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Land use change and El Niño-Southern Oscillation
drive decadal carbon balance shifts in Southeast
Asia
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An integrated understanding of the biogeochemical consequences of climate extremes and

land use changes is needed to constrain land-surface feedbacks to atmospheric CO2 from

associated climate change. Past assessments of the global carbon balance have shown

particularly high uncertainty in Southeast Asia. Here, we use a combination of model

ensembles to show that intensified land use change made Southeast Asia a strong source of

CO2 from the 1980s to 1990s, whereas the region was close to carbon neutral in the 2000s

due to an enhanced CO2 fertilization effect and absence of moderate-to-strong El Niño

events. Our findings suggest that despite ongoing deforestation, CO2 emissions were sub-

stantially decreased during the 2000s, largely owing to milder climate that restores photo-

synthetic capacity and suppresses peat and deforestation fire emissions. The occurrence of

strong El Niño events after 2009 suggests that the region has returned to conditions of

increased vulnerability of carbon stocks.
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Southeast Asia is unique among tropical regions because the
region is highly susceptible to the influence of El Niño-
Southern Oscillation (ENSO)1, 2 and is subject to highest

deforestation rates in the tropical regions3–6. In the recent past,
Southeast Asia experienced large CO2 emissions, ranging from
0.81 to 1.2 Pg C yr−1 due to the drought-induced fires during the
1997/1998 El Niño7, 8, and a substantial loss of forest area (2.5
Mha in the 1990s)9 due to forest conversion to oil palm and
rubber tree plantations10–12. However, contrary to the intensively
studied Amazon Basin and Congo Basin with permanent plot
sample data13, 14, the recent states of net CO2 flux (balance
between CO2 uptake and release by the land biosphere) across
Southeast Asia remain highly uncertain. The Fifth Assessment
Report (AR5) of the Intergovernmental Panel on Climate Change
(IPCC) provided a synthesis of the global net CO2 flux. However,
disregard of land use change (LUC) in the biosphere models (the
bottom-up approach) resulted in an underestimation of CO2

release for the tropical regions when compared with the atmo-
spheric CO2 inversions (the top-down approach)15. Both climate
and LUC need to be integrated into analyses to adequately esti-
mate the net CO2 flux and to reconcile results from different
approaches. Such an integrated effort has not been undertaken for
Southeast Asia.

Here we investigate the decadal variability of the net CO2 flux
(termed Net Biome Production: NBP, the negative sign (–) for a
net sink and the positive sign (+) for a net source) in Southeast
Asia over the period 1980–2009 using an ensemble of seven
terrestrial biosphere model simulations from the TRENDY model
intercomparison project (Supplementary Table 1), an ensemble of
five atmospheric CO2 inversions that cover longer than two
decades (Supplementary Tables 2, 3) and a remote-sensing-based
annual biomass change estimated by Global Aboveground Bio-
mass Carbon version 1.0 (Supplementary Fig. 1). We demonstrate
that consideration of LUC processes to biosphere models brings
consistency in interannual and decadal variability of the net CO2

flux between the bottom-up, top-down and remote-sensing-based
approaches, indicating carbon balance shifts towards a net source
from the 1980s to 1990s, and towards a net sink from the 1990s to
2000s. Subsequently, we quantify the contributions to the decadal
NBP variability from CO2 fertilization, climatic conditions and
LUC using three sets of TRENDY simulations (Supplementary
Fig. 2) where biosphere models were forced with varying CO2,
climate and historical LUC (TRENDY S3), along with simulations
forced with varying CO2 and climate (TRENDY S2), and varying
CO2 only (TRENDY S1). Our results show that increased LUC
emissions during the 1990s was the major factor responsible for
the shift towards a net source between the 1980s and 1990s, and
the enhanced CO2 fertilization and absence of strong El Niño
events during the 2000s for the shift towards a net sink between
the 1990s and 2000s. The milder climate sustained during the
2000s is of particular importance to a high carbon assimilation by
plant ecosystems in Southeast Asia, inducing a strong net uptake
that cancels a large proportion of CO2 release from ongoing LUC
in the region.

Results
The effect of LUC on net CO2 flux. We find agreement in
interannual variability of NBP between the TRENDY S3 and
atmospheric CO2 inversions for the period 1980–2009, and the
annual biomass change (hereafter, Δbiomass) for the period
1994–2009, as indicated by high correlations between the three
estimates (r= 0.67–0.70, p < 0.01, Fig. 1a; detailed inter-model
comparisons in Supplementary Figs. 3, 4). However, this agree-
ment is not found in a comparison with the TRENDY S2, which
indicates continuously strong CO2 uptake throughout the 30-year

period. The inclusion of LUC (adding LUC to the model forcing
as in TRENDY S3; Supplementary Fig. 5) changed both the
patterns of the spatial variability of NBP (Fig. 1b; individual
model results in Supplementary Fig. 6) as well as the sign of mean
annual NBP from a large sink to a weak source for the period
1980–2009; flux changed from −0.18 ± 0.09 Pg C yr−1 in the
TRENDY S2 (average ± 1σ as model-by-model variability) to
0.09 ± 0.12 Pg C yr−1 in the TRENDY S3. This result confirms
that the LUC emissions are a key factor in NBP estimation for
Southeast Asia, as its contribution to NBP is large, so much as to
cancel the CO2 uptake due to the effect of CO2 fertilization.

