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Abstract 

Myelin is a multi-lamellar membrane structure, produced by oligodendrocytes which are 

special glial cells, that myelinate axons in the central nervous system (CNS) (Aggarwal, 

Yurlova, & Simons, 2011; Vassall, Bamm, & Harauz, 2015). The main role of these tightly-

packed and stable structures is to electrically insulate the axon.  

 

During the biogenesis of myelin, two processes have to be coordinated. At first, the 

incorporation of myelin adjacent to the axon at the innermost tongue is accompanied by the 

lateral expansion of newly formed layers. At the same time, a complex system of cytoplasmic 

channels (CPCs) is formed, enabling membrane trafficking from the cell body to the leading 

edge in thin-caliber-axons of the immature optic nerve (Snaidero et al., 2014). These channels 

are known in the peripheral nervous system (PNS) as Schmidt-Lanterman Incisures, but have 

not been yet established in the CNS (Gould, Byrd, & Barbarese, 1995; Small, Ghabriel, & Allt, 

1987).  

 

The development of an improved protocol for high-pressure freezing (HPF), allowed us to 

better preserve the native myelin ultrastructure close to its native state. Using HPF and freeze-

substitution for transmission electron microscopy (TEM), we were able to visualize a system 

of cytoplasmic (myelinic) channels within myelin surrounding large-caliber axons in the CNS 

for the first time. In line with their presence in developing myelin lamellae, here, we present 

how a system of interconnected CPCs is organized in mature myelin of axons with different 

calibers. Beside the morphological analysis of these channels by TEM, we combined different 

in vivo and in vitro approaches to describe the biogenesis, molecular structures, and possible 

roles of CPCs. We elucidated a mechanism that regulates the formation and determines the 

molecular organization and their involved key components.  

 

In this study, we identified 2’,3’-cyclic-nucleotide 3’-phosphodiesterase (CNP) as an essential 

determinant in generating and maintaining cytoplasmic domains within compact myelin 

sheaths. Our observations provide evidence that the protein-protein interaction of CNP and 

filamentous actin (F-actin) results in the formation of a stable structure that helps to keep 

opposing myelin leaflets separated. The close interaction of CNP and F-actin prevents 

membrane compaction that is exercised by the classic myelin basic protein (MBP).

http://en.wikipedia.org/wiki/Oligodendrocyte
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1 Introduction 

1.1 Myelin – a speed-enhancing innovation 

Every activity like walking, eating, or having a conversation is controlled by the brain, which 

receives and integrates information through five different senses, and delivers motor impulses 

via the overall nervous system to stimulate appropriate muscles to operate. The central and 

peripheral nervous systems are defined by highly specialized cells, which deploy complex 

networks. Neurons and glial cells engineer the exchange and transport of signals from cell to 

cell and from one tissue to another (Bloom, 1993).  

 

The transmission and coordination of this information is achieved by a particular tissue of the 

nervous system, which works like an electrical insulator. In the vertebrate nervous system, 

neuronal projections are ensheathed by myelin - a specialized multilamellar plasma 

membrane, which is wrapped around axons of neurons in a spiral fashion (Jessen & Mirsky, 

2005; Salzer, 2008; Sherman & Brophy, 2005).  

 

More than 60 years ago, it was discovered that myelin is generated by axon-associated glial 

cells and not by the axon itself (Ben Geren, 1954). The tight packaging of myelin membrane 

multilayers results in the extrusion of cytosolic elements and in the formation of a lipid-rich, 

insulating sheath that enables the acceleration of nerve impulses (Aggarwal et al., 2013). By 

increasing the speed of electrical signals traveling along the axons, myelin enables rapid 

neuronal communication between distant regions of the nervous system. 

1.2 Axonal insulation and support 

The evolution of myelin allowed the development of complex behavior by improving the internal 

signal conduction in higher-order organisms (Werner, 2013). To accelerate the flow of ions 

through an axonal cylinder, the most rapid transmission of an action potential is ensured by 

the unique architecture of myelin, which is anatomically subdivided into smaller periodic gaps 

by which the uncovered axon is exposed to the interstitial space (Bunge, 1968). These myelin-

free segments, the Nodes of Ranvier localize the repeated voltage-dependent sodium 

channels into clusters, resulting in an effective form of saltatory nerve conduction (Fig. 1.1) 

(Nave, 2010; Waxman & Ritchie, 1993).  

 

Since the excitation of the axonal membrane by an electrical impulse cannot proceed through 

the myelin sheaths directly, it depolarizes the axonal membrane by jumping from node to node 
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with a markedly increased speed and low energy due to the low capacitance of the sheaths. 

The internodes – areas of compacted myelin located between Nodes of Ranvier – are 

connected with the axon by different adhesive molecules and form a strong diffusion barrier, 

followed by the paranodal loops, which are cytoplasm-filled, non-compacted, septate-like 

regions (Fig. 1.1). The paranodes are spirally enwrapped around the axon and build the 

outermost part of an internode, directly followed by the juxtaparanode where fast potassium 

channels are located. Certain protein complexes define the structure of the paranode: 

particularly Caspr/paranodin and contactin (Cntn) provide structural support at the site of 

axolemma (Menegoz et al., 1997; Rios et al., 2000), while the oligodendroglial part in this 

region contains a 155-kDa isoform of neurofascin (NF155) (Fig. 1.1). This specialized 

organization allows the interaction and communication of the myelinating cell and the axon 

(Nave, 2010; Simons & Trajkovic, 2006). 

 

 

Fig. 1.1: Relation of compact myelin and the node of Ranvier. Myel inat ing ol igodendrocytes  (OLs)  form compact 
membrane sheaths that surround axons (depicted in purple). For h igh -speed saltatory signal transduct ion, 
action potent ials are generated at  nodes of  Ranvier  d istr ibuted periodically  along the axon, bypassing 
internodal segments of axons insulated by compact myel in. Top left panel : Transmission Electron 
Microscopic (TEM) cross-sectional and longitudinal v iews of a myel inated mous e optic nerve axon 
focusing on mult iple layers of  compact myel in and w rapping axons. Compact myelin presents a 
character ist ic  per iodic ultrastructure.  Eff ic ient  compaction in the CNS needs the abundant expression of 
important  structural  prote ins, such as p roteolipid prote in (PLP) and myelin basic protein (MBP). Top r ight 
panel : Longitudinal cut  through the node of Ranvier  where sodium channels are located,  emphasiz ing the 
nodal , paranodal, and juxtaparanodal axon regions. The structural stabil i ty of these d omains is ensured 
by the expression of  a group of  g l ia l and axonal  adhesion prote ins.  Abbreviations: Caspr,  contactin -
associated protein; Cntn,  contactin (Cntn2 is a lso known as Tag1);  Cx29, connexin 29 kDa; KCh, fast 
potassium channels; MAG, myel in -associated glycoprotein; MBP, myelin basic protein; MOBP, myel in 
ol igodendrocyte basic prote in; NaCh, voltage -gated sodium channels;  NECL, nect in - l ike protein/synCAM; 
NF155/186, neurofascin 155 kDa/186 kDa; OSP, ol igodendrocyte -specif ic protein; PLP, proteolip id  
protein. F igure taken from reference Nave 2010, reprint by permission of Nature Publ ishing Group, l icense 
number 3845350340578.  

 

The morphological and physiological differences between myelinated and non-myelinated 

nerve fibers can hardly be better described by the comparison of two different nerve fibers. 
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Whereas the myelinated axon of a frog has an axonal diameter of 12 mm, the unmyelinated 

axon of the squid has a diameter of 500 mm, approximately 40 times larger and therefore 

requiring 5000 times more energy and occupying 1500 times more space (Siegel G.J., 1999). 

Both conduct impulses at a speed of 25 m/s. It is thought that the conduction-speed was an 

important evolutionary driver for myelination (Gunther, 1976; Pierre Morell, Quarles, & Norton, 

1994) since axonal gigantism lacks the two advantages of myelination:  

 

1. Reduction of energy costs of activity, and  

2. Promotion of a compact nervous system.  

 

Because the acceleration of impulses over long distances finds a limitation in an enlargement 

of the body size, a solution is found in an “isoelectronic expansion” by increasing the nervous 

system mass in form of myelin (Inouye & Kirschner, 2015; Zalc, 2015).  

 

Myelin thus unites two essential physical parameters, axial resistance and capacitance of the 

surface to generate an inert and insulating membrane (Castelfranco & Hartline, 2015). Besides 

those clear advantages, though, myelin complicates the transport of substances across the 

sheaths and to the invested axon.  

1.3 The biogenesis of myelin  

Oligodendrocytes (OLs) are very efficient membrane producers. Although any one OL in the 

central nervous system (CNS) can enwrap up to 50 axons at the same time, some OLs produce 

only a few myelin sheaths (A. Peters & Proskaue.C, 1969; Remahl & Hilderbrand, 1990). In 

contrast, in the peripheral nervous system (PNS), a single Schwann cell myelinates only one 

internode, and only the axons larger than 1 micrometer (µm) in diameter are myelinated 

(Sherman & Brophy, 2005), with the smaller ones remaining to be surrounded by non-

myelinating Schwann cells. In order to start myelination in the CNS, oligodendrocyte precursor 

cells (OPCs) need to migrate into the correct area of the brain. Then OLs must differentiate 

followed by the recognition of the axon to be myelinated. Myelination involves signaling events 

between neurons and OLs, and transcriptional regulation in order to eventually cause a 

dramatic change of OL morphology (Fig. 1.2) (Tomassy, Dershowitz, & Arlotta, 2016). Looking 

at the cortex and corpus callosum, one cell is able to produce between 30 and 80 internodes 

ranging from 20 to 200 μm in length with up to 60 different lamellae of various degrees of 

axonal thickness. Remarkably, larger axons that can be found in the spinal cord are myelinated 
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with longer internodes (1500 μm) and thicker myelin sheaths with up to 150 layers (Matthews 

& Duncan, 1971; Murray & Blakemore, 1980). 

 

Fig. 1.2: Development of oligodendrocytes (OLs) controlled by the communication between glial cells and neurons. 
OLs orig inate from pools of o l igodendrocyte progenitor  cells (OPCs).  Various intr insic  factors  
(transcript ion factors, chromatin -remodel ing proteins, and non-coding RNAs) and neuron-derived factors 
(membrane-associated proteins, soluble factors, and extracellular matr ix proteins) contro l the 
development of  OLs and affect the biogenesis of  myelin in the CNS. The specif ication and spreading of  
OPCs throughout the CNS is eventual ly complemented by their  di f ferentiat ion into mult ipolar pre -
myel inat ing OLs (Pre-OLs) that  mature into myelinating OLs. Furthermore,  the electr ical  act ivi ty of  the 
axon inf luences the development of OLs and myelinat io n. Taken from reference: Tomassy, Dershowitz, 
and Arlotta, 2016, Cell Press, repr int  by permission of  Elsevier,  l icense number: 3845300193642).  

 

The timing of myelination varies among different species and between diverse regions of the 

CNS or PNS. In humans, the majority of the axons become myelinated during the first year of 

life. Myelination already starts during mid-gestation and is mainly finished at 40 months 

postnatally, but can still occur until young adulthood, and is also remodelled continuously 

throughout adulthood (de Hoz & Simons, 2015; Fields, 2008; Miller et al., 2012; Parazzini, 

Baldoli, Scotti, & Triulzi, 2002; Tomassy et al., 2014; Young et al., 2013). In the CNS of mice, 

myelination starts immediately after birth with a peak of myelination at P20 and is almost 

completed at postnatal day 60 (P60) (Baumann & Pham-Dinh, 2001; Vincze, Mazlo, Seress, 

Komoly, & Abraham, 2008).  
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During the tightly-regulated maturation and differentiation of OLs, the cells undergo dramatic 

morphological changes that strongly depend on axon-glia interactions (Barres & Raff, 1993; 

Demerens et al., 1996). Whereas the cues which initialize myelination by Schwann cells in the 

PNS are well-described, the signals that guide myelination in the CNS are not yet completely 

understood. In the PNS, the signals to establish an axon-glial contact come from neuronal 

neuregulin-1 (NGR1) type lll, which interacts with ErbB receptors on Schwann cells (Brinkmann 

et al., 2008; Vartanian, Goodearl, Viehover, & Fischbach, 1997).  

 

In the CNS, pre-myelinating OLs are highly ramified and extend multiple processes upon 

contact with the axon, and subsequently axons with a diameter > 0.2 µm are selected and 

myelinated (Simons & Trajkovic, 2006). The electrical activity of the neurons might be a driving 

force for the onset of myelination by OLs (Coman, Barbin, Charles, Zalc, & Lubetzki, 2005; 

Demerens et al., 1996; Mensch et al., 2015). Subsequently, the release of adenosine 

triphosphate (ATP) and adenosine can arrange some neuron-glial communication (Bradl & 

Lassmann, 2010), accompanied by multiple intrinsic and neuron-derived factors highlighted in 

Fig. 1.2. Even though one OL delegates several processes to many axons, some of these 

processes can later be retracted. It is believed that electrically active axons are more likely to 

be successfully myelinated (Hines, Ravanelli, Schwindt, Scott, & Appel, 2015).  

 

Additionally, myelin is not only formed during development but also generated even in the adult 

brain. Importantly, the modulation of myelin – or in other words, the myelin plasticity – in 

response to neuronal activity seems to be crucial for the processing of information throughout 

adulthood (Chang, Redmond, & Chan, 2016; Fields, 2015; Purger, Gibson, & Monje, 2015; 

Young et al., 2013).  

1.4 The ultrastructure of myelin 

Our main knowledge about the ultrastructure of myelin is based on transmission electron-

microscopic (TEM) studies of nervous tissue morphology. From numerous EM investigations, 

we recognize myelin to be a multi-layered stack of uniformly thick membranes with a 

characteristic periodic structure formed by alternating electron-dense and light layers; these 

are the major dense line (MDL) and the intraperiod line (IPL), respectively (Fig. 1.3, A). A 

detailed view into compact internodal myelin presents the MDL, where the intracellular 

cytosolic surfaces of the OL adhere to each other to form compacted sheets, within which the 

protein MBP is localized (Fig. 1.3, B). Extracellular surfaces associate to form the IPL. In the 

myelin sheath, some less compacted regions of cytosolic pools also exist, which contain 

different enzymes, cytoskeletal networks, and signal transduction proteins. These regions may 
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allow myelin to interact with the axon, and to perform various functions (Harauz & Boggs, 2013; 

Harauz & Musse, 2007; Musse & Harauz, 2007). 

 

Fig. 1.3: The ultrastructure of myelin. (A)  Morphology of compact myelin visual ized by TEM.  The intraper iod 
l ines (IPL)  can be dist inguished from the more electron -dense (darker)  major dense l ines (MDL).  (B)  
Ongoing compact ion of myelin membranes with s ix lamellae. In non -compacted domains myelin prote ins, 
including CNP, can be found. MBP closely glues two opposing cytoplasmic leaflets of the myelin 
membranes together.  Figures adopted from references (A) Nave  and Werner 2014 with permission from 
Annual Reviews (no extra permission required) and (B) from Chang, Redmond, and Chan, 2016, with 
permission from Nature Publishing Group, l icense number 3845391207146.  

 

The MDL represents the closely condensed cytoplasmic (inner) myelin membranes, whereas 

the IPL consists of the less-tightly apposed outer membranes. The compaction between the 

membranes in each of these layers is tight and results in an overall periodicity of about 12 nm 

(Aggarwal et al., 2013; Aggarwal, Yurlova, Snaidero, et al., 2011).  

1.5 Myelin composition 

To fully understand the organization of myelin, the molecular composition needs to be 

introduced here in greater detail. As an electrical insulator, myelin consists of a high proportion 

of lipids as the main component (70-85% of the dry mass) whereas the water content is kept 

low. Hence, the proportion of proteins is relatively low, with only up to 30% of the dry mass 

(Baumann & Pham-Dinh, 2001). In contrast, most other biological membranes have a higher 

ratio of proteins to lipids. Although there are no absolute “myelin-specific” lipids, 

glycosphingolipids, including cerebrosides such as galactosylcerebroside, are with 27% by 

weight the most enriched lipid type within myelin (Chrast, Saher, Nave, & Verheijen, 2011; 
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Pfeiffer, Warrington, & Bansal, 1993; Stoffel & Bosio, 1997). Other particular lipids besides 

cerebrosides, like cholesterol, sulfatides, ethanolamine, and galactolipids are also increased, 

whereas the overall amount of lecithin is reduced (Aggarwal, Yurlova, & Simons, 2011; Bosio, 

Binczek, Haupt, & Stoffel, 1998; Podbielska, Levery, & Hogan, 2011). The overview given in 

Table 1.1 suggests that myelin from these mammalian species presented here is very similar. 

However, there are some differences, since myelin of rats has less sphingomyelin than bovine 

or human myelin (Table 1.1).  

 

Table 1.1: Comparison of lipids isolated from the human or rat brain. Values of overall  proteins and l ipids are 
given as percentage of the dry weight ,  whereas single l ip ids are presented as total l ip id weight  percentage 
(modif ied from (Quar les, 2002)).  

Substance Myelin 

 Human Rat 

Protein 30.0 29.5 

Lipid 70.0 70.5 

Cholesterol 27.7 27.3 

Cerebroside 22.7 23.7 

Sulfatide 3.8 7.1 

Total galactolipid 27.5 31.5 

Ethanolamine phosphatides 15.6 16.7 

Phosphatidylcholine 11.2 11.3 

Sphingomyelin 7.9 3.2 

Phosphatidylserine 4.8 7.0 

Phosphatidylinositol 0.6 1.2 

Plasmalogens 12.3 14.1 

Total phospholipid 43.1 44.0 

 

Furthermore, there are also variations when comparing the myelin isolated from different 

regions of the CNS. The spinal cord represents a higher lipid-to-protein ratio than brain myelin 

from the same species (P. Morell, Lipkind, & Greenfield, 1973). These lipids not only enable 

the close packing and tight organization of molecules to electrically insulate axons and provide 

structural stability of membranes, they are also suggested to play a role in axon-glia interaction 

by the local clustering of proteins (Schmitt, Castelvetri, & Simons, 2015), or by the formation 

of paranodal-axoglial junctions via galactosylcerebrosides and sulfatides (Boggs, Gao, & 

Hirahara, 2008; Boggs et al., 2010).  

 

The lipid compositions of the CNS and PNS are remarkably similar, but the protein 

compositions are rather different (Mehl & Wolfgram, 1969; Pierre Morell et al., 1994). The 

proteins represented in the myelin are fairly specific and functionally important. The structural 
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configuration of lipids is mainly dependent on the function of one of the major myelin proteins: 

Myelin Basic Protein (MBP). MBP and Proteolipid Protein (PLP) together represent 60 – 80% 

by weight of the total protein content and are restricted to compact myelin, whereas Myelin-

Associated Glycoprotein (MAG, 1%), 2',3'-cyclic nucleotide 3' phosphodiesterase (CNP, 5%), 

and Myelin Oligodendrocyte Glycoprotein (MOG, 0.1%) account for the majority of the 

remaining proteins found in the non-compact domain of myelin. The main group of peripheral 

myelin proteins comprises Protein zero glycoprotein (P0; 60%), Peripheral Myelin Protein 22 

(PMP-22; < 5%), P2 protein (< 1 – 15%), and MBP (10%) (Gould et al., 2008; Quarles, 2007). 

More detailed information on CNP and MBP, in particular, will be presented in sections 1.6.1 

and 1.6.2, as the understanding of their functional relationship is of great importance and 

needed later on.  

 

Recent proteomics observations challenge the still widespread acceptance that the variety of 

myelin proteins is rather low. Due to the application of improved analytical techniques (e.g., 

mass spectrometric detection) and bioinformatics, more myelin-associated proteins, including 

enzymes (48%), cytoskeletal proteins (20%), phospholipid binding proteins (4.2%), and 

proteins involved in trafficking (6.8%) and adhesion (6.3%) could be determined (Jahn, Tenzer, 

& Werner, 2009; Werner et al., 2007). 

1.6 Myelin: compaction versus de-compaction 

The interaction of cell membranes is essential for many biological processes. Particularly 

fascinating is the organization of the extracellular leaflets of the myelin membrane bilayer in 

OLs and Schwann cells, because this association is fairly unusual (Aggarwal, Yurlova, & 

Simons, 2011; Garbay, Heape, Sargueil, & Cassagne, 2000). Two opposing surfaces of the 

plasma membrane have to connect over very large areas to assemble into tightly-compacted 

stacks of myelin lamellae in order to provide structural support by extensive bilayer–bilayer 

interactions. In the CNS, MBP facilitates the membrane interaction of myelin sheaths from the 

cytoplasmic side, whereas the molecular association of outer leaflets is still being unraveled. 

The adhesion of myelin membranes is not based on the contact of lock-and-key-adhesion 

molecules, but rather on the global loss of electrostatic cell-surface repulsion (Bakhti, 

Aggarwal, & Simons, 2014; Sackmann & Goennenwein, 2006). Overall, myelin compaction in 

the CNS is provided by an orchestrated interaction of PLP along with the reduction of repulsive 

forces caused by fewer negatively-charged sugar moieties bound to the glycocalyx.  

 

The relationship of proteins, which restricts the migration of myelin proteins into compact and 

non-compact membrane domains, has recently come to be further understood. By extruding 
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most proteins from compact myelin sheaths, MBP brings opposing membrane leaflets together 

(Aggarwal, Yurlova, Snaidero, et al., 2011). 

 

Fig. 1.4: Domain formation of compact and non-compact myelin. (A)  MBP l imits the access of cytoplasmic 
proteins,  e.g. , CNP by establishing a di ffusion barr ier.  (B)  The tota l lack of  MBP leads to a ubiqui tous 
distr ibution of  the proteins.   Adopted from (Zuchero & Barres, 2011) , repr int  by permission of Elsevier , 
l icense number 3845371206363.  

 

Thereby, MBP restrains the access of cytoplasmic proteins like CNP and MAG into compact 

myelin by forming a size barrier (Fig. 1.4). In general, MBP is responsible for adhesion of the 

two opposing cytosolic surfaces of multi-layered compact myelin within the CNS (Boggs, 

2006).  

1.6.1 Intrinsically multitalented – Myelin Basic Protein (MBP)  

MBP is a prominent representative of intrinsically-disordered proteins (IDPs) (Harauz, 

Ladizhansky, & Boggs, 2009; Hill, Bates, White, Hallett, & Harauz, 2002; Hill et al., 2003; Libich 

et al., 2010). These intrinsically flexible but biologically active proteins are natively unfolded, 

and often gain some degree of ordered structure upon attachment to a binding partner, which 

is strongly dependent on the environment (Fig. 1.5). IDPs are unstructured in solution due to 

their overall reduced hydrophobicity and high net charge compared to normally folded proteins 

(Uversky, 2011; Uversky, Oldfield, & Dunker, 2008). An adequate definition describing the 

“structure” of MBP might be as a collection of dynamic conformational ensembles with only 

few tertiary intramolecular contacts. The lack of structure in IDPs originates from charged 

amino acids like arginine, glutamate, lysine, and aspartate, which increase the intramolecular 

electrostatic repulsion (Romero et al., 2001; Uversky et al., 2008). 
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The molecular basis of the direct interactions between MBP and the lipid bilayers on the one 

hand, and potentially between MBP molecules and other proteins on the other hand, is not 

fully understood (Kattnig, Bund, Boggs, Harauz, & Hinderberger, 2012; Vassall et al., 2016). 

