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Abstract.  Leaf Economics Spectrum (LES) trait variation underpins multiple agroecological processes and many 
prominent crop yield models. While there are numerous independent studies assessing trait variation in crops, to 
date there have been no comprehensive assessments of intraspecific trait variation (ITV) in LES traits for wheat 
and maize: the world’s most widespread crops. Using trait databases and peer-reviewed literature, we compiled 
over 700 records of specific leaf area (SLA), maximum photosynthetic rates (Amax) and leaf nitrogen (N) concen-
trations, for wheat and maize. We evaluated intraspecific LES trait variation, and intraspecific trait–environment 
relationships. While wheat and maize occupy the upper 90th percentile of LES trait values observed across a 
global species pool, ITV ranged widely across the LES in wheat and maize. Fertilization treatments had strong 
impacts on leaf N, while plant developmental stage (here standardized as the number of days since planting) had 
strong impacts on Amax; days since planting, N fertilization and irrigation all influenced SLA. When controlling for 
these factors, intraspecific responses to temperature and precipitation explained 39.4 and 43.7 % of the variation 
in Amax and SLA, respectively, but only 5.4 % of the variation in leaf N. Despite a long history of domestication in 
these species, ITV in wheat and maize among and within cultivars remains large. Intraspecific trait variation is a 
critical consideration to refine regional to global models of agroecosystem structure, function and food security. 
Considerable opportunities and benefits exist for consolidating a crop trait database for a wider range of domes-
ticated plant species.
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Introduction
Functional traits refer to the structural, chemical, 
physiological or phenological properties of plants and 
plant parts, which mechanistically influence plant per-
formance (i.e. growth, survival and reproduction) across 
environmental gradients (Violle et  al. 2007). Research 
on functional traits has been critical in advancing our 
understanding of the structure and function of terres-
trial ecosystems (Reich et al. 1997; Westoby and Wright 
2006; Díaz et al. 2016). Based on a growing number of 
studies from experimental and natural systems, ecolo-
gists have developed a deeper understanding of the key 
traits that mechanistically underpin plant responses to 
environmental change. In terrestrial ecology, consid-
erable efforts have focused on identifying the leaf (e.g. 
Reich et  al. 1999; Wright et  al. 2004), root (e.g. Craine 
et  al. 2005), reproductive (e.g. Moles et  al. 2004) and 
whole-plant traits (e.g. Westoby 1998; Díaz et al. 2016) 
that individually or cumulatively contribute to ecologic-
ally important differences in functional biology among 
species.

Of these groups of traits, leaf functional traits have 
arguably received the most attention by ecologists and 
plant ecophysiologists. In particular, the ‘Leaf Economics 
Spectrum’ (LES) has been hypothesized and tested, as a 
suite of covarying leaf traits that can be used to describe 
plant functional biology (Reich et al. 1999; Wright et al. 
2004; Wright et al. 2005a). On one end of the LES are 
‘resource conserving species’ that express low specific 
leaf area (SLA), low leaf nitrogen (N) concentrations and 
low maximum photosynthetic rates (Amax). At the op-
posite end of the LES are ‘resource acquisitive species’ 
that express high SLA, high leaf N and high Amax (Wright 
et  al. 2004; Wright et  al. 2005a). Since publication of 
hypotheses on the factors governing leaf-level trade-
offs—broadly categorized as selection vs. constraints 
(Lambers and Poorter 1992; Reich et  al. 1992; Grime 
et al. 1997)—considerable evidence for the existence of 
a universal LES across plant species worldwide, includ-
ing both C3 and C4 plants, has emerged (e.g. Wright et al. 
2004; Díaz et  al. 2016). In turn, LES traits now factor 
heavily into applied research on multiple ecosystem 
functions including global net primary productivity (e.g. 
Van Bodegom et  al. 2012), plant decomposition (e.g. 
Cornwell et al. 2008), disturbance recovery (e.g. Saura-
Mas et al. 2009), species invasions (e.g. Penuelas et al. 
2010) and species coexistence (e.g. Kraft et al. 2008).

While much contemporary research on plant func-
tional traits has focused on ‘natural ecosystems’, trait-
based research also has clear application in agricultural 
systems (Martin and Isaac 2015; Milla et al. 2015; Wood 
et  al. 2015; Martin and Isaac 2018). For example, the 

world’s 65 most common crops occupy ~1.2 billion ha 
or 8.1 % of the Earth’s land surface (Martin and Isaac 
2015). Yet despite these same crop species spanning a 
continuum of growth forms and strategies, from small-
statured fast-growing annuals to slower-growing peren-
nial trees, they commonly remain represented in global 
dynamic vegetation models as a small number of gener-
alized plant functional types (PFTs) (Monfreda et al. 2008). 
Additionally, LES traits, namely SLA and Amax, are key 
inputs in many of the world’s most commonly employed 
crop yield simulation models (e.g. Jones et  al. 2003; 
Bouman and van Laar 2006), including those underpin-
ning yield assessments by the Intergovernmental Panel 
on Climate Change (Porter et  al. 2014 as summarized 
here in Supporting Information—Table S1). Although 
crop growth models are parameterized with functional 
trait data, crops are commonly represented by species-
level mean trait values. Accounting for intraspecific 
variation in LES traits for crops has been identified as a 
key avenue for refining predictions of agricultural yield 
(Bouman and van Laar 2006). More broadly then, quanti-
fying intraspecific variation in LES traits for just two crop 
groups—wheat (Triticum spp.) and maize (Zea mays)—
could aid in refining simulation models of food, nutrient, 
water and energy fluxes across nearly 400 million ha of 
crop land (see Supporting Information—Table S1 in 
Martin and Isaac 2015).