The decadal shifts of net CO2 flux and attributions. The inter-
decadal mean NBP estimates from the TRENDY S3, atmospheric
CO2 inversions and Δbiomass yield a consistent pattern of dec-
adal variability, indicating that an increased net source from the
1980s to the 1990s is largely decreased in the 2000s (Fig. 1c;
individual model results in Supplementary Fig. 7). By isolating the
contributions of the effects from CO2 fertilization, climate and
LUC to NBP using the TRENDY model simulations (Methods),
we found that the shift towards a stronger net source from the
1980s to the 1990s is primarily attributable to the intensifying
LUC (Fig. 1d; individual model results in Supplementary Fig. 8a),
which increased the net source from 0.21 ± 0.11 Pg C yr−1 (the
1980s) to 0.31 ± 0.13 Pg C yr−1 (the 1990s). In contrast, a reduced
net source (i.e. stronger sink) from the 1990s to the 2000s is
attributed to the effects of CO2 fertilization and climate
(Fig. 1d; Supplementary Fig. 8b, c), with the former inducing
a change from −0.23 ± 0.08 Pg C yr−1 (the 1990s) to
−0.28 ± 0.09 Pg C yr−1 (the 2000s), and the latter from 0.09 ±
0.11 Pg C yr−1 (the 1990s) to 0.001 ± 0.11 Pg C yr−1 (the 2000s).

We examine the robustness of these decadal shifts by applying
non-parametric trend tests to the periods 1980–1999 and
1990–2009 (Mann–Kendall and Theil slope tests; Methods).
Using the NBP estimates including individual TRENDY models,
we found that trends of increasing CO2 uptake for the period
1990–2009 tend to be more statistically significant (p < 0.05) than
those of increasing CO2 release for the period 1980–1999 (Fig. 2a).
Further analysis of the individual TRENDY models shows
statistically significant trends of increasing CO2 release due to
the LUC effect for the period 1980–1999 and of increasing CO2

uptake in response to the CO2 fertilization and climate effects for
the period 1990–2009 (Fig. 2b, c). This multi-model trend
analysis suggests that the decadal NBP shift from the 1990s to
2000s is more robust than that from the 1980s to 1999s, which
means that the CO2 fertilization and climate conditions in the
2000s are more influential to NBP than the enhanced LUC
activities in the 1990s, distinguishing the 2000s from previous
decades. It is reasonable to expect that the CO2 fertilization is
partly responsible for the decadal NBP shift from the 1990s to
2000s because atmospheric CO2 is the main factor driving NBP
towards a net sink via promoting the photosynthetic carbon
fixation16. The increased CO2 fertilization effect in the 2000s
coincides with higher CO2 concentrations in the 2000s (379 ppm)
than those in the 1980s (346 ppm) and the 1990s (361 ppm,
decadal averages based on flask sampling data at the Mauna Loa
Observatory: Data—NOAA Earth System Research Laboratory,
https://www.esrl.noaa.gov/gmd/ccgg/trends/data.html). As for the
climate effect, a net source in the 1980s and 1990s makes a
transition to carbon neutral in the 2000s (Fig. 1d), implying a
climate favourable for CO2 uptake in the 2000s.

Weak phase of ENSO in the 2000s. In order to elucidate the
climate effect on NBP in the 2000s, we have analysed mean
annual NBP (i.e. the TRENDY S3, atmospheric CO2 inversion
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Fig. 1 Interannual and decadal variability of net CO2 flux in Southeast Asia for 1980–2009. a Interannual variability of ensemble averaged NBP from the
TRENDY (grey: TRENDY S2; orange: TRENDY S3) and atmospheric CO2 inversions (cyan) for the period 1980–2009, and annual biomass change (dashed
green line: Δbiomass) for the period 1994–2009. Shading for the TRENDY and atmospheric CO2 inversions represents 1σ variation among models. A top-
right panel shows correlation coefficients (r) between interannual variability of the three NBP estimates for the overlapping periods (1980–2009 for the
TRENDY and atmospheric CO2 inversions; 1994–2009 for the TRENDY and Δbiomass, and for the atmospheric CO2 inversions and Δbiomass) and
statistical significance is indicated by **p < 0.01. Negative values in NBP represent a net sink, and positive values a net source. b Spatial variability of mean
annual NBP from the TRENDY (seven model ensemble average) for the period 1980–2009. Results are shown for the three simulations: forced with varying
CO2 only (left: TRENDY S1); varying CO2 and climate (middle: TRENDY S2); and varying CO2, climate and LUC (right: TRENDY S3). Bar graphs represent
mean annual NBP by the TRENDY simulations (grey: TRENDY S1 and S2; orange: TRENDY S3) for the period 1980–2009 with error bars representing 1σ
variation among models. c Decadal NBP budgets from the TRENDY (grey: TRENDY S2; orange: TRENDY S3) and atmospheric CO2 inversions (cyan) for
the 1980s, 1990s and 2000s, with error bars representing 1σ variation among models. Decadal budgets from annual biomass changes are shown with
dashed horizontal lines for the 1990s (1994–1999) and 2000s (2000–2009). d Decadal variability of the attributing factors to NBP from the TRENDY
(crimson: the CO2 fertilization effect, green: the climate effect and white: the LUC effect) with error bars representing 1σ variation among models
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and Δbiomass) and components of NBP from the TRENDY
model simulations: LUC emissions, fire emissions and plant CO2