The overall net positive charge due to the uniform distribution of basic residues throughout the 

length of the protein is responsible for its strong electrostatic binding to negatively-charged 

lipid membranes (Jo & Boggs, 1995). In fact, the C-terminus as well as the N-terminal end of 

MBP can associate with lipids (Boggs, Rangaraj, & Koshy, 1999). Upon membrane binding, 

electrostatic and hydrophobic interactions between MBP and lipids affect the association with 

the bilayer (Jo & Boggs, 1995; Marsh, Horvath, Swamy, Mantripragada, & Kleinschmidt, 2002). 

 

Fig. 1.5: Three-state transition model of Myelin Basic Protein (MBP). The reduct ion of d ielectr ic  
constant  by TFE-ti trat ion causes the shif t / transformat ion of  MBP from a disordered over  an intermediate 
to an alpha-helical  state,  wi th each equi l ibr ium species representing an ensemble of conformat ions. This 
situation emulates the environment exper ienced by the protein as i t  absorbs to the membrane . Adopted 
and modif ied by permission from (Vassall et a l. ,  2016), publ isher: Elsevier).  
 

The conformation of MBP within myelin and particularly its disposition between the leaflets is 

only partially known (Fig. 1.6, A). The protein is thought to occupy a paperclip or hairpin-like 

conformation, which would allow the concurrent interaction of the α-helices with the membrane 

(Vassall et al., 2015; Vassall et al., 2016). Besides the affinity of MBP binding to lipids, it has 

been furthermore described to interact with actin, calmodulin, tubulin, and clathrin in vitro 

(Boggs et al., 2014; Boggs, Rangaraj, Gao, & Heng, 2006; Boggs, Rangaraj, Heng, Liu, & 

Harauz, 2011; Harauz & Boggs, 2013). 

 

Five different isoforms exist as a product of differential splicing of a single mRNA transcript of 

a large gene complex called Golli (Gene in the Oligodendrocyte Lineage). In the mouse, the 

Golli-MBP gene has eleven exons, of which the classic ones are numbered l-Vll, yielding five 

isoforms: 21.5, 18.5, 17.24, 17.22, and 14.0 kDa, whereas in humans, four main isoforms 

ranging in nominal molecular mass from 17.2 to 21.5 kDa exist (Harauz & Boggs, 2013; Vassall 

et al., 2016). The murine and human classic MBP gene structures are similar, and the 18.5-



1.6 | Myelin: compaction versus de-compaction
  

11 
 

kDa MBP isoform of the adult mammalian CNS is the most widely studied form concerning its 

role in maintaining the stability of the myelin sheath (Bates et al., 2000; Harauz & Boggs, 2013; 

Min et al., 2009; Polverini, Rangaraj, Libich, Boggs, & Harauz, 2008; Volkov, Dockter, Bund, 

Paulsen, & Jeschke, 2009). 

 

MBP undergoes diverse post-translational modifications (PTMs), which mainly result in the 

reduction of the net positive charge and include phosphorylation by various kinases (MAPKs) 

and deimination that converts positively-charged arginine moieties to neutral citrulline (Harauz 

& Boggs, 2013; Moscarello et al., 2013; Moscarello, Mastronardi, & Wood, 2007; Vassall et 

al., 2015). Due to a diversity of PTMs, several modified charge components of MBP exist, 

described as C1-C8. The net positive charge of those components decreases from +19 (C1) 

to < +13 (C8) at pH 7.0. In healthy adult myelin, the MBP charge isoform C1 with a net positive 

charge of +19 predominates, whereas in infants and adults with MS the C8 component (with a 

net positive charge of +13) is found in greater proportion. The charge isoform C8 is primarily 

formed by the enzymatic deimination of arginine to citrulline, reducing its net positive charge. 

 

Fig. 1.6: Possible arrangement of full-length MBP (18.5-kDa isoform) between membranes. (A)  Within OL 
membranes, MBP is suggested to adopt a hairpin conformat ion which would al low the s imultaneous 
interact ion of the α -hel ices with apposing membrane leaflets. The conformat ion of a hairpin - l ike structure 
may also al low the detachment of  any of  the α -helices in order  to interact  with other binding partners, 
whereas the other two α -helices remain tethered to opposing membrane bilayers. (B)  Effects of  
deiminat ion determine the penetration depths of MBP within l ip id b i layers. The central α2 -helix of  MBP 
represents an immunodominant epi tope in MS, which is found to be exposed to the membrane surface in 
deiminated C8 mutants. The MAPK phosphorylat ion s ites Thr92 and Thr95 are located closely to the C -
terminal  end of  the α2 -hel ix.  Phosphorylation of both s ites (Ph -Thr92,  Ph-Thr95, murine 18.5-kDa 
sequence numbering) changes the associat ion of the α2-helix with the membrane by al ter ing the t i l t  of  
the helix. Consequent ly,  the N-terminal end of the helix sinks deeper into the membrane compared to the 
C-terminal end. Adopted and modif ied from (Vassall et al. ,  2015) , no addit ional permission needed ).  

 

Reduction of the high net positive charge of MBP, through enzymatic deimination, correlates 

strongly with disease severity and may influence myelin instability and loss of compaction 

(Mastronardi & Moscarello, 2005). An immune response, which is based on the attraction of 

an immunodominant epitope of MBP, results in destabilization or degradation of the entire 

myelin sheath (Bates, Feix, Boggs, & Harauz, 2004; Ishiyama et al., 2001; Musse, Boggs, & 

Harauz, 2006). This phenomenon seems to be correlated to the typical charge level of MBP 

(Harauz et al., 2009; Kattnig et al., 2012; Musse et al., 2006). Previous studies have indicated 
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that the charge component C1 holds together the opposing leaflets of the OL membrane within 

the CNS. However, deimination of MBP loosens its association with the membrane (Fig. 1.6, 

B). 

 

The mouse model of autosomal recessive shiverer mutant mice highlights the relevance of 

MBP-mediated myelination (Molineaux, Engh, de Ferra, Hudson, & Lazzarini, 1986). These 

mouse mutants are unable to synthesize all isoforms of MBP because they lack exons 2 – 7 

within the Golli gene complex. Since homozygous knock-out animals are thus unable to form 

normal layers of compact myelin, they develop the characteristic shivering phenotype at the 

age of two weeks (peak phase of murine myelination). Upon further development, this 

phenotype exacerbates and is represented by frequent tremors and seizures, and mutant 

animals die prematurely between 8 – 12 weeks after birth (Dupouey et al., 1979; Rosenbluth, 

1980). The shiverer phenotype can be rescued by the introduction of the MBP gene encoding 

all isoforms of MBP (Readhead et al., 1987), or by the transfer of human OPCs into new-born 

shiverer mice brains (Windrem et al., 2004). Another MBP-deficient mouse mutant resembles 

the pathological phenotype of shiverer mice. In myelin-deficient (mld) mice, the inversion of 

exon 2 in the duplicated Golli-MBP gene causes the inhibition of the MBP transcription 

(Akowitz, Barbarese, Scheld, & Carson, 1987; Okano et al., 1987). Once more, these mouse 

models demonstrate the importance of MBP as the only known structural protein that is 

essential for the formation of compact myelin.  

1.6.2 The mysterious multi-talent – 2',3'-Cyclic-nucleotide 3'-phosphodiesterase 

(CNP)  

Since its discovery in the early 1960’s, 2',3'-Cyclic-nucleotide 3'-phosphodiesterase (CNP) has 

puzzled scientists with its curious catalytic activity and high expression levels in the CNS. 

Within myelin, CNP is present in the inner and outer regions of the myelin sheath, restricted to 

the paranodal loops and to the oligodendrocytic cytoplasm, and is absent from compact myelin 

(Drummond, Iyer, & Keith, 1962). The initial characterization of CNP – a membrane-anchored 

enzyme ubiquitously present on the cytosolic side of non-compact myelin – was succeeded by 

the observation of the hydrolysis of nucleoside 2‘,3‘-cyclicmonophosphate to 2‘-

cyclicmonophosphate in rabbit brain extract, but the physiological relevance remains unknown 

(Drummond, Iyer, & Keith, 1962. An overview of the function of CNP and the interaction with 

(potential) binding partners is summarized in Fig. 1.7. In brief, the C-terminal domain of CNP 

is one of the divergent members of the 2H phosphodiesterase superfamily and bears the 

enzymatic hydrolytic activity that led to its initial characterization (Drummond et al., 1962; 

Mazumder, Iyer, Vasudevan, & Aravind, 2002). 
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Fig. 1.7: CNP – a functional overview. CNP can be divided into two folded domains p lus a C -terminal extension. 
Known or assumed functions of individual  domains are indicated. Figure adopted and modif ied from  
(Raasakka & Kursula, 2014) , with permission Springer, l icense number 2845461177656.  

 

As a member of this protein superfamily, which contains enzymes from all biological domains, 

it has enzymatic activities towards various kinds of nucleotide substrates (Arne Raasakka et 

al., 2015). Furthermore, the C-terminal end of CNP is post-translationally modified with a lipid 

anchor formed by either farnesyl or geranylgeranyl isoprene groups (Braun, De Angelis, 

Shtybel, & Bernier, 1991; De Angelis & Braun, 1996b). It has been described that the C-

terminus has a helical arrangement with a hydrophobic surface (Esposito et al., 2008), 

although a more recent study shows that this lipid tail rather forms a random coil structure in 

the presence of different lipids (Myllykoski, Raasakka, Han, & Kursula, 2012; A. Raasakka et 

al., 2015). 

 

The N-terminus of CNP has sequence similarities to polynucleotide kinases (PNK), but its 

actual structure and function are not known (Koonin & Gorbalenya, 1990; Zhu, Smith, Wang, 

& Shuman, 2007). Recently, it has been shown that calmodulin (CaM), a calcium sensor 

protein, binds to the PNK-like domain in a calcium-dependent manner without influencing the 

enzymatic activity of the CNP (Fig. 1.8, B) (Myllykoski, Itoh, et al., 2012). At present, high-

resolution structural data on CNP’s PNK-like domain are not available. Besides a homology 

modelling characterization, the functional activity of the N-terminal domains remains 

speculative (Kursula, 2008; Myllykoski, Raasakka, Lehtimaki, Han, & Kursula, 2013; A. 

Raasakka et al., 2015). 

 

CNP is the most abundant protein of non-compact domains and represents with 4% of the total 

myelin protein the third-most abundant protein overall in CNS myelin. Apart from its abundance 

in myelin, CNP is also expressed in mitochondria and other tissue as it has been found in the 

thymus, lung, heart, and testes (Scherer et al., 1994). Until this work, the distinct biological 

function of this protein has not been elucidated and it is rather likely that it fulfils more than one 
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function, since it has been reported to be involved in the formation of paranodes, local 

adenosine production in traumatic brain (Verrier et al., 2012), regulatory functions in 

mitochondrial membrane permeabilization, and axonal support (Azarashvili et al., 2009; 

Lappe-Siefke et al., 2003; J. Lee, O'Neill, Park, Gravel, & Braun, 2006; McFerran & Burgoyne, 

1997; Scherer et al., 1994). Different from MBP, CNP has a large hydrophobic surface, which 

is surrounded by several positive electrostatic potentials (Fig. 1.8, A) (Myllykoski, Raasakka, 

et al., 2012). During the differentiation of OLs, it is one of the earliest expressed myelin-specific 

proteins and cell culture studies demonstrate the importance of CNP for OL process outgrowth 

(Gobert et al., 2009). 

 

Fig. 1.8: Molecular structure of CNP. (A)  Molecular  sur face and electrostatic potent ials of ful l - length CNP.A 
large hydrophobic sur face depicted in grey expands from the act ive si te towards the N -terminal domain 
(N). The hydrophobic region is surrounded by several  posi t ive electro static potentia ls g iven in blue, 
whereas negat ive potentials are shown in red. The purple arrow indicates the possible binding surface 
for RNA. F igure adopted with permission from  (Myllykoski, Raasakka, et a l. ,  2012 ). (B)  Structure of  CNP 
and the relat ive orientation of  the C - and N-termini . The recent ly e lucidated CaM-binding s ite is 
represented in yellow, a second potent ia l ly  amphipathic hel ix  in p ink, and the ATP -binding s ite in the so 
cal led P-loop in red. The ATP-binding s ite is indicated by the addit ion of an ADP molecule. The catalyt ic 
domain fol lows direct ly after the C-terminus.  Figure taken from reference (Myl lykoski,  I toh,  et  a l. ,  2012 )  
and modif ied, repr int  by permissio n of John Wiley and Sons, l icense number 3835480983158.  

 

In humans, the CNP gene consists of 8500 base pairs in chromosome 17 containing 4 exons 

and 3 introns. Alternative splicing yields two CNP isoforms (Douglas et al., 1992; Monoh et al., 

1993; O'Neill, Minuk, Cox, Braun, & Gravel, 1997). The human CNP protein isoform 1 (CNP1) 

contains 401 amino acids (aa) compared to 421 aa for isoform 2 (CNP2) (Gerhard et al., 2004; 

Kurihara, Takahashi, Nishiyama, & Kumanishi, 1988). The additional 20 aa N-terminal tail of 

CNP2 operates as a mitochondrial targeting signal, which is cleaved upon import into 

mitochondria, resulting in a protein that is identical to CNP1 (J. Lee et al., 2006). In this study, 

the abbreviation “CNP” refers to the primary isoform 1 of the murine protein, which is 

exclusively used throughout the study. 
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Besides the capability of CNP to interact with the membrane directly, it can bind to both actin 

and tubulin. Although the particular interaction of CNP with tubulin is well characterized in vitro, 

information is still lacking on the protein-protein interaction with actin (Bifulco, Laezza, Stingo, 

& Wolff, 2002; Laezza, Wolff, & Bifulco, 1997; J. Lee, Gravel, Zhang, Thibault, & Braun, 2005). 

The first biochemical approaches showed that CNP co-immunoprecipitated with actin. After 

detergent extraction of cultured cells, CNP was found in the insoluble fraction. Interestingly, 

after disruption of the actin cytoskeleton, it could be solubilized (De Angelis & Braun, 1996a, 

1996b). It furthermore could be shown that the transfection of a fibroblast cell line with full-

length CNP led to a reorganization of the actin cytoskeleton accompanied by an altered 

morphology of the cell (De Angelis & Braun, 1994; J. Lee et al., 2005). Whereas the binding to 

actin occurs in an isoprenylation-independent manner, the association of CNP with the 

membrane is strongly dependent on the correct sequence of the farnesyl or geranylgeranyl 

isoprene groups. The introduction of a point mutation to the cysteine within this motif inhibits 

the association between CNP and the membrane (De Angelis & Braun, 1994).  

 

Mice lacking CNP develop axonal degeneration while the biogenesis of myelination seems to 

be normal (Lappe-Siefke et al., 2003). Intact and eventually normal myelin sheaths were found 

to surround axons that showed severe axonal swellings that extended with age (Lappe-Siefke 

et al., 2003). Particularly smaller axons degenerated earlier in CNP-deficient animals. 

Furthermore, paranodal aberrations were accompanied by defects of the inner tongue 

(innermost myelin layer) and the accumulation of redundant loops of myelin (Edgar et al., 

2009). The histological analysis showed that the overall brain size of CNP-null mice – 

particularly of white matter regions – is reduced. 

 

By the age of three months, symptoms like ataxia and convulsions appear and CNP-deficient 

animals develop a more severe phenotype. At the same age, those animals presented a 

mislocalization of paranodal contactin-associated proteins, accompanied by an altered 

distributing of axonal voltage-dependent sodium channels (Rasband et al., 2005). Between the 

age of 6 and 12 months, homozygous CNP mutants die prematurely. The opposite, namely 

the overexpression of CNP, affects the ultrastructure of myelin by a reduced compaction of 

membrane lamellae. In those animals, CNP was found in domains of compact myelin while the 

amount of MBP was reduced (Yin, Peterson, Gravel, Braun, & Trapp, 1997). In conclusion, the 

loss of this single myelin protein caused severe axonal phenotypes (axonal swellings and 

degeneration, altered localization of paranodal proteins, and accumulation of redundant 

myelin), indicating that the axons were suffering from a trophic undersupply. Therefore, CNP 
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is believed to be required for the nutritious support of myelinated axons and their maintenance 

(Edgar et al., 2009).  

1.6.3 Teamwork of CNP and MBP 

The main myelin proteins were initially described already in the 1960s and early 1970s simply 

because of their occurrence at high concentrations in myelinated nerve fibers (Braun & Barchi, 

1972; Eylar, 1970; Kornguth & Anderson, 1965; Sprinkle, Tippins, & Kestler, 1987). But little is 

still known about the structure-function relationship of myelin proteins. Our recent observations 

in the optic nerve indicate that CNP is involved in regulating myelin compaction early in 

development (Snaidero et al., 2014; Snaidero & Simons, 2014). Since the early 1960s when it 

was discovered, CNP has troubled scientists with its peculiar catalytic activity and high 

expression levels in the CNS.  

 

Considering the function of MBP that has been described explicitly in previous sections, a 

spatial and temporal expression of MBP’s mRNA close to the place of destination would 

simplify myelin biogenesis. It has been well described in vivo that MBP mRNA is transported 

to the inner tongue where translation processes take place (Ainger et al., 1993; Colman, 

Kreibich, Frey, & Sabatini, 1982; Laursen, Chan, & Ffrench-Constant, 2011; Trapp et al., 

1987). As MBP is synthesized in those proximal (close to the axon) areas of myelin, diffusion 

has to be allowed backwards to the outermost area where myelin compaction is initiated. Once 

MBP binds to two adjacent cytoplasmic surfaces, it self-assembles into a fibrous network, 

thereby greatly reducing its mobility and establishing a nucleation point for myelin membrane 

zippering (Fig. 1.3, B and Fig. 1.4). However, the following observations in high-pressure 

frozen optic nerves highlight a mechanism, which seemingly regulates the growth and the 

compaction speed during the formation of myelin. Moreover, Snaidero et al. showed that CNP 

is actively involved in preventing the membrane compaction that is so strongly dependent on 

MBP early in development (Snaidero et al., 2014).  

 

As soon as MBP binds to membranes, it induces compaction by closing two opposing 

membranes. Thus, it is surprising that the innermost layers of myelin remained loosely packed 

at the peak of optic nerve myelination in WT mice (Fig. 1.9, A). This effect appeared to be 

even stronger in mice that partially lack MBP (Fig. 1.9, B). Here, heterozygous shiverer 

animals present even more myelin sheaths with non-aligned and non-compacted wraps. 

Interestingly, the analysis of heterozygote shiverer and CNP-deficient animals reveal the 

opposing effect and impressively shows that compaction becomes even more efficient when 



1.7 | Neuron glia communication
  

17 
 

this cytosolic protein is missing. Upon loss of CNP, the rate of compaction seems to be 

accelerated, and results in tightly-compacted membranes (Fig. 1.9, C).  

 
Fig. 1.9: The equilibrium of MBP and CNP levels appears to regulate the rate of membrane compaction early in 
development. (A)  High-pressure frozen opt ic nerve of a WT mouse at P10. Uncompact and non -al igned 
wraps of myel in at  the peak of optic nerve myel ination (highlighted in yel low). (B)  Analysis of the amount 
of myelinated axons with non-compact and non-aligned wraps of the i nnermost myel in sheaths in WT and 
heterozygote shiverer  mice at P10, P14, and P21 (ON, HPF). (C) Same analysis as performed in panel B 
using heterozygote CNP and CNP-nul l mutants. F igure adapted from  (Snaidero et  al. ,  2014) . Reprint by 
permission of AAAS.  

 

The opposite, namely the overexpression of CNP, leads to myelin sheaths with non-compacted 

wraps (Gravel et al., 1996). Therefore, it appears to be crucial not to exclusively distinguish 

between domains of activity and tasks of individual proteins, but to see their possible 

cooperation. Indeed, the antagonistic function of MBP and CNP seems to be important for the 

membrane compaction very early in development. 

1.7 Neuron glia communication 

Myelin has been thought to be an inert and purely insulating membrane until recently. It now 

appears that myelin is metabolically active, providing support to the underlying axon and 

participating in information processing by modulating velocity and synchronicity of nerve 

impulses in neuronal networks (Chang et al., 2016; de Hoz & Simons, 2015; Fields, 2015; 

Purger et al., 2015). At first glance, this physiological activity seems to be incompatible with 

the structural properties of myelin consisting of multilamellar membrane that harbors only little 

cytoplasm. Evolutionarily, the organization of myelin was accompanied by interesting changes. 

Features unrelated to conduction speed interact with those promoting speed-enhancing 

attributes to approach an optimal mix. There is, e.g., the myelin of shrimp and copepods, which 

has a concentric geometry characterized by single layers encircling the fiber with few contact 

points between individual layers. This concentric layering results in reduced compaction 

compared to a tight spirally-wrapped membrane. Thus, the myelin of those crustaceans is 
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sometimes compact and sometimes not, interestingly with little consequence for its myelinating 

properties (Hartline & Colman, 2007; Hartline & Kong, 2008). The tight compaction is 

compensated by thin layers of cytoplasm within compact myelin layers in order to facilitate the 

passage of nutrients, metabolites, and other signals throughout the myelin layers and to the 

adjacent axon, which is guaranteed by Schmidt-Lanterman Incisures (SLIs) in the PNS and 

other intramyelinic cytoplasmic structures of peripheral vertebrate myelin (P. Morell et al., 

1973; P. Morell, Quarles, & Norton, 1989; Nave, 2010).  

1.7.1 Schmidt-Lanterman Incisures in the PNS 

The internode not only consists of compact myelin lamellae but is interrupted by SLIs dividing 

the sheath in cylindrico-conical segments (Fig. 1.10, A and C), which have been observed in 

developing, regenerated, and remyelinated fibers. These structures were reported by H. D. 

Schmidt (1874) and A. J. Lanterman (1877) already in the 19th century and were described as 

interrupted funnel-shape clefts. More than 80 years later, the true existence of the incisural 

structures was confirmed by the development and application of TEM (Robertson, 1958). 

 

Incisures of Schmidt-Lanterman represent inclusions of Schwann cell cytoplasmic domains 

(Fig. 1.10, A) and appear as conical structures in cross-sections of peripheral myelin sheaths. 

The “Robertson diagram” (Fig. 1.10, B) is based on the first ultrastructural investigations on 

SLIs and still determines the current perception of their organization: the examination of 

longitudinal-oriented sections reveals an opening of the MDL or IPL, which leads to an 

engulfment of cytoplasm that connects the external and internal Schwann cell cytosol across 

the myelin sheath (Robertson, 1958). Incisures at the MDLs separate myelin and enclose 

Schwann cell cytoplasm, whereas the splitting of the IPL represents extracellular space that is 

increased in width compared to compact myelin (E. Mugnaini, K. K. Osen, B. Schnapp, & V. 