Recent analyses have pointed to the importance of 
intraspecific trait variation (ITV) in influencing structure 
and function in natural or experimental ecosystems (e.g. 
Albert et al. 2010; Kattge et al. 2011; Siefert et al. 2015). 
There is also reason to expect ITV is critical in governing 
agroecological processes. Despite crop cultivars being 
the result of extensive artificial selection for certain 
traits, studies have shown that the range of ITV within 
and among cultivars can be both remarkably wide (e.g. 
Driever et al. 2014), and systematically predicted by cer-
tain environmental or management characteristics such 
as soil nutrient-, water- or light regimes (Donovan et al. 
2014; Gagliardi et al. 2015; Martin et al. 2017). In turn, 
ITV across managed environmental gradients contrib-
utes to differences in multiple agroecosystem function-
ing including plant yield (Bouman and van Laar 2006; 
Gagliardi et  al. 2015), biomass accumulation and light 
interception (Milla et al. 2014), and litter decomposition 
and nutrient cycling (He et al. 2012; García-Palacios et al. 
2013).

Analyses of ITV in LES traits of crops have also been 
employed to develop and test novel hypotheses on the 
ecological implications of artificial selection (Milla et al. 
2015; Martin et  al. 2017). Authors have hypothesized 
that artificial selection, coupled with high-resource con-
ditions in agroecosystems, will shift crop traits towards 
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to ‘resource acquiring’ end of the LES, and that such 
shifts have systematic impacts on rates of agroeco-
system functions (Milla et  al. 2014; Milla et  al. 2015). 
Although there is qualitative evidence to support this 
hypothesis using species average trait values (e.g. 
Supporting Information—Fig. S1 in Martin and Isaac 
2015; Milla et al. 2015), quantitative analyses that define 
ITV in crops along key axes of the LES could provide more 
robust support for this expectation (Donovan et al. 2014; 
Martin et al. 2017).

Here, we employ the world’s largest functional trait 
database—the TRY database (Kattge et  al. 2011)—
coupled with an extensive literature review, in order to 
understand interspecific differences and ITV in wheat 
and maize, the world’s two most common crops. We 
specifically focus on ITV in LES traits in these crops, in 
order to address the following questions: (i) What is 
the extent of intraspecific variation in LES traits for the 
world’s most common crops? (ii) What climatic or man-
agement-related variables best account for ITV in crops? 
(iii) Have wheat and maize been shifted towards the ex-
treme resource acquiring end of the LES?

Methods

Study species and leaf trait compilation
Our analysis focused on two species of wheat—Triticum 
aestivum (Poaceae), T.  durum—and Z.  mays (Poaceae). 
Focusing on T. aestivum, T. durum and Z. mays is con-
sistent with species-level taxonomy for the ‘Maize’ and 
‘Wheat’ commodity groups recognized by the Food and 
Agricultural Organization of the United Nations (FAO) (see 
www.fao.org/economic/ess/ess-standards/commodity). 
(Three additional wheat species, T. dicoccon, T. mono-
coccum and T. spelta, were also initially included in our 
search, but these species yielded prohibitively low returns 
(i.e. no data available in the TRY database (see below), 
and less than three peer-reviewed publications with trait 
data for each species).) We initially sought to assess ITV 
at the within-cultivar level. However, trait observations 
for any particular cultivar across multiple studies were 
prohibitively low to allow comprehensive assessments of 
ITV within any cultivar, beyond the results reported in a 
given source publication (although cultivar identity was 
reported and accounted for in our analysis here).

For T. aestivum, T. durum and Z. mays, we focused our 
data compilation on key LES traits that are important 
inputs into many agricultural vulnerability models, par-
ticularly those employed by the IPCC (Porter et al. 2014) 
(reviewed here in Supporting Information—Table S1). 
Data compilation was done following two approaches. 

First, we submitted structured data requests to the TRY 
database (Kattge et al. 2011). We specifically requested 
any data records that included information on LES traits 
including SLA, photosynthesis on an area basis (Amax) 
and leaf N on both a mass and area basis (Wright et al. 
2004). We also requested data for additional traits, 
namely leaf photosynthesis and respiration on mass 
basis (Amass and Rd, respectively), leaf area, leaf phospho-
rus concentrations, leaf lifespan and leaf dry mass, but 
there were few data available on these traits, so they 
were not included in our analysis here.

