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Summary
Although approximately 50% of Down Syndrome (DS)

patients have heart abnormalities, they exhibit an

overprotection against cardiac abnormalities related with

the connective tissue, for example a lower risk of coronary

artery disease. A recent study reported a case of a person

affected by DS who carried mutations in FBN1, the gene

causative for a connective tissue disorder called Marfan

Syndrome (MFS). The fact that the person did not have any

cardiac alterations suggested compensation effects due to DS.

This observation is supported by a previous DS meta-analysis

at the molecular level where we have found an overall

upregulation of FBN1 (which is usually downregulated in

MFS). Additionally, that result was cross-validated with

independent expression data from DS heart tissue. The aim of

this work is to elucidate the role of FBN1 in DS and to

establish a molecular link to MFS and MFS-related

syndromes using a computational approach. To reach that,

we conducted different analytical approaches over two DS

studies (our previous meta-analysis and independent

expression data from DS heart tissue) and revealed

expression alterations in the FBN1 interaction network, in

FBN1 co-expressed genes and FBN1-related pathways. After

merging the significant results from different datasets with a

Bayesian approach, we prioritized 85 genes that were able to

distinguish control from DS cases. We further found evidence

for several of these genes (47%), such as FBN1, DCN, and

COL1A2, being dysregulated in MFS and MFS-related

diseases. Consequently, we further encourage the scientific

community to take into account FBN1 and its related network

for the study of DS cardiovascular characteristics.
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Introduction
Down Syndrome (DS) is the most frequent autosomal aneuploidy
that is compatible with post-natal life (1 per 700 newborns). It
results from complete or partial trisomy of chromosome 21

(HSA21) and is characterized by a complex phenotype in which
over 80 features occur with various degrees of expression and
frequency causing a high inter-individual variability (Conti et al.,
2007). Among them, and although DS is a major cause of

congenital heart defects, there is a low risk of coronary artery
disease (Vis et al., 2009a) which is classically related with
athermanous plaques composed of macrophage cells, fatty

deposits and fibrous connective tissue.

More than 200 genes on HSA21 could play a potential role in
DS and, in spite of a lot of efforts of researchers worldwide,

molecular causes of the main features remain still partially
unknown. To gain more systematic insights in the molecular
effects of DS, a meta-analysis on 45 different studies (Vilardell

et al., 2011) was recently conducted and its results present a
comprehensive resource for DS research with a catalogue of
genes inside and outside of HSA21 being altered due to dosage

effects, some of them highly related to other syndromes. One

example is FBN1, a gene causative for MFS which was shown to
be affected by dosage imbalance in DS (Fig. 1A). This finding is
in concordance with earlier studies that suggested some

overlapping features of DS with other syndromes (Ehler–
Danlos) (Pasmatzi et al., 2006). Moreover, a recent paper
proposed MFS compensating effects in DS, based on clinical
manifestations, due to a case-report of a person affected by DS

and MFS with moderate MFS visible (Vis et al., 2009b).

Marfan syndrome (MFS) is an autosomal dominantly inherited
connective tissue disorder with an estimated prevalence of 1 or 2

per 10,000. It affects various organs, in particular the skeleton,
the heart causing aortic dilation and the eyes, with variable
phenotypic expression. MFS is induced by mutations in FBN1

(Yao et al., 2007) and its haploinsufficiency as the main disease
mechanism. This hypothesis is supported by the fact that a patient
with a deletion that encompasses FBN1 presents characteristic

MFS (Hutchinson et al., 2003).

Although the molecular mechanisms that explain the
interrelation of FBN1 with MFS features are still unknown,
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there seems to be a pivotal role of the extracellular matrix

components, encompassing some FBN1 interactors (for example

MMPs and DCN), which in some way could affect TGFB

(upregulated) and/or its related pathways components linked to

heart–vascular effects and BMP pathways linked to skeleton

effects (Gao et al., 2010). Furthermore, effects of mutations in

TGFB2 or TGFBR1, TGFBR2 lead to syndromes which share

characteristics with MFS (Pezzini at al., 2012) (usually known as

MFS-like syndromes) and highlight the importance of those

pathways in MFS.