L. Friedrich, 1977).  

 

Our main knowledge of SLI organization originates mainly from the work of M. N. Ghabriel and 

G. Allt, who published their work between the 1980’s and early 1990’s. The incisural formation 

is proposed to take place during the myelin biogenesis. It has been shown that an increasing 

fiber diameter is accompanied by the linear addition of new incisures and the intrusion of 

Schwann cell cytoplasm between compact myelin layers (Hildebrand, 1971; Small et al., 1987). 

Morphologically, the incisural cytoplasm contains a variety of cell organelles, including 

elements of the endoplasmic reticulum (ER), mitochondria, lysosomes, and vesicular bodies. 

Furthermore, desmosome-like bands and microtubules seem to structurally stabilize SLIs 

(Ghabriel & Allt, 1981). Furthermore, Kruger et al. (1979) considered the cytoplasm to form a 
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network within myelin, e.g., by the formation of complete and incomplete SLIs. (Kruger, 

Stolinski, Martin, & Gross, 1979). 

 

Fig. 1.10: Schmidt-Lanterman incisures (SLIs) in the PNS. (A)  TEM micrograph from 1979 of a rat sural nerve 
f iber.  Green arrows point  at  SLI s. (B)  The Robertson diagram i l lustrates the complex membrane 
archi tecture and the formation of  cytoplasmic incisures.  (C)  Almost 40 years later:  TEM micrograph of a 
myel inated axon in the murine PNS, showing inner- incisural myel in lamel lae. (A+B) adopted and mo dif ied 
from reference (Ghabr iel  & Al lt ,  1981),  reprint with permission by Elsevier,  l icense number:  
3846410935390; (C) adopted from reference (Nave & Werner,  2014) wi th permission from Annual Reviews 
[no extra permission required]) .  

 

Due to their persistence in various layers of myelin, SLIs provide a continuous spiral 

protoplasmic connection throughout compact membrane sheaths. It is believed that they may 

provide pathways for the transport of metabolites, or allow compact myelin lamellae to stretch 

in order to compensate the bending of spirally wrapped myelin sheaths to subsequently 

guarantee the axon-glial integrity (Terakawa & Hsu, 1991; Xu, 2013).   

 

This hypothesis can be supported by the incisural distribution during the development of 

compact myelin sheaths. Two different populations of SLIs appear in the course of 

development. Primary incisures appear with the onset of myelination and are characterized by 

a smaller size and the partial occupation of distinct areas of myelin sheaths. However, 

secondary incisures are believed to appear subsequently, usually occupying the whole 

perimeter of myelin (complete, circumferential incisure), and remain open in adult peripheral 

nerve fibers. Their ongoing distinction is furthermore achieved by the accumulation of 

organelles.  

 

Evidence for the metabolic activity of incisures is provided by several studies using different 

tracer molecules to assess the exchange of molecules between cytoplasmic matrices (Friede 
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& Samorajs.T, 1969; MacKenzie, Ghabriel, & Allt, 1984; Rawlins, 1973; Singer, Krishnan, & 

Fyfe, 1972). 

 

Interestingly, the examination of SLIs in peripheral nerves of wildtype (WT) and shiverer mice 

shows that the number of SLIs, seen in longitudinal and transverse sections of sciatic nerves, 

is dramatically increased in homozygous shiverer mice. Already at the earliest time point (at 

P15), a 2-fold increase in the appearance of SLIs could be observed in comparison to the WT 

control. This increase is even greater in nerve fibers of 30- and 90-day old mice. This 

observation is remarkable as MBP was thought not to be essential for the myelination in the 

periphery. In the PNS, where MBP is inherently expressed at generally low levels, myelination 

occurs normally (Gould et al., 1995). This result suggests that the reduction of MBP leads to 

an introduction of cytoplasmic incisures into compact Schwann cell membranes and may alter 

the glial-axon communication. 

1.7.2 Physiological activity of CNS myelin 

The tightly-packed plasma membranes of mature myelin not only ensure the rapid saltatory 

nerve conduction, they are also essential for the trophic support of the axon. Formerly, myelin 

has been seen as a purely insulating and inactive membrane, but it now appears that myelin 

is metabolically active, providing support to the underlying axon and participating in information 

processing by modulating velocity and synchronicity of nerve impulses in neuronal networks. 

Today, this viewpoint seems to be in conflict with the long-believed function-structure paradigm 

of myelin consisting of a stack of multiple membranes that harbor only little cytoplasm. 

Nevertheless, the application of new techniques has expanded our knowledge about myelin 

ultrastructure. 

 

In brief, during the biogenesis of myelin, two processes have to be coordinated. At first, OLs 

send processes to the axon that establish the initial contact (Fig. 1.11, Step 1.) followed by 

the flattening of the membrane onto the axon axons (Fig. 1.11, Step 2.) (Kirby et al., 2006). 

Mechanical forces are necessary to promote the growth at the leading edge. Very recently, it 

has been shown that a high turnover of filamentous actin mediates the reorganization of 

filament-like structures into membrane sheets (Nawaz et al., 2015; Samanta & Salzer, 2015; 

Zuchero et al., 2015). 
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Fig. 1.11: The current model of the myelin biogenesis in the CNS. The i l lustration directly compares the 2 -
dimensional view of an unrolled myelin sheet with the corresponding 3 -dimensional arrangement at  
sequential developmental stages together with the appropriate cross -sect ional view through the axon.  
(1.)  Myel inat ing OLs send out  f i l amentous processes towards an unmyel inated axon. (2.)  Af ter the 
establishment of the f irst contact, the membrane f lat tens and starts to enwrap spiral ly (growth zone is 
i l lustrated in green). (3.)  Synchronizat ion of radial (around) and lateral  (along) growt h of the myelin 
sheaths.  At the same t ime, an elaborated system of cytoplasmic channels  (CPCs) is formed. (4.)  Compact 
membrane sheaths when myel inat ion is terminated. Image adopted and modif ied f rom reference  (Chang 
et al . ,  2016)  with permission from Nature Publ ishing Group, l icense number 3846470493354.  

 

While myelin is incorporated adjacent to the axon at the leading edge or innermost tongue, 

newly-formed layers extend laterally. This bidirectional growth is accompanied by MBP-

mediated compaction while some areas remain non-compacted (Fig. 1.11, Step 3.). 

Simultaneously, an elaborated system of cytoplasmic-rich (myelinic) channels (the 

aforementioned CPCs) within compact myelin is being formed (Snaidero et al., 2014; Snaidero 

& Simons, 2014). 

 

After the formation of a few wraps, compaction is initiated from the outermost layer toward the 

inner layers, omitting cytoplasmic channels for metabolic exchange and material transport 

between the OL and the innermost leading edge in developing myelin sheaths. When the 

growth of the sheath is terminated, myelin is fully compacted and cytoplasmic channels 

disappear Fig. 1.11, Step 4.). 

1.7.3 Why should structures that fulfil essential functions in the periphery be missing 

in the CNS? 

A recent technical advance has been the improvement of cryo-fixation methods by application 

of high-pressure freezing (HPF) to enable an enhanced preservation of the tissue architecture, 
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prior to visualization by TEM (Mobius et al., 2010). Using HPF, it was possible to visualize an 

elaborated system of cytoplasmic (myelinic) channels within compact myelin of the developing 

optic nerve (Fig. 1.11, Step 3 and Fig. 1.12, A), which runs in an helical course through the 

compacted myelin lamellae connecting the cell body of the myelinating OL with the innermost 

layer of myelin (Snaidero et al., 2014). These channels in the CNS resemble SLIs, the myelin 

incisures of peripheral myelin, in many respects. Interestingly, at the peak of optic nerve 

myelination (P10), a large number of myelin sheaths with cytoplasmic channels was observed, 

which have in terms of their morphology (detection of microtubules, vesicular structures, and 

cell organelles) a similar appearance compared to SLIs of the PNS.  

 

Fig. 1.12: Observation of cytoplasmic channels (CPCs) in small caliber axons in the murine optic nerve at P10: (A)  
Longi tudinal view of  an opt ic nerve at  P10 of  a WT mouse. Arrowheads represent shortcuts,  which provide 
a spiral connect ion from the outer to the inner tongue, scale bar = 200 nm.  (B)  Cross-section of an opt ic 
nerve at  the peak of  opt ic nerve myel ination. Arrowheads mark the openings that are f i l led with cytoplasm 
and bui ld interruptions with in compact myelin sheaths : scale bar = 200 nm. (C)  Analysis of  the percentage 
of myel in sheaths that  contain CPCs. A high number of  CPC s provides short  connections from the outer  
to the inner  tongue at the peak of optic nerve myelinat ion (P10).  Upon terminat ion of myel inat ion, these 
structures transiently d isappear. F igure adapted from  (Snaidero et a l. ,  2014) . Reprint by permission of 
AAAS. 

 
However, these radial connections differ in their transient nature from those of the periphery, 

meaning that these spiral connections almost completely disappear with the termination of 

myelination at P60 (Fig. 1.11, step 4 and Fig. 1.12, C). A three-dimensional reconstruction 

revealed a cytoplasmic channel-like system that passes through a compact myelin sheath and 

ends at different points in the inner tongue (Fig. 1.12, A). 

 

Already 50 year ago, Ramón y Cajal stated that "the most robust fibers (in the spinal cord) 

have true incisures of Schmidt-Lanterman (…)” (Ramón y Cajal et al., 1968), but limitations of 

sample preparation techniques made it impossible to prove that compact myelin sheaths in the 

CNS indeed, contain more functional active cytoplasm (Blakemor.Wf, 1969).  

Given the emerging function of myelin in modulating and supporting neuronal processes, we 

start here to understand how cytoplasmic domains are formed and maintained in the 

developing and adult CNS. 
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1.8 Aim of this work 

The aim of this thesis is to determine how cytoplasmic domains are formed and maintained in 

the CNS. Here, we present how a system of interconnected cytoplasmic channels is organized 

in myelin of axons with various calibers. We have elucidated their molecular organization and 

determined their key components. An overall integrative approach by the combination of 

advanced electron microscopy, cell biology, super-resolution imaging, and the implementation 

of biomimetic experiments has allowed us to get insights into the heterogeneity of these 

complex membrane structures. 

 

This doctoral study had the following specific aims: 

 

1. Comparison of CPCs of axons of a different caliber (thin vs. thick myelinated fibers). 

2. Combination of in vitro and in vivo assays to elucidate the molecular mechanisms that play 

a role in the generation of cytoplasmic domains. 

3. Analysis of the functional role of these myelinic channels. 
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2 Materials and Methods 

2.1 Materials 

2.1.1 General chemicals, consumables, and kits 

General chemicals were obtained from either Sigma-Aldrich (München, Germany), Merck 

Millipore (Darmstadt, Germany), Invitrogen (München, Germany), or Roth (Karlsruhe, 

Germany) unless stated otherwise.  

For cell culture, all basal media and supplements like Dulbecco’s modified Eagle’s medium 

(DMEM) with high glucose, Hank’s balanced salt sodium (HBSS), Dulbecco’s phosphate-

buffered saline (PBS), GlutaMAX TM, Penicillin/Streptomycin (Pen/Strep), B-27 supplement, 

sodium pyruvate, Horse Serum (HS), Fetal Calf Serum (FCS), 0.05% and 0.25% trypsin-EDTA 

were purchased from Gibco (Life Technologies GmbH, Darmstadt, Germany). Poly-L-Lysine 

(PLL) was obtained from Sigma-Aldrich (München, Germany) whereas the supplements 

Triiodothyronine (Tit) and L-Thyroxine were bought from Calbiochem (Darmstadt, Germany). 

Consumables and cell culture plates were purchased from Greiner bio-one (Greiner bio-one 

GmbH, Frickenhausen, Germany), Falcon (Becton Dickinson Labware Europe, Le Pont De 

Claix, France), and Eppendorf (Eppendorf AG, Hamburg, Germany).  

Latrunculin A and Nocodazole were purchased from Calbiochem (Darmstadt, Germany). The 

lipids 1,2-dioleoyl-sn-glycero-3-phosphoethanolamine, porcine brain L-α-phosphatidylinositol-

4,5-bisphosphate (PIP2), L-α-phosphatidylcholine (PC), and porcine brain L-α-

phosphatidylserine (PS) were obtained from Avanti Polar Lipids as chloroform stocks. 

Cholesterol and chicken egg yolk sphingomyelin (Alexander et al.) were obtained from Sigma-

Aldrich (München, Germany). LissamineTM rhodamine B 1,2-dihexadecanoyl-sn-glycero-3-

phosphoethanolamine (rhodamine-DHPE) was bought from Invitrogen (München, Germany). 
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2.1.2 General Buffers and Solutions 

Buffers and solutions used in this study are listed in Table 2.1.  

Table 2.1: Overview of buffers and solutions used in this study. 

Buffers and solutions Ingredients 

Phosphate-buffered saline (PBS) 150 mM NaCl, 20 mM Na2HPO4, pH 7.4 

10 x F-Buffer 
100 mM Tris HCl, 20 mM MgCl2, 500 mM KCl, 
10 mM ATP, 50 mM guanidine carbonate, pH 7.5 

Blocking solution 
2 g BSA (Applichem), 2 ml FCS (Gibco), 2 ml Fish 
gelatin (Sigma-Aldrich), 10 ml PBS, final volume 
100 ml with distilled H2O 

Mowiol 
6 g glycerol AR, 2.4 g Mowiol 4-88 (Calbiochem), 
6 ml H2O, 12 ml 0.2 M Tris, pH 8.5 

LB media 25 g/l LB-powder (Applichem) in destilled H2O 

Tris-Acetate-EDTA (TAE) buffer (50 x, 1 l) 
242 g Tris base, 57.1 ml Glacial acetic acid, 100 
ml 0.5% EDTA in distilled H20, pH 8.5 

Super SATO medium (100 ml) 

2 ml B27-supplement, 1 ml GlutaMAX, 0.5 ml 
Pen/Strep, 1 ml Pyruvate, 10 μl Tit, 13 μl L-
Tyroxine, 1 ml HS prepared in DMEM 4500 mg/l 
glucose 

BME medium (500 ml) 
50 ml HS, 2.5 ml Pen/Strep, 5 ml GlutaMAX in 
500 ml BME 

PLL solution 100 μg/ml (500 ml) 
Dilution of 5 ml 50 X Poly-L-Lysine stock 
(Mw>300000) in sterile PBS 

2.1.3 Enzymes and Kits 

Enzymes used in this study are listed in Table 2.2 and were mainly purchased from Fermentas 

(St. Leon-Rot, Germany), New England Biolabs (NEB GmbH, Frankfurt, Germany), and 

Promega (Mannheim, Germany). Applied kits are listed in Table 2.3. Supplied buffer solutions 

were used according to the manufacturer’s guidelines.  

Table 2.2: Enzymes used in this study. 

Enzyme Application Reference 

Restriction enzymes DNA digestion NEB 

T4 DNA ligase Ligation of DNA fragments Fermentas 

Taq DNA Polymerase Genotyping Promega 
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Table 2.3: Commercial kits used in this study. 

Kit Application Reference 

NucleoSpin Plasmid Kit DNA isolation, small scale Macherey-Nagel 

NucleoBond Xtra Midi Kit DNA isolation, medium scale Macherey-Nagel 

NucleoSpin Extract ll Kit 
DNA purification from agarose 
gels 

Macherey-Nagel 

NucleoSpin Gel 
DNA purification from agarose 
gels and PCR clean-up 

Macherey-Nagel 

Invisorb spin tissue mini kit Genotyping/tail DNA extraction STRATEC Biomedical AG 

2.1.4 Antibodies and dyes 

An overview of the primary antibodies used in this study is given in Table 2.4. Secondary 

conjugated antibody fluorophores were purchased from Dianova (Dianova GmbH, Hamburg, 

Germany) and were used at a dilution of 1:1000 on cells.   

Table 2.4: Antibodies used in this study: ICC (Immunocytochemistry), m: mouse (monoclonal), r: rabbit (polyclonal). 

Target 
Host 
species 

Application Reference 

m-anti-beta ll Spectrin Mouse ICC (1:500), IEM (1:200) BD Transduction Labs 

m-anti-CNP Rabbit ICC (1:300), IEM (1:200) Sigma-Aldrich 

r-anti-MBP Rabbit ICC (1:300) Dako Deutschland GmbH 

m-anti-MBP Mouse ICC (1:1000) Sternberger 

m-anti-αtubulin Mouse ICC (1:2000) Sigma-Aldrich 

Phalloidin (Alexa® 
Fuor 488) 

- ICC (1:300) Thermo Fisher Scientific 

DHPE-Texas Red - 
GUV Bursting Assay 
(0.1 mol%) 

Thermo Fisher Scientific 

TopFluor® Lyso 
phosphatidyl- 
choline 

- 
GUV Bursting Assay 
(0.1 mol%) 

Avanti Lipid 
Polar, Inc. 

2.1.5 Primers 

The primers used in this study were synthesized in the DNA core facility, the AGCT-laboratory 

of the Max Planck Institute of Experimental Medicine (Göttingen, Germany). A complete list of 

primers used for genotyping is shown in Table 2.5. The primers that were utilized for molecular 

cloning in order to modify the cDNA sequences of CNP and GFP, and that were later used for 

recombinant protein expression, are summarized in Table 2.6. 
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Table 2.5: Primers used for genotyping in this study. 

Gene PCR Primer-ID Sequence 

ADF ADF-KO 

28830 5'- GATTAAGTTGGGTAACGC -3' 

28831 5'- GAAGAAGGCAAAGAGATCTT -3' 

28832 5'- CTACCTAAAGGGCATCCTTTC -3' 

  

CNCE-Cre CNCE GNT 

1955 5'- CATAGCCTGAAGAACGAGA -3' 

2916 5'- GCCTTCAAACTGTCCATCTC -3' 

7315 5'- CCCAGCCCTTTTATTACCAC -3' 

  

Cofilin1 CFL1FX 

27596 5'- CGCTGGACCAGAGCACGCGGCATC -3' 

27597 5'- CTGGAAGGGTTGTTACAACCCTGG -3' 

27598 5'- CATGAAGGTTCGCAAGTCCTCAAC -3' 

  

PLP1-Cre-ERT2 PLP-Cre 
10099 5’- TGGACAGCTGGGACAAAGTAAGC -3’  

10100 5’- CGTTGCATCGACCGGTAATGCAGGC -3’  

 

Table 2.6: Primers and oligonucleotides for molecular cloning used in this study. 

Primer/ 

oligo ID 
Application Sequence 

32239 
Introduction of BamHl 
restriction site into full-
length CNP 

5'-GGCGGCGGATCCAAGATGtcatcctcaggagcaaagg-3' 

32241 
Introduction of EcoRl 
restriction site into full-
length CNP 

5'-TCCTCCGAATTCgatgatggtgcagatctgcatg-3' 

33671 
NHE3 membrane binding 
domain, top oligonucleotide 

5’AATTCGGAGGAGGAAAGAAAGCGGCGAAGTTATA
CAAGCGGGAGCGGGCACAGAAAAGACGAGGAGGA
GGATGAC 3’ 

33672 
NHE3 membrane binding 
domain, bottom 
oligonucleotide 

5’TCGAGTCATCCTCCTCCTCGTCTTTTCTGTGCCCG
CTCCCGCTTGTATAACTTCGCCGCTTTCTTTCCTCCT
CCG 3’ 

2.1.6 Chemicals for electron microscopy 

The fixation and dehydration state of tissue samples used for electron microscopy is crucial 

for the sample quality. Therefore, particular chemicals are needed, which are listed in Table 

2.7. 

http://sciencelearn.org.nz/About-this-site/Glossary/dehydration
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Table 2.7: Chemicals for electron microscopy used in this work. 

Compound Company 

Lead citrate 8473 Merck 

Uranyl acetate Merck 

Paraformaldehyde Serva 

Glutaraldehyde (EM grade) Electron Microscopy Sciences 

Osmium Tetroxide (OsO4) Electron Microscopy Sciences 

Glycidether Serva 

2-Dodecenylsuccinic acid anhydride (DDSA)  Serva 

Methyl nadic anhydride (MNA)  Serva  

Epoxy embedding medium, accelerator  
(DMP-30)  

Electron Microscopy Sciences 

Tannic acid Sigma-Aldrich 

Acetone, glass distilled Electron Microscopy Sciences 

Polyvinylpyrrolidone Sigma-Aldrich 

Methylene blue Sigma-Aldrich 

Azure ll Sigma-Aldrich 

2.1.7 Software 

Table 2.8 provides a list of the specific software used during the course of this study. General 

objectives were image processing, the design of figures, data quantification, primer design, or 

the plotting of data and their statistical analysis. Applications tagged with *) are freely available 

online. 

Table 2.8: Summary of the software used in this study. 

Software Application Source/Manufacturer 

Adobe Illustrator CC 2015 Figure Design Adobe Systems, Inc. 

ApE Plasmid Editor*) DNA sequence editing by Wayne Davis, University of Utah 

EndNote X7 Bibliography manager Thomas Reuters 

GraphPad PRISM 5 
Statistical analysis and graph 
production 

GraphPad Software, Inc. 

ImageJ/Fiji*) Image processing and analysis http://fiji.sc/Fiji 

LAS AF 3.1.0 Fluorescent image acquisition 
Leica Microsystems, Mannheim, 
Germany 

2.2 Methods 

2.2.1 Molecular Cloning 

The cDNA encoding recombinant full-length CNP (fl-CNP) was obtained from Prof. Dr. Petri 

Kursula (University of Bergen, Norway) and used as template for the polymerase chain 

reaction (PCR), with the forward and reverse oligonucleotide primers given in Table 2.6. 
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Successfully modified and amplified PCR products were sub-cloned into the mammalian 

expression vector pcDNA3.1(+) (Invitrogen, Darmstadt, Germany). The C-terminal insertion of 

the lipid binding region R1-3 of NHE3 (Alexander et al., 2011b), was performed by the 

annealing of the overlapping single-stranded oligonucleotides and ligation into the site of 

interest. Standard methods of molecular cloning like restriction digestion, ligation, and 

transformation (via heat shock) into chemically-competent E. coli DH5α competent cells were 

utilized. The plasmid DNA of picked clones was extracted using the NucleoSpin Plasmid Kit 

(Macherey Nagel) for a small-scale preparation, followed by the screening of individual clones 

through restriction digestion and automated sequencing of selected positive clones. 

Automated DNA sequencing and synthesis of oligonucleotides were performed by the AGCT 

lab (DNA Core Facility at the Max Planck Institute of Experimental Medicine, Göttingen, 

Germany). Confirmed clones with a correct DNA sequence were used for a medium-scale 

DNA preparation using the NucleoBond Xtra Midi Kit (Macherey Nagel). 

2.2.2 Expression and purification of proteins 

The expression and purification of recombinant proteins was realized in collaboration with Dr. 

