belong to the miRNA promoter class or to the 
background noise (Fig.  3a , Step 5).   

   6.     MiRNA promoter assignment . TCs upstream of miRNA promot-
ers are classifi ed as miRNA promoters, if the computed posterior 
probability from the model is higher than 0.5, otherwise they are 
classifi ed as background. The main output of the PROmiRNA 
software is a list of predicted promoters, for each miRNA gene, 
together with their genomic coordinate (Fig.  3a , Step 6).    

      PROmiRNA runs on every Linux/Unix environment. Before 
using it, one should make sure that the following languages and 
tools are available on the system: 

 python 2.7 (  https://www.python.org/download/
releases/2.7/    ). 

 PROmiRNA does not run with Python 2.6 or Python 3.x 

3.5  Practical Usage 
of the PROmiRNA 
Software
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 R > =2.12.1 (  http://cran.r-project.org    ) 
 Perl > = 5.12 (  http://perl.org/get.html    ) and BIO:Graphics 

perl module (  http://search.cpan.org/dist/Bio-Graphics-2.34/    ) 
 BEDtools (  http://code.google.com/p/bedtools    ) 
 cd-hit (  http://weizhong-lab.ucsd.edu/cd-hit/download.php    ) 
 ANNOTATE 3.04 (  http://trap.molgen.mpg.de/download/

TRAP/ANNOTATE-3.04.01.tar.gz    ) 
 After unzipping and placing the  external_data  directory into 

the  PROmiRNA  main directory we can have a brief look at the 
PROmiRNA subdirectories structure. The PROmiRNA folder 
contains four subdirectories: PROmiRNA/src , it contains all neces-
sary code to run PROmiRNA PROmiRNA/miRBase , it contains 
miRNA annotation fi les downloaded from the miRBase database 
[ 51 ].  PROmiRNA/external_data , it is further divided into two 
subdirectories,  bed_fi les , where input fi les to the software (tag 
alignments) in bed format should be placed ( see   Note    4  ), and 
 Phastcons , where chromosome-wise PhastCons conservation fi les 
should be placed ( see   Note    5  ). This directory contains also other 
data fi les necessary for the analysis: genome fi les for the organism 
under study (a chromosome size fi le, e.g.,  hg19.chrom.sizes  
( see    Note    6  ), a fasta fi le for the whole genome, e.g.,  hg19 .fa and its 
corresponding index fi le, e.g.,  hg19.fa.fai  ( see   Note    7  )); the anno-
tation of the repetitive regions for the organism under study (e.g., 
 hg19_repeats.bed ,  see   Note    8  ); a gtf fi le containing Ensembl gene 
annotation (e.g.,  Homo_sapiens.GRCh37.66 gtf ,  see   Note  
  9  ) PROmiRNA/Data , it contains all intermediate output fi les and 
it is divided into four subdirectories, namely  gff_fi les , where all 
tissue-specifi c, as well as pooled TCs are stored,  fasta , where fasta 
sequences of TC regions are stored,  background , where TCs and 
computed sequence properties for the background TCs are stored, 
 overlap_fi les , which stores intermediate overlap fi les between 
miRNA genomic coordinates and CAGE tags in different tissues 
and  matrix_fi le , where intermediate matrices of read counts before 
and after quantile normalization are stored. This  Data  directory 
contains many other intermediate fi les, the most important being 
discussed in the next session. The PROmiRNA software can be 
used in two different modes, depending on the application:

    1.     Testing mode . Given a set of genomic regions in gff format, 
test if they contain one or more miRNA promoters, based on 
a pretrained PROmiRNA model. After defi ning the output 
directory where all intermediate fi les and fi nal results will be 
placed, run 

  > python test_new_regions.py <out_dir> <in-

put_fi le>  
 For example: given the  test_regions.gff  provided inside the 

PROmiRNA directory, and setting output_dir =  test_regions , 
run: 

In Silico Promoter Recognition from deepCAGE Data
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  > python test_new_regions.py test_regions 

test_regions.gff  
 In the output directory, the main result fi les from this com-

mand are: 
  output_EM.txt , it contains promoter regions, as well as 

background TCs, with their respective genomic coordinates, 
normalized tag counts, values of the computed features and 
prior and posterior probabilities from the model. 

  miRNA_predicted_promoters.txt , it reports, for each miRNA 
in the input fi le, genomic coordinates of the predicted pro-
moter TCs, together with normalized CAGE tag counts and 
genomic distance of the TC from the miRNA precursor.   