On the other hand, a recent study of DS in human heart samples

reported as well alterations of extracellular matrix components, for

example in MMP2 and COL6A2 (Conti et al., 2007).

The above findings are indicative of a plausible common

dysregulation of certain genes in DS and MFS, maybe even with

opposite trends, allowing compensation effects of the FBN1

associated molecular network. FBN1 network components are

already found deregulated in other syndromes/diseases

(Henrichsen et al., 2011; Mohamed et al., 2009) indicates their

importance for understanding heart-related disorders and

abnormalities.

The aim of this work is to conduct a comprehensive
computational analysis at different levels (gene, network and

pathway levels) in publicly available DS and heart tissue data in
order to gain a better understanding of the FBN1-induced

molecular network in DS heart tissue and its relationship with
other genes and pathways. Additionally, we link the results with

MFS and MFS-like disorders.

Results
Explanatory paragraph

To reach the objectives of this work, we have used a procedure
devoted to identify genes potentially related to FBN1 and tested

their relevance in DS using publicly available DS microarrays
datasets.

The results section is dived into five. In the first three sections
we agglomerated a comprehensive list of genes related to FBN1;
through analysis of its network interactors and related pathways

and through the analysis of FBN1-coexpressed genes in heart tissue
by using the Iterative Signature Analysis (ISA) method (Bergmann

et al., 2003) (eisa: The Iterative Signature Algorithm for gene
expression data, R package version 1.4.1, 2011, Gabor Csardi).

Fig. 1. The role of FBN1 and related genes in Down Syndrome. (A) The Meta-analysis results for FBN1. The major part of the studies with proved presence
of expression are upregulated (red cruises P-value of presence ,0.05, red dots P-value of presence ,0.1). (B) Boxplot of deregulation of FBN1 in DS heart.
(C) Total number of significant in at least one study related to FBN1 neighbours (FBN1_INT), Functional Modules (FBN1_MODULES), related Pathways
(FBN1_PATH) and genes on HSA21.
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Furthermore we have cross-validated those genes (see Materials

and Methods) independently in two datasets: our own DS meta-
analysis (Vilardell et al., 2011) performed with a large number of
DS datasets (containing expression information of 19,389 genes)
and a DS heart (tissue in which is proved FBN1 expression, http://

www.ebi.ac.uk/gxa/gene/ENSG00000166147) study (Conti et al.,
2007) (containing expression information of 11,889 genes).

In the fourth section we have condensed the information from the
three previous sections to a single numerical value with a Bayesian

approach (see Materials and Methods). This gives a prioritization
of genes with respect to their importance for DS context.

In the fifth section we have done a bibliographic revision of MFS
or MFS-like studies including human and mouse models and we

have analysed significant enrichment for MFS or MFS-like genes.

Finally, we have tried to identify a link between genes on

HSA21 and FBN1 in order to explain the effects of the molecular
deregulation in DS patients.

Aberrant expression of FBN1 and its interactors in DS
A previous meta-analysis which includes 45 independent studies

provided a list of 324 genes whose expression was consistently
altered in DS samples due to chromosome 21 dosage imbalances
(Vilardell et al., 2011). Among the genes that had only little

association with DS before we found FBN1 which was
predominantly upregulated in the studies under analysis (in
80% of the expression studies; upregulated in 4 out of 5
human studies and in 3 out of 5 DS mouse models (from the ones

with a detection P-value ,0.1; Fig. 1A). This upregulation was
cross-validated with an additional dataset conducted with DS
heart tissue (Conti et al., 2007) (Fig. 1B) after applying a

Bayesian approach as described in Materials and Methods.

Abnormal expression of FBN1 and its interactors have been
reported before in heart diseases (Mohamed et al., 2009) and in
connective tissue diseases (Henrichsen et al., 2011), providing an

idea of their importance in those systems.