Second, we complemented the TRY data requests with 
a structured literature search using the Web of Science 
journal database and Boolean operators. Specifically, 
we searched peer-reviewed literature for the terms ‘leaf’ 
and ‘trait*’, coupled with species names (e.g. ‘leaf nitro-
gen’ AND ‘Zea mays’). Our search targeted (but was not 
limited to) the period of 2000–15 in order to focus our 
analysis on the most recent wheat and maize geno-
types, the majority of which have been introduced since 
2000 (Driever et al. 2014) and differ broadly in their traits 
as compared to earlier genotypes (Roucou et al. 2018). 
We also searched for species names coupled with the 
physiological terms (e.g. ‘wheat’ AND ‘photosynthesis’). 
The full text of each article was then searched for these 
terms. We then limited these studies to include field-
based, greenhouse and growth chamber experiments, 
and where sampling protocols in the studies followed 
(at least approximately) standardized functional trait 
collection methodologies (Perez-Harguindeguy et  al. 
2013). Any deviations from these protocols were noted 
for analysis.

Environmental data
In both approaches, we sought to obtain any ancillary 
metadata including spatial location and environmental 
conditions for all trait data. For trait data found through 
the literature search, this information was largely 
derived from the published article. This included geo-
graphical information for each trait value (region, coun-
try, latitude, longitude, altitude), as well as climate data 
including mean annual temperature (MAT) and total 
annual precipitation (TAP). We also sought to include 
information on solar irradiance, vapour pressure deficit 
(VPD) and potential evapotranspiration (PET), but these 
variables were not consistently reported among stud-
ies and were therefore not incorporated into our formal 
analysis. Where climate information was not included in 
these studies, historical climate data were obtained via 
the closest weather station, and using a 0.6 °C change 
in growth temperature (GT), per 100 m in elevation (fol-
lowing Wright et al. 2005b). Also, many studies included 

http://www.fao.org/economic/ess/ess-standards/commodity
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data on mean GT (the average temperature of the grow-
ing season months) as opposed to MAT. Therefore, for all 
observations GT was calculated using weather station 
data, averaging all monthly temperatures ≥ 5 °C, follow-
ing Wright et al. (2005b). If published articles reported 
mean trait values taken over two or more growing sea-
sons, the climatic variables were averaged across the 
same time frame. In the case of TRY-derived data, when 
location and/or climatic variables were not indicated in 
the data releases, individual researchers were contacted 
to provide these data.

We also sought to record any relevant site-specific 
data including soil classification, prior land use, mono-
culture or polyculture management systems, other 
crop species present, nitrogen (N) fixing plants present, 
crop planting density, soil pH, N fertilizer application 
rate, irrigation rates, plant age and day of sampling. 
Although explicit efforts were made to standardize 
these data for analysis, since they were not consist-
ently reported among studies (or at all in many analy-
ses), and were challenging/impossible to standardize 
in certain instances (such as fertilization treatments 
which were reported in multiple inconsistent ways), 
they were generally omitted from analyses here (but 
see below).

All trait measurements were additionally categorized 
by study area type, which was listed as one of ‘field’, 
‘greenhouse’ or ‘growth chamber’. Any pot experiments 
within the compilation were categorized as either field 
or greenhouse, depending on the conditions of the 
experiment. If both field and greenhouse locations 
were used within one study, the data were separated 
when possible. Other ancillary information included the 
plant developmental stage at time of sampling. Due to 
inconsistent methods of reporting across studies, we 
sought to re-categorize this information for analysis. 
For example, any one of the following was commonly 
given: date of sowing; date of sampling; number of days 
after a given development stage; or the plant develop-
mental stage at time of sampling. This reporting also 
included varying developmental stage models (e.g. 
Zadoks 1985; Lancashire et  al. 1991). Developmental 
stages were therefore converted into the most common 
measurement found in our study: days since planting 
(D). For maize, developmental stages were converted 
into D using ranges of the number of days that is typ-
ically required for each growth stage. For wheat, devel-
opmental stages within each study were converted to 
D following a generalization from Dias et al. (2011) (i.e. 
the number of days after emergence required for each 
growth stage) taking into account an additional 10-day 
period for sowing to emergence.

Functional trait data availability
Our data compilation resulted in a total of 721 leaf level 
observations for Z. mays, T. aestivum and T. durum taken 
from 75 studies conducted across 23 countries and 67 
different regions (Fig. 1; see Supporting Information—
Table S2). Trait observations were more readily available 
in the primary literature (n = 663 observations) as com-
pared to the TRY database (n = 122 observations), and 
the large majority of data were based on field-grown 
crops (n = 564 observations across 44 studies, of which 
n = 61 observations from eight studies were based on 
potted plants), as compared to growth chambers 
(n = 168 observations from 16 studies) or greenhouse-
based studies (n = 45 observations from nine studies); 
one study entailed n  =  2 observations, one from both 
field- and greenhouse conditions, while n = 8 observa-
tions from five studies did not provide growth condition 
information.

Geographic representation of crop trait data varied 
with the largest number of sources derived from studies 
based in Europe (n = 292 observations across 31 stud-
ies) and Asia (n = 136 observations across 21 studies), 
followed by Australia (n  =  95 observations across four 
studies), South America (n = 32 observations across four 
studies) and North America (n = 136 observations across 
four studies); Africa was represented by n = 4 observa-
tions, and n  =  1 observation from one study was not 
associated with any geographical information (Fig.  1; 
see Supporting Information—Table S2).