exchange (difference between CO2 uptake by photosynthesis and
release by plant respiration and decomposition), in relation to
variability in the Multivariate ENSO Index (MEI: NOAA ESRL,
http://www.esrl.noaa.gov/psd/data/correlation/mei.data). CO2

fluxes between the years that seasonal MEI indicates a moderate-
to-strong tendency towards El Niño (hereafter, intense El Niño
years; Methods) and the rest of years are compared for the three
decades. In the 1980s and 1990s, which are characterized by the
occurrence of strong and persistent El Niño events (e.g. 1982/
1983, 1987/1988, and 1997/1998; Fig. 3), all the three estimates of
NBP show a clear tendency towards a net loss of CO2 from the
land in the intense El Niño years compared with the rest of years,
with differences amounting to 0.13–0.14 and 0.14–0.26 Pg C yr−1,
respectively (Fig. 4a, b). In the 2000s, however, no intense El Niño
is indicated by MEI (Fig. 3), resulting in a near-neutral carbon
balance (Fig. 4c). This result suggests that, in addition to
enhanced growth from the CO2 fertilization, the absence of

intense El Niño events is one of the primary causes for the
reduced net emission of Southeast Asia in the 2000s.

The investigation of the intense El Niño years revealed that the
strength of ENSO largely affects plant CO2 exchange and fire
emissions, taking into account peat and deforestation fires (results
from Community Land Model (CLM); Methods). In the 1980s
and 1990s, CO2 uptake by plants notably shifted towards a net
emission by 0.07–0.09 Pg C yr−1 in the intense El Niño years
when compared with the remaining years (Fig. 4a, b). Likewise,
fire emissions by CLM show larger emissions by 0.11 Pg C yr−1 in
the intense El Niño years than the rest of years in the 1980s and
by 0.14 Pg C yr−1 in the 1990s. A caveat is that the strength of
ENSO had negligible influence on the magnitude of fire emissions
simulated without considering the contribution from peat and
deforestation fires (an ensemble average excluding CLM). In
contrast with plant CO2 exchange and fire emissions, the
magnitude of LUC emissions was nearly unchanged regardless
of El Niño conditions. This may be expected, because carbon
removal by deforestation, and wood and crop harvesting is
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Fig. 2 Trends in net CO2 flux and its components for the past 30 years. Results of two trend tests (Mann–Kendall and Theil slope tests) on a, net CO2 flux
(NBP) from the TRENDY S3 (seven models: blue circles for 1980–1999 and red circles for 1990–2009, and ensemble average: a cyan upper triangle for
1980–1999 and an orange upper triangle for 1990–2009) are shown along with those on the atmospheric CO2 inversions (ensemble average: a cyan lower
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factors to NBP are illustrated for b, the LUC effect and c, CO2 fertilization+climate effects. Size of markers indicates statistical significance of trends: larger
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triggered by human activities, which do not directly respond to
climate conditions (with the possible exception of fire following
deforestation).

Climate sensitivity of CO2 fluxes in Southeast Asia. Tempera-
ture and water availability to plants (indicated by Standardized
Precipitation Index: SPI) explained most variability in plant CO2

exchange in Southeast Asia. Among the main meteorological
inputs for the TRENDY models (i.e. temperature, precipitation
and short-wave radiation) and three types of SPI (based on 3-, 6-,
and 9-month moving windows of rainfall accumulation, see
Methods), temperature and SPIs are the variables that show a
significant association with seasonal variability in plant CO2

exchange: a positive relationship in the former and a negative
relationship in the later (Fig. 5a; interannual variability of indi-
vidual variables in Supplementary Fig. 9). The strong relation-
ships found with SPIs suggest that cumulative precipitation over
preceding months is more effective to plant CO2 exchange than
simple monthly precipitation, and the empirically upscaled eddy
flux data (the FLUXCOM global carbon flux dataset; Methods)
confirm these relationships (Fig. 5a). Furthermore, both
TRENDY and FLUXCOM data indicate that CO2 uptake by
plants decreased due to reduced photosynthesis (Gross Primary
Production: GPP) during periods with large increases in tem-
perature and decreases in water availability associated with El
Niño (Fig. 5b, c, and Supplementary Fig. 10). The smaller spread
in temperature and SPI anomalies during 2000–2009, compared
to the 1980–1999 period, implies that weak ENSO variability
during the 2000s sustained the high carbon assimilation capacity
of plants in Southeast Asia.