Since we were interested whether this trend of aberrant gene
expression in DS would also hold for the interaction
neighbourhood of FBN1 we have investigated expression
changes of FBN1 and its interaction partners. A total of 249

direct and indirect network neighbours of FBN1 were retrieved
from databases (supplementary material Table S1). From those,
217 genes (from all 19,389 genes tested in the meta-analysis, see

supplementary material Table S1) were interrogated finding 26
candidates in the meta-analysis (P-value59.9587e213).

Furthermore, the DS heart study was used to cross-validate the
meta-analysis results. From there, 207 genes that act as FBN1

direct and indirect neighbours, were interrogated (from a total of
N511,889 genes, see supplementary material Table S1) and 42
satisfies the inclusion criteria with an overlap of 13 genes from
the meta-analysis (P-value54.396e205). We have included for a

posterior analysis 55 genes.

FBN1-related pathways in the context of DS
We conducted Gene Set Enrichment Analysis (Subramanian
et al., 2005) using the pathway information contained in

ConsensusPathDB (Kamburov et al., 2011), version 12 (1,695
different pathways) and detected commonly altered pathways in
the DS studies related to FBN1 (identified as MFS pathway related

can be seen in supplementary material Table S2; results in Table 1)
which are fundamentally associated with the extracellular matrix.
Taking into consideration only commonly deregulated pathways

in both studies with FDR q-values ,0.1, common alterations

were found in: ECM-RECEPTOR INTERACTION, FOCAL
ADHESION and INTEGRIN. We have also checked the
INTEGRIN CELL SURFACE INTERACTIONS which is the

unique pathway in ConsensusPathDB that contains FBN1 as an
integrand because of its clear significance in the meta-analysis and
although the number of overlapping genes between both DS studies
is high (Table 1) no significance was reached in the heart study.

Thus, we can conclude that extracellular matrix components
are deregulated in DS however no clear link with other related
MFS pathways was found. By deeper examining the genes

included in each pathway, we have found 54 genes from the
pathway analysis that accomplish the inclusion criteria to further
investigate their significance by using a Bayesian approach.

FBN1 transcriptional co-expression module in human heart
In order to identify additional partners of FBN1 to reinforce our
knowledge of the system, we tried to identify co-expression
modules centred at FBN1, i.e. genes that exert similar expression

patterns across a set of experiments allowing getting extra
information not conditioned by our actual knowledge of the
system. To reach that, we have applied the Iterative Signature

Algorithm (ISA) (Bergmann et al., 2003) (eisa: The Iterative
Signature Algorithm for gene expression data, R package version
1.4.1, 2011, Gabor Csardi) (see Materials and Methods) that
provides sets of co-expressed genes that are coherently either

over- or underexpressed among samples, here also referred as
functional modules.

We applied this algorithm to five independent Affymetrix
heart studies not related with DS (supplementary material Table

S3; see Materials and Methods). Using a stringent and
unsupervised version of ISA, see Materials and Methods, we
have selected two modules, which contained FBN1 and are

composed by 148 and 154 genes, respectively (supplementary
material Table S4).

Using Gene Set Enrichment Analysis (Subramanian et al.,
2005) with both modules, we have found a significant enrichment

of both in the meta-analysis and in the heart DS study (FDR P-
value ,1*10‘216). These two modules share more than 80% of
the genes, because of that we have decided to merge them into a

single one with final number of 181 genes and its overlapping
between meta-analysis and DS heart study can be seen in
Fig. 1C. Approximately 40% of these genes belong to the FBN1

neighbourhood.

From the latest list of 181 genes, we found 43 candidates in the
DS meta-analysis and 46 were found in the heart DS study with
an overlap of 19 genes between both studies (Fig. 1C, P-value

0.0004). Consequently 70 were included to further study their
significance.

Integration of results with a Bayesian approach

A single commonality value that evaluates the concordance of the
above results for each gene (from 136 unique genes extracted
from the above sections, see Fig. 1C and supplementary material
Table S5) was assigned using a Bayesian approach.