Data analysis—trait variation among and within 
crop species
All statistical analyses were conducted using R version 
3.3.0 (R Core Team 2016). For each individual trait we cal-
culated descriptive statistics for each species individually, 
and tested for differences among species. Sample sizes 
for each trait-by-species combination were unbalanced, 
and different data sources contributed to our data set 
unequally. Therefore, descriptive statistics were based 
on linear mixed-effects models performed using the 
‘nlme’ R package (Pinheiro et  al. 2016), where species 
identity was treated as a fixed factor and genotype as 
a random factor. Based on these models, we calculated 
least squares mean values and associated SEs for each 
trait on a species-by-species basis using the ‘lsmeans’ R 
package (Lenth 2016). To quantify any systematic bias 
in traits as a result of genotype, for each model we also 
used the ‘piecewiseSEM’ package (Lefcheck 2016) to cal-
culate both marginal r2 and conditional r2 values, which 
represent the variance in a given trait explained by the 
fixed factors alone (i.e. species identity) and the variance 
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explained by both the fixed and random factors (i.e. spe-
cies identity and genotype, respectively) (Nakagawa and 
Schielzeth 2013).

To understand where wheat and maize fell within the 
LES, we compared mean crop trait values to the trait 
variation observed in the GLOPNET database, which 
is the initial global data set (comprised of both C3 and 
C4 plants) used to define the LES (Wright et  al. 2004). 
Specifically, this was done by comparing mean crop 
trait values, as well as the range of ITV in crop traits, 

to quantiles calculated for SLA, Amax and leaf N across 
the entire GLOPNET data set (where n  =  2370 for SLA, 
n = 764 for Amax and n = 2061 for leaf N).

Data analysis—trait–environment relationships
To evaluate the influence of temperature and precipita-
tion on leaf traits, we followed a multi-step process. First, 
we fit a preliminary mixed-effects model for each trait 
individually pooled across all species, in order to under-
stand how other environmental or management-related 

Figure 1.  Leaf trait observations for Triticum aestivum and Triticum durum (panel A) and Zea mays (panel B), as compared to the growing 
regions for both crop groups (according to Monfreda et al. 2008). Colours correspond to the number of observations available from each study 
location.
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variables (largely measured as binary or categorical vari-
ables) might confound relationships between traits and 
GT and TAP. To do so, we fit a model of the form:

	 trait N I F D (Gi i i i i= + + + + + +b b b b b e0 1 2 3 4 i i )	 (1)

where traiti represents the value of the ith trait meas-
urement in our data set, which is predicted as a function 
of five fixed effects including (i) β0, which represents an 
overall model intercept; (ii) β1, which is the parameter es-
timate associated with nitrogen fertilization (N, treated 
here as a binary variable); (iii) β2, which is the parameter 
estimate for irrigation (I, treated as a binary variable); 
(iv) β3, which is the parameter estimate for the type of 
study (F: field, greenhouse or growth chamber); and (v) 
β4, which is the parameter estimate that represents the 
influence of days since planting (D). In this model, the 
influence of crop genotype (Gi) on a predicted trait value 
was included as a random effect, and εi represents the 
error associated with each individual trait observation.

Based on the results of these analyses [see Supporting 
Information—Table S3], in our second step we fit and 
compared a number of linear mixed-effects models to 
evaluate relationships between traits and both GT and 
TAP. These full models included species identity, GT, TAP 
and all species-by-environment interactions as fixed 
effects, and variables that had a significant influence on 
traits (as per Equation 1 and Supporting Information—
Table S3) as random effects. These full models were of 
the form:

	

A ij j ij

j ij ij ij

max S GT TAP S GT

S TAP D
- = + + + +

+ + +

b b b b b
b
0 1 2 3 4

5

ij ij j

( e )) 	 (2)

	

Leaf N S GT TAP S GT

S TAP N
ij j ij ij k ij

k ij ij i

= + + + +

+ + +

b b b b b
b e
0 1 2 3 4

5 ( jj ) 	 (3)

	

SLA S GT TAP S GT

S TAP I F D
ij j ij ij k ij

k ij ij ij

= + + + +

+ + + +

b b b b b
b
0 1 2 3 4

5 ( iij ij+e ) 	 (4)

where traitij represents the predicted trait value meas-
ured on the ith leaf of the jth species, and β0 represents 
an overall intercept. In these models, (i) β1 represents 
the parameter estimate associated with the jth species 
(S, which in these analysis represents the parameter 
estimate associated with Z. mays only; since T. durum 
trait observations did not have associated climate 
information, only two species are addressed here); (ii) 
β2 is the parameter estimate for GT; (iii) β3 represents 
the parameter estimate for TAP; (iv) β4 represents an 
interaction term between S and GT (a parameter appli-
cable only to Z. mays); and (v) β5 is the interaction term 

between S and TAP (a parameter also applicable only 
to Z. mays). Random effects in these models (included 
according to significant parameters detected in the 
analyses at Equation 1 and Supporting Information—
Table S3) were irrigation (Iij), the type of study (Fij), 
nitrogen fertilization (Nij) and the number of days since 
planting (Dij) on predicted trait values; εij represents the 
error associated with each individual trait observation. 
Sample sizes of these models (i.e. where trait values 
were paired with all of the fixed and random effects 
noted in Equations 2–4) were n = 133 for Amax, n = 206 
for leaf N and n = 34 for SLA.