In addition to CO2 fluxes from plant ecosystems, our results
emphasize fire emissions as an apparent contributor to net CO2

flux resulting from severe droughts17. Particularly, contrasting
fire emissions between the intense El Niño years and other years
highlights the importance of peat and deforestation fire emissions
in the carbon balance of Southeast Asia18 (Fig. 4). The occurrence
of strong fire emissions indicated by CLM is found in the years of
negative precipitation anomalies corresponding to the intense El
Niño years (Supplementary Fig. 11), which is consistent with fire
emissions estimated by the Global Fire Emissions Database
version 4.1s (GFED4.1s)19 and reports from remote-sensing-
based and model-based studies7, 20, 21. However, even with the
emissions from peat and deforestation fires, CO2 emissions in the
intense El Niño years are still considered as an underestimation of
the reality because the TRENDY models, including CLM, do not
consider emissions from peat oxidative decompositions following

peat fire events, which could promote even larger CO2 emissions
during El Niño events22.

Discussion
Our results indicate that a synthesis of multiple approaches (i.e.
top-down, bottom-up and remote-sensing-based approaches) is
an effective method to constrain regional carbon balance and to
elucidate causes for major changes in a projection of CO2 fluxes.
The implementation of LUC processes to biosphere models is
required to estimate net CO2 flux in Southeast Asia, as indicated
by agreement in the interannual and decadal variability of net
CO2 flux between the biosphere models, atmospheric CO2

inversions and Δbiomass, which has not addressed in the tropical
regions before this study. Our analysis provides new insights for
reconciling the top-down and bottom-up regional fluxes over the
tropical regions, where wide gaps were reported in the previous
IPCC assessment15, and also serves as a useful precedent for
future regional carbon balance assessments by REgional Carbon
Cycle Assessment and Processes (RECCAP)23.

The strength of ENSO exerts a strong control on the carbon
balance of Southeast Asia, causing the unique variability in the
decade of 2000s. Along with the recent enhancement of CO2

fertilization effect24, we showed that a milder, less variable, cli-
mate due to the absence of intense El Niño events contributed to
the reduction of CO2 emissions between the 1990s and 2000s. A
recent synthesis of regional emissions of the greenhouse gases
(GHG) indicates that Southeast Asia is characterized by the lar-
gest emissions not only of CO2 from ecosystems but also of
agricultural methane and nitrous oxide among the world
regions25. Our results suggest that the land response to weak
natural climate variability could serve as a strong mitigation to
CO2 emissions, even for the world largest ecosystem GHG
emitter.

One aspect not addressed here is the role of La Niña (the
opposite phase to El Niño) in the decadal NBP shift. La Niña can
also induce a milder climate condition, which in turn occasionally
enhances regional CO2 uptake26–28. We emphasize the sig-
nificance of El Niño events in the Southeast Asian carbon balance
because of a difference in the impact on tropical CO2 fluxes
between the two climate phenomena29. As illustrated in Fig. 6a, b,
linear relationships between seasonal MEI and NBP anomaly
(based on the ensembles of the TRENDY models and atmo-
spheric CO2 inversions; individual model results in Supplemen-
tary Figs. 12, 13 and Supplementary Table 4) demonstrate that
moderate and strong El Niño events (i.e. MEI >1) in the 1980s
and 1990s are directly related to a large net source by the land
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biosphere. In contrast, the data corresponding to La Niña and
weak ENSO events tend to cluster around carbon neutral,
implying that CO2 uptake during La Niña events (such as years
1984/1995, 1989/1990, and 1989/1990) is less significant com-
pared to CO2 emissions during El Niño events. Importantly, in
the MEI–NBP relationship, a tendency towards a net source
disappeared during the 2000s (Fig. 6c). The 2007/2008 La Niña is

one of the strongest events during the past 30 years (Fig. 3).
However, its contribution to the decadal carbon balance shift in
the 2000s is incomparable to that from the absence of moderate
and strong El Niño events (Fig. 6e). Given the response of the
land biosphere to El Niño events, we suggest that the dominant
driver of the NBP shift in the 2000s is the absence of moderate
and strong El Niño events, with La Niña events playing a lesser
role.

The absence of moderate-to-strong El Niño events in the 2000s
was a unique case where a natural climate cycle acted to mitigate
CO2 emissions in Southeast Asia, albeit only for a limited period.
Our estimates of NBP for the period 2010–2016 (see Methods)
indicate net CO2 emissions comparable to those in the 1980s and
1990s during El Niño events after 2009 such as the 2015/2016 El
Niño (Fig. 6d). An assessment of climate model simulations
suggest that surface ocean warming over the eastern equatorial
Pacific may lead to an increase in the frequency of intense El
Niño events in the future30, reducing the likelihood that natural
climate cycles offer mitigation of CO2 emissions, and therefore
leading to stronger positive carbon-climate feedback. In the long
term, national-level efforts for forest conservation and ecosystem
management, such as the Reduce Emissions from Deforestation
and forest Degradation (REDD+) project, are critical to pro-
tecting the current CO2 sink capacity of the Southeast Asia31, 32.