This method resulted in 85 candidates, and after discarding
genes located on HSA21 we have found a list of 77 regarding
FBN1 neighbourhood, functional modules or pathways which are
able to discriminate control and DS samples (Fig. 2A) giving an

additional proof that the FBN1 system is altered in DS. Fig. 2B
shows a network reconstruction using this set of genes.
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Most of these genes have been previously related to heart

morphogenesis, angiogenesis or atherosclerosis. Of special

interest are the ones that can be associated to DS pathogenesis;

among them we have found genes related to heart organogenesis

(i.e. VCAN, which is essential for ventricular septal formation

subsequent to cardiac atrioventricular cushion development

(Hatano et al., 2012)), related to atherosclerosis or coronary

artery diseases (i.e. ANXA2) (Seidah et al., 2012).

Two particular genes are also interesting; (i) Insulin-like

growth factor (IGF1, upregulation in DS) which exerts multiple

beneficial effects on the heart and can improve myocardial

function in pathological situations (Touvron et al., 2012) and (ii)

NRAS which is downregulated in the meta-analysis and also in

the DS heart study. Mutations of this gene can produce juvenile

myelomonocytic leukaemia (DS have a more risk than the normal

population to suffer) or Noon syndrome that is characterized,

mainly, by short stature and congenital heart disease (Kraoua

et al., 2012).

Common deregulation between DS and MFS

A completely independent systematic survey of MFS, MFS-like

and their related mouse models from the PubMed database was

done having as an inclusion criteria that the main topic of the study

relates to the molecular mechanisms of those pathologies. We have

included a total of 24 independent studies (supplementary material

Table S6) and this provides a list of 325 candidate genes

(supplementary material Table S7), however few of them have

been suggested in more than one study (N552, 16%), indicating

high degree of heterogeneity among studies and the necessity to

make more efforts in order to decipher the main molecular

mechanisms in MFS and related diseases. Consequently, to

increase the consistency of the present study, we have decided to

work only with the genes reported at least two times and call them

MFS-related genes (N552, supplementary material Table S7).

First, we would like to challenge the gene search that we have

done in relation to FBN1. We have interrogated the role of 1,485

candidates that belong to FBN1 neighbours, functional modules

or target pathways. From the list of genes related to MFS, 34 of

52 (65%) were evaluated in this study and 16 of them have

become significant in the context of DS (47%, Fisher P-

value51.63e213).

From those genes, we would like to highlight the importance of

TGFRB1 (downregulated in DS samples), LOX and DCN

(upregulated in DS samples) related to the TGFB pathway

(Wang et al. described the potential role of those genes during

heart development (Wang et al., 2005)). ACTA2, collagens as

well as FBN1 and MMP2 are associated to extracellular matrix

producing different types of heart abnormalities.

Additionally, the network reconstruction highlight the

importance of HSA21 genes in relation this deregulation

(Fig. 2B) suggesting different pattern of deregulation in DS

patients than in MFS. Therefore, MFS related genes (represented

in green) are not allocated randomly, rather are located specifically

around FBN1 and DCN. Deregulation of the tandem DCN-FBN1 is

classically observed in MFS and other syndromes like Williams–

Beuren (Henrichsen et al., 2011).

Table 1. Pathways and related genes affected in the meta-analysis and/or in DS heart study. This table shows the number of genes
in that pathway as compiled in ConsensusPathDB, the Gene Set Enrichment P-value from MA (Meta-analysis) and DS Heart study

(Heart DS), FDR adjusted P-value, Number of Significant genes (N) for each study as well as the genes in common.

Path_name
N

Path
MA

P-value
MA
FDR

N
MA

Heart
DS

P-value

Heart
DS

FDR

N
Heart

DS
Common

genes

ECM-receptor interaction 80 0 7*10‘205 11 0 0.003 15 COL5A1;
COL6A2;
COL3A1;
COL1A1;
COL4A2;
COL1A2;
COL5A2

Focal adhesion 191 0 0 23 0 0.001 22 COL5A1;
COL6A2;
COL3A1;
COL1A1;
COL4A2;
COL1A2;
COL5A2

Integrin 122 0 0 18 0 0.002 23 VCAN; DCN;
BGN;