In our next analysis step we used Akaike informa-
tion criterion (AIC) scores to compare the full models in 
Equations 2–4 to reduced models that included different 
combinations of fixed effects (specified in Supporting 
Information—Table S4). In general, the full models 
presented were associated with either the lowest AIC 
score, or had AIC scores that were ≤2 greater than the 
AIC scores for the next most parsimonious model fit 
[see Supporting Information—Table S4]. Therefore, in 
our next step we assessed the statistical significance of 
all fixed effects in Equations 2–4, in order to inform our 
final predictive model. Specifically, for each model pre-
dicting trait values, all non-significant fixed effects were 
removed [see Supporting Information—Table S5], leav-
ing us with final predictive models of each individual trait 
(Table 2). For each of the final predictive models we also 
calculated both marginal r2 and conditional r2 values.

Results
Across crop species, T.  aestivum had the most exten-
sive LES trait coverage with n = 496 observations, while 
Z. mays traits were represented by n = 207 observations; 
T. durum was represented by only n = 18 observations. 
For T. aestivum, leaf N concentration was the most well-
represented trait (n  =  218), followed by Amax (n  =  173) 
and SLA (n = 105) (Table 1). Similarly for Z. mays, leaf N 
was the most commonly observed leaf trait (n = 88), fol-
lowed by Amax (n = 80) and SLA (n = 39). Sample sizes for 
T. durum were considerably lower for Amax (n = 9), leaf N 
(n = 8) and SLA (n = 1) (Table 1).

Inter- and intraspecific trait variation
Mean Amax was highest in Z. mays (27.4 ± 1.7 (SE) µmol 
CO2 m−2 s−1), followed by T.  durum (24.3  ±  3.4  µmol 
CO2 m−2 s−1) and T. aestivum (16.4 ± 1.2 µmol CO2 m−2 
s−1), with wheat species differing significantly from 
maize (Table  1; Fig.  2). Similarly, mean SLA differed 
significantly across species, ranging from 9.6  mm2 
mg−1 in T. durum, to 22.6  ±  1.6  mm2 mg−1 in Z. mays, 
to 20.6 ± 1.1 mm2 mg−1 in T. aestivum (Table 1; Figs 2 
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and 3). Mean leaf N concentrations did not differ signifi-
cantly among crop species, ranging from 30.7 ± 1.1 mg 
g−1, 34.2 ± 0.8 mg g−1 and 36.1 ± 3.0 mg g−1 in Z. mays, 
T. aestivum and T. durum, respectively (Table 1; Figs 2 
and 3). Compared to interspecific variation, ITV was 
large. Specifically, SLA varied over 3-fold in Z. mays 
(range  =  10.1–36.4  mm2 mg−1, interquartile range 
(IQR) = 16.0–28.8 mm2 mg−1) and 6-fold in T. aestivum 
(range = 7.5–44.7 mm2 mg−1, IQR = 15.1–29.6 mm2 mg−1), 
while leaf N varied over 2-fold in T. durum (range = 22.1–
46.0 mg g−1, IQR = 33.8–40.3 mg g−1), 5-fold in Z. mays 
(range  =  13.6–70.7  mg g−1, IQR  =  23.8–36.0  mg g−1) 
and nearly 10-fold in T. aestivum (range = 6.1–58.7 mg 
g−1, IQR  =  26.5–42.2  mg g−1; Table  1; Fig.  2). Similarly, 
Amax varied nearly 3-fold in Z. mays (range  =  12.8–
47.3 µmol CO2 m−2 s−1, IQR = 17.0–28.5 µmol CO2 m−2 s−1), 
19-fold in T. aestivum (range = 2.0–39.0 µmol CO2 m−2 
s−1, IQR = 16.0–28.0 µmol CO2 m−2 s−1) and 2-fold in T. 
durum (range = 11.5–29.8 µmol CO2 m−2 s−1, IQR = 17.5–
29.0 µmol CO2 m−2 s−1; Table 1; Fig. 2).

As compared to a global species pool, mean wheat 
and maize trait values fell within the upper 95th per-
centile of all three key LES traits examined here. 
Specifically, as compared to the GLOPNET species pool, 
mean Amax values for all three crops fell between the 
95th and 99th percentile of values (which ranged in 
GLOPNET from 22.8 to 31.4 µmol CO2 m−2 s−1), and leaf 
N values fell within the 90th and 99th percentile (which 
ranged in GLOPNET from 31.9 to 50.5  mg g−1). Mean 
SLA values for T. aestivum and maize fell within the 
85th percentile (which ranged in GLOPNET from 20.5 to 
24.1 mm2 mg−1), although mean SLA for T. durum fell 
only within the 40th percentile of GLOPNET values (Figs 
2 and 3).