   2.     Training mode . The original PROmiRNA model is trained on 
FANTOM4 data on the human assembly hg19. If you want to 
use PROmiRNA with new CAGE libraries (e.g., FANTOM5 
or  Encode   data) or on a new assembly / organism, we strongly 
suggest to re-train the  PROmiRNA   model. 

 After downloading the necessary fi les ( see   Notes    4  –  9  ), 
retrieve the miRNA annotation from miRBase [ 51 ]: 
  > python download_mirbase_annotation.py <org> <v>  

 Where  org  is the offi cial three-letter code for the organism 
identifi er (e.g.,  hsa  for human) and  v  indicates the miRBase 
release number. This command downloads the following 
annotation fi les in the  PROmiRNA  /miRBase directory: 

  [org].gff2 , a gff fi le containing the genomic coordinates of 
all precursor miRNAs for a specifi ed organism  org ; 

  miRNA.txt , annotation fi le containing information about 
each mature miRNA (e.g., accession, species, genomic 
sequence..); 

  mirna_context.txt , annotation of the genomic context of a 
miRNA (intergenic, intron, exon, 3′ UTR, 5′ UTR) 

 The training itself is done via: 
  > python PROmiRNA.py <genome>  

 Where  < genome  > refers to the genome assembly specifi ed 
for promoter prediction, e.g., hg19.    

       Although  PROmiRNA   produces many intermediate fi les during 
both testing and training, the most important output fi les are sum-
marized below and illustrated in Fig.  3b .

    1.    Files reporting the overlap between CAGE tags and regions 
upstream of miRNAs / random intergenic regions for each tis-
sue, sorted by genomic position: 

  PROmiRNA/Data/overlap_fi les/[back_tags/tags_

mirna]_overlap_ < tissue > _sorted.txt    

3.6  The 
PROmiRNA Output
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   2.    Matrix fi le of the normalized CAGE tag counts across tissues 
for both putative  TSS   positions and random intergenic regions: 

  PROmiRNA/Data/matrix_fi le/[count_matrix/

background]_normalized_mean.txt    

   3.    TC cluster fi les for candidate promoter regions (both tissue- 
specifi c and pooled across tissues), further distinguished in 
intragenic, intergenic, and all TCs: 

  PROmiRNA/Data/gff_fi les/tss_ < tissue > _[inter/
intra/all]_fi ltered.gff  

 A similar fi le is provided for background TCs: 
  PROmiRNA/Data/background/background_fi ltered.
gff    

   4.    Files of computed sequence properties for putative  TSSs   and 
background TCs: 

  PROmiRNA/Data/gff_fi les/CpG_tss_sorted.
tpm,    PROmiRNA/Data/gff_fi les/TATA_box_af-
fi nity_tss_sorted.tmp,     PROmiRNA/Data/gff_
fi les/conservation_av_tss_sorted.tmp  
  PROmiRNA/Data/background/CpG_back_sorted.
tpm,    PROmiRNA/Data/backgrouns/TATA_box_
affi nity_back_sorted.tmp, PROmiRNA/Data/

backgoruns/conservation_av_back_sorted.tmp    

   5.    File listing the fi nal model’s parameters learned during 
PROmiRNA training: 

  PROmiRNA/Data/fi nal_parameters.txt    

   6.    Files reporting the fi nal promoter predictions (see previous 
section) 

  P R O m i R N A / D a t a / o u t p u t _ E M _ c o m p l e t e .
txt,    PROmiRNA/Data/mirnas_with_predicted_
promoters.txt     

       To show an example of application of both DPI and  PROmiRNA   
we used both tools to identify miRNA promoters in the 
B-lymphoblastoid cell line Gm12878. Although DPI is designed 
to defi ne CAGE peaks genome wide, and not tuned to specifi cally 
fi nd miRNA promoters, we can nonetheless assign DPI peaks to 
miRNA genes by looking at the defi ned DPI peaks in the 50 kb 
region upstream of annotated miRNAs. 

