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Computational modeling of drug response 
with applications to neuroscience
Ralf Herwig, PhD 

The development of novel high-throughput technolo-
gies has opened up the opportunity to deeply charac-
terize patient tissues at various molecular levels and 
has given rise to a paradigm shift in medicine towards 
personalized therapies. Computational analysis plays 
a pivotal role in integrating the various genome data 
and understanding the cellular response to a drug. 
Based on that data, molecular models can be construct-
ed that incorporate the known downstream effects of 
drug-targeted receptor molecules and that predict op-
timal therapy decisions. In this article, we describe the 
different steps in the conceptual framework of compu-
tational modeling. We review resources that hold in-
formation on molecular pathways that build the basis 
for constructing the model interaction maps, highlight 
network analysis concepts that have been helpful in 
identifying predictive disease patterns, and introduce 
the basic concepts of kinetic modeling. Finally, we il-
lustrate this framework with selected studies related to 
the modeling of important target pathways affected 
by drugs.  	          
© 2014, AICH – Servier Research Group	 Dialogues Clin Neurosci. 2014;16:465-477.

Introduction

	 The relatively poor efficacy of current drug treat-
ments (illustrated, for example, with overall short sur-
vival times of cancer patients) along with the tremen-
dous efforts in time and cost in drug development has 
given rise to a change in paradigm from blockbuster 
medicine to more personalized approaches.1,2 While 
some neuropsychiatric diseases may remain barely 
treatable, individualized approaches have the potential 
to improve therapy in many other domains. Predicting 
individual molecular responses to a drug, for example, 
those caused by a certain mutation that foils the benefi-
cial effects of the drug, is already addressed with gene 
tests prior to medical treatment, known as “precision 
medicine.”3

	 This paradigm shift has been enabled by new de-
velopments in biotechnology, in particular novel high-
throughput sequencing technologies, along with quan-
titative proteomics. These have tremendously changed 
our abilities to implement personalized medicine.4 On 
the other hand, these new developments impose huge 
challenges on the interpretation of these data in the 
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clinical context. Large worldwide consortia, for ex-
ample the 1000 Genomes Project5 and International 
Cancer Genome Consortia,6 generate huge amounts 
of sequencing information on human genetic varia-
tion that allow deep characterization of a patient’s 
genome and contrasting of this information against 
the entire, “normal,” population. In contrast to the 
cancer field, neuroscience has been fairly reluctant 
to adopt genomics concepts, presumably because of 
the heterogeneity of neural material, the complex-
ity of neural pathways, and, in the human situation, 
the lack of direct access to brain tissue, necessitat-
ing work with postmortem tissue.7,8 However, recent 
technology developments allow working with an ev-
er-decreasing amount of material in more and more 
pure cell types, which makes genomics technology at-
tractive for neuroscience. This has opened up the new 
research field of neurogenomics, which includes the 
genome-wide study of the nervous system and gene 
expression atlases of the brain, as well as network sci-
ence.9 Applications comprise DNA (re-)sequencing, 
the analysis of the transcriptome (RNA sequencing), 
the methylome (methyl sequencing) or the targeted 
enrichment of specific transcription factors using ap-
propriate antibodies (chromatin immunoprecipitation 
[ChIP] sequencing) so that, in principle, dysfunctional 
molecular mechanisms in human diseases can be stud-
ied at a high level of detail (see Box for definitions 
of technical terms).10 Additionally, proteomics tech-
nologies, such as the quantitative analysis of complex 
protein mixtures either with stable isotope labeling by 
amino acids in cell culture (SILAC)11 or with isotope-
coded affinity tags (ICAT),12 or the measurement of 
protein expression with antibodies through reverse 
phase protein arrays (RPPA)13 deliver quantitative 
measurements of proteins and thus information on 
functional changes in signaling pathways due to the 
disease under study.
	 While the measurement of the molecular landscape 
of a genome has quickly evolved during recent years, 
the bottleneck of molecular personalized medicine is 
clearly the computational analysis of the data along 
with its integration and interpretation in the disease 
context. Here, the sheer amount of data, comprising 
millions of data points, along with the complexity of the 
underlying data types that are often poorly correlated, 
is a challenge. Thus, new computational research fields 
such as “systems biology” or “systems medicine” have 

emerged that essentially aim to interpret genomic data 
at the molecular network level.14