Steffen Frey (Max Planck Institute of Biophysical Chemistry, Göttingen, Germany). For large-

scale expression of GFP with N-terminally-attached, and CNP with C-terminally-attached lipid-

binding regions R1-3 of NHE3 (Alexander et al., 2011b), plasmids were transformed into 

Escherichia coli strain TOP10F’ and grown at 25°C until an optical density at 600 nm (OD600) 

of 3.0 in TB medium supplemented with 50 mg/ml kanamycin). Cultures were induced with 

0.15 mM isopropyl β-D-1-thiogalactopyranoside (IPTG), warmed to 37°C and further shaken 

overnight. Prior to cell harvesting, 1 mM phenylmethylsulfonylfluoride (PMSF) and 5 mM EDTA 

were added to the cultures. Cells were resuspended in HS buffer (1.3 M NaCl, 220 mM Tris-

HCl pH 7.5, 11 mM MgCl2, 10 mM imidazole, 2.2 mM EDTA, 10 mM DTT) and lysed by 

sonication followed by centrifugation for 1 h at 37,000 rpm. Cleared lysates were applied to a 

nickel-chelate matrix equilibrated with HS buffer. After intense washing with HS buffer and 

HNS buffer (20 mM HEPES, 100 mM NaCl, 250 mM sucrose, 5 mM DTT, final pH 7.3), bound 

proteins were eluted by incubation with SUMO protease (20 nM) for 15 min at room 

temperature.   

 

The 14-kDa isoform of myelin basic protein (MBP) was expressed in E. coli strain BLR 

harboring plasmid pRil. Cells were cultured in TB medium containing 50 mg/ml kanamycin and 

37 mg/ml chloramphenicol at 37°C to OD600 = 6.0, followed by induction with 1 mM IPTG and 

shaken for 6 h at 37°C. Before harvesting, 1 mM PMSF and 5 mM EDTA were added to the 

cultures. Cells were then re-suspended in 8.3 M guanidine hydrochloride containing 2 mM 
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EDTA and 20 mM DTT, followed by lysis via freezing and thawing. Lysates were cleared by 

centrifugation at 37,000 rpm for 1 h and supplemented with 100 mM Tris-HCl (pH 8.5) and 1 

mM imidazole and applied to a nickel-chelate column. The column was washed with 7.5 mM 

guanidine hydrochloride, 100 mM Tris-HCl (pH 8.5), 1 mM EDTA, and 1 mM imidazole followed 

by a second washing step with 8 M urea, 20 mM Tris-HCl (pH 8.0), 1 mM EDTA, and 1 mM 

imidazole. Bound protein was eluted by application of the same buffer supplemented with 500 

mM imidazole, diluted 1:3 with water, and applied to a thiopyridine-activated SH-reactive 

matrix. The matrix was washed with 6 M guanidine hydrochloride, 20 mM Tris-HCl (pH 8.0), 

and 1 mM EDTA, 1 mM imidazole, and eluted with 6 M guanidine hydrochloride, 20 mM Tris-

HCl (pH 7.5), 10 mM DTT followed by application to preparative C18 reversed-phase HPLC 

column, eluted with increasing concentrations of acetonitrile in 0.15% TFA, and lyophilized.  

2.2.3 Primary oligodendrocyte cell culture 

Primary cell cultures were prepared as described with various modifications (Fitzner et al., 

2006; Simons, Kramer, Thiele, Stoffel, & Trotter, 2000; Trotter & Schachner, 1989). In short, 

brains of NMRI mice were extracted at postnatal day (P) 1, and the olfactory bulb, cerebellum, 

and meninges were removed. After trypsinization for 10 min at 37°C using 0.25% Trypsin-

EDTA, trypsin was removed and brains were transferred to 5 ml fresh BME medium and 

homogenized by passing them through a glass Pasteur pipette for 5 – 10 times. To obtain 

purer cultures, the cell suspension was filtered using a pore size of 0.2 μm and seeded onto 

poly-L-Lysine (PLL)-coated cell culture flasks (100 μg/ml, MW>300000), containing BME 

medium (supplemented with 10% horse serum, 1% Penicillin/Streptomycin, and 1%  

GlutaMAX), and Super SATO medium (supplemented with DMEM 4.5 g/L glucose, 1% HS, 

B27 supplement, GlutaMAX, sodium pyruvate, triiodotyronine, L-thyroxine and 

Penicillin/Streptomycin). The glial mixed culture was incubated for 7 – 8 days and consisted of 

three main cell types. In general, a monolayer of astrocytes was grown on the bottom of the 

culture dish while oligodendrocyte precursor cells (OPCs) were grown on top of them. Residual 

microglial cells needed to be removed during the culturing procedure by gently tapping the 

flask and replacing the culture medium. After 7 – 8 days of incubation, cells were manually 

shaken off the mixed glial culture by shaking the flasks to detach the oligodendrocytes (OLs), 

whereas astrocytes remained attached to the bottom of the flask. The medium was collected 

and centrifuged at 0.9 rpm for 10 min, followed by resuspension of progenitors in Super SATO 

differentiation medium. For a highly pure culture, OPCs were incubated in a Petri dish for 2 

min to allow clustered and other types of cells to adhere to the bottom of the dish. Prior to cell 

seeding, coverslips were treated with 37% hydrochloric acid, rinsed thoroughly with ddH2O, 

until the pH was neutral, and sterilized overnight at 260°C. Next, the cell suspension was finally 
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collected, and OPCs were plated onto PLL-coated coverslips according to the needed cell 

density (Table 2.9). In general, coating for primary cultures was performed as follows: PLL 

was applied on the surfaces (coverslips, cell culture plates/flasks) for 4 – 12 h at 37°C, 

aspirated, and washed with PBS. 

Table 2.9: Cell density according to the size of the culture plate/dish. 

Plate/dish Number of cells 

96-well plate 5 000 - 10 000 

48-well plate 10 000 - 20 000 

24-well plate 20 000  - 40 000 

12-well plate 40 000  - 80 000 

6-well plate 125 000 - 250 000 

3.5-cm Petri dish 250 000 - 500 000 

6-cm Petri dish 600 000 - 1 million 

 

The OPCs were kept in Super SATO differentiation medium to allow their differentiation for 5 

days. Cells were maintained in a humidified 37°C incubator, supplemented with 7.5% CO2.  

2.2.4 Treatment of primary oligodendrocytes 

All compounds that were used for the in vitro treatment of OLs were dissolved in dimethyl 

sulfoxide (DMSO). In order to minimize effects of this vehicle on the cells, the concentration of 

the stock solution allowed a dilution to the working solution by the factor of 1:1000. For 

treatment, approximately 50% of the culture medium was removed from the cells and 

transferred to sterilized 1.5-ml Eppendorf reaction tubes. Subsequently, drugs were added to 

a final concentration (listed in Table 2.10), mixed, and the medium was given back to the cells. 

Cells were incubated at 37°C for 8 h followed by fixation applying a 4% PFA/0.15% 

glutaraldehyde mixture. For controls, the exact same volume of the drug’s vehicle was used. 
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Table 2.10: Compounds used for the treatment of primary oligodendrocytes in vitro. 

Drug 
Final 
concentration 

Application 
Purchased 
from 

Latrunculin 1 µM 
Disruption of microfilament 
organization by complex formation 
with G-actin 

Merck Millipore/ 
Calbiochem 

Cytochalasin B 10 µg/µl 
Inhibition of network formation by 
actin filaments 

Merck Millipore/ 
Calbiochem 

Nocodazole 100 nM 
Inhibition of mitosis/disruption of 
microtubule polymerization 

Merck Millipore/ 
Calbiochem 

2.2.5 Immunocytochemistry  

Primary cultures were prepared as described above. Cells were fixed with 4% PFA and 0.25% 

glutaraldehyde (Sigma-Aldrich) for 15 min at RT, and finally washed for 3 times using PBS. 

For the staining of endogenously-expressed proteins, cells were permeabilized with 0.1% 

TritonX-100 (diluted in PBS) for 2 min, followed by three washing steps with PBS. To reduce 

nonspecific binding of the antibodies, cells were blocked for 30 min using 100% blocking 

solution. After removal, cells were incubated with primary antibodies in appropriate dilution in 

10% blocking solution for 1 h at RT. After washing 3 times with PBS, secondary antibodies – 

again diluted in 10% blocking solution – were applied for 1 h at RT. Finally, cells were washed 

with PBS by dipping the coverslips 5 times in PBS and mounted in Mowiol mounting medium. 

The applied antibodies are listed in Table 2.4. The fluorophore-conjugated secondary 

antibodies used were Alexa 488 (anti-mouse and -rabbit), Alexa 555 (anti-mouse), and 647 

(anti-mouse) in a dilution of 1:1000. For labelling of F-actin, phalloidin-rhodamine, or Alexa 

Fluor 488 phalloidin (Life Technologies) in a dilution of 1:300 were used. The imaging was 

performed with an epifluorescence microscope (LEICA) or a confocal microscope (Zeiss Meta 

510) using a 63 x objective.  
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2.2.6 Biomimetic supported lipid bilayer – giant unilamellar vesicle (SLB-GUV) assay 

To mimic the inner leaflet composition of myelin (Inouye & Kirschner, 1988), the following 

mole% of lipid mixture was used at a final concentration of 1 mg/ml:  

 

44%  Cholesterol 

27%  Phosphatidylethanolamine (PE)  

2%   Phosphatidylinositol-4,5-bisphosphate (PIP2) 

11.5%  Phosphatidylcholine (PC)  

12.5%  Phosphatidylserine (PS) 

3%  Sphingomyelin (SM) 

 

The mole% of each lipid corresponded to the values reported in the literature particularly for 

the inner myelin leaflet. 

For the subsequent visualization of the lipid bilayer, the lipid mixtures contained a fluorescent 

dye. Precisely, for the labelling of SLBs, the lipid mixture was substituted with TopFluor® Lyso 

PC (Avanti Lipid Polar, Inc., Alabaster, Alabama, USA), a fluorescent derivative of lyso-

phosphatidylcholine with spectral properties similar to boron-dipyrromethene fluorophore 

(BODIPY-FL).  

For the preparation of supported lipid bilayers (SLBs), lipids were diluted in chloroform in the 

appropriate concentration and dried in a vacuum concentrator (Concentrator plus, Eppendorf 

AG, Hamburg) at 30°C for 1.5 h followed by hydration in 50 mM HEPES (pH 7.4) containing 

100 mM NaCl. Then, the lipid mixture was sonicated for 30 min at 70°C and 50% power in an 

ultrasonic bath (Sonorex Super 10 P, Sigma-Aldrich). To generate small unilamellar vesicles 

(SUVs), the lipid mixture was further treated by tip sonication at 40% (Sonoplus, Bandelin, 

Berlin) for 10 to 20 min until a clear solution was obtained. Until usage, SUVs were stored at 

4°C for maximum seven days. 

To guarantee the even spreading of the SUVs on glass coverslips, the coverslips had to be 

cleaned carefully. For this purpose, 18-mm coverslips were treated with 2% Hellmanex lll 

detergent (Hellma GmbH & Co. KG, Müllheim, Germany), diluted in MilliQ water by sonication 

in a bath sonicator for 30 min with 100% power at 70°C. Sonication was performed 3 times 

accompanied by several washing steps with MilliQ water. Treated glass coverslips needed to 

be kept hydrated and were stored on 4°C.  

Then, SUVs were spread onto the cleaned and hydrated 18-mm coverslips and incubated for 

1 h at ambient room temperature (RT) in a dark chamber to protect them from light. To allow 

the final spreading of the vesicles, coverslips were further incubated for 15 min at 37°C. The 
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unbound lipids were removed by washing three times with 50 mM HEPES, consecutively. Next, 

the incorporation of proteins was again performed at ambient temperature by the dilution of 

proteins in the appropriate concentration and buffer conditions to allow their binding onto the 

membrane. Since neither GFP nor CNP is a generic membrane-binding protein, a trick was 

applied. Both proteins were genetically modified by molecular cloning (as described in section 

2.2.1) and attachment of a membrane-binding R3-tag. Protein incorporation proceeded 

sequentially in order to fulfil the requirement of the assay/experimental strategy.  

 

For the preparation of giant unilamellar vesicles (GUVs), the lipids PC and PS were mixed in 

chloroform in a 2:1 molar ratio, followed by drying in a vacuum concentrator and hydration in 

chloroform. An electroformation method was used to generate GUVs (Kahya, Brown, & 

Schwille, 2005). Then, the mixture composed of two lipids was spread on the electrically-

conductive side of glass slides coated with indium-tin oxide (ITO). Slides were allowed to dry 

overnight at 37°C. Visualization of GUVs was guaranteed by their fluorescent labelling using 

Texas Red DHPE (Invitrogen). The perfusion chamber used for vesicle preparation was built 

with two ITO glass slides, whereas the conductive sides, containing the lipid mixtures, were 

facing each other. The GUVs were grown in the perfusion chamber in the presence of 0.1 M 

sucrose/water solution as a result of lipid swelling under an alternating current field (Garcia-

Saez, Carrer, & Schwille, 2010; Kahya et al., 2005). Obtained GUVs had a diameter ranging 

from 5 to 100 µm.  

 

Confocal imaging using a Zeiss Meta 510 microscope and live-cell imaging dishes was 

performed to visualize the behavior of the GUVs upon attachment to the SLBs. To study the 

“bursting kinetics” of the vesicles, each experiment was carried out for 30 min while one picture 

per minute was taken after addition of the GUVs.  

2.2.7 Polymerization of actin for GUV bursting assay 

For the practical realization of the biomimetic assay, actin was incorporated into the SLBs. For 

this purpose, we purchased non-muscle actin, purified from human platelets (Cytoskeleton, 

Inc., Denver, USA, distributor: BIOMOL GmbH, Hamburg, Germany), which needed to be 

polymerized to filamentous actin (F-actin). First, we reconstituted the lyophilized protein 

according to the manufacturer’s instructions. Platelet globular actin (G-actin) was polymerized 

at 5 µM concentration in 1 x F-Buffer containing: 10 mM Tris-HCl (pH 7.5), 50 mM KCl, 2 mM 

MgCl2, 5 mM guanidine carbonate, and 1 mM ATP, and incubated overnight on glass 

coverslips containing SLBs to allow its polymerization and binding to the negatively-charged 

bilayer at the same time. After the overnight incubation, coverslips were intensively rinsed with 
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1 x F-Buffer, followed by incorporation of MBP or direct performance of the GUV bursting 

assay. After formation of F-actin, the polymerizing conditions were kept throughout the course 

of the experiment. 

2.2.8 Interaction studies of CNP and actin 

Statement of work: please note that the following section describes experiments that were 

performed by our collaborators Dr. Matti Myllykoski and Prof. Dr. Petri Kursula (Department of 

Biomedicine, University of Bergen, Norway). The materials and methods that were applied are 

briefly described in subsections 2.2.8.1 – 2.2.8.5 for completeness. More detailed descriptions 

are available in the following published articles (Ignatev, Bhargav, Vahokoski, Kursula, & 

Kursula, 2012; Kursula & Majava, 2007; Myllykoski et al., 2013; Pardee & Spudich, 1982).  

2.2.8.1 Actin purification 

Pig muscle actin was extracted and purified as described previously (Ignatev et al., 2012; 

Pardee & Spudich, 1982). The final monomeric actin was stored in dialysis against the gel 

filtration buffer (5 mM Tris, 0.2 mM CaCl2, 0.2 mM ATP, 0.5 mM tris(2-carboxyethyl)phosphine 

(TCEP), pH 7.5), with daily ATP replenishment. The pigs were supplied by the University of 

Oulu Laboratory Animal Center, which were used in other animal experiments with separate 

licenses from the Finnish National Animal Experiment Board. The experiments were approved 

by the local ethics committee of the University of Oulu Laboratory Animal Center (decision 

number 096/11). 

2.2.8.2 F-actin co-sedimentation 

Calmodulin (CaM) was purified as previously described (Kursula & Majava, 2007). Different 

variants of recombinant CNP were purified as described previously (Myllykoski et al., 2013) 

(Myllykoski et al. 2013). The constructs that were used for co-sedimentation included full-

length CNP, its N- and C-terminal domains, a catalytically-inactive mutant of the C-terminal 

catalytic domain (H230Q/H309Q), and the catalytic domain extended at the C-terminus. Before 

the co-sedimentation assays, actin was further purified using size-exclusion chromatography. 

Purified G-actin was polymerized for 45 min, incubated at 5 μM with CNP constructs, CaM, 

and S100beta in different combinations for 45 min or 20 h at ambient temperature, and the 

mixtures were centrifuged with TLA-100 rotor at 100 000 rpm (approx. 436 000 x g) for 45 min 

at 20°C. Supernatant was removed, and the pellet was briefly washed and resuspended in the 

initial volume. Pellet and supernatant fractions were analyzed by SDS-PAGE (sodium dodecyl 

sulfate – polyacrylamide gel electrophoresis). 
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2.2.8.3 Actin bundling 

Muscle actin was polymerized at 5 μM concentration with 2 mM MgCl2 and 100 mM KCl 

overnight in 500 μl. Myelin binding proteins were prepared first as 10 μM stocks in 1 x F-buffer 

(100 mM KCl with further dilution. Then actin was diluted to 2.5 μM by adding 1 μM, 2.5 μM, 

and 5 μM of different CNP-variants plus 1 x F-buffer (with 100 mM KCl) to final volume 60 μl. 

Proteins were incubated in Eppendorf tubes for 1 h and spun at either 21000 x g for bundling 

assays. After centrifugation supernatants were transferred to Eppendorf tubes and 10 μl of 2 

x SDS sample buffer was added. Pellets were rinsed with 50 μl of 1 x F-buffer (100 mM KCl) 

and resuspended in 20 μl of 1 x F-buffer (100 mM KCl) plus 10 μl of 2 x SDS sample buffer by 

extensive pipetting. A volume of 15 μl of each sample was taken for SDS-PAGE.  

2.2.8.4 Actin polymerization assay 

Pyrene actin was obtained from muscle actin by labelling with pyrene (purchased from 

Cytoskeleton, Inc. Denver, USA). Muscle G-actin was diluted to a final concentration of 3.9 μM 

from 19 μM stock solution. Pyrene actin was added to a final concentration of 0.1 μM (2.5% of 

4 μM total actin). Total reaction volume was 150 μl: half of that was a mixture of G-actin, pyrene 

actin, and G-buffer. Another half was 10 x F-buffer, 4 μM of CNP plus G-buffer. Measurement 

was started immediately (with instrument initiation and 5-s shaking delay) after the two halves 

were mixed, and continued for 1 h with 10-s frames. Measurements were done in duplicate. 

2.2.8.5 Covalent crosslinking and mass spectrometry 

Freshly-purified monomeric actin was polymerized by adding 50 mM KCl and 2 mM MgCl2 to 

the existing buffer, and incubating overnight on ice. The polymerized protein had significantly 

increased viscosity, and filamentous actin (F-actin) was then harvested using 

ultracentrifugation. The F-actin pellet was dissolved to 1.5 x crosslinking buffer (150 mM Bis-

tris methane, 225 mM NaCl, 6 mM 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide (EDC), 30 

mM N-hydroxysuccinimide (NHS), pH 6.5) and used directly for crosslinking experiments.  

Protein crosslinking was carried out using EDC chemistry, where a protein with surface 

carboxyl groups is activated using EDC and stabilized using NHS. After this step, the activation 

reaction is quenched with β-mercaptoethanol, and proteins with surface amino groups are 

added, which then react with the activated carboxyl groups to produce a zero spacer length 

peptide crosslink. The remaining activated groups can be back-reacted to free carboxyl groups 

by the addition of excess ethanolamine. 

All crosslinking reactions were carried out at 39.2 μM final protein concentrations. To activate 

CNP, the different variants of the protein were diluted using 1 x crosslinking buffer (100 mM 

Bis-tris methane, 150 mM NaCl, 4 mM EDC, 20 mM NHS, pH 6.5). The F-actin pellets 

dissolved in 1.5 x crosslinking buffer were diluted to 1 x using MilliQ water. In double 
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activations, the F-actin pellets dissolved in 1.5 x crosslinking buffer were supplemented with 

equimolar amounts of CNP, followed by addition of MilliQ water to reach a 1 x buffer 

composition. In all cases, the activation was allowed to proceed for 15 min at ambient 

temperature and the reactions were subsequently quenched by adding β-mercaptoethanol to 

20 mM. Equimolar amounts of CNP were added to the activated F-actin reactions. All reactions 

were further allowed to proceed for 3 h at ambient temperature, and then stopped by adding 

ethanolamine to 10 mM. The samples were analyzed using SDS-PAGE. 

 

The protein content from crosslinking experiments were determined using matrix-assisted 

laser desorption/ionization time-of-flight (MALDI-TOF) mass spectrometry. From stained SDS-

PAGE gels, gel bands were cut, and stain was removed by sequential washing with 50 mM 

NH4HCO3 in 40% acetonitrile (ACN). Proteins were subjected to in-gel Cys-reduction using 20 

mM dithiothreitol and subsequent alkylation using 40 mM α-iodoacetamide. After this step, all 

proteins were in-gel trypsinized (5 – 20 ng of trypsin per gel piece), followed by peptide 

extraction from gel pieces using 30% ACN/0.1% trifluoroacetic acid (TFA), and transferred to 

a Bruker anchor plate. The matrix used was 5 mg/ml α-cyano-4-hydroxy cinnamic acid in 85% 

ACN/0.1% TFA with 1 mM NH4H2PO4. Peptide mass spectra and MS/MS spectra were 

measured with a Bruker Ultra fleXtreme MALDI-TOF mass spectrometer and compared to 

theoretical spectra generated using the protein sequences. 

2.2.9 Mouse lines 

All animal experiments were performed according to the Lower Saxony State Animal Welfare 

Act for animal experimentation. Mutant mice were bred and maintained on a C57BL/6 

background. Adult animals were sacrificed at P60 (8.5 weeks old) and at P180 (6 months old).  

 

The Plp1-CreERT2 (Leone et al., 2003), shiverer, CNP-Cre (Lappe-Siefke et al., 2003), ADF 

KO and Cofilin1fl/fl mice have been described previously (Bellenchi et al., 2007; Flynn et al., 

2012). 

  

To generate OL-specific ADF/Cofilin1 double knock-out animals (AC dKO), CNP-Cre mice 

were cross-bred with Cofilin1fl/fl and then crossed with ADF-/- animals to generate ADF-/-

Cofilin1fl/flCNP1-Cre+/- mice. To generate the inducible ADF/Cofilin1 double knock-out (KO) 

(ADF-/-Cofilin1fl/flPlp1CreERT2), Cofilin1fl/fl animals were crossed with Plp1-CreERT2 before 

breeding with ADF KO mice.   
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2.2.10 Genotyping 

Genomic DNA was extracted using the Invisorb Spin Tissue Mini Kit (STRATEC Molecular 

GmbH, Berlin, Germany). Therefore, a biopsy of the animal’s tail was cut and proceeded 

according to manufacturer’s instructions and with the following modifications.  For a complete 

lysis of mouse tail tissue, material that is difficult to lyse, an overnight lysis was performed. 

Therefore, tissues were digested overnight with 400 μl of Lysis buffer G at 52°C and shaking 

at 350 rpm. For the elimination of RNA, 20 µl of RNAase A (10 mg/ml) were added to the 

mixture. After centrifugation, the supernatant was collected and Binding buffer A was added 

followed by the clean-up of the genomic DNA by two washing steps. To remove final traces of 

ethanol, a longer centrifugation step was performed at 11000 rpm for 6 min followed by DNA 

elution in 100 μl elution buffer. For the determination of the genotypes, the genomic DNA was 

amplified by the (PCR) using GO Taq DNA Polymerase (Promega, Mannheim, Germany) and 

application of the following primers listed in Table 2.5. For genotyping, 0.1 – 1 µg of genomic 

DNA was amplified by PCR using GoTaq DNA polymerase (Promega, Manheim, Germany). 