Methods
Sign convention for net CO2 flux. In this study, we chose the sign convention for
net CO2 flux that is commonly used in top-down analyses: the negative sign (–) for
a net sink and the positive sign (+) for a net source. This sign convention is
consistently used throughout the analysis regardless of the TRENDY models,
atmospheric CO2 inversions and annual biomass change, and it is also applied not
only to NBP but also to plant CO2 exchange. It should be noted that a common
sign convention for these variables in bottom-up analyses are opposite to this
study33.

Bottom-up net CO2 flux. Outputs from the TRENDY model intercomparison
project version 2 (TRENDY)34, 35 were used to calculate the bottom-up net CO2

flux. Simulations of the biosphere models that participated in the TRENDY were
prepared with a consistent forcing dataset: (1) atmospheric CO2 concentration for
1860–2012 based on ice-core measurements and stationary observations from
NOAA, (2) climate dataset for 1901–2012 based on a merging between Climate
Research Unit (CRU) TS3.2 0.5° × 0.5° monthly climate data36 and National
Centers for Environmental Prediction (NCEP) and National Center for Atmo-
spheric Research Reanalysis 2.5° × 2.5° 6-hourly climate data37, and (3) 0.5° × 0.5°
gridded annual LUC dataset for 1860–201238.

The TRENDY models were simulated under three protocols: a protocol that
considers variability in atmospheric CO2 (TRENDY S1); a protocol that considers
variability in CO2 and climate (TRENDY S2); and a protocol that considers
variability in CO2, climate and historical LUC (TRENDY S3). For each protocol,
the models first established an equilibrium state of carbon balance by a spin-up
run, which is forced with the 1860 CO2 concentration (287.14 ppm), recycling
climate mean and variability from the early decades of the twentieth century (i.e.
1901–1920) and constant 1860 crops and pasture distribution. Then, simulations
for two transient periods were conducted. For the period 1861–1900, the models
were forced with varying CO2 concentration and recycling climate (as in spin-up)
in the TRENDY S1 and S2, and in addition varying LUC in the TRENDY S3. After
the 1861–1900 period, the models were consecutively run for the 1901–2012 period
with varying CO2 concentration and recycling spin-up climate in the S1, varying
CO2 concentration and climate in the TRENDY S2 and S3, and varying LUC in the
TRENDY S3. A summary of the forcing data configuration for these simulations is
shown in Supplementary Fig. 2.

Among the participating models, we selected seven models that satisfy
necessary criteria for the analyses such that models provide monthly NBP outputs
for all three simulations and an explicit output of annual LUC emissions.
Specifically, they are the CLM version 4.539, Integrated Science Assessment
Model40, Joint UK Land Environment Simulator (JULES) version 3.241, Lund-
Potsdam-Jena DGVM wsl (LPJ)42, LPJ-GUESS43, Orchidee-CN (O-CN)44 and
Vegetation Integrative SImulator for Trace gases (VISIT)45. Spatial resolutions of
the TRENDY model outputs are not consistent among these seven models; fine
resolutions were used in some models and coarse resolution in others
(Supplementary Table 1). For models whose outputs were submitted with coarse
spatial resolution, we rescaled grids so that all seven model outputs have the
consistent spatial resolution of 0.5° × 0.5°.
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LUC emissions. The LUC forcing for the TRENDY models provides gridded
historical transitions of land use, based on annual changes of cropland and pas-
tureland area, and wood harvest from the UN Food and Agricultural Organization
(FAO) national statistics. Historical changes in annual area of cropland and

pastureland were determined by the HistorY Database of the global Environment
(HYDE) model version 3.146, which takes the FAO national statistics for cropland
and pastureland as the main input source, and spatializes the statistics at the spatial
resolution of 5′ × 5′ using allocation algorithms and time-dependent weighting
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maps based on global historical population density, soil suitability, distance to
rivers, lakes, slopes and biome distributions. The HYDE cropland and pastureland
status were then combined with the wood harvest status based on the FAO national
wood harvest statistics in order to extend global land use patterns, including
transitions of cropland, pastureland, primary and secondary lands (an extended
version of HYDE)38. First, the gridded cropland and pastureland area from the
HYDE model was rescaled from 5′ × 5′ to 0.5° × 0.5° resolution, and at the same

time, fractions occupied by cropland and pastureland was calculated for each
rescaled grid cell. By subtracting fractions of cropland and pastureland (and water/
ice if any) from each grid cell, fractions of natural vegetation (primary or secondary
lands) was also determined for each grid cell. Distinction between primary and
secondary lands (previously disturbed by human activities or not) and fractions of
these land types occupied in each grid cell were determined based on the spatialized
FAO wood harvest data with empirically estimated biomass density maps produced
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at the spatial resolution of 0.5° × 0.5° from Miami-LU model47. Both the HYDE
and extended HYDE models assume a strong association between land use and
human population48. Thus, interannual variability of the land use status for the
past-1960 period (prior to availability of the FAO statistics) is mainly induced by
historical population density. Decadal changes in fractions occupied by cropland,
pastureland, primary and secondary lands for Southeast Asia by the extended
HYDE data are shown in Supplementary Fig. 5.