	 Molecular networks are the key drivers of biologi-
cal function. For example, a targeted drug exerts its ef-
fects by the inhibition or activation of drug targets that 
then activate or deactivate signaling cascades inside the 
cell, which in turn activate transcription factors that al-
ter the gene expression response and, ultimately, lead 
to transient and rarely definite physiological or meta-
bolic changes in the phenotype. Thus, the description 
of these networks is a key component in understanding 
the mode of action of a drug. 
	 Knowledge about molecular interactions is spread 
through more than 500 dedicated data resources.15 
These databases are mostly curated, ie, their content is 
supervised by experts and annotators, and present de-
tailed knowledge about specific organisms, specific in-
teraction types (eg, protein-protein interactions, meta-
bolic or signaling reactions) or specific disease domains 
(eg, cancer). On the other hand, there are ongoing at-
tempts to try to integrate as much of these resources 
into meta-databases in order to derive more complete 
interaction networks.16

	 Molecular interaction networks have been used to 
infer function from high-throughput data and to draw 
hypotheses on the effects of drugs. There are essentially 
two strategies to explore drug action in the light of ex-
perimental data. The first approach maps experimental 
data onto large interaction networks and utilizes emerg-
ing properties of these networks through the computa-
tion of substructures or topological features. Results of 
this analysis are heavy-weighted subnetworks that can 
be used for qualitatively judging consequences of drug 
effects. The second approach uses kinetic modeling by 
describing the interaction network in mathematical 
terms, eg, with ordinary differential equation (ODE) 
systems, and by “translating” experimental data to ki-
netic model parameters (see Box). Then, the dynamics 
of the system is simulated over time and results of key 
model parameters are used to judge the effect of the 
drug response.
	 In this article, we discuss the different steps in the 
course of modeling drug responses from experimental 
data, network building, as well as parameter fitting and 
model analysis. We review key aspects of the bioinfor-
matics analyses and illustrate the conceptual frame-
work with published examples from the neuroscience 
domain.
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���
Resources for molecular 

pathway information

A mathematical model starts with the description of 
its species such as genes, proteins, protein complexes, 
or metabolites found to be dysregulated upon drug 
delivery. It is beyond the scope of this article to de-

scribe the different experimental omics and targeted 
approaches as well as primary data analysis methods 
that are used to quantify and identify the relevant 
molecules and, thus, we refer the reader to recent re-
views on sequencing technology,17 and proteomics ap-
plications,18,19 as well as analysis methods, for example 
for transcriptome20 and mass spectrometry-based pro-
teome data (see Box).21
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Box. �Technical terms used in the article.

Term	 Explanation
Cluster analysis	� A multivariate statistical approach for identifying similar structures (clusters) in large 

datasets, for example gene expression profiles derived from many different experiments.
Gaussian law	� A probability distribution following the formula
	 �	

	� where μ is the mean and σ is the standard deviation of the distribution. This law is used to 
describe observations that scatter symmetrically around a fixed mean.

Graph	 A mathematical structure describing a set of objects (nodes) and their relations (edges).
Kinetic (rate) law	� A mathematical description of a chemical reaction in which the reaction rate is linked 

with concentration of the participating molecules and parameters.
Methylome	� The set of nucleic acid methylation modifications in a certain genome.
Model 	� A mathematical description of a system of components that are connected with a set of 

biochemical reactions each with a mathematical description of the corresponding rate 
laws.

Model component	� Species of the model.
Network	� A graph whose edges are directed.
Node degree	� The number of edges that relate the node with other nodes.
Parameter	� A quantity of a rate law that has a given value that may change upon experimental condi-

tions, for example the Km values in Michaelis-Menten description of biochemical reac-
tions.