    For  PROmiRNA  , alignment fi les in bam format (two biological 
replicates) for the Gm12878 cell line were downloaded at 

   http://fantom.gsc.riken.jp/5/datafi les/latest/basic/human.
cell_line.hCAGE/     

 For the sake of simplicity we will rename these fi les to 
 Gm12878_rep1.bam  and  Gm12878_rep2.bam . As PROmiRNA 
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requires input alignments in bed format, the bam fi le were con-
verted to bed format using the Bedtools: 

  > bamToBed -i Gm12878_[rep1/rep2].bam > 

Gm12878_[rep1/rep2].bed  
 The two bed fi les were placed in the  PROmiRNA/external_

data/bed_fi les  directory 
 miRNA promoters in the Gm12878 cell line from miRBase 

version 20 and human assembly hg19 were predicted as follows: 
           > python download_mirnabse_annota-

tion hsa 20  

           > python PROmiRNA hg19  
 The miRNA promoter predictions were listed in the output fi le 

 PROmiRNA/Data/mirnas_with_predicted_promoters.txt . This 
fi le reports the union of predicted promoters from the two repli-
cates. In order to derive a specifi c and strict list of promoters, and 
minimize the number of false positives we applied the following 
constraints:

 –    only promoter predictions common to the two replicates were 
retained  

 –   only promoter predictions in open  chromatin   regions were 
retained    

 In order to fulfi ll the second criterion we downloaded DNAseI 
hypersensitivity peak sites for the Gm12878 cell line from the 
 ENCODE   website   http://ftp.ebi.ac.uk/pub/databases/ensembl/
encode/integration_data_jan2011/byDataType/openchrom/
jan2011/fdrPeaks/    . For the sake of simplicity we will rename this 
fi le to  DNAseI_ Gm12878.bed . 

 After converting  PROmiRNA   predicted promoters to gff for-
mat using a customized simple script ( promoters_Gm12878.gff fi le ) 
we computed the overlap between DNAseI hypersensitivity sites 
and promoters’ genomic coordinates (extended by 100 bp 
upstream and downstream) by means of the Bedtools: 

           > windowBed –a promoters_Gm12878.
gff fi le –b DNAseI_Gm12878.bed –w 100 –u > 

promoters_Gm12878_dnase_validated.gff    

   The cell-specifi c ctss fi le is downloaded at   http://fantom.gsc.
riken.jp/5/datafi les/latest/basic/human.cell_line.hCAGE/     and 
given as input fi le to DPI. 

           > identify_tss_peaks.sh -g human.
hg19.genome –i’DATA FOLDER/*.ctss.bed.gz’ 

-o ./result –d Y  
 The output fi les of the predicted Tag Clusters genome wide are: 

           tc.decompose_smoothing_merged.
ctssMaxCounts11_ctssMaxTpm1.bed  (robust 

cutoff) 

3.7.2  Application of DPI 
to Gm12878 CAGE Data
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           tc.decompose_smoothing_merged.

ctssMaxCounts.bed  (permissive cutoff) 
 In order to compare DPI predictions with  PROmiRNA   pre-

dictions we considered only DPI peaks up to 50 kb upstream of 
annotated miRNAs from miRBase v 20. We also fi ltered DPI 
peaks according to their overlap with DNAseI hypersensitivity 
regions as done above. The procedure was repeated for the two 
DPI output fi les corresponding to both the robust and permissive 
cutoff on the read counts. 

 The results from the comparison are summarized in Fig.  4 . 
First of all, we observe that the largest overlap between DPI and 
 PROmiRNA   predictions is reached with the sets of DPI peaks at 
the permissive cutoff. This strengthen the argument that miRNA 
promoters are lowly detected compared to the protein-coding 
gene promoters due to fast processing of the miRNA  primary tran-
scripts  , and a strict cutoff on the read counts will not allow their 
genome-wide identifi cation.