COL18A1;
COL1A1;
COL1A2;
COL3A1;
COL4A2;
COL4A5;
COL5A1;
COL5A2;
COL6A2

Integrin cell surface interactions 72 0 0 13 0.01 0.19 14 COL4A2;
COL1A2;

FBN1; JAM2;
VCAM1;
COL1A1
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Role of HSA21 genes

The final gene priorization list contains 8 genes located on HSA21

(supplementary material Table S5); ADAMTS1, ADAMTS5, APP,
BACE2, PIGP, COL6A1, COL6A2 and COL18A1. In order to know
which of them could explain the observable FBN1 deregulation in

DS, we have tried to correlate the expression of those HSA21 genes
with FBN1 in the meta-analysis and in DS heart study (note that co-
expression with FBN1 comes from independent studies) finding
that the top three genes with greater positive Pearson correlation

and higher concordance between studies were found for BACE2,
COL18A1 and COL6A2 (Table 2). From them COL6A2 and
COL18A1 are of special interest because they belong to the

classical critical heart region for DS (Barlow et al., 2001).

In spite of having evidence that BACE2 is expressed in heart,
its relation to FBN1 is not clear. Nevertheless, COL6A2, which is
part of a protein complex, additionally, by COL6A1 and COL6A3

(FBN1 neighbours, see Fig. 2B), has been proposed in one study
as a candidate to modify the phenotype expression of MFS
(Summers et al., 2010).

Discussion
In this work, we provided an integrative DS study and analysed
the role of the FBN1-network in DS heart tissue. This study was

motivated by two other recent studies that suggested FBN1

alterations in DS (Vilardell et al., 2011; Pasmatzi et al., 2006; Vis
et al., 2009b) which is usually downregulated in MFS, MFS-like

(Gao et al., 2010) and in other connective tissues disorders like
Williams–Beuren syndrome (Henrichsen et al., 2011). Its
importance seems to be crucial for the development of heart

and the aortic system (Gao et al., 2010).

The current study relies on the integration of different sources
of data and on a two-step statistical analysis which combines
standard statistics and a Bayesian approach (Results section). The

Bayesian approach takes advantage of the results of a previous
meta-analysis study in DS (Vilardell et al., 2011) allowing to
build a normal prior distribution for each gene based on previous

experimentation (see Materials and Methods). Prior choice based
on previous analysis, particularly meta-analysis, has been
emerging as a reliable and powerful tool in Bayesian statistics
(Congdon, 2006).

Thus, in a first step we have analysed two studies related to DS
and after applying, independently, standard statistical tests we
have found evidence for FBN1 network regulation in both studies

encompassing 136 candidates genes. Furthermore, using the
pathway information of ConsensusPathDB and performing Gene
Set Enrichment analysis, we have found evidences of an

Fig. 2. The role of FBN1 and related genes in DS and in MFS. (A) Heatmap of the 77 genes with an absolute TBV greater than 2.58 from the Bayesian
Analysis without genes on HSA21 (blue; control samples, red: DS samples). (B) Network reconstruction from all genes (N585) with an absolute TBV greater than
2.58 (red nodes; genes on HSA21, green nodes; MFS related genes).
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enrichment of affected genes related to the Extracellular Matrix in

DS studies (ECM-RECEPTOR INTERACTION, FOCAL

ADHESION, INTEGRIN and INTEGRIN CELL SURFACE

INTERACTIONS). Extracellular Matrix Components have been

associated before to heart malformations (Hinton and Yutzey, 2011)

and to coronary artery risk (Raffetto and Khalil, 2008; Bench et al.,

2011) in non DS studies which is consistent with DS features.

On the other hand, after applying an integrative Bayesian

strategy over the 136 candidates, we have obtained 77 genes

outside HSA21 able to classify control and DS samples

(Fig. 2A). Those genes are mostly upregulated, however down

regulation trends can also be observable (i.e. TGFBR1).

Additionally we did a survey of MFS and MFS-like diseases

and we have found that our DS data is consistent with the

presence of a certain overlap between MFS or MFS-like gene

deregulation (47%) leading the extracellular matrix components.