Parameter	� A method to optimize parameters according to an optimization function with certain 
 optimization 	 constraints.
Path	� A sequence of edges that connects two nodes.
Power law	� A function following the formula 
	 �f(x)=axb, where a is the scaling factor and b is the exponent. Power laws are used to des-

cribe many biological phenomena.
Proteome	� The set of proteins expressed in a certain cell. Quantitative proteomics is a set of analyti-

cal chemistry techniques to quantify the amount of proteins in a cell or cell population.
Transcriptome	� The set of all RNA molecules in a certain cell. Transcriptome (or gene expression) analy-

sis refers to the study of the expression levels of the genes in a cell or cell population.
Weighted gene	� A particular clustering approach for deriving coexpressed genes.
 coexpression 
 network analysis 
 (WGCNA)
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1
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	 The next step in modeling is the definition of the 
interactions between the molecular components of 
interest. Interaction specification involves identifying 
the molecular drug targets along with their cellular sig-
naling network and establishing relevant links to the 
metabolism and the gene regulatory system. A help-
ful concept in this direction is the molecular pathway 
concept. Pathway information, depicting the cellular 
information and mass flow from nuclear receptors to 
transcriptional regulators, is widely available. Accord-
ing to the recent pathway resource list, there are more 
than 500 databases that hold information on molecular 
interactions.15 These databases comprise experimen-
tal results from large-scale studies on protein-protein 
interactions such as yeast-2-hybrid, experiments on 
protein-DNA interactions such as ChIP-sequencing, 
drug-target interactions or cellular signaling pathways 
annotated from functional experiments, literature, or 
expert knowledge. It should be noted, though, that the 
databases are manually curated so that variations in 
pathway annotation might occur. For example, for re-
cent annotations of the well-studied “apoptosis” signal-
ing pathway in three widely accessed databases, 76% 
of the annotated proteins are specific for a single da-
tabase compared with only 24% of annotated proteins 
that are shared by at least two databases (Figure 1A). 
The reason for this is that pathway boundaries are not 
clearly defined, and that expert opinion on the extent 
of crosstalk with other pathways is highly variable. Ad-
ditionally, pathway annotations are commonly focused 
on specific substructures or specific cellular context (eg, 
tissues, diseases, organisms), which may result in varia-
tions of the assembled protein lists.
	 This high variation in pathway annotation has given 
rise to the development of meta-databases, for example 
ConsensusPathDB22 or STRING,23 that integrate many 
different resources along with many different types of 
interactions, such as protein-protein, drug-target, sig-

naling, and metabolic interactions, and, thus, allow a 
more complete view on pathways. Figure 1B exempli-
fies such an integrated view of drug action with fluox-
etine (Prozac®). Fluoxetine is used as an antidepressant 
and belongs to the class of selective serotonin reuptake 
inhibitors (SSRIs). These compounds increase the ex-
tracellular level of the neurotransmitter serotonin in 
the brain. The compound has multiple interactions with 
metabolizing enzymes from the cytochrome P450 fam-
ily as well as with the family of serotonin receptors and 
transporters.24 By combining information on different 
interaction types, an integrated view can be generated 
in which drugs are linked to molecular targets and the 
molecular consequences of drug action can be moni-
tored, building the basis for the generation of molecular 
models. 
	 Pathway concepts can be directly used for the analy-
sis of drug response with high-throughput data. For ex-
ample, Yildirimman et al25 investigated the carcinogenic 
hazard of different classes of chemicals in hepatocyte-
like cells derived from human embryonic stem cells and 
found that transcriptome analysis based on pathways 
yields more robust classifiers as compared with single-
gene expression analysis. Here, the expression changes 
for entire pathways were computed with a numerical 
score derived from all genes assigned to the pathway. 
Similar methodology has been carried out, eg, with T-
profiler26 or gene set enrichment analysis.27