Correlates of ITV
Our preliminary analysis found that the number of days 
since planting had a significant influence on Amax [see 
Supporting Information—Table S3]. When accounting for 
these factors, species identity, GT, TAP and a species-by-GT 
interaction term explained 35.3 % of the variation in Amax 
(Table  2). This relationship includes a significant positive 
relationship between TAP and Amax, a significant positive 
relationship between GT and Amax in T. aestivum (Table 2) 
and a negative relationship between GT and Amax in Z. mays 
that was significantly different from the relationship found 
in T. aestivum (Table 2). An additional 35.6 % of the varia-
tion in Amax was attributable to days since sowing (Table 2).

Growth temperature and TAP alone explained 43.7 % 
of the variation in SLA, with both of these environmental 
variables being significant negative predictors of this trait 
(Table 2). These patterns did not differ significantly across 
species (Table 2). Generally, for a 1  °C increase in tem-
perature, SLA declined by 1.3 ± 0.4 mm2 mg−1 (SE), while 
for every 1 mm increase in precipitation SLA declined by 
0.02 ± 0.003 mm2 mg−1 (Table 2). Time since sowing, the 
presence of absence of irrigation and the type of study 
explained an additional 52.9 % of the variation in SLA, 
with especially notable declines in SLA occurring as the 
number of days since planting increased [see Supporting 
Information—Fig. S3].

Growth temperature was significantly negatively 
related to leaf N in both species, with a 1 °C increase in 
temperature associated with a 0.9 ± 0.2 mg g−1 decline 
in leaf N (Table 2). This pattern did not differed signifi-
cantly across species (Table  2). Leaf N concentrations 
were also significantly related with TAP, but these 
relationships were weak (Table  2). Overall, climatic 
effects only explained 5.4  % of the variation in leaf N, 

Table 1.  Sample sizes and descriptive statistics for three leaf-level functional traits for wheat (Triticum aestivum and Triticum durum) and 
maize (Zea mays). Marginal means are derived from a linear mixed-effects model predicting trait values as a function of species, while 
accounting for potential systematic bias associated with unequal sample sizes across genotypes. In addition to observed ranges, IQRs are 
also provided for each trait. Explained variance for a given trait is presented as the proportion explained by species identity alone (marginal 
r2), and the proportion explained by species identity and genotype (conditional r2). Units are as follows: SLA, mm2 mg−1; leaf N, mg g−1; Amax, 
µmol CO2 m−2 s−1.

Trait T. aestivum T. durum Z. mays Explained variance

n Marginal 
mean 
(SE)

Observed range 
(IQR)

n Marginal 
mean 
(SE)

Observed range 
(IQR)

n Marginal 
mean 
(SE)

Observed range 
(IQR)

Marginal 
r2

Conditional r2

Amax 237 23.1 (0.8) 2–39 

(16.0–28.0)

9 24.4 (3.4) 11.5–29.8 

(17.5–29.0)

80 27.4 (1.7) 12.8–47.3 

(17.0–28.2)

0.294 0.64

Leaf N 218 34.2 (0.8) 6.1–58.7 

(26.5–42.2)

8 36.1 (3.0) 22.1–46.0 

(33.8–40.3)

88 30.7 (1.1) 13.6–70.7 

(23.8–36.0)

0.026 0.572

SLA 105 20.6 (1.1) 7.5–44.7 

(15.1–29.6)

1 9.6 (NA) NA (NA) 39 22.6 (1.6) 10.0–36.4 

(16.0–28.2)

0.034 0.678
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while fertilization status (included as a random effect) 
explained an additional 30.1 % of the variation (Table 2).

Discussion
Trait–environment relationships
Research in natural systems has placed considerable 
effort on understanding relationships between interspe-
cific trait variation and environmental conditions. This 

literature has generally reported systematic covaria-
tion between traits and environment (e.g. Craine et al. 
2005; Wright et  al. 2005b; Reich et  al. 2007; Ordoñez 
et al. 2009; Maire et al. 2015). Among traits examined 
here our results indicate ITV in SLA and Amax, but not 
leaf N, was most strongly linked to climate (Table  2). 
Specific leaf area and Amax are key inputs into the 
world’s most prominent crop yield simulation models 
[see Supporting Information—Table S1]. Based on our 

Figure 2.  Intraspecific variation in leaf functional traits for Triticum aestivum, Triticum durum and Zea mays as compared to traits in a global 
species pool. Panels A–C represent the distribution of all crop trait values (dark grey bars) as compared to the GLOPNET data set (open bars). 
Panels D–F represent crop species distributions, and points below the histograms correspond to species least square mean values (see Table 1) 
with error bars corresponding to ±1 SE of the mean.
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results, accounting for variation in these traits across 
environmental gradients is key in refining predictions 
and projections of agricultural yield.