Remarkable is this last result highlighting genes like MMP2,

COL1A1 and COL1A2 previously validated by PCR in the DS

heart study from Conti et al. (Conti et al., 2007) and FBN1, DCN,

COL1A2, COL1A1 and COL3A1 significant in the meta-analysis

and cross-validated in the DS heart study (Conti et al., 2007)

through the Bayesian approach.

Finally, in order to try to explain how genes on HSA21 can

modify expression of FBN1 and other related genes, we looked at

the direct FBN1 molecular interactors and we found 8 genes on

HSA21 that remain significant after the application of the Bayesian

approach finding three of them with stronger evidence for a related

role; BACE2, COL18A1 and COL6A2. Of these COL6A2 showed

the highest evidence for being causative of that deregulation; the

gene has an additional role to FBN1-related pathways, it is

mentioned as highly correlating gene together with FBN1 in a

previous study, has been related before with DS heart features

(integrand of the critical DS heart region), participates in a complex

that links indirectly with FBN1 (COL6A3 through MMP2, COL6A1

through DCN) and its deficiency is related with a connective tissue

disease, however, without any evident role in heart.

Thus, this survey proposes a new list of gene candidates related

to DS, some of them display similar molecular mechanism

affected in DS and in MFS mostly related to the extracellular

matrix, with one or more genes on HSA21 responsible for that

fact (from which COL6A2 appeared the most plausible

candidate). The repercussion of the alteration of that system in

DS disease can be related with the special cardiovascular

characteristics of DS patients being either the higher risk of

developing heart abnormalities, in special related to valve

formation (Hinton and Yutzey, 2011), or the overprotection

against coronary artery disease (found in some epidemiological

age-matched studies (Ylä-Herttuala et al., 1989; Murdoch et al.,

1977)). Deregulation of genes like VCAN (Hatano et al., 2012),
LOX, ACTA2 and MMP2, related with heart development (Hinton

and Yutzey, 2011), are good candidates to explain the higher risk
of heart abnormalities in DS. Otherwise, key genes have been
emerged through our analysis related to the formation of the

atherosclerosis plaque affected in DS, i.e. upregulation of ANXA2

(Seidah et al., 2012), although other factors like sex hormones (El
Khoudary et al., 2012; Mendelsohn and Karas, 2005; Suzuki

et al., 2010) can also be related to this feature.

Taking all those findings together, we consider that the
deregulation of FBN1-associated network could be crucial to
understand the cardiovascular characteristics associated with DS

as it is in other syndromes (Henrichsen et al., 2011; Mohamed
et al., 2009). However further validation and functional studies
are still necessary to assess its importance in the DS context.

Materials and Methods
Expression data, standardization and normalization
Reviews and quantitative expression data for either DS or MFS were collected
from PubMed, ArrayExpress (Kapushesky et al., 2012) and Gene Omnibus
Express (Barrett et al., 2011) databases.

Two DS datasets were used; the results from a previous meta-analysis (Vilardell
et al., 2011) where a total of 19,389 genes across 45 different studies were tested
and additional independent gene expression data (Affymetrix U133A platform;
GSE1789) on heart tissue from human DS cases composed by 10 DS foetuses
samples (5 DS without cardiac abnormalities and 5 DS displaying different heart
defects) and 5 controls (non DS foetuses without heart abnormalities) (Conti et al.,
2007). The latter dataset allowed cross-validating the meta-analysis results which
were mainly based on DS brain in the context of DS heart tissue. Affymetrix
oligoprobes were remapped to the human genome using Ensembl (version 56)
annotation which results in 11,889 informative genes. An overall control mean for
each gene was computed and log2 ratios for each sample with respect to that
control value were calculated (standardization).

Furthermore, five additional gene expression datasets generated from normal
human heart tissue (Affymetrix U133A platform) were used for analysis of
functional modules. All data were normalized using the GCRMA method. Probes
were re-annotated as described above.