Analyzing interaction networks

Besides the analysis of data in the light of preannotated 
pathways, researchers try to extract functional informa-
tion from large interaction networks in an unsupervised 
way, ie, without prior knowledge on specific gene sets 
or pathways. In these approaches, molecular interac-
tions are modeled with mathematical networks, ie, pro-
teins correspond to network nodes and an interaction 
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Figure 1. �(Opposite) (A) Variations in pathway annotation. Numbers indicate proteins annotated with apoptosis signaling in three different 
databases (Wikipathways, WP254; Reactome, REACT_578; KEGG, hsa:04210). In total, 200 different proteins are annotated for 
apoptosis signaling, 84 in Wikipathways, 108 in Reactome, and 86 in KEGG. Of these proteins, 48 are common to all or at least 
two databases (24%), while the vast majority (152; 76%) is specific for only one database. (B) Integrated view of fluoxetine with 
the ConsensusPathDB. Colored circles represent interactions (orange, protein-protein interactions; green, metabolic reactions; 
red, drug-target interactions), squares correspond to physical entities (blue, proteins; brown, compounds). Edges connect physi-
cal entities with interactions. Edge styles correspond to the different roles of the particular physical entity in the interaction (eg, 
enzyme, substrate/product, physical interactor). The view shows the drug-target interactions (red circles) of fluoxetine (brown 
square) with the serotonin (5-hydroxytryptamine/5-HT) receptor 5-HT2AR (blue square) and the 5-HT transporter (sodium-de-
pendent serotonin transporter) protein (blue square) and their downstream molecular interactions (orange circles) with other 
proteins.
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between two proteins is represented by an edge con-
necting the corresponding nodes. The human protein-
protein interaction network is fairly large, comprising 
hundreds of thousands of interactions. Network theory 
aims at the computation of local and global properties 
of interaction networks and the deduction of emerg-
ing properties that might explain cellular function.28,29 
Network theory has a long tradition, and started in the 
1950s with the seminal work of Erdösz and Rényi,30 
who invented the framework of random networks, ie, 
networks where nodes are connected by edges in a ran-
dom way. Random networks are not what we observe 
in biological systems; however, local and global topo-
logical measures can be used to distinguish them from 

real-world networks. One such local measure is, eg, the 
clustering coefficient, Ci, of a node i, which measures its 
local connectedness. The measure evaluates the nodes 
that are connected with node i (the neighbors) by divid-
ing the number of existing edges between the neighbors 
of node i by the number of all possible edges between 
the neighbors (Figure 2A). Another important local 
feature is the node degree, Di, of node i, ie, the total 
number of edges of this node with other nodes. A global 
feature important for real-world graphs is the charac-
teristic path length, L. This feature measures the aver-
age shortest path length between all possible pairs of 
nodes in the network. These characteristics were used 
in the seminal papers of Watts and Strogatz31 and Bara-
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Figure 2. �(A) Example of a node’s local network connectivity measured with the node degree and the clustering coefficient. Red, node of 
interest; blue, neighboring nodes; red lines, node interactions with neighbors; blue lines, interactions between neighboring nodes. 
(B) Node degree distribution of the human protein-protein interaction network derived from high quality interactions of the Consen-
susPathDB. The node distribution (in log-log scale) follows a power law distribution y=axb with parameters a=4896.5 and b=-1.504 
(red line). Computational analysis of the network was done with the “network analyzer” function in Cytoscape. (C) Visualization of 
the protein-protein network consisting of 9 533 proteins with 80 422 interactions using Cytoscape.
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basi and Albert32 to distinguish biological networks 
from random ones. Watts and Strogatz found that so-
called real-world networks, in contrast to random ones, 
have a high clustering coefficient, ie, a relatively high 
local connectivity while the average path length stays 
small. In addition, Barabasi and Albert introduced the 
notion of scale-free networks that show a small num-
ber of highly connected hubs and many nodes with only 
few connections. Typically, the node distribution of such 
networks follows a power law in contrast to the node 
distribution of random graphs that follow a Gaussian 
law. These characteristics explain the relative robust-
ness of biological systems. Such scale-free networks are 
robust against random failures (eg, mutations) since it 
is very likely that the mutation occurs in a node with a 
low number of connections. On the other hand, the net-
works are very sensitive against failures of hub proteins 
since they are heavily connected with other proteins. As 
an example, we illustrate this with the human protein-
protein interaction network composed of high quality 
interactions derived from the ConsensusPathDB. This 
network comprises 9 533 proteins with 80 422 interac-
tions. It has an average cluster coefficient of 0.23 and 
characteristic path length of 3. The node degree follows 
the postulated power law (Figures 2B and 2C; see Box 
for explanation of terms used). 
	 Large interaction networks have been applied in 
the analysis of high-throughput data. Hofree et al,33 
for example, showed that protein-protein interac-
tion networks can be used for classifying subtypes of 
diseases. Additionally, weighted gene coexpression 
network analysis (WGCNA)34 has been introduced 
(see Box). This approach judges pairwise correlation 
of genes measured on their expression profiles from 
a set of experiments and organizes the gene pairs in 
a network structure. Next, multidimensional cluster-
ing is applied to generate clusters of local coexpres-
sion, which then can be associated with experimental 
phenotypes. Using this approach, several studies on 
human and animal brain generated stable network 
patterns with functional implications for neurosci-
ence.35,36,37 For example, in the latter work, Winden et 
al37 used the WGCNA approach to investigate tran-
scriptional profiles derived from microarray analysis 
of twelve populations of neurons in the adult mouse 
forebrain (cingulate cortex, pyramidal neurons, GA-
BAergic interneurons, hippocampus, and thalamus, 
among others). They generated clusters of genes that 