 

The reaction mix for a 20 µl reaction was prepared as follows:  

10.3 μl ddH2O  

4 μl 5 x Taq Buffer  

1 μl 25 mM MgCl2  

1 μl 10 mM dNTP (diluted 1:5)  

0.5 μl 50 pmol/μl Primer 1 (diluted 1:5)  

0.5 μl 50 pmol/μl Primer 2 (diluted 1:5)  

0.5 μl 50 pmol/μl Primer 3 (diluted 1:5)  

0.2 μl 5u/μl GoTaq DNA polymerase  

1 μl genomic DNA 

 

The PCR was performed using a T3000 Thermocycler Kombi (Biometra) applying the 

programs summarized in Table 2.11. 
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Table 2.11: Polymerase chain reaction performed in this study. 

ADF-KO CNCE GNT CFL1FX PLP-Cre Shiverer 

94°C 2 min 95°C 3 min 94°C 2 min 96°C 3 min 95°C 3 min 

94°C 30 sec 95°C 1 min 94°C 30 sec 96°C 30 sec 56°C 30 sec 

58°C 30 sec 50°C 30 sec 58°C 30 sec 60°C 45 sec 72°C 45 sec 

68°C 40 sec 72°C 90 sec 68°C 40 sec 72°C 1 min 95°C 30 sec 

36 cycles 35 cycles 35 cycles 32 cycles 35 cycles 

68°C 5 min 72°C 3 min 68°C 5 min 72°C 5 min 56°C 1 min 

8°C ∞ 8°C ∞ 8°C ∞ 4°C ∞ 72°C 5 min 

  4°C ∞ 

2.2.11 Agarose gel electrophoresis 

A volume of 10 μl of the PCR product was loaded onto a 1.5% agarose gel that was prepared 

in 1 x TAE Buffer. In general, gels were cast and run in custom-made devices (Feinmechanik 

of the Max Planck Institute of Experimental Medicine, Göttingen). For DNA labelling, 1 x SYBR 

Safe DNA gel stain (10000 x stock, Invitrogen) was added to the agarose TAE mixture prior 

polymerization. Visualization of the PCR products was carried out by UV transillumination 

using an Intas Gel Documentation System (Intas Science Imaging Instruments GmbH, 

Göttingen, Germany). 

2.2.12 Sample preparation of mouse CNS tissues by high-pressure freezing 

For high-resolution analyses of large-caliber axons, the cervical segment of the spinal cord 

and the optic nerves were extracted from the introduced mouse mutants. For morphological 

studies, the main priority focused on the preservation of the native tissue structure. Currently, 

the only opportunity to fix freshly-isolated tissue without introducing significant structural 

changes is cryo-fixation. Therefore, the applied sample preparation technique was high-

pressure freezing (HPF), which is based the transformation of water from a liquid to an 

amorphous state by avoiding the formation of ice crystals. Since the nucleation of ice crystals 

is temperature- and pressure-dependent, the synchronization of pressurization and cooling of 

the sample was realized within in 20 ms.  

After sacrificing the animal by cervical dislocation, the cervical segmental area of the murine 

spinal cord was extracted within 3 min post-dislocation, followed by the removal of the 

meninges. Prior to freezing, the cervical spinal cord samples were immersion fixed for 5 

minutes in 4% PFA and 2,5% GA and directly embedded in 10% gelatin. As soon as the gelatin 

was polymerized, cross-sections of 200 µm thickness were cut using a vibrating blade 

microtome (Leica VT 1200S). As the size of a complete spinal cord cross-section was too 

large, each section was punched to remove the outer margin and to create a uniformly round 
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shape. Sections were loaded onto the sample holder using polyvinylpyrrolidone as space filler 

and immediately sandwiched between two specimen carriers (aluminium specimen carrier, 

cylinder shaped indentation, Ø 2 x 0.1 mm). The freezing was performed using the Leica HPM 

100. After loading the sample, the freezing cycle was started directly and the sample release 

in a Dewar filled with liquid nitrogen occurred automatically. Subsequently, the specimen 

carrier was retrieved from the middle part of the tripartite cartridge and stored in liquid nitrogen 

until further sample processing. The whole procedure from the sacrifice of the animals to the 

freezing took 8 to 10 min per spinal cord. While the gelatin was polymerizing, the optic nerves 

were extracted and high-pressure frozen, too. Since, the optic nerve is generally too long to 

be placed intact into the specimen carrier, each nerve was cut in the middle. The optic chiasm 

was kept and both optic nerves were placed in specimen carriers, which were submerged with 

a droplet of filler, inserted into the sample holder, and frozen immediately. After freezing, the 

lids of the carrier sandwiches were removed and samples were directly transferred into 

perforated cryo-tubes and stored in liquid nitrogen. 

The next steps included automatic freeze substitution (AFS) and the embedding of the samples 

in EPON according to (Mobius et al., 2010), which is described more detailed in the following 

section.  

2.2.13 Sample processing for TEM 

Prior to embedding, frozen tissue samples were handled in liquid nitrogen throughout the 

whole procedure. The dehydration and chemical stabilization of the tissue samples were 

performed on a Leica EM AFS2 unit applying tannic acid and osmium tetroxide (OsO4) diluted 

in glass-filtered acetone over an 8-days period as described in Table 2.12. 
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Table 2.12: Automatic freeze substitution – an overview of the single steps. 

Day Temperature [°C] Solution Duration 

1 -90 
0.1% tannic acid 

in acetone 
100 h 

4 -90 
Wash with 
acetone 

2 h 
(4 x 30 min) 

4 -90 
2% OsO4 
in acetone 

7 h 

4 
-90 to -20 

(5°C/h increment) 
2% OsO4 
in acetone 

14 h 

4 -20 
2% OsO4 
in acetone 

16 h 

5 
-20 to +4 

(10°C/h increment) 
2% OsO4 
in acetone 

2.4 h 

6 +4 
4 x washes with 

acetone 
3 h 

6 +4 to RT acetone 1 h 

6 RT (bench) 
Acetone : Epon 

(50% Epon) 
3 h 

6 RT (bench) 
Acetone :  

Epon  
(70% Epon) 

3 h 

6 RT (bench) 
Acetone :  

Epon  
(90% Epon) 

Over 
night 

7 RT (bench) 100% Epon 4.5 h 

 

Before solutions were exchanged (e.g., fresh glass-filtered acetone), fresh solutions were kept 

within the device to allow their adjustment to the appropriate temperature. The embedding was 

performed in 100% EPON, which is a mixture of the following components listed in Table 2.13. 

Table 2.13: Formulation for 100% EPON. 

Ingredient Amount 

Glycidether 21.4 g  

DDSA 14.4 g 

MNA 11.3 g 

total 47.1 g 

Stir for 10 min at RT 

DMP-30 0.84 ml 

Stir for 20 min at RT 

 

Embedding was finalized by the polymerization of EPON at 60°C for 24 h. Polymerized EPON 

blocks were trimmed (Reichert Ultratrim) to create an even tissue surface and to assess the 

area of choice, followed by the preparation of semi-thin sections (thickness ranged from 0.5 to 
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2 µm) using a Leica Ultracut S ultramicrotome (Leica, Vienna, Austria). In order to localize the 

correct area, semi-thin sections were stained with Methylene blue-Azure ll stain (both mixed in 

a 1:1 ratio) and viewed in a light microscope to determine whether the area of interest of the 

specimen is in the correct position for ultra-thin sectioning. Ultra-thin sections of 50-nm 

thickness were cut using a DIATOME ultra 45° diamond knife and collected by bringing them 

on Formvar-coated copper EM grids (100 mesh hexagonal copper obtained from Plano, 

Wetzlar, Germany). The preparation of Formvar films is described in detail in (Slot & Geuze, 

2007) and (P. J. Peters & Pierson, 2008). Contrasting of air-dried grids was performed by a 

30-min incubation in 4% uranyl acetate in ddH2O followed by 3 x 1 min washes in droplets of 

ddH2O. Then, grids were incubated for 6 min with lead citrate (according to (Reynolds, 1963)) 

in the presence of KOH pastilles near the droplets in order to gather CO2 from the ambient air. 

Finally, the grids were washed again 4 x 1 min in droplets of ddH2O and dried by carefully 

touching them on a filter paper. 

 

The TEM imaging of the samples was done on an EM LEO 912 Omega electron microscope 

(Zeiss, Oberkochen, Germany).  

2.2.14 Imaging 

2.2.14.1 Light microscopy 

To visualize single cells which were fluorescently-labelled, a Leica DMI 6000 epi-fluorescent 

microscope was used. 

The live-imaging experiments were performed using the Zeiss LSM 510 Meta laser scanning 

microscope to obtain higher-resolution images with a decreased background compared to the 

epi-fluorescent microscope. 

2.2.14.2 Stimulation Emission Depletion Microscopy (STED) 

Super-resolution microscopy in collaboration with Dr. Elisa d’Este (MPI for Biophysical 

Chemistry, Department of NanoBiophotonics) was either performed on a two-color Abberior 

STED 775 QUAD Scanning microscope, which is commercially available (Abberior 

Instruments GmbH, Göttingen, Germany) equipped with 561 nm, 594 nm, and 640 nm pulsed 

excitation lasers, a pulsed 775 nm STED laser, and a 100 x oil immersion objective lens, or on 

a home-built STED nanoscope (Gottfert et al., 2013). 

2.2.14.3 Transmission electron microscopy (TEM) 

Ultrathin cross-sections of high-pressure frozen optic nerve and spinal cord tissue samples 

were imaged by transmission electron microscopy on a LEO EM912 omega electron 



2 | Materials and Methods 

44 
 

microscope (Zeiss, Oberkochen, Germany) set on 80 kV. Pictures were taken at 6300 x 

magnification by a 2k CCD camera (TRS, Moorenweis, Germany) by single frame or multi-

image acquisition (MIA) to assess a larger area. For every time point, three to five animals 

were analyzed. On each cross-section, five to fifteen randomly selected areas of 150 µm2 were 

imaged per animal in which 100 to 300 myelinated axon profiles with four or more wraps of 

myelin were assessed.  

2.2.14.4 Image Processing and statistical analysis 

An overview of the applied software is provided in Table 2.8. All image processing was done 

using the free software Fiji-ImageJ. When calculating intensities, the imaging was done at 

exactly the same parameters of illumination, exposure and gain for all compared conditions. 

For the analysis of branching indices of different primary cells, the Sholl analysis tool/plug in 

was applied.  

Statistical significance was determined using GraphPad PRISM 5 software. Unless stated 

otherwise the statistical analysis were performed using the two-tailed Student’s T-test function 

(T-test<0.05:*, <0.01: ** and <0.001: ***). The variation between samples was calculated using 

the standard variation of the mean.   
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3 Results 

3.1 Morphology of cytoplasmic channels in myelin sheaths of the CNS 

This chapter gives insights into the morphology, structure and biogenesis of cytoplasmic 

channels (CPCs) in myelin sheaths of the central nervous system (CNS). From numerous 

electron microscopic studies, the myelin ultrastructure is well-described as a multi-layered 

stack of uniformly thick membrane with a characteristic periodic structure. By application of 

advanced techniques as high-pressure freezing (HPF), followed by automatic freeze 

substitution (AFS), and transmission electron microscopy (TEM), this study describes 

cytoplasmic domains in thick-caliber axons of the CNS.  

3.1.1 Cytoplasmic channel distribution in thin-caliber axon  

The equilibrium of MBP and CNP levels seems to be crucial for the regulation of compaction 

in growing myelin during development, as CNP prevents membrane compaction driven by 

MBP (Fig. 1.9). If this is the case, the expression levels of these two most abundant myelin 

proteins may also have an influence on the distribution of CPCs in CNP-deficient mice and in 

mutants that show a decreased MBP expression. In order to test this hypothesis, we first 

performed HPF/AFS/TEM on optic nerves of CNP-null mutants and heterozygous shiverer 

mice at P10, P14, and P21 to investigate the CPC distribution during development (Fig. 3.1). 

 

Fig. 3.1: Distribution of CPCs in thin-caliber axons of the CNS. (A)  Analysis of  myel inated axons with CPCs 
during development in opt ic nerve of WT, Shiv+/ -,  and CNP-/-  mice, error bars show mean +/ - SEM (n=3-
5; 220-370 axons per animals; *p<0.05, **p<0.01,  ***p<0.001; non -parametric Kruskal -Wall is  test fol lowed 
by t  test) .  Note,  that  the distr ibution of CPCs found in mutant mice is referred to WT contro l animals 
publ ished in (Snaidero et al . ,  2014).  (B, C) High-pressure frozen opt ic nerve in a cross -sect ion v iew of a 
(B) WT animal at P10 and  (C)  CNP-null  mutant , both at  P10. Scale bar = 500nm. CPCs are highlighted 
by black arrowheads and are reduced in CNP -def icient animals.  

 

To analyze the role of CNP and MBP in the biogenesis of cytoplasmic-rich channels in the 

developing myelin sheath, we determined their number in the optic nerve in mice lacking CNP 
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(CNP-null) or MBP (shiverer = heterozygous MBP expression) at post-natal day (P) 10, P14 

and, P21 (Fig. 3.1, A). We used HPF and AFS to better preserve the native myelin structure 

for TEM. With these techniques we were able to visualize cytoplasmic-rich pockets within the 

myelin sheath of the developing optic nerve. All controls and mutants clearly demonstrate the 

transient nature of CPCs during development, and their gradual disappearance upon 

termination of myelination. But the distribution of CPCs among the different mouse mutants is 

different. Interestingly, when CNP-deficient animals were analyzed, we observed markedly 

differences in the total number of myelinic channels compared to other lines examined (Fig. 

3.1, A and C). In CNP-deficient mice, the number of myelinic channels was reduced by ~40%, 

~70%, and ~80% as compared to the wild-type (WT) controls at P10, P14, and P21, 

respectively. In contrast, we observed an increase in the overall number of CPCs in 

heterozygote shiverer mice at P10 and P14 as compared to WT (Fig. 3.1, A and B), which is 

consistent with previous studies in the peripheral nervous system (Gould et al., 1995).  

 

In summary, according to our initial hypothesis, the lack of compaction leads to a higher 

number of cytoplasmic openings upon MBP reduction in heterozygous shiverer mice, whereas 

CNP-null mice show the opposing effect.  

3.1.2 Cytoplasmic channel distribution in myelinated axons of large caliber 

Since the number of myelinic channels is low in the adult optic nerve with exclusively thin-

caliber axons, one important question remained open: how are CPCs organized in thick-caliber 

axons? Thus, we analyzed thick-caliber axons in the spinal cord, which contain thicker myelin 

sheaths than the optic nerve, expecting to find large myelin sheets with more cytoplasmic-rich 

areas. 

 

We extended the ultrastructural analysis of myelin to regions of the CNS with axons of larger 

calibers. The spinal cord is the ideal tissue to assess large-caliber axons with an average 

axonal diameter approaching 1 µm (the average diameter of white matter spinal cord tract is 

0.81 µm, and in the dorsal corticospinal tract, 0.99 µm, (Ong & Wehrli, 2010)). In order to 

perform this analysis on such tissue, HPF/AFS is necessary to successfully preserve the native 

ultrastructure of the channels. Due to technical limitations, it has not previously been possible 

so far to cryo-fix large axons as they are found in the spinal cord. Only small-caliber axons 

were high-pressure frozen, because optic nerves are ideally suited for this advanced technique 

(Mobius et al., 2010; Mobius, Nave, & Werner, 2016). 
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In this thesis, we were able to develop a protocol (described in detail in Chapter 2.2.12) for the 

preparation of murine spinal cord tissue samples. To systematically study CPCs in axons of 

large caliber, we performed HPF/AFS on murine nerves of the spinal cord at P60, and indeed, 

found impressive and large CPCs in the myelin sheaths of thick-caliber axons (Fig. 3.2, A, B, 

and D).  

 

In general, the myelin sheaths of the CNS and of the PNS represent a defined thickness that 

strongly depends on the axonal diameter. The ratio between the inner and the outer diameter 

of the myelin sheath is defined by the so called g-ratio. In a normal condition, the g-ratio varies 

between 0.6 and 0.7 to ensure an optimal speed of saltatory signal conduction (Chomiak & 

Hu, 2009; Friede & Miyagishi, 1972; Rushton, 1951). 

 

In this study, we compare myelinated axons with respect to the thickness of the surrounding 

membrane. To allow an adequate estimation, the thickness of compact myelin is indicated in 

nanometer (nm) and is furthermore grouped into 6 different categories representing the 

distribution from thin (<100 nm) to thick (>600 nm) myelin. Table 3.1 gives an overview of the 

correlation between myelin thickness and number of wraps wound around an axon. For the 

calculation of the myelin thickness distribution, the unique morphological features of compact 

myelin wrapped around an axon have to be considered. The MDL represents the closely 

condensed cytoplasmic myelin membranes, whereas the IPL consists of the tightly apposed 

outer membranes. The compaction between the membranes in each of these layers is tight 

and results in a periodicity of about 12 nm (Aggarwal, Yurlova, & Simons, 2011). By dividing 

the myelin thickness measured in nm by 12, we calculate the myelin distribution given in 

“amount of wraps”. 

 

Table 3.1: Correlation of myelin thickness distribution referred to the Amount of wraps. 

Thickness in nm <100 100-200 200-300 300-400 400-600 >600 

Amount of wraps <8 8-16 16-24 24-32 32-58 >58 

 

The analysis of the myelin thickness distribution in WT mice states that approximately 12% of 

all myelinated fibers are thicker than 600 nm, or in other words present myelin sheaths with 

more than 58 wraps (Fig. 3.2, C, and Table 3.1). 

 

In contrast to thin-caliber axons of the optic nerve, where CPCs show a transient characteristic 

and disappear when development is completed, they remain open in thick-caliber axons in 
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adult mice (P60) when myelination is already terminated. The abundance of the cytoplasmic 

domains was quantified from these TEM images and correlated to the thickness of the myelin 

sheaths (Fig. 3.2, D). Due to the application of HPF and establishment of a new cryo-fixation 

protocol for large-caliber axons, the presence of areas filled with cytoplasm within compact 

myelin sheaths could be seen.  

 

Fig. 3.2: Cytoplasmic channels in large-caliber axons remain open even in adult mice. (A+B)  CPCs with in thick-
cal iber  axons preserved by HPF and AFS and visual ized by TEM in the spinal  cord of adul t wi ldtype mice 
when myel inat ion is terminated (P60); scale bar  = 500 nm. (C)  Analysis of axons with myel inated f ibers 
and representation of  the myel in th ickness distr ibut ion: myelin thickness was measured in nm and 
organized in 6 di fferent s ize ranges. (D)  Distr ibution of the CPCs within compact myelin sheaths in ear ly 
adult  spinal cord of WT mice: with increasing myel in thick ness the number of CPCs also increases. (n = 
3, 390 axons per animal, error bars show mean ± SD).  
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3.1.3 CNP & MBP – drive the biogenesis of myelinic channels 

To test whether CNP and MBP regulate the formation of cytoplasmic domains, we took 

advantage of mouse mutants that have an altered expression level of CNP or MBP, 

respectively, and performed HPF followed by AFS on cervical segments of the spinal cord 

(Fig. 3.3). The analysis presented in Fig. 3.3 (panel C) compares the distribution of CPCs from 

thin- (<100 nm) to thick-caliber (>600 nm) axons. In CNP-deficient mice, we observed a 

significant reduction of the overall number of myelinic channels in large-caliber axons with thick 

myelin sheaths (>300 nm) as compared to the wild-type controls at P60. Upon loss of CNP, 

CPCs in large-caliber axons partially close (Fig. 3.3, C), whereas the reduced expression level 

of MBP by 50% led to an increase of the number of CPCs throughout compact myelin sheaths 

(Fig. 3.3, A).  

 

The analysis of myelinated axons according to the myelin thickness distribution (Fig. 3.3, D) 

revealed an overall similar distribution, which suggests on the one hand that myelinated fibers 

of the same cervical region were assessed. On the other hand, it shows that a loss of CNP did 

not alter the myelin thickness of particularly large-caliber axons since in CNP-deficient animals 

approximately 15% of all myelinated fibers are thicker than 600 nm. Remarkable is the 

reduction of axons with myelin sheaths thicker than 600 nm in the MBP mutants.  

 

Whereas in WT control animals approx. 58% of fibers thicker than 600 nm bear CPCs, less 

than 20% of myelinated axons of the same category in CNP-null animals contain cytoplasmic 

openings. The opposite observation that almost 80% of large-caliber axons in heterozygous 

shiverer mutants contain CPCs, indicates that the abundance of CNP and MBP influences the 

appearance of cytoplasmic domains.  
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Fig.3.3: CPCs in large-caliber axons of adult mice. (A + B)  TEM micrographs of myelinated f ibers of the spinal 
cord of heterozygous shiverer  (A)  and CNP-defic ient (B)  animals at P60; scale bar = 500 nm. (C) Analysis 
of compact myelin with the number of CPCs referenced to the membrane th ickness.  Compared to the WT  
contro ls, CNP-def ic ient  mice present a reduced number of CPCs. Upon loss of compact ion, more CPCs 
occur in compact myelin sheaths of SHIV+/ - mice.  (D)  Comparison of the overal l  myel in thickness of al l  
myel inated f ibers in WT, CNP-/-, and SHIV+/- animals shows a s imi lar and comparable d istr ibu tion. (n = 
3-5, 220-370 axons per animal in average), *p < 0.05; **p < 0.01;  ***p < 0.001, and non -parametr ic 
Kruskal-Wall is  test  fol lowed by t - test.  Here,  KO data are compared to WT control  animals presented in  
Fig. 3.2.  

 

3.1.4 Elucidation of the molecular structure of CPCs applying a simplified system 

To further assess the participation of CNP and MBP in the biogenesis and regulation of CPCs, 

we used a minimal component biomimetic membrane system to reconstitute the formation of 

CPCs by taking advantage of our recently established in vitro compaction assay in order to 

characterize the antagonistic interaction of CNP and MBP (Yurlova et al., 2011).  
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Fig. 3.4: Reconstitution of the ultrastructure of CPCs – the principle of a biomimetic experiment. (A)  Schematic view 
of main experimental steps of the GUV-bursting assay. (B)  I l lustrat ion of  membrane-anchored proteins 
CNP (R3-CNP) and GFP (R3-GFP) respectively.  (C)  Supported l ip id bi layers (SLBs) are used to mimic 
the inner leaflet composit ion of myelin ( 44% cholesterol, 27% PE, 2% PIP 2 ,  11.5% PC, 12.5% PS, and 
3% SM). Recombinant R3-GFP (panel C1 + 2)  or recombinant R3-CNPase (panel C3) were added onto 
the SLBs fo l lowed by the addit ion of 7 µM MBP (14 -kDa isoform, panel C1 ).  In a l ive- imaging experimental  
set-up, GUVs composed of PC:PS in 1:2 molar rat io and f luorescent ly labelled with DHPE -Texas-Red (0.1 
mole%) were added. Scale bars represent 10 µm.  