Here we observed a pattern of declining SLA with 
increasing temperature, which was consistent between 
both T. aestivum and Z. mays (Table  2). Studies have 
linked declines in SLA, or alternatively increases in leaf 
mass per area (LMA), with increasing temperature as 
a function of changes in evaporative demand during 
leaf expansion. Specifically, under higher temperatures 
where evaporative demand is expected to be higher, 
mesophyll cell, lignin and phenolic compounds are gen-
erally expressed in greater concentrations, leading to 
leaves with lower SLA (Poorter et  al. 2009). Although 
growth irradiance clearly plays an additional key role in 
moderating SLA expression within species (Lusk et  al. 
2008), our findings are consistent with literature sug-
gesting that higher temperatures and high evapora-
tive demand drive declines in SLA. In T. aestivum we 
observed a positive relationship between Amax and GT, 
which is consistent with the ability of photosynthesis 
in C3 plants to acclimate to shifts in thermal regimes 
(Hikosaka et al. 2006). More specifically, the literature on 
limits to photosynthesis in C3 plants indicates that the 
positive GT–Amax trend in T. aestivum could be related to 
plants overcoming RuBP regeneration as temperatures 
increase (Hikosaka et al. 2006).

From a modelling perspective, studies have suggested 
that accounting for intraspecific variation in SLA and/or 
Amax that occurs across sites is a key data consideration 
when refining models that predict crop yield (Bouman 
and van Laar 2006). Our results here more specifically 
indicate that accounting for ITV in wheat and maize 
among sites that differ in temperature and precipitation 
is more critical in capturing ITV in these traits, as com-
pared to differences among soil management regimes 
(Table  2; see Supporting Information—Table S3; Figs 
S1 and S2).

Extent of ITV in wheat and maize
Although the past 15–20  years have seen a remark-
able increase in functional trait-based research for wild 
plants in terrestrial ecosystems, many of these same 
traits have been of keen interest to agronomists and 
crop physiologists for decades. But to date, data from 
such studies remain unconsolidated. Our results con-
firm the presence of hundreds of observations of Amax, 
SLA and leaf N, which highlights systematic differences 
among these traits in the world’s two most widespread 
crops (Table 1).

Our data indicate that wheat and maize traits span 
a wide breadth of the LES that has been observed in 
wild plant species (Fig. 2), suggesting that ITV should be 

Figure  3.  Intraspecific variation in leaf functional traits for 
Triticum aestivum, Triticum durum and Zea mays. Panels A–C rep-
resent three different bivariate trait trade-offs along the Leaf 
Economics Spectrum.  Filled black symbols correspond to spe-
cies-specific least square mean trait values with error bars cor-
responding to ±1 SE of the mean (see Table 1). For comparison, 
all species in the GLOPNET data set (open gray circles) are also 
shown.
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recognized and incorporated into analyses of agroeco-
system function that rely on these traits [see Supporting 
Information—Table S1]. However, these data should 
be interpreted or employed carefully. Specifically, pro-
cess-based models of crop yield are interested mainly 
in modelling crop physiological rates at certain ontoge-
netic stages, such as post-grain-filling or other stages 
of reproductive development. But our data set includes 
leaves across a range of ontogenetic stages and envi-
ronmental conditions, which would not necessarily 
apply to all wheat or maize plants. Considering the prev-
alence of SLA and Amax as a model input (see Supporting 
Information—Table S1; Jones et al. 2003; Bouman and 
van Laar 2006), and the strong variation in these traits 
across plant ontogeny and environment (Table  2; see 
Supporting Information—Fig. S3), an understanding 
of the linkages between ITV in LES traits and environ-
mental conditions should be taken into account when 
parameterizing process-based models with trait data. 
Our compiled data set (available in the Dryad data 

repository: doi:10.5061/dryad.4r55n) could be used as 
a direct source of Amax and SLA values for crop model 
parameterization, since these data are linked to spe-
cific environmental conditions (GT and TAP) and plant 
ontogenetic stages (i.e. time since sowing). Similarly, 
our regression models on trait–environment relation-
ships (Table  2) could also be used to estimate Amax or 
SLA values under different environmental conditions, 
particularly in instances where site-specific trait data 
are unavailable.

While our data compilation initially indicates exten-
sive coverage of LES traits for wheat and maize, these 
numbers may actually still not do justice to the envir-
onmental and socio-economic importance and extent 
of these crops globally. Current data from the Food and 
Agricultural Organization of the United Nations (faostat.
fao.org) suggest that wheat and maize occupies ~215 
and 120 million ha of cropland, respectively, distributed 
widely across the globe (Fig. 1) (Martin and Isaac 2015). 
Based on the number of trait observations (Table 1), and 

Table 2.  Variation in three functional traits in relation to GT and precipitation. For each trait, only significant fixed effects were incorporated 
(based on the results of an AIC model comparison (see Supporting Information—Tables S4 and S5)), which included species identity (S), 
GT, TAP and associated interaction terms (denotes by ‘*’). In these models, Zea mays was coded as a dummy variable in order to evaluate 
differences among species (S). Therefore, any parameters that include ‘S’ are associated with Z. mays only. Significant model parameters 
(where P ≤ 0.05) are highlighted in bold. Random effects were also included in these models based on preliminary analysis (as per Equation 1 
and Supporting Information—Table S3). Specifically, across the three different models random effects included (i) the number of days since 
planting for Amax, (ii) nitrogen fertilization only for leaf N and (iii) the number of days since planting, irrigation and type of study for SLA.