could be associated with neuronal function and exert 
an underlying network structure of the neuronal tran-
scriptome (see Box). They identified 13 modules with 
characteristic gene expression patterns that could be 
related to biological function, for example a module 
that corresponded to the subset of interneurons de-
rived from the subpallium. As a highly connected gene 
in these samples they identified galectin-1, a previous-
ly unknown marker for this class of cells.

Basic concepts of dynamic modeling

While the approaches described so far generate static 
pictures of the cells under study in form of interaction 
networks or modules (subnetworks) thereof, dynamic 
computer modeling requires: (i) the construction of a 
directed network of model components (ie, proteins, 
complexes, metabolites), and (ii) the kinetic description 
of the interactions (see Box). Such models, when fitted 
to experimental data, can be used for predictive pur-
poses, eg, predicting whether a perturbation introduced 
by a certain drug has specific effects on the model com-
ponents, identifying model components that are highly 
sensitive with respect to the treatment, or predicting 
more general model features such as robustness and 
stability.38,39 
	 The generic framework of such dynamic model-
ing is illustrated in Figure 3A. Model design takes into 
account the experiments that interrogate the model 
along with a specification of the model components. 
Next, the interaction map has to be specified contain-
ing all interactions that interconnect the different spe-
cies. The interaction map is typically retrieved from 
literature, interaction databases, or from the network 
approaches described in the previous section.40 Promi-
nent tools that assist in the automated construction of 
such interactions maps are, for example, CellDesigner,41 
Cytoscape,42 and PathVisio.43 Using these tools, large 
interaction maps of biochemical pathways have been 
designed such as the EGFR (epidermal growth fac-
tor receptor)44 and the mTOR (mammalian target of 
rapamycin)45 signaling pathways. Additionally, interac-
tion maps for specific neurodegenerative diseases have 
been constructed, eg, for Alzheimer’s disease (AD).46 In 
the neuroscience field, there is specific interest in the 
modeling of neurons. Several software packages exist 
that allow construction and modeling of neurons such 
as NEURON47 or neuroConstruct.48
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	 In the deterministic kinetic modeling approach, the 
mathematical model is generated from the interaction 
map by defining reactions and the according reaction 
kinetics. Kinetic laws are mathematical terms that in-
volve the vector of model components,, and kinetic 

parameters,. For example, the law of mass action for a 
unimolecular reaction has the kinetic law:
 	 v = k S
Here, S indicates the total number of molecules of a 
species per cell, v denotes the rate and k the rate con-
stant. Kinetic laws can be of any specificity and com-
plexity, and are defined in order to reflect the dynamics 
and properties of reactions in networks. Additionally, 
positive and negative feedback loops can be introduced 
to realize specific influences on single reactions or oscil-
latory behavior.49,50