 

For the realization of this assay, which is illustrated in Fig. 3.4 we first cloned cDNA constructs 

of MBP, CNP, and GFP followed by bacterial overexpression and purification of the 

recombinant proteins (see Chapter 2.2.1 and 2.2.2). Since CNP is a lipid-anchored membrane 

protein, we designed a recombinant variant of CNP with a small membrane-anchoring R3 basic 

stretch attached to its C-terminus to link it to the negatively-charged SLBs (Fig. 3.4, B). GFP 

containing the same tag for membrane binding was used as a control. Second, we prepared 

small unilamellar vesicles (SUVs) in order to mimic the lipid composition of the inner leaflet of 

myelin (Inouye & Kirschner, 1988) using artificial lipids with 44 mole% cholesterol, 27 mole% 

PE, 2 mole% PIP2, 11.5 mole% PC, 12.5 mole% PS, and 3 mole% SM. For the visualization 

of SUVs by light microscopy, we added 0.1% of the green fluorescent dye TopFluor® Lyso 

phosphatidylcholine to the lipid mixture during the preparation process. In order to model a 

membrane bilayer, spreading of the SUVs was induced by the formation of supported lipid 

bilayers (SLBs). The, SUVs were added onto detergent-treated and pre-cleaned glass 

coverslips (Ø 18 mm), which fitted into live-imaging chambers. Spreading of the SUVs was 

allowed by incubation on hydrated glass coverslips. Their exerted tension enforced the 

formation of SLBs (Richter, Berat, & Brisson, 2006).  
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Next, we incubated the SLBs with the applied recombinant protein for 45 min followed by 

intensive washing (Fig. 3.4, A). The order of protein incorporation depended on individual 

experimental requirements. The experiment was completed by addition of giant unilamellar 

vesicles (GUVs) with 66 mole% PC, 33 mole% PS, and 1 mole% DHPE-Texas Red for 

visualization on top of SLBs to sandwich the incorporated protein(s). In this system, MBP is 

sandwiched between a SLB and GUVs, whereby its adhesive and self-interacting properties 

induce the spreading of GUVs onto the SLB. Generally, compaction was mimicked 

successfully when GUVs immediately deformed and spread onto the membrane, which was 

the case in the presence of 7 µM MBP (Fig. 3.4, C1). No compaction was induced in the 

absence of MBP, in the presence of either 7 µM R3-GFP (Fig. 3.4, C2) or 7 µM R3-CNP (Fig. 

3.4, C3) when the spreading was blocked. 

3.1.5 Prevention of MBP-mediated compaction by CNP in vitro – a biomimetic assay 

In order to imitate membrane compaction, we first needed to find the critical concentration of 

MBP, which is required to allow the spreading of the vesicles on to the SLBs. Therefore, we 

created a titration curve and defined the bursting behavior of the GUVs with different MBP 

concentrations. In the presence of the control protein GFP (concentration = 7 µM) we tested 

several MBP concentrations as summarized in Fig. 3.5 (panel E), and found that 0.4 µM MBP 

was necessary to initiate the bursting of the GUVs onto the SLBs. Bursting of the vesicles was 

not observed when the MBP concentration was reduced down to 0.2 µM (Fig. 3.5, A and E). 

 

Next, we tested whether recombinant CNP could prevent the spreading of GUVs onto the SLBs 

induced by MBP. As the vesicles deformed and spread on the SLBs in the presence of 7 µM 

GFP, we performed the same experiment in the presence of 7 µM CNP and indeed saw that 

the bursting kinetics were, indeed, slowed down (Fig. 3.5, D and F). After 30 min of live-

imaging, only 30% of the added GUVs had burst.  
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Fig. 3.5: Concentration-depended compaction driven by MBP. MBP induces deformation of giant unilamel lar 
vesicles (GUVs) fol lowed by their  spreading onto the supported l ip id bi layers (SLBs). (A)  No GUV 
spreading was observed when the MBP concentrat ion was decreased down to 0.2 µM. (B+C)  7 µM GFP 
+ 0.7 or 0.4 µM MBP induced the spreading of GUVs and mimic the t ight compa ction between the 2 
membranes; after 30 min 100% of a l l  added GUVs are burst . (D)  Bursting was prevented: GUVs only 
part ia l ly spread onto SLBs in the presence of 7 µM CNP + 0.4 µM MBP. (A -D) scale bar = 10 µm. (E)  
The t i trat ion of d if ferent molar rat ios of  MBP highlight  the concentrat ion -dependent compact ion of the 
GUVs. (F)  Analysis of GUV spreading in the presence of 0.4 µM MBP. Reduct ion of the MBP concentrat ion  
down to 0.4 µM in the presence of 7 µM GFP st i l l  resulted in a deformat ion and spreading of the vesic les 
onto the membrane whi le th is compact ion is prevented in th e presence of  7 µM CNP concentrat ion of  R3 -
GFP or R3-CNP = 7 µM. The bars represent the mean ± SD . 
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In conclusion, with this assay we found that CNP, but not GFP, was able to antagonize MBP-

mediated spreading of the GUVs onto the SLBs. Thus, using this in vitro compaction assay, 

we have reconstituted the antagonistic role of CNP and MBP, and obtained more evidence 

that the interaction of MBP and CNP may be important for regulating the formation of CPCs. 

3.1.6 Cultured primary oligodendrocytes as a model to understand the organization 

of CPCs  

To further investigate the mechanisms involved in the generation of CPCs, we used axon-free 

cultures of primary OLs as a model system. The ability of OPCs to differentiate into OLs is not 

dependent on the presence of neurons (Temple & Raff, 1986). We chose this other in vitro 

approach because it is a well-established system of OL biogenesis, and most importantly easy 

to assess (Aggarwal et al., 2013). These cells demonstrate many in vivo characteristics as 

they generate myelin-like membranes and thereby satisfy many important requirements 

necessary to study the formation of compact myelin (Aggarwal, Yurlova, & Simons, 2011; 

Aggarwal, Yurlova, Snaidero, et al., 2011; Baumann & Pham-Dinh, 2001).  

 

OPCs were isolated from brains of newborn P1 mice. After isolation from the mixed glial culture 

by removal from the astrocyte layer, OPCs were plated in differentiation (“Super Sato”) medium 

and allowed to grow until DIV5 (days in vitro). In fully-differentiated and mature cells, the 

generation of two main polarized domains can be observed. Large, flat, and 2-dimensional 

compact membrane sheets need to be distinguished from tubular, channel-like, non-compact 

processes. The membrane sheets resemble in vivo compact myelin in composition with the 

main components MBP and PLP. Proteins such as tubulin, actin, MAG, and CNP are excluded 

from this compact domain and are exclusively restricted to non-compact myelin (Fig. 3.6, A). 

 

During the growth of the myelin sheath (in cell culture and in vivo) a channel-like system within 

areas of non-compacted myelin membrane is relatively abundant, but once growth is 

completed, the sheaths are filled and compacted with MBP (Fig. 3.6, red panel). 

 

In cell cultures, we observed that the leading edge is localized at the circumference of the cell 

connected by a channel-like system of non-compacted membrane that run through the sheets 

and connect with the cell body (Fig. 3.6, A and B, cyan and green panel). As in vivo, we 

observe that the targeting and addition of membrane by vesicular transport to the leading edge 

is separated from those areas where MBP is localized. 
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Fig. 3.6: Primary cultures of differentiated oligodendrocytes at DIV5 – formation of small and large processes. (A) 
Model system of cultured OLs at DIV5 when the cells are fu l ly d if fe rent iated.  Two different  domains can 
be dist inguished. The compact myelin highl ighted by a labell ing of MBP in red and non -compact myelin 
highlighted by a label l ing of  alpha - tubulin (cyan) and act in (green);  scale bar  = 10 µm. (B)  Binary picture 
of the cel ls  represented in panel  A.  In red: accentuation of compact areas,  which are devoid of tubulin 
(cyan) and actin (green); scale = 10 µm.  

 

Analogous to the characterization of CPCs in vivo, this chapter presents structural and 

morphological attributes of CPCs in OLs maintained in vitro to further explain the architecture 

of CPCs. Due to the formation of multiple cytoplasmic protrusions originating from the spherical 

cell body, we used cultures of primary cells to assess the distribution of those cytoplasmic 

processes in vitro.  

3.1.7 Distribution of cytoplasmic channels in vitro – branching assay  

First, we determined a hierarchy of the large and small cytoplasmic processes of fully-

differentiated cells, as visualized in Fig. 3.7. In order to characterize multipolar branched 

processes of mature OLs, we labelled their main proteins F-actin and tubulin (Fig. 3.7, A). 

 

Whereas tubulin is distributed in major and large cytoplasmic branches (hierarchic categories 

l and ll), F-actin stabilizes CPCs only in distal regions within compact sheets, including 

channels of category lll, which are located between channels of category l and ll (Fig. 3.7, B). 

Because it has been suggested that CNP is a microtubule-associated protein that connects 

tubulin to membranes and is involved in cytoplasmic microtubule distribution, we assumed that 

OLs which lack CNP would present a reduced number of processes (Bifulco et al., 2002).  
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Fig. 3.7: Definition of CPC distribution in primary cells of cultured oligodendrocytes. (A)  Close-up of a ful ly  
dif ferent iated WT OL 5 day after the shake (DIV5):  green = Actin -Phalloid in,  red = MBP, cyan = α - tubul in, 
scale = 10 µm. (B)  Binary picture of panel A to dist inguish between compact (b lack)  and non -compact 
(whi te) domains.  MBP signal was subtracted from the actin and tubulin signals to h ighl ight the di fferent 
arboreal branches of cytoplasmic processes, scale  = 10 µm.  

 

To test whether the distribution of CPCs in vitro reflects our in vivo observations, we first 

analyzed the distribution of category l and ll channels, followed by the investigation of the distal 

(category lll) ones (section 3.2.3).  

 

Fig. 3.8: Primary cultures of differentiated oligodendrocytes (DIV5). (A)  Formation of a channel - l ike system and 
outgrowth of major  branches, represented by α - tubulin.  Compar ison of the indiv idual branching indices 
of WT, CNP-/-,  and SHIV+/-  OLs in culture. Note that  the ful ly -d ifferent iated CNP-deficient cell  at  DIV5 
is smaller  and presents fewer processes compared to WT control and SHIV+/ -  OLs. (B)  Sholl  analysis 
and measurement of the branching index of the large processes by drawing concentr ic shel ls around the 
cel l center  and counting how often a branch interferes wi th a concentr ic shell .  (C)  CNP-def icient  cells 
show a reduced branching index, whereas cel ls extracted from heterozygous  animals are signif icantly 
more ramif ied (n  = 3 per genotype, per animal > 30 cel ls were analyzed, error bars represent ± SD, ** p 
< 0.01; ***p < 0.001, and t - test).   
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Next, we created binary images of the tubulin signal of DIV5 OLs generated from wild-type, 

CNP-KO, and heterozygous shiverer mice (Fig. 3.8, A) and analyzed their individual branching 

indices (= mean of intersections). The Sholl technique (Sholl, 1953) allowed us to define a 

series of concentric shells around the focus of the cell. Due to their circular shape, OLs are 

perfectly suitable for this quantification. Initially, the determination of the center of the cell is 

necessary to disregard the cell body, followed by counting how many times a process 

interfered with a defined radius (Fig. 3.8, B).  

 

Our data demonstrate that the model system of cultured primary OLs resembles the same 

features obtained in our in vivo experiments. First, primary OLs elaborate and maintain multiple 

processes separated from compact membrane sheets in a 2-dimensional plane. Finally, the 

significant reduction of processes observed in CNP-deficient cells, compared to the increase 

of branches in cells from heterozygous shiverer mice supports the channel distribution 

observed in our TEM study (Fig. 3.8, C). Compared to the WT control situation, OLs from 

heterozygous shiverer mutant and CNP-null mice produce sheets with an abnormal distribution 

of cytoplasmic processes.  

3.2 Importance of protein-protein interactions and the cytoskeleton for the 

stability of CPCs 

3.2.1 Characterization of the interaction of Actin and CNP 

In order to unravel whether the specific interaction of CNP and actin might provide structural 

support, we demonstrate unknown features of this important protein-protein interaction. Our 

collaborators Dr. Matti Myllykoski and Prof. Dr. Petri Kursula (University of Bergen, Norway) 

carried out a series of experiments using the following recombinant constructs of mouse CNP 

and actin isolated from pig muscle, to characterize the interaction in vitro: 

 

Full-length CNP: fl-CNP 

CNP N-terminal domain: CNP-N 

CNP catalytic domain: CNPcat 

CNP catalytic domain including the C-terminal tail: CNPcat+C 

Inactive double point mutant of CNPcat: CNPcat-2H 

 

Full-length CNP, and both the N- and C-terminal domains, were tested separately. Because 

the N-terminal domain can be purified only at very low yields, it was only used for the co-

sedimentation assay. Initially, classical F-actin co-sedimentation experiments were carried out 
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(Fig. 3.9, A – C). Recombinant CNP behaved like a typical actin-binding protein, co-

sedimenting efficiently with F-actin (Fig. 3.9, A). In a co-sedimentation experiment and titration 

of fl-CNP by applying various concentrations (0.5 up to 50 µM) it could be furthermore shown 

that the maximum amount of fl-CNP in the pellet equaled that of actin. Interestingly, a 

catalytically-dead mutant CNPcat-2H of the catalytic domain also co-sedimented with F-actin, 

showing that CNP activity is not needed for the interaction (data not shown). In addition to full-

length CNP, also the N- and C-terminal domains separately bound F-actin (Fig. 3.9, B), and 

the presence of the extreme C-terminal tail in the C-terminal domain did not affect the behavior.  

 

Previously, it has been shown that calmodulin (CaM) interacts with CNP as well (Myllykoski et 

al., 2012). Thus, purified CNP bound to the sensor protein CaM by the N-terminal domain of 

CNP in a calcium-dependent manner. Here, inclusion of excess CaM prevented full-length 

CNP from co-sedimentation with F-actin. Importantly, the amount of sedimented F-actin did 

not appear to be affected by either CNP or CaM. As the CaM-binding site of CNP is in the N-

terminal domain, we also tested the effect of CaM for that construct. Indeed, CaM inhibited the 

co-sedimentation of the N-terminal domain with F-actin (Fig. 3.9, C), whereas the control 

proteins S100beta – another EF-hand protein – had no effect (data not shown).  

 

Fig. 3.9: Analysis of the interaction of CNP and actin in vitro. The posit ion of  act in is indicated by the red 
arrowhead. Full - length CNP = f l -CNP; CNP N-terminal domain = CNP-N; CNP catalyt ic domain = CNPcat; 
CNPase catalyt ic domain including the C -terminal  ta i l  = CNPcat+C; inactive double point  mutant  of 
CNPcat = CNPcat-2H. S = supernatant; P = pellet. (A)  F -act in co-sedimentation assay with fu l l - length 
CNP and two constructs of  the catalyt ic domain. N ote that  fu l l - length CNP and act in are di ff icul t to 
separate on commercia l SDS-PAGE gels.  (B)  Co-sedimentat ion of  the N-terminal domain and a mixture 
of the N- and C-terminal domains. Both domains appear to bind independent ly. (C)  Effect of CaM on co -
sedimentation of ful l - length CNP: High CaM concentrations remove CNP from the N -terminus, especial ly 
after a longer incubat ion.  Note: these data were generated by Dr. Matt i  Myllykoski and Prof. Dr. Petr i  
Kursula (University of Bergen, Norway) and taken with the ir permission.  

 

Next, the bundling activity of full-length CNP (fl-CNP) and the catalytic domain (CNPcat) was 

tested using low-speed centrifugation (Fig. 3.10, A). Both constructs showed clear bundling 

activity, and the effect was already clear at 1 μM CNP concentration. The same effect was, 

again, seen for the catalytically-inactive mutant (CNPcat-2H). As CNP binds to microfilaments 

and induces their bundling, the effect of CNP on actin polymerization was further tested. The 

results revealed that although the polymerization kinetics were not drastically altered, there 
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was a small effect on the polymerization rate, especially for full-length CNP (Fig. 3.10, B). 

Active and inactive variants of the catalytic domain again behaved identically.  

The protein-protein interaction of CNP and F-actin was furthermore verified by the visualization 

of F-actin bundles and immunogold-labelled CNP. The electron micrograph showed actin 

bundles decorated with CNP (Fig. 3.10, C).  

 

To further map the interaction stoichiometry and potential binding surfaces, a covalent 

crosslinking assay of the catalytic domain and full-length CNP and F-actin was carried out, 

followed by mass-spectrometric peptide mapping to probe for protein-protein interactions. 

Several bands from electrophoresis were then processed for tryptic peptide mapping. When 

crosslinking reactions contained both actin and either of the two CNP variants, a set of higher 

molecular mass species emerged on the SDS polyacrylamide gel. In addition to a 1:1 species, 

higher oligomeric states were also resolved, because the sample with the catalytic domain of 

CNP bound to actin represented crosslinked complexes in a 2:1 ratio of actin to CNP.  
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Fig. 3.10: Characterization of particular CNP-Actin interaction sites. (A)  F-actin bundl ing assay:  The catalyt ic 
domain (CNPcat) induces bundl ing already at 1 μM (left ) .  Both, the inact ive mutant (CNPcat -2H) and ful l -
length CNP (f l -CNP) also bundle f i laments at 1 μM. (B)  Act in polymer ization wi th and without CNP: 
Especial ly ful l - length CNP induces a s l ight increase in polymerizat ion rate. (C)  Electron micrograph of 
the direct interaction of immunogold -labelled CNP (coupled with immunogold/monoclonal ant i -His) and F-
actin bundles, magnif ication = 2300 x. (D)  Potential b inding si tes: Mapping of peptides not detected in 
the crosslinked samples on the surface of F -actin ( left)  and CNP (r ight). In F -actin (model corresponding 
to (von der Ecken et al . ,  2015)), the two pept ides l ie c lose to each other; one of the peptides corresponds 
to the D- loop (b lue) . In CNP, the two peptides are in the N -terminal PNK domain,  and one of them (orange) 
corresponds to the proposed CaM-binding site. The shown model is  that of ful l - length CNP based on 
smal l-angle X-ray scattering (Myllykoski et al. ,  2013).  Note:  these data were generated by Dr.  Matt i  
Myllykoski  and Prof . Dr.  Petr i Kursula (Universi ty of  Bergen, Norway) and are presented here wi th their 
permission.   

 

All picked hybrids contained both actin and CNP as shown by MALDI-TOF. The 

oligomerization pattern was the same between full-length CNP and the catalytic domain 

represented by the number of extra bands and spacing between molecular masses, indicating 

that the C-terminal domain alone can cause the oligomeric pattern. The N-terminal domain had 

a minor effect shown by increased band intensities.  

 

The analysis by mass spectrometry displayed that the binding of actin seems to occur near the 

D-loop in subdomain 2 as well as the long loop of subdomain 3, which are actually rather close 

to each other in a filament between two neighboring actin monomers (Fig. 3.10, D, left panel). 

In CNP, peptides were missing from the N-terminal PNK-like domain, but obviously the C-

terminal domain alone is able to interact with actin (Fig. 3.10, D, right panel). For the first time, 

these distinct sites characterizing the particular protein-protein interaction of CNP and F-actin 

could be described, but the relative orientations of the two proteins remain to be determined.  
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3.2.2 F-actin is an important structural component of CPCs 

Above (Section 3.1), we showed that CNP alone is already able to prevent membrane 

compaction, which is driven by MBP. Therefore, we incorporated R3-CNP into the SLBs by 

incubation for 1 h at room temperature followed by intense washing. To test the interaction 

behavior of F-actin, we added actin (purified non-skeletal actin was purchased from 

Cytoskeleton Inc. (Distributor: BIOMOL GmbH, Hamburg, Germany) to a final concentration of 

5 µM in F-Buffer, and allowed its polymerization and network formation with CNP on the SLBs 

(overnight at RT). Next day, we removed unbound protein by intense washing and added MBP. 

After 1 h of incubation, the remaining proteins were removed and live-imaging was carried out 

immediately. In order to avoid the depolymerization of F-actin, F-Buffer was used throughout 

the course of this experiment.  

 

First, we determined which MBP concentration is sufficient to introduce membrane compaction 

in the presence of CNP. We found that an increase of MBP up to 0.7 µM and 7 µM CNP is 

suitable to allow the spreading of the GUVs onto the SLBs (Fig. 3.11, A and D). Importantly, 

membrane compaction was completely blocked when F-actin was included (Fig. 3.11, B and 

D). In the presence of F-actin, not a single vesicle burst during the course of the experiment 

(Fig. 3.11, B). Note that this observation occurred at a concentration (0.7 µM MBP), at which 

CNP alone did not exert any antagonistic force (compare with Fig. 3.5 above).  

 

F-actin by itself cannot bind to the lipid bilayer (Fig. 3.11, C and D), as the washing ensured 

the complete removal of the protein from the membrane. Since MBP was able to bind 

subsequently, the attachment and bursting of the GUVs was allowed (Fig. 3.11, C and D) and 

the bursting kinetics were accelerated.  
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Fig. 3.11: Reconstitution of the molecular structure of cytoplasmic composition in a biomimetic assay. (A)  0.7 µM 
MBP in the presence of  7 µM R3-CNP were suff ic ient  to induce the deformat ion and spreading of  the 
vesicles onto the SLBs (scale bar = 10 µM). (B)  GUV bursting assay in the presence of  5 µM F-act in:  
Whi le R3-CNP (7 µM) alone is already preventing membrane compaction driven by MBP (0.4 µM),  this 
effect can be more effectively inhibited by f i lamentous actin (F -act in) in the presence of 0.7 µM MBP 
(scale bar = 10 µM). (C)  F-actin alone was unable to b ind to the membrane. Therefore, incorporat ion of  
0.7 µM MBP after  the removal of F -actin by washing led to a deformat ion and spreading of the GUVs 
(scale bar = 10 µM).  (D)  Analysis of the GUV spreading kinetics:  MBP (0.7 µM) in the presence of  R3 -
CNP (7 µM) induced the spreading of the vesicles upon attachment ( b lue l ine). Compact ion was 
completely inhib ited when F -actin (5 µM) was added ( red l ine).  F-act in together  with MBP in absence of 
R3-CNP al lowed the bursting of GUVs onto the SLBs ( grey l ine) and showed a s l ight ly faster bursting 
kinetics compared to R3-CNP + MBP (blue l ine) . The bars represent the mean ± SD . 

 

In summary, we found that F-actin alone was not able to stop MBP-mediated spreading of the 

GUVs (Fig. 3.11, C and D). However, when F-actin was incorporated onto the SLBs, which 

were pre-coated with CNP, the deformation and spreading of the GUVs were fully blocked. In 

conclusion, this in vitro experiment nicely resembles the participation of the key proteins CNP 
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and F-actin, which act synergistically in blocking MBP-mediated membrane spreading (Fig. 

3.11, B and D). 

