Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Zeitschriftenartikel

Transcriptome sequencing during mouse brain development identifies long non-coding RNAs functionally involved in neurogenic commitment.

MPG-Autoren
/persons/resource/persons218975

Aprea,  Julieta
Max Planck Institute of Molecular Cell Biology and Genetics, Max Planck Society;

/persons/resource/persons219550

Prenninger,  Silvia
Max Planck Institute of Molecular Cell Biology and Genetics, Max Planck Society;

/persons/resource/persons219117

Dori,  Martina
Max Planck Institute of Molecular Cell Biology and Genetics, Max Planck Society;

Massalini,  Simone
Max Planck Society;

Dahl,  Andreas
Max Planck Society;

/persons/resource/persons184581

Hiller,  Michael
Max Planck Institute of Molecular Cell Biology and Genetics, Max Planck Society;

/persons/resource/persons219049

Calegari,  Federico
Max Planck Institute of Molecular Cell Biology and Genetics, Max Planck Society;

Externe Ressourcen
Es sind keine externen Ressourcen hinterlegt
Volltexte (beschränkter Zugriff)
Für Ihren IP-Bereich sind aktuell keine Volltexte freigegeben.
Volltexte (frei zugänglich)
Es sind keine frei zugänglichen Volltexte in PuRe verfügbar
Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Aprea, J., Prenninger, S., Dori, M., Ghosh, T., Monasor, L. S., Wessendorf, E., et al. (2013). Transcriptome sequencing during mouse brain development identifies long non-coding RNAs functionally involved in neurogenic commitment. The EMBO Journal, 32(24), 3145-3160.


Zitierlink: https://hdl.handle.net/21.11116/0000-0001-0774-5
Zusammenfassung
Transcriptome analysis of somatic stem cells and their progeny is fundamental to identify new factors controlling proliferation versus differentiation during tissue formation. Here, we generated a combinatorial, fluorescent reporter mouse line to isolate proliferating neural stem cells, differentiating progenitors and newborn neurons that coexist as intermingled cell populations during brain development. Transcriptome sequencing revealed numerous novel long non-coding (lnc)RNAs and uncharacterized protein-coding transcripts identifying the signature of neurogenic commitment. Importantly, most lncRNAs overlapped neurogenic genes and shared with them a nearly identical expression pattern suggesting that lncRNAs control corticogenesis by tuning the expression of nearby cell fate determinants. We assessed the power of our approach by manipulating lncRNAs and protein-coding transcripts with no function in corticogenesis reported to date. This led to several evident phenotypes in neurogenic commitment and neuronal survival, indicating that our study provides a remarkably high number of uncharacterized transcripts with hitherto unsuspected roles in brain development. Finally, we focussed on one lncRNA, Miat, whose manipulation was found to trigger pleiotropic effects on brain development and aberrant splicing of Wnt7b. Hence, our study suggests that lncRNA-mediated alternative splicing of cell fate determinants controls stem-cell commitment during neurogenesis.