	 Figure 3B illustrates the general schema of a mo-
lecular model for drug response. Basically, three layers 
have to be implemented. The first layer describes the 
drug-target interactions and determines the effect of 
the drug on the target proteins; target proteins can be 
nuclear receptors, enzymes, ion channels, transporter 
proteins, among others, and are predominantly in-
hibited by the drug, however, there are several drugs 
that activate their targets. It should be noted that the 
space of cellular drug targets is rather limited; for ex-
ample, early estimations by Drews and Ryser51 sug-
gested 487 potential targets, while after completion of 
the human genome sequence and the development of 
small-molecule drugs the estimated number of targets 
was increased to several thousands.52 Current estima-
tions range again in the order of hundreds of targets 
for a wide range of diseases.53 The second layer de-
scribes the relevant cellular downstream effects such 
as signaling cascades, feedback loops, and crosstalk 
between different pathways. It has been discovered 
that signaling pathways are composed of a couple of 
typical building blocks such as Ras proteins, G protein 
cylces, phosphorelay systems, or MAPK (mitogen-ac-
tivated protein kinase) cascades. The latter have been 
implicated in the pathogenesis of a variety of human 
disorders including cancer and neurodegenerative 
diseases such as AD, Parkinson’s disease (PD), and 
amyotrophic lateral sclerosis (ALS). The third layer 
describes the essential readouts of the model that con-
stitute the metabolic or physiological changes implied 
by the drug action. Responses of these readouts, eg, 
simulated changes in specific protein concentrations 
upon perturbation of the model by the drug, are used 
to predict drug effects as well as to judge and adapt the 
model parameters. 
	 Generic kinetic models of basic molecular pathways 
are stored in model databases, for example BioModels,54 
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and are represented with specific file formats that track in-
formation on all components, interactions, and mathemat-
ical descriptions of the model in order to ensure exchange, 
retrieval, and import to model analysis tools. Accepted 
community standards for model storage and representa-
tion are SBML55 and BioPAX,56 among others.
	 The critical bottleneck of molecular modeling is the 
uncertainty about the kinetic parameters, for example 
the rate constant in the above formula. These param-
eters have to be determined either by literature search 
or by computational analysis. Literature search involves 
databases that store already measured parameters from 
similar experiments and/or cellular models. BRENDA,57 
for example, is a database that includes comprehensive 
enzyme kinetic information. Parameters for metabolic 
models can be retrieved for many enzymes and, for ex-
ample, Michaelis-Menten reaction rates. Similarly, SA-
BIO-RK58 holds information on reaction kinetics from 
various experimental conditions. Computational analysis 
uses selected model readouts and calibrates the model 
parameters to fit experimental data on these compo-
nents, for example, derived from protein quantification 
(RPPA, Western blots), by minimizing a risk function. 
The set (or sets) of parameters that minimizes the pre-
defined risk function is chosen as model parameters. 
Several mathematical approaches can be used, such as 
global optimization methods, either deterministic59 or 
stochastic.60 In particular, evolutionary approaches were 
shown to perform well in parameter optimization.61 This 
class of algorithms uses evolutionary concepts such as 
mutations, selection, and recombination, in an iterative 
way in order to find the best set of parameters. Further 
stochastic approaches encompass, for example, Monte-
Carlo sampling62 or simulated annealing.63

	 Once the model is fitted to experimental data, simu-
lation experiments can be carried out that assist in the 
identification of biomarkers (for example using sensi-
tivity analysis64), in the testing of new hypotheses and 
the prediction of time and dosage effects of drugs and 
other external stressors. 

Drug response modeling: selected examples

Here, we will describe recently published work that 
demonstrates the potentials and guide to possible fur-
ther applications of drug response modeling. 
	 Chang et al65 investigated the cell signaling mecha-
nisms induced by hallucinogens in human kidney cells. 

Using computational and experimental data they mod-
eled the downstream effects of the activation of sero-
tonin (5-hydroxytryptamine/5-HT) receptors 5-HT1AR 
and 5-HT2AR, both alone and in combination, and the 
resulting effects on the extracellular signal-regulated 
kinase (ERK) pathway that is a known target of hal-
lucinogens. Dysfunction of serotonin receptors is a 
common observation in schizophrenia and depression, 
among others. Both receptors are coupled to different 
G proteins and induce different downstream signal-
ing that results in a huge variability of drug response 
patterns dependent on which receptor is activated by 
the drug.66 The authors build a computational model 
containing two branches of signaling cascades that re-
sult in MAPK activation by the different subtypes of 
serotonin receptors: while 5-HT1AR is coupled to Gi/
G0 proteins and stimulates the MAPK cascade by phos-
phatidylinositol 3’-kinase (PI3K), 5-HT2AR is Gq/11 