3.2.3 Distribution of cytoplasmic channels in vitro – from sub-domains to structure 

Taking advantage of primary cultures of OLs, we were able to define morphological differences 

by comparing the main and primary cytoplasmic processes of WT, CNP-/-, and SHIV+/- OLs. To 

gain deeper insights in the molecular composition of CPCs, we analyzed the effects of drugs 

perturbing the potential structural components within CPCs in vitro. We tested whether the 

pharmacological manipulation of tubulin and F-actin induces an expansion of compacted 

myelin membrane at the expense of the non-compacted regions due to the collapse of the 

CPCs. Disruption of F-actin was induced by the actin-depolymerization drugs latrunculin and 

cytochalasin B. Nocodazole was applied as a microtubule-depolymerizing drug. Latrunculin is 

a cell-permeable marine toxin that disrupts microfilament organization in cultured cells by the 

formation of a 1:1 complex with monomeric G-actin. Cytochalasin B is also cell-permeable and 

inhibits actin filament function by blocking the formation of contractile microfilaments. 

Nocodazole inhibits mitosis by promoting tubulin depolymerization. 

 

We applied these compounds separately on cultured OLs at DIV5 from WT cells in order to 

determine whether the cortical actin cytoskeleton or microtubules control the stabilization of 

myelinic channels. Cells were treated for 8 h, washed and fixed subsequently. To visualize 

compact and non-compact domains, MBP and F-actin were labelled. The analysis of the MBP 

distribution of each cell was performed as follows:  

 

1. Creation of single binary pictures of the overall MBP and actin signal, respectively. 

2. For consideration of the F-actin distribution, MBP signal was subtracted from the total actin 

signal. 

3. Measurement of the area that is covered by MBP: only the sites between major and 

intermediate cytoplasmic processes were taken into consideration (Fig. 3.12, B). 

 

Upon disruption of α-tubulin by Nocodazole, the distribution of MBP was not significantly 

affected (Fig. 3.12, A and C). Since microtubules stabilize primary and intermediate 

cytoplasmic branches, the MBP pattern was not altered and the fine cytoplasmic processes of 

category lll remained open. 
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Fig. 3.12: Manipulation of cytoplasmic channels in vitro. (A) Comparison of  OLs prepared from WT and AC dKO 
mice. Addit ional ly, WT cells were treated with Nocodazole (100 nm), Latrunculin (1 µM), and Cytochalasin 
(10 µg/µl) for 8 h. I f  F -Actin is required to keep t he channels in the distal/ tert iary area open, membrane 
compact ion wi l l  be impaired. (B) For the analysis, only the secondary and tert iary branches were taken 
into consideration. Therefore, the area covered by MBP was measured (h ighlighted in l ight blue). (C) 
Impairment of  microtubules,  which are exclusively present in pr imary branches, does not  change the MBP 
organizat ion. Perturbing F -actin using Latruncul in or Cytochalasin,  respectively, induce s an expansion of 
compacted myelin membrane. Act in -stabi l izat ion generated by the knock-out of the actin-depolymerizing 
factors ADF/Cof i l in1 results in a smal ler  area covered by MBP, and an increased accumulation of  F -actin 
in the f ine processes (error  bars represent the ± S.D.,  n = 3, per exper iment ~25 cel ls  were analyzed 
whi le 4 regions were assessed, p*** < 0.001, and t - test) .  (D)  The organizat ion of subcort ical  cytoskeleton 
in dif ferentiated OLs: representative STED image of OLs imaged with STED nanoscopy at 5 DIV. MBP 
(cyan), βII spectr in (red), and phal lo idin ( green) co-sta in ing at  DIV5.  ( l ,  l l ,  l l l )  Close -ups of  the indicated 
areas indicated showing the al ternating pattern of  F -actin and βII  spectr in Close -up showed a str ip - l ike 
pattern of actin and beta l l  spectr in. Both proteins –  located in noncompact areas –  form a network 
resul t ing in a periodicity of  ~200 nm (according to  (D'Este et a l. ,  2016) . Scale bars as indicated.  
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Compared to the untreated WT control, we observed the closure of the channels by a 

significant increase of the area covered by MBP when the actin cytoskeleton was manipulated 

with latrunculin A or cytochalasin D (Fig. 3.12, A and C). We found that both treatments led to 

the spreading of MBP into the cytoplasmic-rich channels, indicating that F-actin blocks 

membrane compaction as previously suggested. The visual impression presents that the 

patchy distribution of MBP disappeared in cells that were treated with latrunculin (Fig. 3.12, A, 

panel 3) or cytochalasin B (Fig. 3.12, A, panel 4).  

 

The effects of the major actin-depolymerizing factors ADF and Cofilin1 on the membrane 

structure were also analyzed in vitro. Although their role in the biogenesis of myelin has been 

proven (Nawaz et al., 2015; Zuchero et al., 2015), we asked whether the manipulation of the 

actin-depolymerization factors ADF and Cofilin1 would also influence the appearance of CPCs 

in large-caliber axons. To test this hypothesis, we used primary cells generated from ADF-

Cofilin1 double knock-out mice (AC dKO). In those animals, the proteins were particularly 

ablated in OLs (CNP1-Cre+/- Cofilin1fl/fl ADF-/-). Since the single knock-out of ADF had no effect 

on the actin distribution and morphology of those cells and no phenotype, we used CNP1-

Cre+/- Cofilin1fl/wt ADF-/- or CNP1-Cre+/+ Cofilin1fl/wt ADF-/- as control cells generated from 

littermates. Applying the same analysis (Fig. 3.12, B), we found that the stabilization of actin 

accompanied by elevated levels of F-actin results in smaller MBP patches and, therefore, in a 

reduced area occupied by MBP (Fig. 3.12, A and C) representing membrane sheets with more 

F-actin-rich channels.  

 

The application of super-resolution microscopy by applying Stimulated Emission Depletion 

(STED) microscopy, allowed the visualization of the subcortical organization of cytoskeletal 

proteins in the fine processes of fully-differentiated glial cells (Fig. 3.12, D). The co-staining of 

βll spectrin, phalloidin, and MBP highlighted that βll spectrin together with F-actin are present 

within cytoplasmic processes and excluded from MBP-positive sheets by forming an 

alternating strip-like pattern.  

3.2.4 Manipulation of the actin cytoskeleton – in vivo 

To analyze whether F-actin might structurally stabilize CPCs in vivo, we performed cryo-

fixation by HPF on optic nerves of double knock-out AC dKO and control animals (littermates: 

CNP1-Cre+/- Cofilin1fl/wt ADF-/-) and analyzed the CPC distribution (Fig. 3.13) at P15. The 

deletion of the two actin regulators ADF and Cofilin1, indeed, led to a significantly higher 

fraction of myelinic channels in ADF/Cofilin1 double knock-out mice as compared to controls 

in the optic nerve at P15 (Fig. 3.13, A).  
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Fig. 3.13: Manipulation of the actin cytoskeleton in vivo during development. (A)  Distr ibution of the CPCs with in 
compacted myel in sheath during development in opt ic nerves of  WT control  and AC dKO animals (age = 
P15). (B-C)  Electron micrographs of h igh -pressure frozen P15 opt ic nerves of  control  (B)  and AC dKO 
animals (C),  scale bar = 500 nm, (n = 3,  350 -470 axons per animal;  **p<0,01; non -parametr ic Kruskal -
Wal l is test fol lowed by t - test).  

 

In order to analyze the number of cytoplasmic domains in adult animals, we also cryo-fixed 

large-caliber axons when the main developmental processes are terminated.  

 

Thus, to test adult animals we took advantage of tamoxifen-inducible conditional double-knock-

out mice that were generated by crossing ADF-/- with Cofilinfl/fl Plp1-CreERT2 mice. The animals 

were induced at P21 and treated with tamoxifen for 5 consecutive days followed by HPF and 

analysis of the CPC distribution at P60. Upon actin stabilization, at a time when developmental 

effects are mainly avoided, the number of CPCs particularly in axons of a large caliber is 

increased (Fig. 3.14, A-C).  

 

The comparison of the myelin thickness distribution revealed a loss of particularly thick myelin 

sheaths (Fig. 3.14, D). Since the distribution of myelinated fibers of a smaller caliber does not 

differ much from the WT control situation, the number of myelinated axons was not generally 

decreased.  

 

Collectively, these results suggest a major role of F-actin in providing structural support in the 

stabilization of cytoplasmic domains.  
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Fig. 3.14: Manipulation of the cytoskeleton in vivo. (A + B)  Electron micrographs of induced AC dKO mice at  
P60. (A)  Compact myelin sheaths showing huge cytoplasmic openings label led wi th blue arrowheads,  
scale = 500 nm. (B)  Overview picture of a circumferentia l cytoplasmic opening, scale = 500 nm. (C)  
Blocking act in-depolymer ization by knocking -out ADF and Cf l1 a lso results in an increased number of  
CPCs in myelin sheaths of  large cal iber  at P60. Compared to heterozygous shiverer  mice the phenotype 
is even stronger. (D)  Analysis of the myel in thickness distr ibution at P60, (n = 3 -5; 220-370 axons per  
animal;  **p < 0.01;  ***p < 0.001, and non-parametric Kruskal-Wall is  test  fo l lowed by t - test) . Here, AC 
dKO data are compared to WT contro l animals presented in Fig. 3.2.  

 

3.3 From structure to regulation 

3.3.1 The tug-of-war-like interaction of MBP and CNP in vivo 

Our results above pointed to an antagonistic role of CNP and MBP in channel biogenesis within 

myelin sheaths of the CNS. Thus, to test whether the expression levels of the main myelin 

proteins MBP (only restricted to compact membrane domains) and CNP (exclusively localized 

in non-compact areas) determine the appearance of CPCs in large-caliber axons of adult mice 

could only be made in vivo. We generated double-transgenic mice that lack CNP but express 

MBP heterozygously by crossing SHIV+/- and CNP-Cre-/- mice. The double heterozygous 

animals (SHIV+/- CNP+/-) that were obtained were further bred until we received the desired 

genotype (SHIV+/- CNP-/-). Subsequently, we dissected cervical segments of the spinal cord for 

HPF/AFS, and again performed an ultrastructural analysis by TEM.  
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Fig. 3.15: Rescue of CPC distribution in double-transgenic CNP-/- SHIV+/- mice at P60. (A) Distr ibut ion of CPCs in 
high-pressure frozen t issue of the cervical  spinal  cord at P60. The comparison of  WT contro l, CNP -nul l,  
heterozygous shiverer mice and the double -transgenic mutants represents the rescue according to the 
number of  CPCs within compact myel in.  (B) Myelin thickness distr ibution in the spinal  cord of those 
different mutants. The part ial loss of MBP leads to a decreased number of large cal iber (>600 nm) axons 
(n = 3-5, 220-360 myel inated axons per  animal were assessed, error bars represent ± SEM, *p < 0.05; 
**p < 0.01; ***p < 0.001, and non -parametr ic Kruskal -Wall is  test  fol lowed by t - test).  (C + D) Visualization 
of myelinated axons in CNP-/- SHIV+/- mice at  P60 without CPCs (C) and with cytoplasmic opening 
highlighted by red arrowheads (D) ;  scale bar = 500 nm.  

 

When the numbers of CPCs were determined and compared to WT and CNP-deficient mice, 

we observed that CNP-null/shiverer heterozygous mice were indistinguishable from WT (Fig. 

3.15, A). When comparing CNP-null/shiverer heterozygous to CNP-deficient mice, we found 

that the number of cytoplasmic domains was significantly higher in myelin sheaths with a 

thickness larger than 400 nm. 

 

The TEM analysis of CNP-/- SHIV+/- mutants revealed the re-introduction of CPCs into large-

caliber axons of CNP-/- SHIV+/- animals, resulting in an equilibrated state between the SHIV+/- 

and CNP-/- situation. Furthermore, the comparison of myelinated fibers according to their 

myelin thickness emphasizes a loss of large-caliber axons, which revealed a similar distribution 

as found in heterozygous shiverer mice. Due to the partial loss of MBP, the overall number of 

axons of the largest caliber is decreased (Fig. 3.15, B).  
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3.3.2 Distribution of CPCs and axonal pathology in aged animals 

To study, whether the distribution of cytoplasmic domains within myelin persist into older age, 

we analyzed the number of CPCs at 6 months of age (P180). 

 

We fixed cervical segments of the spinal cord of these mutants with 6 months of age by HPF 

followed by AFS, and compared the distribution of the myelin thickness and of CPCs (Fig. 

3.16). At 6 months of age, we found that CNP-/- SHIV+/- mice were comparable to WT animals, 

and had a higher number of channels as compared to CNP-deficient mice (Fig. 3.16, E). 

Compact myelin sheaths of SHIV+/- animals still present the highest overall number of CPCs 

upon loss of compaction (Fig. 3.16, C and E), whereas CNP-null mutants still have myelin 

sheaths with the lowest number of CPCs compared to the WT controls (Fig. 3.16, A, B, and 

E).  

 

The comparison of the myelin thickness distribution at P60 (Fig. 3.15, B) and P180 (Fig. 3.16, 

F) emphasizes the reduction of myelin sheaths thicker than 600 nm by approx. 50% in CNP-

deficient and control animals, whereas the myelin thickness distribution in both heterozygous 

MBP mutants is not altered. Furthermore, aged CNP-deficient animals show a reduction of 

axons of the smallest caliber (myelin thickness <100 nm, Fig. 3.16, F), whereas double 

heterozygous CNP-/- SHIV+/- mutants present a myelin thickness distribution that is comparable 

with the WT control situation.  

 

Besides the slightly altered distribution of CPCs, we observe pathological changes of the 

myelin ultrastructure in CNP-KO mice (Fig. 3.16, B), appearing as myelin outfoldings and 

pinch-offs, or as myelin bodies.  
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Fig. 3.16: CPCs in the spinal cord at 6 months of age (P180) in WT, SHIV+/-, CNP-/- mice, and CNP-/- SHIV+/- mice. (A-D)  
TEM micrographs highl ight  part icular features occurr ing among the dif ferent mouse mutants,  compare 
with f igure legend to be found up -r ight in the picture, scale bar = 500 nm. (E)  Distr ibut ion of CPCs with in 
the compacted myelin sheath in adult spinal cord of WT, SHIV+/ -, CNP-/- and in SHIV+/- CNP-/- animals 
compared to the thickness of myelin. (F)  Comparison of myel in thickness distr ibut ion among the different  
mutants (error bars represent the ± SEM, n = 3, 270 -350 axons per animal were measured, *p < 0.05; **p 
< 0.01, and non-parametr ic Kruskal -Wall is  test fol lowed by t - test).  
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3.3.3 Prevention of axonal degeneration? 

To find out whether the absence of channels is one of the underlying causes for the axonal 

pathology, we analyzed whether the axonal phenotype was rescued in CNP-/- SHIV+/- mice.  

 

Fig. 3.17: Prevention of axonal degeneration by alteration of the expression levels of CNP and MBP? (A)  Analysis of 
axonal damages in P180 spinal cord mature myel in of  WT, SHIV+ / - ,  CNP - / -  and CNP - / -  SHIV+ / -  animals, 
error bars represent the ± SEM, n = 3, 270 -350 axons per animal were measured, *p < 0.05; **p < 0.01,  
and non-parametric Kruskal -Wal l is test fol lowed by t - test.  (B-C)  Electron micrographs of  CNP-/-  mice 
high-pressure frozen cervical spinal cord t issue at P180 and characterist ic phenotypes, scale bar = 500 
nm. (D-E)  Electron micrographs of  double -transgenic CNP-/-  SHIV+/-  mice and prevention of  axonal  
degeneration,  scale bar = 500 nm.  

 

Figure 3.17, B and C highlights the severe axonal phenotype, visualized in cross-sections of 

cervical spinal cord tissue samples of CNP-deficient mice at the age of 6 months.  

When the numbers of axonal spheroids were quantified, we observed that axonal degeneration 

was significantly reduced in CNP-/- SHIV+/- animals as compared to CNP-deficient animals (Fig. 

3.17, A, D, and E). Whereas single knock-out CNP-deficient animals presented the highest 

level of degenerated axons accompanied by elevated numbers of myelin outfoldings, and 

axonal swellings, double-transgenic CNP/shiverer mutants showed a significant improvement 

of this phenotype, even though the WT level was not reached. The partial loss of MBP in 

heterozygous shiverer mice did not cause a severe pathological axonal phenotype (Fig. 3.17, 

A). 
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In line with this finding, the lifespan of animals is a general measure to enquire how critical the 

pathology of the phenotype of mutant mice is. Based on the published observation that CNP-

deficient animals show premature death and usually do not complete the first year of age 

(Lappe-Siefke et al., 2003), we kept a small cohort of mice of those genotypes (Table 3.2), 

which we have analyzed throughout the course of this study.  

Table 3.2: Comparison of the averaged reached lifespan and averaged reached life of the used mouse mutants. 

 
Total 
number 
of animals 

Still 
alive 

Averaged 
current 
age [weeks] 

Averaged 
reached age 
[weeks] 

WT 3 3 75.0 
Still 
alive 

CNP-/- 3 0 † 35.7 

SHIV+/- 3 0 † 74.0 

CNP-/-SHIV+/- 3 3 82.5 
Still 
alive 

 

Table 3.2 briefly averages the reached lifespan and the current age of living animals (current 

status of calendar week 16). Compared to the single knock-outs of either CNP or MBP, double-

transgenic mice and WT controls were still alive, which functionally supports the morphological 

analysis of the axonal pathology and the rescue of CNP-/- SHIV+/- mice.  
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4 Discussion 

In this study, we discovered a mechanism of how cytoplasmic domains are formed in compact 

myelin sheaths of the CNS. We proposed that CPCs fulfil several important functions: 

 

1. Exchange of molecules in myelin 

2. Myelin plasticity 

3. Axonal support 

 

Myelin is a complex structure that forms a tight multi-layered stack of plasma membrane, which 

is spirally wrapped around axons and thereby creates a dense diffusion barrier (Aggarwal, 

Yurlova, & Simons, 2011; Aggarwal, Yurlova, Snaidero, et al., 2011; Harauz et al., 2009). The 

observations of CPCs in the CNS in thin-caliber axons of the optic nerve (Snaidero et al., 2014; 

Snaidero & Simons, 2014), allowed the characterization of an elaborated interconnected 

system of CPCs within compact myelin sheaths. Cytoplasmic openings in high-pressure frozen 

murine optic nerves run in a helical path through the compacted sheath to connect the 

oligodendroglial cell body with the innermost layer of myelin. Moreover, these openings closed 

upon termination of myelination and were untraceable in the thin mature myelin sheaths 

surrounding small axons. These observations suggested that a system of CPCs is involved in 

the transportation and the efficient delivery of membrane material to the active growth zone of 

the inner layers of developing myelin (Snaidero & Simons, 2014).  

 

We chose a similar approach to answer the question whether those CPCs remained open in 

mature myelin sheaths of a large caliber when developmental processes were terminated.  

 

To answer this question, we selected murine spinal cord as the ideal tissue to assess 

myelinated axons that are surrounded by a high number of wraps. We used HPF to improve 

the cryo-preservation of this tissue that hitherto has proved technically difficult to fix. We 

established a new sample preparation protocol that allowed the conservation of the myelin 

ultrastructure close to its native state.  

 

Applying this technique, we found remarkable cytoplasmic inclusions present as membrane 

openings in compact myelin sheaths of the spinal cord extracted from adult mice. Importantly, 

we identified a mechanism and essential key proteins, which regulate the generation and 

maintenance of these cytoplasmic regions. 
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4.1 Biogenesis of CPCs within myelin sheaths of the CNS during 

development 

During biogenesis of myelin the compaction of two opposing surfaces is facilitated by MBP, 

which restricts the access of large proteins like CNP and MAG into compact myelin by forming 

a size barrier (Aggarwal, Yurlova, Snaidero, et al., 2011; Parazzini et al., 2002; Zuchero & 

Barres, 2011). Already at an early stage of the myelin biogenesis in the mouse optic nerve 

after HPF, our group has found that the main myelin proteins MBP and CNP influence the 

biogenesis of cytoplasmic domains, particularly the rates of growth and compaction (Snaidero 

et al., 2014). Specifically, we have shown in this work that CNP prevents the myelin compaction 

being promoted by MBP, acting antagonistically, and is thus an integral component of CPCs. 

Here, we present a model that summarizes the interactions and key regulators involved (Fig. 

4.1). 

Looking at the immature optic nerve of shiverer mouse mutants, we showed that the loss of 

compaction, induced by decreased expression levels of MBP, resulted in myelin sheaths with 

more CPCs, whereas the opposite effect was observed in CNP-deficient mice at the same age 

(Fig. 3.1, A).  

 

It has been shown that a central second messenger pathway regulates OL process outgrowth 

during the development of the myelin sheaths (in cell culture and in vivo). The activation of the 

PI3K/AKT/mTOR signaling pathway caused hypermyelination in the presence of increased 

PIP3 (phosphatidylinositol (3,4,5)-trisphosphate) levels in OL-specific PTEN knock-out mice 

(Flores et al., 2008; Goebbels et al., 2010). The CPCs in the optic nerve of adult mice had the 

potential to re-open by inducible recombination of PTEN in OLs in the presence of elevated 

PIP3 levels (Snaidero et al., 2014). Using primary cultures of mutant OLs, it was possible to 

recapitulate the regulation of myelin membrane growth by PIP3 levels observed previously in 

mice. Obviously, during development, other molecules also have an impact on the regulation 

and formation of CPCs. In the next chapter, we discuss how the formation of those cytoplasmic 

domains is regulated in adult mice. 

4.2 Abundance of CPCs within mature myelin sheaths of the CNS 

Strikingly, the extended ultrastructural analysis of large-caliber axons presented in this work 

proved that these radial cytoplasmic domains remained open, even in adult animals when 

developmental processes were terminated (Fig. 4.1, A). Again, the in vivo manipulation of the 

expression levels of CNP and MBP pointed to an antagonistic relation of those two essential 

myelin proteins. The analysis of CNP-deficient (Fig. 4.1, B) animals revealed a significant 
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overall reduction of cytoplasmic domains in adult (P60) and aged animals (P180). When we 

analyzed heterozygous shiverer mice, we observed a total increase of the CPC distribution at 

the same age compared to WT controls (Fig. 4.1, C).  

 

 

Fig. 4.1: Model of the formation of cytoplasmic domains within myelin sheaths and the most important key regulators. 
Tug-of-war- l ike interact ion between the CNP/F -act in cytoskeleton and MBP plays a cr i t ical  ro le in the 
regulation of  the biogenesis of  CPCs. The model i l lustrates the molecular  composi t ion and the involved 
key regulators derived from our overal l  in v itro  and in  vivo  exper imental data.   

 

Our findings in thick-caliber spinal cord axons nicely confirmed our group’s previous 

observations in the optic nerve and are consistent with previous studies by others, who have 

been able to visualize CPCs in thick myelinated fibers of adult rat spinal cord (Velumian, 

Samoilova, & Fehlings, 2011). The injection of the water-soluble fluorescent dye Lucifer Yellow 

into longitudinal slices of the spinal cord, and subsequent live-imaging to monitor the diffusion 
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of the injected dye into internodal myelin of the CNS, revealed an interconnected cytoplasmic 

system. 

4.3 Structural stabilization of cytoplasmic domains  

We have observed that CPCs remain open in large-caliber axons of adult mice, despite their 

transient character in thin fibers of the developing optic nerve. Furthermore, we developed a 

model to illustrate that the relative abundance of CNP and MBP is a regulatory mechanism 

that affects the formation of these cytoplasmic domains. Two processes have to be 

coordinated: while myelin is incorporated adjacent to the axon at the leading edge or the 

innermost tongue, newly-formed layers extend laterally. The lateral membrane extension is 

accompanied by the simultaneous formation of cytoplasmic-rich domains (Snaidero et al., 

2014). 