Statistical analysis
To determine statistical significance in DS studies a Bayesian strategy was used
over a set of candidates previously identified using two approaches, based on
standard statistical analysis, due to their different nature. First, candidates from the
meta-analysis were included using a non-stringent score cut-off of 3.4 (scores were
obtained as described (Vilardell et al., 2011)). Second, to determine candidates
from the DS heart study (Conti et al., 2007) a shrinkage student’s t-test (Zuber and
Strimmer, 2009) was used (DS samples versus controls) and genes with P-values
,0.1 were considered for further testing their significance using a Bayesian
Approach. To determine whether a certain overlap between studies was present, a
Fisher’s test was conducted and significance was considered for P-values ,0.05.

Bayesian methods are based on Bayes theorem (see below; Bayes theorem in
Probability) providing tremendous flexibility for data analytic models and yield rich
information about parameters that can be used cumulatively across progressive
experiments being special useful when it is known some qualities from the data
before (allowing to build a prior distribution). In this situation provides robustness in
front of small sample sizes by using parametric distributions.

Moreover, this methodology provides us a unique posterior distribution from
different kinds of studies which can be summarized by the estimates of its

Table 2. FBN1 correlations with HSA21 candidates.

EBI HUGO
FBN1
MA

FBN1
Heart

DS
FBN1

neighbour?
FBN1

coexpressed? Pathways?
Coexpressed in

previous studies?

Related to connective
tissue diseases

(OMIM)

ENSG00000142192 APP 13% 43% YES NO NO NO NO
ENSG00000154734 ADAMTS1 32% 76% YES NO NO NO NO
ENSG00000154736 ADAMTS5 70% 15% NO YES NO NO NO
ENSG00000185808 PIGP 34% 29% NO NO NO NO NO
ENSG00000182240 BACE2 93% 60% YES YES NO NO NO
ENSG00000182871 COL18A1 89% 62% YES YES YES NO NO
ENSG00000142156 COL6A1 22% 83% YES NO YES YES YES
ENSG00000142173 COL6A2 58% 63% NO YES YES YES, high correlate YES
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parameters and obtained a unique value for each gene (here referred as Typified

Bayes Value, TBV, see below; Interpretation of the Bayesian Values).

The method adds a major weight of the observations accounted in DS heart

study if they are not clearly contradicted by the meta-analysis results taking into

consideration the expected and natural expression changes that can be measured.

The method needs, in a first step, a prior knowledge about the possible range of

values for each gene and this was performed using the log2 fold-change mean from

the studies considered in the meta-analysis and its standard error from 16 arrays

experiments with expressed P-values ,0.1.

Since the most extended way to analyse log2 ratios from microarray studies are

based on normal distribution (Allison et al., 2006; Dobbin and Simon, 2005) and

the fact that independent means follows a Normal distribution by the application of

the Central Limit Theorem we have consider a Normal Distribution for the group

of means obtained from each microarray study.

In a further step, we evaluated the DS samples from the DS heart study and,

following the same reasoning, we consider a normal distribution for the log2 ratios

in the Conti study (each Down Syndrome samples versus the mean of the Controls

samples) which is additionally the most conservative alternative (Albert, 2007)
(see below; Prior distribution, sampling distribution (likelihood), Bayes’ rule,

Posterior distribution) and keep the coherence with the previous Conti analysis.

Finally, we summarized the posterior distribution by calculating a statistic based

on its posterior mean divided by its posterior standard error (Typified Bayes Value,

TBV, see below; Interpretation of the Bayesian Values). The genes that remind

significant (absolute TBV.2.58) were visualized with heatmaps which group

together samples (columns) and genes (rows) which display a similar pattern

through hierarchical clustering. Dendrograms were built using the Canberra

distance as a distance metric and a complete linkage as agglomerative method.
Finally, in order to correlate expression profiles of genes among either the meta-

analysis or the DS heart study the Pearson correlation was used.