LUC emissions in the TRENDY models account for the net effect of LUC on
terrestrial carbon cycle including instantaneous and legacy emissions. In each
model, forest area changes (deforestation or afforestation) in response to annual
changes in cropland and pastureland area predefined by the forcing data, resulting
in a relatively consistent forest area changes due to LUC among the models (minor
differences occur due to dynamic vegetation). However, specific schemes for LUC
modelling are left to the discretion of each modelling group, which means that
fundamental assumptions and levels of complexity in LUC modelling vary among
the models: for instance, distinction of primary and secondary forests,
implementation of wood and crop harvests, consideration of residue carbon after
deforestation and turnover rates of a product pool (Supplementary Table 1). These
different schemes of LUC modelling induce non-negligible variations in estimates
of LUC emissions upon close examination. Thus, application of LUC emissions by
the TRENDY is limited to long-term and regional-scale analyses, which aim to
capture strong signals or trend shifts of CO2 uptake or release. Further details of
the LUC modelling in the TRENDY are provided in ref. 35, and a comprehensive
comparison of LUC emissions by the TRENDY and other independent assessments
in Asia is conducted in ref. 49.

Fire emissions. Among the selected seven models, CLM, LPJ, LPJ-GUESS and
VISIT provided outputs of fire emissions. Despite differences in details, modelling
for global fire emissions by those four models are based on similar schemes, which
primarily depend on amounts of fuel load (e.g. vegetation, litte and woody debris)
and moisture availability in litter, soil or near-surface air50–52. For Southeast Asia,
CLM provides more realistic variability in fire emissions than others because the
model considers the contribution of peat and deforestation fires (Supplementary
Fig. 11)53.

In CLM, simulations of peat and deforestation fire emissions are processed first
by the calculation of their burnt area. The burnt area due to peat fires is estimated
by considering effects of climate and inundation of peatlands with a gridded static
map (0.5° × 0.5°) of peatland from ref. 54, and that due to deforestation fires by
considering effects of climate and deforestation rates represented by decreased tree
coverage fractions from the land use data38, 55. Subsequently, fire emissions are
calculated by applying the estimated burnt area, fuel load and functional type
(PFT)-dependent combustion completeness factors. These simulation results have
been validated against the observed interannnual variability of peat fires from ref. 7

and the GFED 3 burnt area and fire emission products56.

Attributions to net CO2 flux. Effects of CO2, climate and LUC on NBP were
isolated by the manipulation of the TRENDY S1, S2 and S3 by following work of
refs 57, 58. The CO2 fertilization effect is represented by NBP of the TRENDY S1,
because only CO2 concentration varies in the TRENDY S1. The climate effect was
extracted by subtracting NBP of the TRENDY S1 from that of the TRENDY S2
(S2–S1). Because the TRENDY S1 considers variability in CO2 and the TRENDY
S2 considers variability in CO2 and climate, their difference leaves out the effect of
CO2 fertilization and only the effect of climate remains. Similarly, the LUC effect
was extracted by subtracting NBP of the TRENDY S2 from that of the TRENDY S3
(S3–S2); their difference leaves out the effects of CO2 fertilization and climate, and
only the effect of LUC remains. The climate effects on plant CO2 exchange, GPP
and ecosystem respiration (RE) were calculated by the above-mentioned approach
(subtracting results of the TRENDY S1 from those of the TRENDY S2), except that
plant CO2 exchange, GPP and RE were used in place of NBP.

Top-down net CO2 flux. Top-down net CO2 flux is represented by five atmo-
spheric CO2 inversions: ACTM v5.7b (ACTM)59, JENA s81 v3.8 (JENA)60, JMA-
CDTM (JMA)61, MACC v14r2 (MACC)62, and NICAM-TM (NICAM)63. These
models estimate net CO2 flux by the inversion of continuous and discrete atmo-
spheric CO2 measurements from global networks (e.g. NOAA Earth System
Research Laboratory (NOAA/ESRL), World Data Centre for Greenhouse Gases

(WDCGG), Comprehensive Observation Network for TRace gases by AIrLiner
(CONTRAIL) and GLOBALVIEW) with prior fluxes (land and ocean fluxes, fire
emissions and anthropogenic CO2 emissions). These inversions minimize a
Bayesian objective function with an assumption that errors form a Gaussian dis-
tribution, and error correlation is represented by off-diagonal elements in the
posterior error covariance matrix. A choice of CO2 measurements and prior fluxes
for each inversion system was left to the discretion of modelling groups, as well as
spatial resolution and time period of inverted fluxes (Supplementary Tables 2, 3).
Top-down net CO2 flux for 1980–2009 was estimated by an ensemble average of
inversions for overlapping time periods (i.e. JENA and MACC for 1980–1984;
JENA, JMA and MACC for 1985–1987; JENA, JMA, MACC and NICAM-TM for
1988–1989; ACTM, JENA, JMA, MACC and NICAM-TM for 1990–2007; ACTM,
JENA, JMA and MACC for 2008–2009).