coupled and activates the MAPK cascade via protein 
kinase C (PKC)/Raf-1. Authors gave kinetic descrip-
tions for transformation, translocation, and complex 
building of proteins and used mass action law as well 
as Michaelis-Menten kinetics to describe the dynamics. 
As the central model readout they used the amount of 
phosphorylated ERK1/2 at different time points. Simu-
lation experiments were carried out with MATLAB. 
Kinetic parameters were partly taken from the litera-
ture and partly determined by parameter optimization 
using experimental data from Western blots measured 
on the pERK1/2 time courses as calibration. Using the 
model, the authors showed both experimentally and 
with model simulations that there are distinct responses 
dependent on the activation of the different receptors, 
in particular that 5-HT1AR agonists induced rather 
transient ERK activation by phosphorylation while 
5-HT2AR agonists induced more sustained responses. 
	 Wierling et al67 examined the response of the epi-
dermial growth factor receptor (EGFR)–mediated 
signaling network on targeted cancer therapies such as 
cetuximab (erbitux™) and erlotinib (tarceva™) with a 
mere in silico approach. They generated an interaction 
map from literature68 and described the kinetic interac-
tions with a small set of different reaction types such 
as synthesis reactions, product formation, and degrada-
tion, which followed mass action law equations. In or-
der to cope with the uncertainty in kinetic parameters, 
they used a massively parallel Monte-Carlo sampling 
strategy: kinetic parameters were sampled according to 
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a log-normal probability distribution and simulations 
were carried out in the perturbed (drug action) and the 
nonperturbed state (no drug action) of the model. Re-
sulting differences in model components were tracked. 
Next, this procedure was repeated multiple times with 
different parameter sets. Finally, an overall statistic was 
computed combining all repeated simulation runs. Sim-
ulation experiments were carried out with the custom 
modeling software PyBioS developed by the authors. 
Interestingly, they were able to show that the resulting 
variance in response of the model components was fair-
ly low and, secondly, they were able to predict changes 
in drug response with respect to common knowledge on 
the effect of somatic mutations that are typically found 
in cancer patients, eg, a gain of function mutation in the 
B-Raf protein which leads to continuous proliferation 
even in the presence of an EGFR drug inhibitor. This 
paper exemplifies how computational modeling can be 
used to mimic different, and patient-specific, responses 
to targeted cancer therapy.
	 Chen et al69 built and investigated a large computa-
tional model for the ErbB signaling pathway. The mod-
el contained different receptors (EGFR, HER2/neu2, 
ErbB3, and ErbB4) and immediate-early downstream 
responses involving MAPK and PI3K/AKT cascades. 
These receptors and activated signaling cascades con-
trol important cellular functions such as proliferation, 
survival, and motility, and dysregulation of the pathway 
is key in various cancer types70 as well as neurodegen-
erative diseases.71 The model contained kinetic descrip-
tions for dimerization/phosphorylation reactions, com-
plex binding, and receptor binding, and follows mass 
action kinetics. Parameter values were determined with 
simulated annealing starting with a literature-defined 
parameter set. Model readouts were phosphorylated 
ERK and AKT and simulated time courses were fitted 
to experimental data measured in different cancer cell 
lines. The computational analysis was done with MAT-
LAB. In addition, the authors used the model to predict 
dose response curves from targeted inhibitors gefitinib 
and lapatinib.
	 The above selective examples demonstrate how the 
model-building and model-fitting process is used to pre-
dict effects of therapies and to answer complex ques-
tions such as the different response in activation of sub-
types of receptors through different agonists. However, 
it should be noted that besides these potentials there are 
major pitfalls of such modeling approaches, in particu-

lar the lack of quantitative data, the low number of time 
points measured for the individual model components 
and their restriction to particular cells (or subcellular 
fractions), to specific time points, and to a relatively 
small number of model components compared with the 
full genome active in a “real-world” patient. Nonethe-
less, computational models are helpful complements to 
experimental medicine and once a model is constructed 
and fitted to experimental data, quantitative behavior 
of readouts can aid in the generation of new hypoth-
eses and the testing of new therapies. Furthermore, in 
silico experiments can be conducted in cases that are 
hardly, or even not, measurable with experiments, eg, 
multitherapy approaches. In cases where clinical test-
ing is possible, for example with tumor-carrying xeno-
graft mice, such in silico experiments could be used to 
prioritize therapy combinations, which in turn can be 
validated experimentally.