 

Additionally, mechanical forces are necessary to promote the growth at the leading edge. 

Thereby, a high turnover of F-actin, accompanied by the upregulation of actin disassembly 

proteins, mediates the reorganization of filament-like structures into membrane sheets (Nawaz 

et al., 2015; Zuchero et al., 2015). Previous studies indicated that CNP and actin can interact 

(De Angelis & Braun, 1994, 1996a, 1996b; Kim & Pfeiffer, 1999; J. Lee et al., 2005). We thus 

tested whether actin plays a role in preventing the collapse of CPCs in large-caliber axons. 

 

Subsequently, the combination of in vivo and in vitro assays, helped us to understand how 

these non-compact domains, filled with cytoplasm, were structurally stabilized. The application 

of the biomimetic GUV-bursting assay imitated myelin membrane compaction that was 

directed by MBP. We found that CNP together with F-actin antagonized the forces exerted by 

polymerizing MBP molecules (Fig. 3.11). Although CNP alone was able to prevent MBP-driven 

membrane compaction (Fig. 3.5), the prevention was even more efficient when filamentous 

actin was present (Fig. 3.11). Additionally, this finding was supported by the pharmacological 

and genetic manipulation of the actin cytoskeleton in vitro (Fig. 3.12). Hence, we identified that 

the specific protein-protein interaction of F-actin and CNP is essential for the conformation of 

CPCs. 

 

Because the interaction of CNP and F-actin had not previously been characterized in detail, 

we further analyzed the structural assembly of CNP and F-actin together with our collaborators 

Dr. Matti Myllykoski and Prof. Dr. Petri Kursula. This work demonstrated CNP/F-actin-specific 

bundling activities and characterized potential binding sites. The mass-spectrometric analysis 

revealed that actin-binding of CNP occurs at the N-terminal PNK-like domain as well as at the 
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C-terminus (Fig. 3.10, D, right panel). There, F-actin seemed to have one possible binding site 

near the D-loop in subdomain 2 as well as another within the long loop of subdomain 3 (Fig. 

3.10, D, left panel). However, the relative orientation of CNP with respect to F-actin still needs 

to be solved structurally.  

One possibility of how CNP could prevent the MBP-initiated membrane compaction, in order 

to hinder the closure of cytoplasmic domains, is by forming pillar-like structures in the 

cytoplasmic space of the myelin sheath that are stabilized by the actin cytoskeleton. Thereby, 

it is possible that a single CNP monomer acts as a bridge between two actin filaments in 

bundling. Such a conformation could build stable ensembles to keep adjacent cytoplasmic 

leaflets separated.  

 

Indeed, two separate forces appear to operate in myelin. One force depends on a network of 

MBP molecules, and another force is based on CNP and its interaction with the cytoskeleton. 

This tug-of-war-type relation between CNP and MBP regulates the formation of cytoplasmic 

domains, in that the actin cytoskeleton in association with CNP prevents MBP from compacting 

opposing membranes (Fig. 4.1, D). Our new data shed light on previous work in transgenic 

mice, showing that overexpression of CNP increases areas of non-compacted myelin in vivo 

and multiplies the outgrowth of cytoplasmic processes of primary OLs in vitro (Gravel et al., 

1996; Yin et al., 1997).  

 

That the subcortical actin cytoskeleton may stabilize cytoplasmic domains is suggested by our 

recent observation of the structural organization of F-actin within cytoplasmic processes of 

primary OLs (D'Este et al., 2016). The application of far-field optical nanoscopy revealed a 

periodic sequence of an actin-meshwork presented by a regular pattern of F-actin-strips. 

Together, actin and βll spectrin are ubiquitously expressed in eukaryotic cells and are the key 

components of the subcortical cytoskeleton, within which their organization, protein 

interactions, and functions are diverse. In the CNS, several spectrin isoforms are expressed in 

glial cells (e.g., at the axon initial segment (AIS), nodes of Ranvier, and paranodal junctions), 

where they fulfil important functions, including the formation of a diffusion barrier to restrict 

cytoplasmic and membrane proteins to distinct cellular compartments (Goodman, Lopresti, 

Riederer, Sikorski, & Zagon, 1989; K. Susuki & Rasband, 2008; Zagon, Higbee, Riederer, & 

Goodman, 1986).  

 

We found that βll spectrin and F-actin are present within cytoplasmic processes of 

differentiated OLs displaying an alternating pattern. It is possible that βll spectrin also interacts 

with CNP/F-actin to assemble into a more complex network formation.  
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Having a look at the PNS, where the interactions of the molecules that maintain SLIs are better 

understood, may support our hypothesis. In the PNS, the stability of SLIs is provided by 

adhesion molecules and the membrane skeleton (Ghabriel & Allt, 1981; Poliak et al., 2001; 

Keiichiro Susuki et al., 2011; Trapp, Andrews, Wong, Oconnell, & Griffin, 1989). It has been 

reported that a complex of actin and spectrin together with the protein 4.1G structurally 

stabilizes SLIs. Interestingly, the full knock-out of the membrane skeletal protein 4.1G in mice 

leads to an altered shape and reduced of size of SLIs, and an abnormal distribution of glial 

adhesion and internodal proteins (Ivanovic et al., 2012; Ohno et al., 2006; Terada et al., 2012).  

 

However, to determine whether βll spectrin stabilizes cytoplasmic domains needs to be 

determined in vivo. The abundance of βll spectrin in CPCs could be ascertained by 

immunoelectron microscopic studies, in which the quality of the tissue fixation is the limiting 

factor. Because it is not possible to chemically fix cytoplasmic domains within axons of a large 

caliber, we should choose the developing optic nerve to characterize the protein composition 

within CPCs for future experiments. 

 

Collectively, these results suggest a major role of F-actin and CNP in providing structural 

support in the stabilization of cytoplasmic domains. The state of the actin cytoskeleton seems 

to influence the mechanical properties of the myelinic channels. CNP together with cytoskeletal 

proteins may assemble into a fibrous network and guarantee the stability of CPCs by 

prevention of the compaction driven by MBP. In summary, during myelin biogenesis, 

cytoplasmic domains were found to be highly abundant in thin-caliber axons and remained 

open in axons of a large fiber, even when developmental processes were terminated. It was 

therefore, tempting to investigate whether the altered CPC distribution among the different 

mouse mutants had physiological consequences. 

4.4 Functional consequences 

4.4.1 Can CPCs solve a logistical issue? 

The almost complete insulation of axons allows efficient insulation and defines the rapid 

conduction of action potentials, but also raises the question how access to the extracellular 

space is achieved, which is critical for any physiological activity (Nave, 2010). This issue 

becomes certainly critical when we think of large axons that are surrounded by thick myelin 

sheaths that measure up to 600 nm in diameter. The lack of a system that arranges 
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cytoplasmic transport would physiologically isolate the axon from its direct environment. Thus, 

could a network of interconnected CPCs – as we have described it – solve this logistical issue? 

 

In general, myelin volume is strongly correlated to both the axonal diameter (caliber) and the 

length of the myelinated internodal axonal segment, with only minor species- and nerve-

specific differences (Friede & Bischhausen, 1982; Pannese et al., 1987). In particular, the 

axonal caliber appears to be a critical parameter for myelination of small axons (Voyvodic, 

1989). The presence of just a few wraps, as we find them in the myelinated optic nerve, 

consequently results in very short internodes (optic nerve: length = ~ 100 μm; 8-10 wraps), 

whereas thick fibers of the spinal cord tracks present myelin lamellae with up to 60 wraps and 

a myelin thickness of up to 600 nm (Hildebrand & Hahn, 1978).  

 

The previous ultrastructural analysis of thin and immature myelin sheaths of the mouse optic 

nerve, revealed an abundance of microtubules and vesicular structures within cytoplasmic 

domains (Snaidero et al., 2014). The analysis showed that these vesicles covered 

approximately 12% of the entire cytoplasmic area, including the inner and outer tongue, and 

CPCs ((Snaidero et al., 2014) supplemental information). In line with this observation and 

similar to fast axonal transport (speed: 2 – 5 μm per s), glial intracellular transport could also 

depend on motor-driven transport in tracks of the cytoplasmic channel system and not on free 

diffusion (Brown, 2003; Stenoien & Brady, 1999; Vale, 2003). 

 

After the termination of myelination and the closure of CPCs, the passage of molecules through 

small-caliber axons could be realized via cytoplasmic transport through the outer tongue, the 

paranodal loops, and the inner tongue in order to reach the axon and to ensure proper axon-

glia communication. But what would happen if nodal distances are so long that cytoplasmic 

transport based on diffusion becomes slow and inefficient (i.e., in large-caliber axons)? This 

question is maybe answered by our observations of the abundance of vesicles that were 

distributed in cytoplasmic domains found throughout all genotypes of adult animals that were 

analyzed in this work (Fig. 4.1).  

 

The molecular understanding of the exchange of neurotrophic factors and metabolites between 

glial cells and neurons is still lacking. In view of our recent results on the regulation and 

biogenesis of CPCs in compact myelin sheets, we suggest that their role is to maintain axonal 

integrity and participate in axon-glial transport. This function is suggested by the accumulation 

of vesicular structures found within myelinic channels (Fig. 4.1). In principle, vesicles could 
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traffic through these non-compact domains in order to enable the exchange from the outside 

to the inside of the sheath.  

 

 

Fig. 4.1: Do myelinic channels establish routes of cytoplasmic transport? Here, the f igures exempl ify the 
abundance of vesic les (green aster isk)  part icularly located in cytoplasmic domains within compact myelin 
sheaths of high-pressure frozen t issue. (A+B) Vesicles observed in the spinal cord of SH IV+/- at P60 and 
(C+D) vesicles observed in the spinal cor d of WT mice at P60:  scale bar = 500 nm. 

 

Until today, information on the distribution and function of cytoplasmic domains in the CNS has 

been lacking, whereas SLIs in the PNS have already been characterized in detail. In 

independent studies, it had been shown that the number of incisures per internode increased 

along with an increasing axonal diameter, indicating that routes of cytoplasmic transport were 

established in large-caliber axons in the PNS (Ghabriel & Allt, 1981). Like SLIs in the PNS, 

which have been documented to contain actin, tubulin, desmosome-like bands, vesicular 

structures, and mitochondria (Hall & Williams, 1970; Kruger et al., 1979; E. Mugnaini, K. K. 

Osen, B. Schnapp, & V. L. Friedrich, Jr., 1977), our findings suggest that CPCs in the CNS 

functionally serve as connected shortcuts to sustain the exchange and transport between the 

glial cell body and axon in adult animals (Micu et al., 2016; Rinholm et al., 2016).  
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4.4.2 Do CPCs play a role in axonal maintenance? 

OLs start to generate myelin during postnatal development and maintain functional myelin 

sheaths throughout adult life. In order to keep them intact, a carefully orchestrated balance of 

myelin synthesis and turnover needs to be guaranteed. An imbalance, e.g., accumulation of 

redundant myelin or of toxic inclusions, could lead to demyelination, axonal loss, and disease 

(Pohl et al., 2011; Rodgers, Robinson, & Miller, 2013).  

 

CNP has been implicated to play a role in axonal support; it has been furthermore reported 

that CNP-null animals show premature death by the age of 6 months caused by the early loss 

of axons and the pathology of the severe axonal phenotype, and thereby providing the most 

obvious phenotype of axonal degeneration (Campbell & Mahad, 2014; Lappe-Siefke et al., 

2003). Consistent with this phenomenon, CNP-null animals present an axonal accumulation 

of organelles, especially of mitochondria, and axonal swellings, possibly caused by a 

congestion of transport molecules. Consequently, the degeneration of axons due to these 

severe deficits occurs throughout the brain and the spinal cord (Edgar et al., 2009).  

 

A prerequisite for maintenance and axonal integrity is the continuous communication between 

neurons and glial cells, and the promotion of neuronal health by providing growth factors and 

giving structural support through myelin (Coleman, 2013; Kassmann et al., 2007; Nave, 2010). 

Since axonal survival depends on intact OLs and the constant generation of newly-formed 

myelin, we hypothesize that CPCs may have an impact on axonal maintenance.  

 

Our findings in WT and transgenic mice suggest that CNP is essential for the biogenesis and 

maintenance of CPCs within myelin sheaths. We found that CPCs were formed and, more 

importantly, maintained in the adult nervous system. Whereas the partial loss of MBP led to 

overall elevated numbers of CPCs in heterozygous shiverer mice, the complete knock-out of 

CNP resulted in a reduced number of CPCs throughout compact myelin sheaths of CNP-

deficient animals. Our observations with respect to the well-described ongoing axonal 

pathology of CNP-null mice, raised the question of the functional role of CPCs. One possibility 

is that cytoplasmic domains serve as routes for transport between the axon and the myelinating 

cell. To test this possibility in vivo, we performed rescue experiments of our different knock-out 

animals that demonstrated an altered axon-glia communication, presented by the various 

channel distributions. We decreased the expression level of MBP within OLs of CNP-null mice 

and observed that the reduced expression levels of MBP in CNP-/- SHIV+/- mice rescued the 

phenotype of CNP-deficient mice (Fig. 3.15 (P60), Fig. 3.16 (P180), and Fig. 3.17). Strikingly, 
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cytoplasmic domains were re-introduced into “over-compacted” myelin sheaths and double-

transgenic animals presented a CPC distribution that almost reached the WT state. 

Importantly, we observed that the axonal pathology was significantly reduced. 

 

Generally, the lifespan of animals indicates how severe the pathology of the phenotype of 

mutant mice is. The CNP-deficient animals have been reported to show premature death, 

usually before the first year of age (Lappe-Siefke et al., 2003). We kept a small cohort of mice 

of the genotypes that were analyzed in this study to test whether the manipulated expression 

levels of CNP and MBP confirm the rescue of CNP-/- SHIV+/- mice. Because of the restricted 

space in our animal facility, it was unfortunately not possible to keep more than three mice per 

group. Compared to the single knock-outs of either CNP (averaged reached age: 35.7 weeks) 

or MBP (74.0 weeks), double-transgenic mice (current age: 82.5 weeks) and WT controls 

(current age: 75.0 weeks) were still alive by the finalization of this thesis (calendar week 16). 

Although this pilot experiment is not conclusive because of the small sample size, it provides 

preliminary evidence that the re-introduction of cytoplasmic domains into compact myelin 

sheaths of double-transgenic CNP-/- SHIV+/- expands the lifespan compared to the CNP-full 

knock-out.  

 

In conclusion, it seems to be increasingly likely that an interconnected system of cytoplasmic 

domains in large-caliber axons of the mature CNS provides a solution for cytoplasmic transport 

of molecules across tightly-compacted myelin sheaths in the CNS.  

4.5 Implications for the pathogenesis of CPCs 

4.5.1 Disease 

One function of myelin is to protect axons from subsequent injury. However, the loss of intact 

myelin is the cause of different human neurological disorders including Multiple Sclerosis (MS) 

(Trapp & Nave, 2008). In many myelin-related diseases, the axons by themselves are mostly 

prone to degeneration. MS is a CNS-specific disease that is characterized by the abundance 

of inflammatory lesions in white-matter tracts that cause OL death, extensive demyelination, 

and macroscopic plaques. This glia- and myelin-specific pathology is followed by a secondary 

axonal dysfunction, manifested as axonal swellings and progressive axonal loss in MS lesions 

(Ferguson, Matyszak, Esiri, & Perry, 1997; Trapp et al., 1998). However, progressive axonal 

loss is also a feature of inherited myelin disorders, like the Pelizaeus-Merzbacher disease 

(PMD), which begins in early childhood, characterized by defects of the terminal OL 

differentiation and myelin formation. The most prominent features of PMD are myelin 
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maintenance abnormalities accompanied by demyelination and the disruption of axonal 

transport followed by axonal neurodegeneration (“Wallerian degeneration”) (Garbern et al., 

2002; Griffiths et al., 1998). Both diseases exemplify that an initial myelin deficit causes a 

secondary axonal involvement and contributes to axonal degeneration.  

 

In MS, it is the initial demyelination that pre-disposes the axon to subsequent secondary injury 

(Neumann, Medana, Bauer, & Lassmann, 2002). The Wallerian degeneration, a particular 

feature of PLP1-mutant mice (the mouse model with corresponding mutations to the human 

disease PMD), especially occurs when axonal transport is impaired (Edgar et al., 2004). 

Because PLP1-deficient mice develop an axonal pathology that resembles the pathology of 

mitochondrial disorders, this raises the question whether the trophic support by OLs is needed 

for a functional energy exchange between glial cells and the axon (Rinholm & Bergersen, 2012; 

Tarrade et al., 2006). Interestingly, CNP- and PLP1-deficient mice combine the characteristic 

phenotype of an impaired axonal transport system. The double knock-out of both genes results 

in lower axonal survival than even the single knock-outs (Edgar et al., 2009).  

 

It is highly speculative, but worth considering, that the heterogeneity of the myelin ultrastructure 

(defined by a diverse distribution of cytoplasmic domains) might have an impact on the integrity 

of an intact axon-glial network. The result of an impaired communication system could promote 

axonal degeneration and disease as it is observed in numerous neurological disorders. 

Consistently, it had been described that in the situation of a deficit of myelinating glia, the 

axonal loss is length-dependent. Indeed, mostly the longest and distal CNS fibers within the 

spinal cord have been reported to be affected at first (Griffin & Watson, 1988; Suter & Scherer, 

2003).  

 

Furthermore, the myelin ultrastructure may also affect the initiation, but also the progression 

of a neurodegenerative disease. In MS, approx. 70% of the patients develop a secondary 

progressive state, which is defined as a period of clinical worsening, independent of relapses, 

and that is sustained for at least six months. Importantly, progressive MS shows a stereotypical 

clinical appearance with loss of motor and sensory functions starting in distal regions followed 

by an upwards progression. It was shown that one main reason for this progressive 

development was caused by the axonal degeneration of particularly large-caliber axons within 

the spinal cord (Antel, Antel, Caramanos, Arnold, & Kuhlmann, 2012; Bradl & Lassmann, 

2010). 
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If myelinating glia are directly metabolically linked to underlying axons, minor ultrastructural 

changes in the OL architecture would have severe consequences for cytoplasmic transport 

and ultimately the metabolic support of axons. Nevertheless, it would be interesting in the 

future to analyze the distribution of CPCs in a pathological condition (e.g., in mice that have 

been treated with cuprizone, in order to apply a model that reflects both the demyelinating and 

remyelinating conditions), and to investigate whether the myelin ultrastructure changes after 

myelin repair. It is well described that remyelinated internodes are shorter and thinner, but how 

a CPC system would be affected is not known (Blakemore & Murray, 1981; Ludwin, 1987). 

 

In conclusion, the impairment of myelinic channels and the perturbation of the trophic axonal 

support may have deleterious consequences. Relevant for all myelin-related diseases would 

be to know whether the generation of imperfect myelin (like the over-compaction in CNP-null 

mice) causes demyelination and axonal loss, whereas the presence of confined myelin (as in 

heterozygous shiverer mice) might be perhaps better for the underlying axon. 
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5 Summary 

In the CNS, myelin is formed by OLs, which spirally wrap their plasma membrane around axons 

to form a tightly-packed stack of membrane (Aggarwal, Yurlova, & Simons, 2011; Nave & 

Werner, 2014). In the past, myelin was regarded to be an inert and purely insulating 

membrane, but this structure-function paradigm has been revised. We now know that myelin 

is a metabolically active membrane that provides support to the underlying axon (Funfschilling 

et al., 2012; Y. Lee et al., 2012). 

 

At first glance, the biological activity seems to be in conflict with the structural properties of 

myelin consisting of multiple lamellae of membrane that harbor only little cytoplasm (Snaidero 

& Simons, 2014). Most of our knowledge about the myelin ultrastructure is based on electron 

microscopic studies, which have been performed on chemically-fixed and dehydrated tissue, 

often associated with shrinkage and disruption of intracellular regions. The recent technical 

advance of the sample preparation by application of high-pressure freezing and automatic 

freeze substitution allowed us the preservation of biological tissues close to the native state 

(Mobius et al., 2010). With this technique, it became possible to visualize cytoplasmic domains 

within small-caliber axons of the developing and mature myelin of the mouse optic nerve. This 

system of tube-shaped cytoplasmic expansions residing between compacted layers of myelin 

resembled SLIs in the PNS. These channels run in a helical path through myelin sheaths, 

connecting the oligodendroglial cell body with the innermost layers of myelin (Snaidero et al., 

2014).  

 

In this study, we visualized an interconnected system of cytoplasmic domains within large-

caliber axons of the mature murine spinal cord. Thereby, we identified CNP, a highly abundant 

and oligodendroglial-specific protein, as an essential factor in the biogenesis of cytoplasmic 

regions in adult myelin sheaths. Until today, the function of intracellular CNP of OLs has not 

been fully understood. Here, we have provided evidence that CNP antagonizes the force of 

MBP in compacting myelin membrane layers. It is known that MBP, the major structural 

component of myelin, directs compaction by binding to the two opposing negatively-charged 

cytoplasmic leaflets of myelin membrane (Harauz et al., 2009; Vassall et al., 2015). This 

interaction neutralizes the positive charge of MBP and triggers the self-assembly into a 

polymeric network (Aggarwal, Yurlova, Snaidero, et al., 2011). The polymerization of this 

dense network manages the extrusion of proteins from the compacting myelin membrane and 

restricts them to cytosolic areas (Aggarwal et al., 2013).  
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We have shown here that CNP within cytoplasmic regions repels MBP-directed membrane-

zippering by association with the actin-based cytoskeleton. Due to the combination of in vitro 

(cell culture, biomimetic, and biochemical approaches) and in vivo (TEM analysis of different 

mouse models) experiments, we detected a tug-of-war-like interaction of MBP and CNP/F-

actin cytoskeleton. CNP and F-actin assembled into a fibrous network and thereby kept 

adjacent cytoplasmic leaflets separated and prevented membrane compaction by MBP 

molecules (Fig. 4.1). We not only found cytoplasmic regions within completely developed 

large-caliber axons, but also saw that some of them were filled with vesicles. It was appealing 

to speculate that these structures may be required for an axon-glial exchange and for the 

trophic support of the axon.  

 

Finalizing, we elucidated a molecular mechanism how cytoplasmic channels are formed and 

maintained in developing and mature myelin sheaths. This work provided a new molecular and 

structural framework for understanding how myelin is kept “alive”, metabolically active, and 

functionally connected to its subjacent axon. We hypothesized that a system of cytoplasmic-

rich channels were necessary to vitalize and to equip myelin with metabolic activity required 

for maintaining functional axon-glial units and to regulate myelin thickness within active 

neuronal circuits. 

 

Considering the lately emerging feature of myelin, being more prone to modulation and 

structural changes by supporting neuronal processes than previously assumed, we posit that 

CPCs solve a logistical issue and are required for the transport of molecules across the myelin 

sheath to the axon and allow the lifetime remodeling of the myelin sheath (Chang et al., 2016; 

de Hoz & Simons, 2015; Nave & Werner, 2014; Purger et al., 2015).  
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