Satellite-based annual biomass change. We used the satellite-based gridded
(0.25° × 0.25°) global aboveground biomass covering the period 1993–2012 (Global
Aboveground Biomass Carbon version 1.0) to estimate the annual biomass changes
(Δbiomass)64. The global aboveground biomass is estimated based on harmonized
vegetation optical depth (VOD) data derived from multiple passive microwave
satellite sensors, including Special Sensor Microwave Imager, Advanced Microwave
Scanning Radiometer for Earth Observation System, FengYun-3B Microwave
Radiometer Imager and Windsat. The obtained VOD data are converted to
aboveground biomasses via an empirical relationship between the VOD data and
satellite-based spatial map of aboveground biomass for tropical regions65. The
global distribution of total biomass is estimated by applying conversion factors,
obtained from literatures for different forests and non-forest vegetation, to the
aboveground biomass data. We calculated Δbiomass by simply taking differences
between the total biomass data of current and preceding years for each grid cell for
the period 1994–2009, and aggregated the grid data for the Southeast Asia region.

Empirical upscaling of eddy flux data. We used the empirical upscaling of eddy
flux observations to compare against climate sensitivity of CO2 fluxes by the
TRENDY model simulations. The FLUXCOM global carbon flux dataset66, 67 is an
ensemble of daily carbon fluxes estimated from machine learning algorithms
(Random Forest68, Artificial Neural Network69 and Multivariate Adoptive
Regression Splines70) trained with 224 eddy flux tower observations and climate
data. The training of the three machine learning algorithms were conducted
separately for GPP and RE with explanatory variables with spatial (e.g. plant
functional type), spatial and seasonal (e.g. mean seasonal variations of land surface
temperature, vegetation index) and spatial, seasonal and interannual (e.g. climate
variables) variations were used. Using the trained machine learning algorithms and
spatial input data, MODIS product (with no interannual variations) and climate
variables (with interannual variations) from CRUNCEPv6 (http://esgf.extra.cea.fr/
thredds/catalog/store/p529viov/cruncep/V6_1901_2014/catalog.html), spatio-
temporal GPP and RE were forced with grids of 0.5° × 0.5° spatial resolution and
daily time step for the period 1980–2013. Subsequently, spatiotemporal variability
of plant CO2 exchange was calculated by mass balance from the upscaled GPP and
RE products (i.e. GPP-RE).

In the analysis, we compared CO2 fluxes induced by the climate effect
(TRENDY S2-S1) against the FLUXCOM because CO2 fluxes from the FLUXCOM
are results of upscaling natural vegetation fluxes, which make ideal products to
evaluate regional climate sensitivity of CO2 fluxes from plants. It should be noted
that the FLUXCOM data do not account for CO2 losses from LUC because no
predictor variables about LUC were used in its estimation.

Tests for significance of decadal trend of net CO2 flux. We applied the two
commonly used non-parametric tests for the slope in linear regression,
Mann–Kendall and Theil slope tests71, 72, for the detection of robust trends in NBP
and its attributing factors (i.e. the CO2 fertilization, climate and LUC effects).
Mann–Kendall test takes a list of data ordered in time and calculates test statistics
(i.e. Mann–Kendall Z), in which takes the number of positive and negative dif-
ferences between paired data and normalizes it by a square root of its variance.
Theil slope calculates the slope of linear regression as the median of all slopes
between paired values of data of interest.

The trend tests are conducted for the periods 1980–1999 and 1990–2009 to
multiple estimates of annual NBP: (1) an ensemble average of the atmospheric CO2

Fig. 6 Decadal patterns of relationships between El Niño-Southern Oscillation and net CO2 flux anomaly. Relationship between seasonal MEI and NBP
anomaly from the TRENDY S3 (orange) and atmospheric CO2 inversions (cyan) for a the 1980s, b 1990s, c 2000s and d current period (2010–2016). MEI
and NBP anomaly are 3-month averaged (i.e. JFM, AMJ, JAS and OND), and their relationships are constructed in such a way that MEI leads the NBP
anomaly by 3 months to account for the observed lag of influence by El Niño on CO2 fluxes (see Methods). Along with scatter plots, 95% confident ellipses
and regression lines are shown for the TRENDY S3 and atmospheric CO2 inversions. Grey shading represents ranges of large positive MEI values and
positive NBP anomalies. Bar graphs on the top of the scatter plots are seasonal NBP anomaly averaged for different strengths of ENSO; MEI <−1 (moderate
and strong La Niña), MEI=−1 to 1 (weak ENSO events), MEI= 1 to 2 (moderate El Niño), and MEI > 2 (strong El Niño). Error bars represent 1σ variation of
data within different strengths of ENSO. e Budgets of NBP by the TRENDY S3 corresponding to moderate/strong La Niña and El Niño events in the decades
of 1980s–1990s and 2000s. Error bars represent 1σ variation among models
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inversions, (2) an ensemble average and (3) individual outputs of the seven models
from the TRENDY, and (4) Δbiomass for the period 1994–2009 (Fig. 2a). For
trends of the attributing factors to NBP, we take the combined effect of CO2

fertilization and climate (NBP from the TRENDY S2) and the LUC effect
(difference in NBP between the TRENDY S3 and S2) from the TRENDY model
simulations, and applied the tests to an ensemble average and seven individual
model outputs (Fig. 2b, c).