Conclusion and outlook

In this article we present the basic concepts and steps 
in the workflow of molecular modeling. We focused on 
time-dependent modeling inside the cell, in particular 
receptor-mediated signaling. It should be noted though 
that computational modeling is by no means restricted 
to this situation and comprises, for example, concepts 
for modeling spatial processes,72 pharmacokinetic 
modeling,73 as well as whole-body74 and multiscale ap-
proaches75 that have not been discussed in this work. 
	 Systems biology–driven modeling of drug response 
will gain more importance with the ever-increasing 
amounts of genome data becoming available for in-
dividual patients. The further decrease in sequencing 
costs along with the generation of purer materials, such 
as single-cell omics analyses76,77 and material adapted 
closer to the individual patient, such as induced pluripo-
tent stem (iPS) cells,78,79 enable completely new chances 
for personalized therapies. Here, in particular the in-
corporation of mutations and larger human variations, 
eg, in neuro-oncology,80,81 and allele-specific protein ex-
pression82,83 will gain further importance. Additionally, 
the development of new imaging technology and the 
combination of different approaches will drive further 
insights.84 Previously intractable to the approaches of 
human genetics, disorders of the brain are seeing accel-
erated gene discovery that was, until now, restricted to 
other branches of medicine. Genome analysis and ge-
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netic determinants in the research of neurodegenera-
tive diseases will further give rise to linkage of molecu-
lar data with therapy decisions, for example with AD.85 

Neurogenomics as an emerging focus of neuroscience 
will further evolve with the results of genome-wide as-
sociation studies and the knowledge of how these might 
be translated to the understanding of neurodegenera-
tive diseases86 and psychiatric disorders.87 As brain re-

search has attracted immense funding opportunities in 
recent years, and large initiatives are on the way such as 
the European Union’s Human Brain Project or the US 
Brain Activity Map Project,88 it can be anticipated that 
further data and modeling methodology will be gener-
ated and will increase the demand for in silico tools in 
neuroscience as a useful and efficient complement to 
the experiments. o

Diseño computacional de la respuesta a fármacos 
con aplicaciones en neurociencias

El desarrollo de nuevas tecnologías de alto rendimiento 
ha abierto la posibilidad de caracterizar en profundidad 
tejidos de los pacientes en varios niveles moleculares y 
ha dado lugar a un cambio de paradigma en la medicina 
hacia terapias personalizadas. El análisis computacional 
juega un papel central para integrar diversos datos del 
genoma y comprender la respuesta celular a un fárma-
co. En base a estos datos se pueden construir modelos 
moleculares que incorporen los efectos posteriores co-
nocidos de los receptores moleculares blanco de los fár-
macos y así predecir las decisiones terapéuticas óptimas. 
En este artículo se describen las diferentes etapas del 
marco conceptual del diseño computacional. Se revisan 
las fuentes que contienen información sobre las vías mo-
leculares que construyen las bases para diseñar los ma-
pas de interacción del modelo, se destacan los conceptos 
de análisis de redes que han sido útiles en la identifica-
ción de patrones patológicos predictivos y se introducen 
los conceptos básicos de diseño cinético. Por último, se 
ilustra este marco con estudios seleccionados que se re-
lacionan con el diseño de importantes vías blanco que 
son afectadas por los fármacos.    

Modélisation informatique de la réponse au médi-
cament appliquée aux neurosciences

Le développement des nouvelles technologies à haut 
débit a permis de décrire en détail les tissus des patients 
à différents niveaux moléculaires et a provoqué un 
changement de praradigme en médecine, vers les traite-
ments personnalisés. L’analyse informatique joue un rôle 
central dans l’intégration des différentes données du gé-
nome et dans la compréhension de la réponse cellulaire 
à un médicament. Selon ces données, il est possible de 
construire des modèles moléculaires qui comprennent 
les effets connus des molécules en aval du récepteur 
ciblé par le médicament ; cela permet un choix optimal 
lors des décisions thérapeutiques. Nous décrivons dans 
cet article les différentes étapes du cadre conceptuel de 
la modélisation informatique. Nous passons en revue les 
sources des informations sur les voies moléculaires, bases 
de construction des cartes d’interaction des modèles ; 
nous soulignons les concepts d’analyse de réseaux utiles 
pour identifier quelles configurations des maladies ont 
une valeur prédictive ; nous expliquons les idées de base 
de la modélisation cinétique. Enfin, nous illustrons ces 
concepts à l’aide d’études de la  modélisation des cibles 
importantes influencées par les médicaments. 
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