   The overlap between the tools is very high for miRNA host 
gene promoters, i.e., the promoters of protein-coding genes  hosting 
miRNA hairpins inside their transcripts, and lower for intergenic 
and independent intragenic miRNA promoters, This underlines the 
fact that miRNA promoter prediction is still a challenging task com-
pared to protein-coding gene promoter prediction. 
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  Fig. 4    Comparison between DPI and  PROmiRNA   for the miRNA promoter prediction task in the Gm12878 cell 
line. Overlap between predictions is shown for different promoter classes and for two sets of DPI predictions: 
set 1—where a robust cutoff of 2.0 TPM expression has been applied to the representative CTSS of a tag 
cluster and set 2—where a more permissive cutoff of 0.7 TPM has been applied. The overlap between DPI and 
 PROmiRNA   is improved when considering the DPI set 2 (permissive cutoff) given the lower expression values 
of miRNA promoters compared to gene promoters. The biggest overlap is observed for miRNA host gene pro-
moters in both cases (DPI set 1 and set 2), whereas the overlap between the two tools is limited when it comes 
to the prediction of intergenic and intronic miRNA promoters       
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 Overall,  PROmiRNA   returns many more predictions than 
DPI: this might be due to the fact that  PROmiRNA  , unlike DPI, 
does not fi lter out genomic positions where only one tag maps, but 
includes them in the subsequent analysis, generating inevitably 
more predictions. While this is necessary in order to capture  TSSs   
of lowly expressed miRNA  primary transcripts   which harbor pro-
moter features in their sequences, it can happen that a certain frac-
tion of  PROmiRNA   predictions represent false positives. However, 
most of predictions might represent real alternative miRNA pro-
moters which need further investigation and validation.    

4                   Notes 

     1.    The input fi les to DPI are CTSS fi les in bed format. CTSS stand 
for CAGE  Transcription Start Site  , and a CTSS fi le stores the 
5′-end positions of the representative CAGE tags which start at 
the same genomic position on the same strand, together with 
the total number of representative CAGE tags at that position. 
A representative CAGE tag is a group of tags which have identi-
cal sequence (and therefore identical genomic mapping) [ 30 ].   

   2.    A Tag Cluster (TC) is a cluster of overlapping  TSSs  , which are 
within 20–21 bp of each other. A TC genomic regions spans 
from the 5′-end of its most 5′-end tag, to the 3′ end of its most 
3′-end tag. Two adjacent but non-overlapping tags contribute 
to separate TCs unless they are bridged by another tag. For a 
more detailed defi nition and some examples see [ 30 ].   

   3.    Independent component analysis (ICA) is a useful method in 
signal processing, which is used to decompose a multivariate 
signal into subsignals ( see  Fig.  5 ), when knowing/assuming 
that the subsignals are independent and non-Gaussian, and by 
maximizing the statistical independency of the subsignals. The 
input of ICA is  n  observations of mixed signal, and each obser-
vation is a linear mixture of the original signals. The ICA tech-
nique is exemplifi ed in Fig.  5 . The top panel shows a simulated 
signal, which consists of  m  = 2 independent non-Gaussian 
source signal components, over time. Assume that we observed 
 n  = 3 independent observations of this mixed signal (middle 
panel). By applying the ICA technique we are able to decom-
pose the observed mixed signal in two estimated signal compo-
nents, which correspond to the original signal we want to 
reconstruct (lower panel).
   DPI assumes that each long tag cluster peak corresponds to a 
mixed signal (i.e., independent CAGE profi les). The  m  subsig-
nals come from different  transcription  al starting sites. The 
expression level of each  TSS   is independent from the others, 
and the signals are assumed to be non-Gaussian. Thus, ICA is 
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suitable to separate mixed  TSSs   peaks into single  TSS   peaks. 
Different tissue types correspond here to the  n  observations. 

 DPI calculates ICA using the R package  fastICA,  an effi cient 
and popular algorithm for fi nding an orthogonal rotation of the 
data [ 52 ]. In  fastICA , the non-Gaussianity is measured as a 
proxy for the statistical independency using approximations to 
negative-entropy, which is robust and fast to compute.   