Condition for intense El Niño years. We categorized the conditions for El Niño
and La Niña years based on seasonal variability in the MEI obtained from

US National Oceanic and Atmospheric Administration (NOAA: http://www.
esrl.noaa.gov/psd/data/correlation/mei.data). First, a simple categorization is
conducted under a rule that seasonal MEI (i.e. 3-month averages, JFM, AMJ, JAS
and OND) falls within the predefined range at least one season of year, such that
MEI <−1 (strong/moderate La Niña), −1 ≤MEI ≤ 1 (weak ENSO), 1 <MEI ≤ 2
(moderate El Niño) and MEI > 2 (strong El Niño). To characterize the intensity of
El Niño events, however, not only the magnitude but also the duration of seasonal
MEI needs to be considered. Therefore, we then defined Intense El Niño years,
which refer to years that seasonal MEI values falls with MEI >1 (moderate or
strong El Niño) at least for two seasons (see Fig. 3). We excluded the year 1992
from the analyses because the forcing data of the TRENDY do not account for the
effect of volcanic aerosol by the Mount Pinatubo eruption on radiation73, 74.

Standardized precipitation index. SPI is an indicator for conditions of dryness
and wetness at a given time scale and location of interest based on historic pre-
cipitation data75. Calculation of SPI is based on cumulative precipitation data for a
moving window of different length of months such as 1, 3, 6, 9 months, and so on.
Then, the data are fitted to a gamma distribution with parameters α and β, turning
a cumulative precipitation distribution into a probability distribution. Resulting SPI
values indicate severity of wetness and dryness, with positive values indicating
higher probability of wet events and negative values indicating the opposite.
Interpretation of SPI differs by the length of accumulation periods, such that
shorter periods (e.g. 1 to 3 months) indicates changes in land surface water and
longer periods (e.g. 6 to 9 months) indicates changes of water reservoir.

In this study, we calculated three types of SPI (3, 6 and 9 months) using the
CRU-NCEP precipitation that was used as a forcing of TRENDY models.

Relationship between seasonal MEI and NBP anomaly. Relationship between
seasonal MEI and seasonal NBP anomaly (i.e. 3-month averages, JFM, AMJ, JAS
and OND) for the study period (1980–2009) is constructed by considering a lag
effect such that MEI leads NBP anomaly by 3 months (Fig. 6; Supplementary
Figs. 12, 13) because a majority of the NBP estimates (i.e. the TRENDY models and
atmospheric CO2 inversions) yields an optimal correlation at the 3-month lag.
Some models show an optimal correlation at the 6-month or 9-month lag, but we
regard that lag longer than 3 months is not the best representation of inter-
connection between ENSO and terrestrial carbon cycle (Supplementary Table 4).

For the current period (2010–2016: Fig. 6d), we extended the relationships
using the TRENDY S3 and atmospheric CO2 inversion data from 2010 to 2012
(2012 is the end of the simulation period of the TRENDY) and then we
supplemented the data for the period 2013–2016 by empirical relations between
seasonal MEI and ensemble average NBP anomaly with the 3-month lag (a base
period 1980–2009) for both the TRENDY S3 and atmospheric CO2 inversions (see
results for ensemble averages in Supplementary Figs. 12, 13). Temporal coverages
of two atmospheric CO2 inversions (i.e. JENA and MACC) extends beyond the
year of 2012 (Supplementary Table 2); however, we chose the consistent method
and temporal coverage for empirical regressions for both the TRENDY models and
atmospheric CO2 inversions.

Data availability. The TRENDY-v2 data are available via Dr. Stephen Sitch, Exeter
University (s.a.sitch@exeter.ac.uk). Global Aboveground Biomass Carbon version
1.0, MACC and JENA inversion data are available from the web sites (Above-
ground Biomass Carbon: http://www.wenfo.org/wald/global-biomass/, MACC:
http://apps.ecmwf.int/datasets/data/macc-ghg-inversions/, JENA: http://www.bgc-
jena.mpg.de/CarboScope/). FLUXCOM data, ACTM, JMA and NICAM inversions
are available by contacting Drs. Martin Jung (mjung@bgc-jena.mpg.de), Prabir K.
Patra (prabir@jamstec.go.jp), Takashi Maki (tmaki@mri-jma.go.jp) and Yosuke
Niwa (yniwa@mri-jma.go.jp), respectively.
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