Trait Parameter Estimate SE d.f. t-value P-value

Amax (n = 197) Intercept −13.41 6.49 161 −2.07 0.0404

S 48.89 11.26 161 4.34 <0.001

GT 0.93 0.38 161 2.43 0.0162

TAP 0.02423 0.003 161 7.93 <0.001

S * GT −1.82035 0.7 161 −2.61 0.01

S * TAP −0.01 0.01 161 −2.298 0.023

Model marg. r2 0.394

Model cond. r2 0.73

Leaf N (n = 206) Intercept 41.7 5.8 201 7.16 <0.001

GT −0.9 0.2 201 −3.97 0.0001

TAP 0.01 0.003 201 2.33 0.021

S * GT −0.04 0.1 201 −0.47 0.642

Model marg. r2 0.054

Model cond. r2 0.355

SLA (n = 34) Intercept 46.63 8.48 21 5.5 <0.001

GT −1.33 0.42 21 −3.19 0.004

TAP −0.014 0.003 21 −4.36 0.0003

Model marg. r2 0.437

Model cond. r2 0.966

http://faostat.fao.org
http://faostat.fao.org
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assuming that these observations were perfectly distrib-
uted spatially across the growing regions of wheat and 
maize, this equates to one observation of Amax across 
roughly every 1.1 million ha of wheat cropland and one 
Amax value for roughly every 1.4 million ha of maize crop-
land. The highest sample sizes in our data set were for 
leaf N in wheat, which would equate to approximately 
one leaf N value for every 950 000 ha of wheat cropland.

Crop trait compilations could be expanded through 
data provided by agronomic institutions (Martin and 
Isaac 2015). Although this has proven useful for enhanc-
ing meta-analyses of traits strictly associated with crop 
yield or other aspects of domestication (Meyer et  al. 
2012), it has to date been less effective for other crop 
traits such as those comprising the LES (Martin and 
Isaac 2015). Indeed, our data compilation efforts did 
not benefit from data available from agronomic insti-
tutions, including the International Maize and Wheat 
Improvement Centre (www.cimmyt.org). Navigating 
the landscape of publically funded or proprietary crop 
data from agronomic institutions may be an avenue for 
expanding crop trait databases.

Conclusions
Small-scale, regional- or site-specific vulnerability 
assessments of crop growth and yield are gaining im-
portance in the assessment of agroecosystem structure 
and function, with a growing recognition that large-scale 
models can be broadly informative but limited in terms 
of supporting management decisions at a farm scale. 
Advances in techniques for downscaling climate models 
now allow for high-resolution climate change projec-
tions at fine spatial scales. But even so, there remain 
systematic deficiencies in even the most computation-
ally intensive models (i.e. regional climate models cou-
pled with crop simulators) to reproduce observed yields 
(Glotter et al. 2014).

The incorporation of coupled trait–environment data 
into these analyses is a tractable way to refine fine-scale 
models of crop growth and yield, but to date, such data 
have not been readily available (Bouman and van Laar 
2006). As a result, researchers commonly rely on previ-
ously obtained data on trait–environment relationships 
that are broadly generalized across crop varieties and 
species. More specifically, trait–environment relationships 
commonly remain static throughout model assessments, 
or are otherwise commonly represented as mean species-
specific traits under a particular set of environmental con-
ditions (e.g. Jones et al. 2003; Bouman and van Laar 2006).

As food security continues to emerge as one of 
the defining challenges of contemporary climate sci-
ence, understanding crop responses to climate change 

remains a critical avenue of research in agroecology. 
Our analysis suggests that principles and methods com-
monly employed in functional trait-based ecology can 
also contribute to these goals. Specifically, global evalu-
ations of inter- and intraspecific variation in crop traits, 
coupled with testing hypotheses on how functional 
traits covary within crops, can contribute both basic and 
applied information that is critical for understanding the 
structure, function and management of agroecosys-
tems globally.
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Supporting Information
The following additional information is available in the 
online version of this article—
Table S1. A  summary of leaf functional traits 
employed in the studies that are incorporated into 
the Intergovernmental Panel on Climate Change’s 5th 
Assessment Report (i.e. Box 7-1, in ‘Projected Impacts 
for Crops and Livestock in Global Regions and Sub-
Regions under Future Scenarios’) (Porter et al. 2014).
Table S2. The sources used to compile the wheat and 
maize leaf trait data set used in our analysis here.
Table S3. Results from our preliminary analysis that were 
performed to identify the random effects to be included 
in subsequent predictive models.
Table S4. Results from our preliminary analysis that com-
pared full predictive models to a set of reduced models.
Table S5. The results of a mixed model analysis used to 
identify the fixed effects employed in our final predictive 
models.
Figure S1. Variation in three LES traits across two irriga-
tion treatments.
Figure S2. Variation in three LES traits across two ni-
trogen fertilization treatments.
Figure S3. Variation in three LES traits as a function of 
days since planting.
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