The Bayes theorem in probability
The Bayes theorem can be written as follows:

p h xjð Þ~ p x hjð Þp hð Þ
p xð Þ

p xð Þ~
ð

p x hj jð Þp hð Þdh

By formulating a prior belief of the probability distribution of the parameter of

interest, h, (p(h)) and by replacing p(x h)j with the corresponding likelihood
function of the observations, we can rewrite as follows:

p h xjð Þ~ L h; xð Þp hð ÞÐ
L h; xð Þp hð Þdh

which is the posterior distribution probability for h once we have observed the data

and conjugate with our prior belief as it is represented above.

Prior distribution, sampling distribution (likelihood), Bayes’ rule, posterior
distribution
A prior is often the purely subjective assessment of an experienced expert or
results from previous studies (Casella and Berger, 1990). We have used a previous

meta-analysis composed by 16 independent microarrays studies to build the prior

distribution.

From each study a log2 ratio mean was computed if the P-value of gene
expression was below 0.1 (due to the way that the selection was performed in the

Meta-Analysis only widespread expressed genes were tested).

Then, if we consider a Normal prior for the parameter h, N(h0,s2
0) as described

(Albert, 2007; Casella and Berger, 1990):

p hð Þ~ 2ps2
0

� �{1=2
exp {

h{h0ð Þ2

2s2
0

" #
!exp {

1

2s2
0

h2{2hh0

� �� �

(where h0 is estimated as the mean of the log2 ratios means from each study and s0

is estimated as the standard deviation of these means)

and a normal likelihood for the observed data (N(h,s2)):

p x hjð Þ~ 2ps2
� �{1=2

exp {
(x{h)2

2s2

� �

L h; xð Þ~ 2ps2
� �{n=2

exp {
Xn~10

j~1

xi{hð Þ2

2s2

" #

then the posterior follows also a Normal distribution with parameters N(h1,s2
1)

and can be written as follows:

p h xjð Þ!exp {
h{h1ð Þ2

2s2
1

" #

The posterior parameters can be estimated as follows:

s1~1
. ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

n=s2z1=s0
2

p

h1~
x(n=s2)zh0(1

	
s2

0)

n=s2z 1
	

s2
0

� �
where h0 and s0 come from the prior Normal Distribution and s has been

estimated from the standard deviation of the data (Conti et al., 2007) and n is the
sample size (in this case 10 Down Syndrome cases).

Interpretation of the Bayesian values
After getting the estimated of h1,s1 for each gene i we can consider the following

statistics which we call Typified Bayes Value (TBV):

TBVi~
h1i

s1i

i~1:::136

If TBV follows a normal distribution, then absolute TBV greater than 2.58 falls

outside of the 99% probability of being h150.

Bioinformatics analysis
FBN1 network neighbours were determined using the protein–protein interaction

information from ConsensusPathDB version12 (Kamburov et al., 2011) which
contains a large number of molecular interactions of different types.

Functional Modules were identified using the Iterative Signature Algorithm
(ISA) embedded in the eisa library of the Bioconductor software, as described

(Bergmann et al., 2003) (eisa: The Iterative Signature Algorithm for gene

expression data, R package version 1.4.1, 2011, Gabor Csardi), after filtering for
genes with a detection P-value ,0.1 in at least l% of the samples and with

thresholds 2, 2.2, 2.4, 2.5 for samples and features. From these modules we

selected 2 modules from which the co-expression of the genes was observed in
more than 5 samples (to increase the robustness of the analysis).

Network reconstruction was realized in Cytoscape using the interactome
provided by ConsensusPathDB version 12 and Venn diagrams were created by

VENNY software (VENNY, an interactive tool for comparing lists with Venn
diagrams, 2007, Juan C. Oliveros).

Gene Set Enrichment Analysis (Subramanian et al., 2005) was performed

independently over the whole list of genes from DS meta-analysis (19,389) and the
whole list of genes from the DS heart study (11,889) in order to discern whether an

enrichment of functional modules (ISA) or pathways from the ConsensusPathDB
was present. Significance was considered for a pathway or functional module with

FDR q-value ,0.05.

All bioinformatic analyses were conducted in R and associated libraries

available from Bioconductor or cran repositories.
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