   4.    The input fi les to  PROmiRNA   are CAGE tag alignments on the 
genome of interest in bed format (one bed fi le for each library), 
with six columns:  chromosome  (in UCSC format, e.g., chr1), 
 start  (5′-end of the aligned tag),  stop  (3′-end of the aligned tag), 
 tag_identifi er  (or any other string),  number of tags  (number of 
identical tags mapping exactly at those position), strand.   
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  Fig. 5    Upper panel. Simulation of a mixed signal over time. Middle panel. Independent observations of a noisy 
mixed signals. Lower panel. Reconstruction of the two independent components of the noisy mixed signal 
using FastICA, an effi cient R implementation of Independent Component analysis       
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   5.    When training  PROmiRNA   with new CAGE libraries on a 
new organism, the external annotation data (provided for hg19 
with the current version of  PROmiRNA  ) has to be built from 
scratch. Phastcons fi les in WigFix format for each chromosome 
can be downloaded at   http://hgdownload.cse.ucsc.edu/
goldenPath/hg19    . 

 For example, for hg19 the link is:   http://hgdownload.cse.
ucsc.edu/goldenPath/hg19/phastCons46way/vertebrate     

 WigFix fi les need to be converted to the binary wib format. 
This can be done with the  wigFix2wib.pl  script provided in 
 PROmiRNA/src.  Example of usage: 

 >  wigFix2wib.pl inFile1.wigFix[.gz][in-

File2.wigFix]…]  
  Th e generated *.wib fi les have to be placed in the directory 

 PROmiRNA/external_data/Phastcons  before using the 
software.   

   6.    To retrieve the  chrom.sizes  fi le for your organism of interest use 
the  fetchChromSizes  script from   http://hgdownload.cse.ucsc.
edu/admin/exe/linux.x86_64/fetchChromSizes    . 

 Example of usage: 
 >  fetchchromSizes <db> <db>.chrom.sizes  

  <d b > corresponds to one of the ucsc databases (e.g., hg18, 
hg19, mm9, etc.). Place the  < db > .chrom.sizes  fi le in the 
 PROmiRNA/external_data  directory.   

   7.    Sequence fasta fi les for each chromosome can be downloaded 
at http://hgdownload.cse.ucsc.edu/goldenPath/<db>/
chromosomes/, where < db > corresponds to one of the ucsc 
databases (e.g., hg18, hg19, mm9, etc.). Pool the individual 
 chrom.fa  fi les into a common fi le  < db > .fa  using the Linux 
command  cat.  For example: 

 >  cat chr1.fa, chr2.fa, …… > hg19.fa  
  Pl ace the < db > .fa fi le in the  PROmiRNA/external_data  

directory. 
 Afterwards, create a fasta index fi le from < db > .fa using the 

samtools [ 53 ]: 
 >  samtools faidx PROmiRNA/external_

data/<bd.fa>    

   8.     P R OmiRNA   excludes repetitive regions when forming TCs 
from CAGE tags. In order to allow that, it requires a fi le in bed 
format listing the genomic coordinates of annotated repetitive 
regions for the genome of interest. A repeat fi le can be down-
loaded from the UCSC Genome Browser with the following 
instructions:
 –    Go on the UCSC website (  https://genome.ucsc.edu    ) and 

select  Table Browser  on the left menu;  
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 –   Select the organism and the genome assembly. For exam-
ple, for the human assembly hg19 select  Mammal  in the 
 clade  fi eld, “Human” in the  genome  fi eld,  GRCh37/hg19  
in the  assembly  fi eld,  RepeatMasker  in the  track  fi eld, 
“genome” in the  region  fi eld and  BED-browser extensible 
data  in the  output format  fi eld.  

 –   Click the  get output  button to retrieve the desired fi le in 
bed format 

 –  The repeat fi le has to placed in the  PROmiRNA/exter-
nal_data  directory.      

   9.    In order to annotate host gene and intronic promoters for intra-
genic miRNAs,  PROmiRNA   requires a gene annotation fi le in gtf 
Ensembl format. Such a fi le can be downloaded from the Ensembl 
ftp site (  www.ensembl.org/info/data/ftp/index.html    ) and has 
to be placed in the   PROmiRNA    /external_data  directory.          
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